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 CURRENT
OPINION Tropomyosin receptor kinase inhibitors in the

management of sarcomas

Christopher P. Wildinga, Herbert H. Loongb,c, Paul H. Huanga,�,
and Robin L. Jonesd,e,�

Purpose of review

Genetic aberrations resulting in tropomyosin receptor kinase (TRK) fusion proteins can drive oncogenesis
and are postulated to occur in up to 1% of solid tumours. However, TRK fusions in adult sarcomas are rare
and there is a significant challenge in identifying patients with sarcomas harbouring TRK fusions in the
clinical setting. Despite a recent European Society of Medical Oncology consensus article regarding
screening of tumours for TRK fusions, economical and practical limitations present a barrier to widespread
screening of sarcomas.

Recent findings

Larotrectinib and entrectinib are pan-TRK inhibitors which have both received FDA approval for the
management of solid tumours harbouring NTRK fusions. Initial results of a number of clinical trials have
demonstrated promising efficacy and safety data, including dramatic and durable responses in patients
with sarcomas. As such, TRK inhibitors represent a promising treatment option in a small cohort of adult
sarcoma patients, where currently treatment options are limited. The emergence of acquired resistance is a
concern associated with TRK inhibitor therapy and a number of second-generation agents targeting TRK
kinase mutations driving acquired resistance have entered early-phase clinical trials.

Summary

With the growing appreciation of the implications of TRK fusions, this review will summarize the emerging
clinical trial data of TRK inhibitors in sarcomas. Although in their infancy, clinical trial results are
encouraging, and as further results and analyses are released, we will have a greater understanding of
their impact on clinical practice and the management of patients with sarcomas.
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INTRODUCTION

Sarcomas are a rare and heterogeneous group of
cancers, comprising over 150 histological subtypes
with vastly differing molecular characteristic and
clinical behaviour [1,2]. This degree of hetero-
geneity makes sarcomas inherently difficult to man-
age medically. In the advanced setting, following
failure of first-line cytotoxic chemotherapy, there
are limited treatment options, leading to dismal
outcomes for these patients [3,4]. However, targeted
therapies, such as tyrosine kinase inhibitors (TKIs),
have been approved for specific sarcoma subtypes,
for example pazopanib in nonadipocytic soft tissue
sarcomas (STS) and pexidartinib in tenosynovial
giant cell tumours [5,6]. Indeed, the management
of gastrointestinal stromal tumours (GIST) has
been revolutionized by the approval of a number
of TKIs including imatinib, sunitinib, regorafenib,
ripretinib and avapritinib [7–11]. Additionally,

molecularly driven basket trials have shown encour-
aging results through the enrolment of multiple
cancer subtypes harbouring common genetic
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aberrations, for example the CREATE trial which
demonstrated the efficacy of the TKI crizotinib
[12–14]. The role of TKIs in soft tissue sarcomas
(STS) is beyond the scope of this article and interested
readers are directed to a recent in-depth review on
this topic [15]. Herein, we review TKIs targeting
fusions in the tropomyosin receptor kinases A, B
and C (TRKA, TRKB and TRKC; collectively referred
to as TRK hereafter), focusing on the biological sig-
nificance of these fusions, the challenges in identify-
ing sarcomas harbouring TRK fusions, as well as
clinical trials.

TROPOMYOSIN RECEPTOR KINASE
ACTIVITY AND MUTATIONS

TRKs are single-pass transmembrane receptor tyro-
sine kinases encoded by the neurotrophic tyrosine
receptor kinase 1, 2 and 3 (NTRK1, NTRK2 and
NTRK3) genes, and function as high-affinity recep-
tors for neurotrophins [16]. Mutations in these
genes can drive oncogenesis, with chromosomal
fusions being the most commonly described, and
occurring in up to 1% of all solid tumours [17

&&

]. The
first established TRK fusion implicated in sarcoma-
genesis was demonstrated in a landmark article by
Kenzevich et al. [18], which confirmed the ETV6–
NTRK3 fusion was recurrently rearranged in congen-
ital infantile fibrosarcoma. Since then, sporadic
TRK fusions have been described in a number of

sarcomas subtypes; ETV6–NTRK3 fusions in a subset
of patients with ALK-negative inflammatory myofi-
broblastic tumours, in KIT and PDFGRA-negative
GIST and further established as drivers of infantile
fibrosarcoma [19–21]. LMNA–NTRK1 fusions have
been shown in haemangiopericytoma, infiltrative
spindle cell sarcomas, and the recently described
lipofibromatosis-like neural tumours, which have
also been shown to harbour TPM3–NTRK1 fusions
[22–25]. Furthermore, NTRK1 and NTRK3 fusions
with variable partners have been described in a
subset of patients with uterine leiomyosarcoma
[26]. These translocations lead to oncogenesis when
the catalytic tyrosine kinase domain containing the
30 region of the NTRK gene fuses to the 50 region of
the variable fusion partner, promoting gene expres-
sion and facilitating protein dimerization. The sub-
sequent chimeric oncogene is both aberrantly
expressed and leads to ligand-independent consti-
tutive activation of the tyrosine kinase domain.

DETECTION OF TROPOMYOSIN
RECEPTOR KINASE FUSIONS IN THE
CLINICAL SETTING

Aside from infantile fibrosarcoma, we have little
knowledge as to which sarcoma subtypes are most
likely to harbour TRK fusions. Therefore, one critical
clinical challenge is identifying which patients
should be offered TRK fusion screening and identi-
fying the most effective screening method.

Pan-TRK immunohistochemistry (IHC) repre-
sents a quick and cost-effective method for detecting
overexpression of TRK fusion proteins, and initial
work on smaller pan-cancer cohorts suggested rea-
sonable reliability, with a reported sensitivity and
specificity of 95.2 and 100%, respectively [27]. How-
ever, further studies have demonstrated that false-
positive expression is frequently observed in
tumours of neuronal and smooth-muscle differenti-
ation as wild-type TRK protein is physiologically
expressed. Indeed, a recent study demonstrated that
pan-TRK IHC was poor at identifying TRK expres-
sion in sarcoma samples, with a sensitivity and
specificity of 80 and 74.4%, respectively, worse than
all the other cancer subtypes studied [25,28]. As
such, the evidence remains unclear as to whether
IHC should be adopted as the preliminary screening
method for diagnosing TRK fusions in sarcomas.

Fluorescence in-situ hybridization (FISH) may
be used as an alternative approach to detecting
TRK fusions in sarcomas. However, the need for
individual probes for NTRK1, NTRK2, and NTRK3,
and the fact that FISH is unable to identify the 50

partner of the fusion, limits its clinical applicability.
Furthermore, complex rearrangement patterns, or

KEY POINTS

� Owing to difficulties associated with pan-TRK
immunohistochemistry of tissue with neuronal or smooth
muscle differentiation, screening of sarcomas for TRK
fusions should involve NGS methods early in the
screening paradigm.

� Larotrectinib has demonstrated encouraging safety and
efficacy data in the pan-cancer setting and also in the
recently reported sarcoma-specific data set. Further
data are expected as the trial matures and this will
improve our understanding of the clinical implications
of this novel agent.

� Entrectinib has also demonstrated encouraging
response rates in TRK fusion-positive solid tumours,
including those with CNS metastases; however, formal
reports of the complete phase I/II trial data are
awaited, including sarcoma-specific cohort data.

� Novel agents targeting TRK kinase domain mutations
driving acquired resistance following TRK inhibitor
therapy have shown promising efficacy in case reports
and have entered early-stage clinical trials, with early
phase I data regarding LOXO-195 showing
encouraging efficacy in the second-line setting.
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when the deleted genomic region is small enough to
leave sufficient complementary regions for hybrid-
ization of both FISH probes, can result in false
negatives, with one study reporting this to be over
30% in paediatric mesenchymal tumours [29].

With the technological advances in next-gener-
ation sequencing (NGS), a number of RNA and DNA-
based assays have been developed to detect TRK
fusions. Anchored multiplex polymerase chain reac-
tion (PCR) utilizing RNA as input material can tar-
get-known fusion exons and is commercially
available through ArcherDx [30,31]. One advantage
of this system is that only one fusion partner needs
to be targeted, allowing characterization of novel or
variable fusion sequences. However, all RNA-based
assays are reliant on reasonable quality input mate-
rial, a potentially limiting factor with FFPE samples
[32]. Targeted DNA-based sequencing assays have
also been developed, with the deep-coverage hybrid-
ization Memorial Sloan Kettering Integrated Muta-
tion Profiling of Actionable Cancer Targets (MSK-
IMPACT) assay recently approved by the FDA as a
diagnostic test [33]. The panel includes coverage of
introns 3 and 7–12 of NTRK1, intron 15 of NTRK2
and introns 4 and 5 of ETV6, the most common
fusion partner of NTRK3 [25]. NTRK3 itself is not
included as introns 13, 14 and 15 where the majority
of breakpoints occur span 193 kb and include repet-
itive nucleotide sequences making sequencing
unfeasible [25]. Furthermore, studies have demon-
strated that actionable drivers may be undetected by
targeted DNAseq but subsequently identifiable
through targeted RNAseq assays, particularly in
tumours with low mutational burden [34]. Given
the cost and low frequency of TRK fusions, the
practicality of diagnosing TRK fusions through
Whole Genome Sequencing (WGS) assays remains
unclear, but a sequential screen initially utilizing
DNAseq assays followed by targeted RNAseq may be
advisable. This highlights the importance of expert
sarcoma disease input and the advantages of cen-
tralizing diagnosis and treatment [35].

Owing to the lack of clarity dictating which
screening methods would be most appropriate,
the European Society of Medical Oncology (ESMO)
released a working group consensus article detailing
a recommended approach for the detection of TRK
fusions [36]. In sarcomas known to harbour highly
recurrent TRK fusions, any validated confirmatory
analysis would suffice, with FISH utilizing targeted
probes or nested reverse transcription PCR the most
cost-effective methods. To screen for TRK fusions in
an unselected histology-agnostic approach, RNAseq
techniques are the gold standard [32]. The most
exhaustive approach, however, would entail a tar-
geted DNAseq assay. If negative a further targeted

RNAseq assay, and a final IHC step to confirm
expression of the pharmacologically targetable pro-
tein kinase [37

&&

]. However, economic and practical
considerations limit the feasibility of such in-depth
screening, and further characterization of cohorts of
TRK fusion-positive cancers is needed to guide clini-
cians on which sarcomas should routinely undergo
screening.

LAROTRECTINIB

Larotrectinib (Vitraki/LOXO-101/ARRY-470) is a
first-in-class orally available, potent and highly selec-
tive pan-TRK inhibitor which received FDA acceler-
ated approval for adult and paediatric patients with
solid tumours harbouring a TRK fusion [38]. The
efficacy of larotrectinib has been assessed in three
separate phase I/II tumour-agnostic clinical trials.
The adult-only open-label, multicentre phase I
dose-escalation study recruited 70 patients over the
age of 18 years, with locally advanced or metastatic
solid tumours refractory to standard therapy
(NCT02122913) [39

&

]. Confirmed presence of a TRK
fusion was not a prerequisite for inclusion into the
study. A standard 3 and 3-dose escalation scheme was
adopted, starting at a safe starting dose of 50 mg once
daily, with six dosing schedule cohorts adopted.

Results of the dose-escalation phase I study car-
ried out as part of the multicentre, open-label phase
I/II trial of larotrectinib in the paediatric/teenage
and young adult population have also been reported
(SCOUT, NCT02637687) [40

&

]. Patients aged from
1 month to 21 years, with a locally advanced or
metastatic solid tumour for which no standard sys-
temic or curative therapy existed were enrolled. As
with the adult-only phase I trial, TRK fusion status
was not a prerequisite for enrolment; however, TRK
fusion testing was undertaken prior to enrolment,
resulting in enrichment of the trial cohort with
tumours harbouring TRK fusions. A total of 24
patients were enrolled onto the phase I arm of the
study, with a median age of 4.5 years. Of the cohort
of 24, 17 patients had a tumour harbouring a TRK
fusion, eight (47%) had infantile fibrosarcoma,
seven (41%) had other sarcoma subtypes and the
remaining two (12%) had papillary thyroid cancer.
The subsequent phase II trial remains actively
recruiting with results currently awaited.

The combined safety and efficacy results of the
aforementioned phase I study involving adults,
phase I study involving children, and the phase II
basket clinical trial (NAVIGATE) involving adults
were published by Drilon et al. (NCT02576431)
[17

&&

]. The decision to pool the efficacy data from
the three trials was driven by the rarity of TRK
fusions and the inherent heterogeneity of cancer
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types recruited. Across the three studies, 55 patients
were included for analyses made up of eight patients
from the adult phase I study, 12 from the paediatric
phase I study and 35 from the adult phase II study.
Inclusion criteria for analysis included patients who
had a locally advanced or metastatic, TRK fusion-
positive solid tumour, adequate organ function, an
Eastern Cooperative Oncology Group performance
status of 0–3, and who had received standard ther-
apy previously. For the purposes of the phase II trial
in adults, patients exposed to prior treatment with a
TKI with anti-TRK activity were excluded. The
cohort of 55 patients was made up of 17 unique
cancer diagnoses, and from a sarcoma perspective
included seven (13%) with infantile fibrosarcoma,
three (5%) with GIST, three (5%) with spindle-cell
tumours, two (4%) with malignant peripheral nerve
sheath tumours, two (4%) with myopericytoma, two
(4%) with sarcoma not otherwise specified and a
single case (2%) of infantile myofibromatosis.
Across the whole cohort, independent radiology
review per response evaluation criteria in solid
tumours (RECIST) identified an overall response rate
of 75% (41 of 55 patients), made up of seven (13%)
complete responses and 34 (62%) partial responses.
These responses were seen independent of age,
tumour subtype or type of TRK fusion. At one year,
71% of observed responses were maintained, and at
a median follow-up of 9.9 months, the median
progression-free survival was not reached. In keep-
ing with the results from the phase I trials, larotrec-
tinib was well tolerated with clinically significant
adverse events uncommon. No grade 4 or 5 drug-
related adverse events were documented, and the
commonest grade 3 event was anaemia which was
identified in five (11%) of the 55 patients.

More recently, Demetri et al. [41
&&

] presented the
sarcoma specific efficacy and safety data from the
three aforementioned trials at the 2019 Connective
Tissue Oncology Society (CTOS) meeting. As of
February 2019, a total of 69 patients with TRK
fusion-positive sarcomas had been treated, made
up of 29 (42%) with infantile fibrosarcoma, four
(6%) with GIST, and the remaining 36 (52%) with
a range of other sarcoma subtypes. The median age
in this sarcoma-specific cohort was 5.2 years, with
48 (70%) coming from the paediatric and young
adult phase I/II trial. The cohort was heavily pre-
treated, 42 (61%) patients had received prior sur-
gery, 50 (72%) prior systemic therapy, and 13 (19%)
prior radiotherapy. Treatment response was evalu-
able in 68 of the 69 patients with an overall response
rate per RECIST of 88% (60 of 68 patients), consist-
ing of 16 (24%) complete responses and 44 (65%)
partial responses. The median duration of treatment
response had not been reached, and at data cut-off

treatment was ongoing in 47 (68%) patients. As with
previous reports, larotrectinib was well tolerated
with adverse events mostly grade 1–2.

Furthermore, five children with sarcomas
enrolled onto the phase I study went on to undergo
surgical resection following a partial response to
larotrectinib [42]. Surgical resections were R0 in 3
(60%) of the 5 cases, with a pathological complete
response in 2 patients (100% treatment effect) and
near pathological complete response in 1 patient
(>98% treatment effect). None of the five patients
suffered any postoperative or wound healing com-
plications, demonstrating the potential utility of
larotrectinib as a presurgical treatment option in
patients with TRK fusion-positive sarcomas.

Based upon the results of these trials, and the
recently presented sarcoma-specific data, larotrecti-
nib has rapid, potent and durable efficacy in patients
with tumours harbouring TRK fusions. The activity
observed in a diverse population of cancer subtypes
confirms the validity TRK fusions as a therapeutic
target and the tumour-agnostic efficacy of larotrec-
tinib, whereas the sarcoma-specific data support the
importance of identifying TRK fusions in patients
with sarcomas.

ENTRECTINIB

Entrectinib (Rozlytrek/RXDX-101/NMS-E628) is
another pan-TRK inhibitor which was granted accel-
erated FDA approval for the treatment of adults and
children over the age of 12 years, with solid tumour-
harbouring TRK fusions [43]. Based upon promising
preclinical work, entrectinib was taken forward for
evaluation in phase I/II studies [44–46]. The com-
bined efficacy and safety results of the ALKA-372-001
phase I basket trial, the STARTRK-1 phase I basket trial
and the ongoing STARTRK-2 trial were recently
reported by Doebele et al. [47

&&

] (NCT02097810,
EudraCT 2012-000148-88 and NCT02568267). A
total of 54 patients with tumours harbouring a TRK
fusion were included for analysis, 51 patients from
the phase II STARTRK2, two from the phase I
STARTRK1 and one from the phase I ALKA-372-
001. The median age was 58 years, and the cohort
was heavily pretreated with 46 (85%) having received
prior chemotherapy, 13 (24%) previous targeted ther-
apy and seven (13%) previous immunotherapy. A
total of 12 (22%) patients had central nervous system
(CNS) metastases at the start of entrectinib. Of the 54
patients, 13 (24%) had a sarcoma making it the largest
cohort; however, specific sarcoma subtypes were
each represented only by a single case, aside from
sarcoma not otherwise specified, seven (13%) cases.
Of the 54 patients evaluable for treatment efficacy per
RECIST, 31 (57%) achieved an objective response

Sarcomas
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made up of four (7%) complete responses and 27
(50%) partial responses. Stable disease was observed
in nine (17%) cases. As with larotrectinib, objective
responses were observed independent of tumour sub-
type and type of TRK fusion. Entrectinib therapy
resulted in a median progression-free survival of
11.2 months, and a median duration of response of
10.4 months. Of the 12 patients with CNS metastases
at baseline, a partial response was observed in six
(50%) and stable disease in four (33%), with the
remaining two (17%) having incomplete data thus
preventing response analysis. For the cohort of sar-
coma patients, 12 had sufficient data for inclusion in
outcome analysis, of which six (50%) had a partial
response to entrectinib and the remaining six (50%)
had stable disease.

For the safety assessment of entrectinib, all
patients enrolled across the three aforementioned
trials, and patients from the paediatric phase I/II
STARTRK-NG study were included, a total of 355
patients (NCT02650401). Across this larger cohort,
most treatment-related adverse events were grade 1
or 2. However, serious treatment-related adverse
events were recorded in 30 (9%) of the 355 patients,
the most frequent of which was nervous system
disorder in 10 (3%). Dose interruption due to a
treatment-related adverse event was required in 90
(25%), a dose reduction in 97 (27%), and entrectinib
was discontinued in 14 (4%). No treatment-related
deaths were recorded.

The integrated analysis of entrectinib efficacy
shows that it is well tolerated, able to induce robust
responses and has durable antitumour activity.
Importantly, this combined analysis also confirms
the ability of entrectinib to cross the blood–brain
barrier, and patients with CNS metastases at baseline
had similar response rates. The objective response
rate observed for entrectinib is lower than that
reported in the combined analysis of larotrectinib
(57 versus 75%); however, differences in study pop-
ulation make direct comparison challenging. For
example, in the entrectinib cohort 22% of patients
had CNS metastases at baseline, associated with a
poorer prognosis, compared with only 2% in the
larotrectinib analysis. Furthermore, the larotrecti-
nib combined cohort presented by Drilon et al.
included patients enrolled in the paediatric and
young adult phase I/II trial and was heavily enriched
for cases of the TRK inhibitor responsive infantile
fibrosarcoma; however, no such cases were available
for inclusion in the entrectinib analysis.

Figure 1 illustrates a response to NTRK inhibitor
in a patient with histiocytic sarcoma.

TARGETING ON-TARGET TROPOMYOSIN
RECEPTOR KINASE MUTATIONS DRIVING
ACQUIRED RESISTANCE

Despite the promising efficacy data, as with all TKIs
acquired resistance invariably develops and as such

FIGURE 1. Radiological response in a patient with a high grade sarcoma with histiocytic differentiation (ETV6:NTRK3 exon
14) treated with entrectinib (clinical trial).
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identifying mechanisms of treatment failure and
methods to overcome them is of immediate clinical
relevance. To date, the best-described mutations
leading to secondary resistance following TRK inhi-
bition are on-target mutations involving the NTRK
kinase domain [48,49].

Second-generation TRK inhibitors have been
developed and are entering early phase clinical tri-
als. Following promising efficacy in the compassion-
ate use and preclinical setting, a phase I/II clinical
trial of LOXO-195 in adults and children previously
treated with TRK inhibitors has been initiated
(NCT03215511). Preliminary results reported that
of 20 patients with acquired resistance secondary to
an NTRK gene mutation, nine (45%) had a complete
or partial response to therapy, although sarcoma-
specific data are awaited [50

&&

]. Repotrectinib (TPX-
0005) is another next-generation pan-TRK, ROS1
and ALK TKI which has shown promise in preclini-
cal studies leading to a phase I/II study of repotrec-
tinib in six cohorts, including a cohort of TRK
inhibitor pretreated TRK fusion positive solid
tumours. The results of this trial are yet to be
released (TRIDENT-1, NCT03093116) [51].

CONCLUSION

From the results of the basket trials of entrectinib
and larotrectinib, it is apparent that TRK inhib-
itors are able to induce dramatic and durable
responses in patients with sarcomas harbouring
a TRK fusion. As such, they offer a valuable and
effective treatment option in a small cohort of
adult sarcoma patients, who otherwise have lim-
ited treatment options. However, sarcomas are a
heterogeneous group of cancers and TRK fusions
are rare in adult sarcomas. With the economic and
practical limitations of utilizing NGS assays to
screen a large population of patients with sarco-
mas to identify a small subset harbouring TRK
fusions, one of the key clinical challenges is iden-
tifying which patients should undergo screening.
Further retrospective and prospective studies are
required to help guide clinical practice in defining
which sarcoma subtypes should be considered for
TRK fusion screening. Complete trial data, and
further sarcoma-specific results are awaited, and
are likely to yield further insight into the role of
TRK inhibitors in the management of sarcomas. It
should be noted that disease review by a specialist
sarcoma histopathologist was not required in pre-
vious trials, and should be included in future study
designs. Furthermore, although showing promise
in a small cohort of children in the phase I trial of
larotrectinib, TRK inhibitors may play an impor-
tant role as a preoperative therapy or in the

combination setting, and this should be examined
in future preclinical and clinical studies.
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