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ABSTRACT 

Purpose: Gene-expression-based molecular subtypes of high-grade serous tubo-
ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved 
stratification for molecularly targeted trials. However, evaluation of clinical utility has 
been hindered by non-standardized methods which are not applicable in a clinical 
setting. We sought to generate a clinical-grade minimal gene-set assay for classification 
of individual tumor specimens into HGSOC subtypes and confirm previously reported 
subtype-associated features. 

Experimental Design: Adopting two independent approaches, we derived and internally 
validated algorithms for subtype prediction using published gene-expression data from 
1650 tumors. We applied resulting models to NanoString data on 3829 HGSOCs from 
the Ovarian Tumor Tissue Analysis Consortium. We further developed, confirmed, and 
validated a reduced, minimal gene-set predictor, with methods suitable for a single 
patient setting. 

Results: Gene-expression data was used to derive the Predictor of high-grade-serous 
Ovarian carcinoma molecular subTYPE (PrOTYPE) assay. We established a de facto 
standard as a consensus of two parallel approaches. PrOTYPE subtypes are 
significantly associated with age, stage, residual disease, tumor infiltrating lymphocytes, 
and outcome. The locked-down clinical-grade PrOTYPE test includes a model with 55 
genes that predicted gene-expression subtype with >95% accuracy that was maintained 
in all analytical and biological validations. 

Conclusions: We validated the PrOTYPE assay following the Institute of Medicine 
guidelines for the development of omics-based tests. This fully defined and locked-down 
clinical-grade assay will enable trial design with molecular subtype stratification and 
allow for objective assessment of the predictive value of HGSOC molecular subtypes in 
precision medicine applications. 

Statement of translational relevance: 

Outcomes for women diagnosed with high-grade serous tubo-ovarian carcinoma 
(HGSOC) have limited improvements over the last few decades. While novel targeted 
therapeutic strategies are maturing, their widespread adoption is often dependent on 
biomarkers that can guide management and identify women who are more likely to 
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benefit from new compounds. For HGSOC, several previously described, near-identical 
gene-expression based sub-classification schemes have had little impact on practice or 
clinical trial design. The most prominent drawback to their implementation is that they 
have not been designed in a clinically applicable way. Without a de facto standard any 
potential clinical utility of HGSOC gene-expression subtypes cannot be determined. 

Here, we develop and validate a standardized and reproducible HGSOC gene-
expression subtype classifier that will enable prospective assessment of the clinical 
utility of HGSOC gene-expression subtypes. The Predictor of high-grade-serous 
Ovarian carcinoma molecular subTYPE (PrOTYPE) represents an Institute of Medicine 
guidelines-compliant, fully-defined, and validated assay that can be used with formalin 
fixed paraffin embedded (FFPE) tissues - making it practical for clinical uptake. Our 
report confirms the biological relevance of gene-expression subtypes in HGSOC and 
will facilitate the incorporation of subtype classification into ongoing and future clinical 
trials. 

Introduction: 

Anatomy and histopathology have been the foundations of cancer classification for 
more than a century, but both are now complemented by objective assessment of 
underlying molecular features of disease.(1-8) The development of microarray-based 
gene-expression profiling of high grade serous tubo-ovarian carcinoma (HGSOC) (9,10) 
raised expectations for rapid advances in classification, prognostication and prediction 
in this most common histotype (~70%) of ovarian carcinoma, the deadliest 
gynecological malignancy.(11,12) 

Previous studies identified four phenotypically distinct expression-based HGSOC 
molecular subtypes.(9,10,13-18) These subtypes have been repeatedly reproduced, 
with broad similarities in composite pathological characteristics. The C1/Mesenchymal 
(C1.MES) subtype is characterized by a desmoplastic stroma, high expression of extra-
cellular matrix components, and poor outcomes compared to other HGSOCs; which is 
consistent with other solid tumors with highly desmoplastic stroma.(19-23) The 
C2/Immunoreactive (C2.IMM) subtype is dominated by intratumoral CD3+/CD8+ cellular 
infiltration, inflammatory cytokine expression, and generally more favorable outcomes. 
The C4/Differentiated (C4.DIF) subtype is characterized by high expression of 
CA125/MUC16, a subset of immuno-modulatory cytokines, modest lymphocyte 
infiltration, and clinical outcome indistinguishable from C2.IMM.(10,15,17,24) Finally, the 
C5/Proliferative (C5.PRO) are depleted for both stromal and immune elements, 
overexpress onco-fetal and stem cell-associated genes(24), and have unfavorable 
outcomes.(13-15,17,18). 
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Unlike modern histotype classification of ovarian carcinoma,(12,25) no agreed-on gold 
standard exists to define expression-based HGSOC molecular subtypes. Both analytical 
methods and data used for subtype assignment are fragmented, differing in algorithms 
and specific genes used, each defining its own brand of subtype. No methods 
discussed to date provide a workflow with compatibility for fixed/archival tissues that are 
the mainstay of modern pathology laboratories. Thus, the potential of gene-expression 
subtype information to guide patient management remains unrealized.(12,26) 

Our motivation for the current project was driven by limitations of previous attempts, that 
contributed to low uptake of HGSOC subtyping in translational research and clinical 
trials. To optimize clinical uptake, a classification scheme needs to be cost-effective, 
compatible with available clinical specimens (i.e. formalin-fixed paraffin embedded; 
FFPE), and be technically reproducible on single patient samples. Prior methods have 
relied on normalization and unsupervised clustering of array based data, requiring a 
cohort of samples.(9,10,13-15,17,18,24,27) With few exceptions,(18) prior studies 
defaulted to a single method or single dataset to train models. Finally, no prior approach 
reviewed histotype based on the current diagnostic standards for HGSOC, which has 
significantly altered over the last decades, and may have contributed to significant 
contamination of historic datasets with non-HGSOC specimens.(28-30) 

Using newly curated, previously published array data, and clinically annotated HGSOC 
specimens from the Ovarian Tumor Tissue Analysis (OTTA) consortium, we propose 
and validate(26) a Predictor of high-grade serous Ovarian carcinoma molecular 
subTYPE (PrOTYPE) that recapitulates previously derived gene-expression based 
molecular subtypes using a minimal set of genes (Figure 1). To ensure clinical 
applicability we adopted the NanoString platform, a highly automated processing 
method with tolerance to degraded RNA, typical of fixed tissue that are the mainstay of 
modern hospital pathology laboratories. Similar multi-gene predictors using NanoString 
are already in the clinic (31-34) and methods to enable single-sample analytical 
approaches are well established,(35) tailored to the patient-at-a-time delivery of care 
that is a necessity for precision medicine. The PrOTYPE  assay will enable evaluation of 
the clinical utility of HGSOC gene-expression molecular subtypes, such as response to 
targeted therapies that are already emerging with a potential need for subtype 
information.(36) 

Methods 

OTTA Consortium NanoString Study 

We retrospectively analyzed FFPE tumors and clinical data from 20 OTTA consortium 
studies with available clinical, pathological, demographic features, and survival 
outcomes (Supplement A.1-A.3). Inclusion criteria (including approval through 
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institution-specific research ethics boards), individual study settings, dates of accrual, 
and follow-up are described in Table SA1. Studies were asked to contribute adnexal-
sourced specimens, though others were accepted when anatomical sites was defined. 
Expert gynecologic pathologists reviewed samples from hematoxylin and eosin (H&E) 
stained sections, confirmed HGSOC diagnosis(29), and marked specimens for removal 
non-involved organ tissues but retained infiltrating stroma. 

NanoString Gene Selection and Data Processing 

A NanoString CodeSet included 513 genes (plus 5 housekeeping genes), relevant for 
gene-expression subtyping and selected prior to beginning the analysis. We included 
top-ranking differentially expressed, subtype-specific genes based on prior 
reports;(9,10) previous supervised learning of subtype classification;(37) and manual 
review of literature to identify genes in commonly cited molecular pathways associated 
with subtype.(9,10,13,15,24) Additional genes were selected from a meta-analysis for 
their prognostic value and other specific hypothesis (Millstein et al; manuscript 
submitted). To ensure representation from across the transcriptome, we tagged and 
included additional genes from 99%-correlated gene-expression clusters derived from 
previous reports, if clusters did not already have representation.(9,10,38,39) 

We extracted RNA and ran NanoString assays at three sites (in Vancouver, Los 
Angeles, and Melbourne), as described previously.(35) We included three regularly 
assayed RNA reference specimens (Pool1, Pool2, Pool3) to monitor technical bias, 
allow for comparison of NanoString CodeSet synthesized in different lots, and integrate 
a single-patient data normalization strategy.(35) Additional description is in Supplement 
A.4-A.7; data can be found in NCBI GEO Accession GSE1358201 

Subtype Labels Assignment to NanoString Data 

There is presently no definitive standard for gene-expression based subtypes, therefore 
we derived a de facto standard through application of two parallel approaches, led by 
independent teams (Figure 1A-B). One approach, denoted All array, aggregated gene-
expression datasets to take advantage of broad sample representation and increased 
statistical power. The other, denoted TCGA, was conservative with respect to potential 
loss of signal associated with post-hoc batch correction and used the largest, optimally 
batch-corrected dataset(9). See also Supplement B. 

All array: One team curated data to retain only HGSOC specimens from historical 
datasets(30), and datasets with greater than 40 remaining unique HGSOC. This 
reduced 49 potential studies (n=3437) to 1650 unique HGSOC from 14 studies (Table 

 
1 Reviewer token for NCBI GEO dataset available on request. Note, dataset will be made public upon 
publication of the manuscript 
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SB1).(9,10,40-50) Individual samples where data was also available from NanoString 
assays were excluded (Figure SB1). The team combined and batch corrected 11/14 
array studies (training 1), and used an ensemble of nine clustering algorithms(51) to re-
establish previously recognized subtypes. They next restricted the data to pre-selected 
NanoString genes also present in all array platforms (454/513 possible NanoString 
genes), trained and evaluated nine supervised learning algorithms using a bootstrap 
approach.(52) The top five algorithms were retained and validated on the remaining 
three (3/14) array studies (confirmation1) with a final selection based on how well 
predicted subtypes correlated with previously published signatures.(13,24) The tree-
based ensemble classification algorithm (AdaBoost) was selected. 

TCGA: Another team curated the TCGA data using the same criteria described above 
and using data and TCGA-published subtype labels,(9) retaining 434 unique HGSOC 
(Figure SB1). They next trained and evaluated five different supervised learning 
algorithms, as above using NanoString gene-restricted data (438/513 genes), using 
five-fold cross validation, selecting random forest. This approach was validated 
externally on originally published dataset and labels from Tothill et al.(10) 

Minimal Gene Set Classifier 

We used the above two approaches to label 3829 NanoString samples and retaining 
only samples with concordant labels, denoted the consensus labels (CL). We discarded 
previous models and started anew to rederive a minimal gene set classifier using 
NanoString data. Sample were randomly partitioned from the dataset into three 
independent groups on a per study basis: a training set (8 studies), a confirmation set (5 
studies), and a validation (4 studies). A fourth partition/second validation (3 studies), 
comprised of clinical trial cohorts, and was set aside to validate any modifications to the 
predictive model after confirmation(26,53) (Figure 1C; Figure SA1). See also 
supplement C. 

We adopted a leave-one-study-out cross-validation approach and assessed 
performance of three algorithms (LASSO, random forest and AdaBoost) in recovering 
the CL. We removed one study at a time and bootstrapped the remaining seven (500 
repetitions) to train a full model that uses all the genes to predict subtype. For each 
bootstrap sample, we ranked the genes based on the aggregated Gini coefficients, for 
Random Forest and Adaboost,(54) or the proportion of non-zero coefficients for Lasso. 
We then ranked genes overall on the proportion of times they were included in the top 
100, across bootstrap iterations. This was repeated for each study. 

For n increasing from four to 100 in increments of five, we used the top n overall-ranked 
genes to predict the left-out study, comparing the predicted label to the CL. We selected 
the top algorithm based on accuracy, consistency, and stability in predictions across 
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studies. We refined gene selection within the confirmation set by considering a smaller 
range of gene numbers (40-78) and repeating the previous step with one gene 
increments to define a minimal number of genes needed to sustain performance and we 
validated it in two additional datasets. 

Biological Associations 

We confirmed associations of predicted labels with clinical and pathological features 
including age, stage, residual disease, cellularity, necrosis, BRCA1/2 germline status, 
race/ethnicity, and CD8+ tumor infiltrating lymphocytes (TIL; Supplement A.3). We used 
one-way ANOVA to compare continuous variables and the chi-square test for 
categorical variables. We evaluated univariable survival using Kaplan-Meier survival 
curves and the log rank test. In multivariable models, we used the Cox proportional 
hazard and computed P values using an omnibus likelihood ratio test. All statistical tests 
were two-sided. We applied pairwise deletion (available-case analysis) on missing data, 
as applicable. 

Results 

Subtyping the NanoString Data 

Parallel array-based approaches resulted in two final models: the All array (ADAboost) 
and TCGA (random forest) models (Supplement B). Each of these algorithms were 
used to generate per-subtype probabilities and predictive entropy(55) on the 3829 
HGSOC samples run on the NanoString platform. The label of the subtype with the 
highest probability was taken as the final label from each model. The observed 
concordance between the two models was high (accuracy 79%; kappa 0.72) and 
discordance was seen mostly between C1.MES/C2.IMM and C2.IMM/C4.DIF subtypes 
(Figure 2A). Discordant samples were enriched for lower signal-to-noise ratio in 
NanoString data, consistent with lower-quality RNA (ratio < 1000 in 7.5% vs 5%, 
p=0.0130; Supplemental B.4). No other technical variables showed differences between 
concordant and non-concordant labels. In concordant samples (consensus labelled; 
CL), the predictive entropy was significantly lower (p < 0.0001; Figure 2B). In a set of 67 
cases, repeated on both array and NanoString (and excluded from training), the CL 
reproduced originally published labels with 94% accuracy (kappa 0.92).(9,10) 
Concordant samples (n=3030) were considered the de facto standard and subsequently 
used for training a minimal gene set classifier. 

Development of a NanoString Minimal-Gene Classifier 

Using a leave-one-study-out cross validation design, random forest and LASSO 
outperformed AdaBoost (Figure 3A) in the training set (n=1135). Despite requiring more 
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genes overall, we chose the random forest model based on stability in gene selection 
across studies and a less variable overall accuracy with increasing numbers of genes 
(Figure 3B). Accuracy of random forest in the confirmation set (n=817) ranged from 95 - 
97% and achieved marginal gains after 55 genes. The locked-down assay, named 
PrOTYPE (Predictor of high-grade-serous Ovarian carcinoma molecular subTYPE), is 
represented by a final 55-gene model with specified NanoString probeset and controls, 
specific computational procedures, and requirements for specimen input from primary 
tubo-ovarian, treatment-naïve HGSOC samples as outlined in Figure 4 (see also Tables 
SC7; and Supplement E). Computational methods to normalize and generate 
predictions are available as a web application and R-script.2  

PrOTYPE genes (55 genes plus five housekeeping genes; Table SC7) included 
representation from pathways previously reported as enriched in HGSOC subtypes 
(Figure SC9), including components of extracellular matrix (COL11A1, COL1A2, FBN1), 
immune cell markers (CD3D, CD3E, CD8A), surface receptors and kinases (CSF1R, 
CD2, AXL), cytokines and cell morphology (CXCL9, CXCL11, CCL5), and angiogenesis 
genes (PDGFRB, FGF1, TCF7L1). The per-subtype pattern of expression of PrOTYPE 
genes was near-identical between the NanoString data and the array data, used in 
establishing the CL standard (Figure SC10-SC12). 

PrOTYPE was validated in two independent NanoString dataset partitions (n= 719 and 
283 respectively) (Figure SB1). Partitions showed 95% and 94% accuracy and 
kappa=0.94 and 0.92 respectively, relative to the CL (Tables SB10-SB11). 

In a set of 103 samples re-assayed in a newly-synthesized NanoString CodeSet, 
containing only the 55 PrOTYPE genes and controls, PrOTYPE predictions achieved 
97% accuracy (95% CI: 92% - 99%), kappa 0.96 (0.91 - 1) in recovering the CL. We 
observed similar results in 100 samples that we replicated in another newly-synthesized 
CodeSet that included PrOTYPE genes as well as others (Tables SD2 – SD4). Of the 
80 samples that overlapped all three CodeSets (original, PrOTYPE genes only, and 
PrOTYPE genes plus others), Fleiss’ kappa was 0.95, indicating excellent repeatability 
(p<0.0001). This confirmed the analytical validity of the PrOTYPE assay, our reference-
based normalization, and single-sample processing strategy. 

Confirmation of Subtype Signatures with Clinicopathological Associations 

Patients were diagnosed between 1982-2014, with no differences in the distribution of 
subtypes related to year of diagnosis (Figure SD3). Omental-sourced specimens were 
enriched for C1.MES (72%) compared to adnexal specimens (25%), and the overall 
distribution of subtypes was significantly different (p<0.0001; Table 1A; Table SD7). We 

 
2 https://ovcare.shinyapps.io/PrOType/ 
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also noted a similar C1.MES enrichment at other anatomical sites, including the 
peritoneum (46%) and upper gynecological tract (50%). In tumors where anatomical site 
was presumed adnexal but not specifically annotated (n=1647), subtypes showed a 
distribution similar to those known to be adnexal (p=0.089). 

In 53 patients where paired adnexal and omentum samples were available, we 
observed poor agreement (kappa 0.06) in classification from the two sites. For 30/39 
(77%) adnexal samples which were assigned non-C1.MES subtypes, their 
corresponding omental sample was C1.MES (Supplementary Table SD5). For all 14 
adnexal specimens that were C1.MES, their omental classification was also C1.MES. 
As previously reported, subtype designation varies between metastatic sites within a 
patient, therefore we interpreted this to be a characteristic of tumors within their specific 
microenvironment rather than a weakness in the classification.(37,56) Heterogeneity in 
subtype assignment per-patient would confound clinicopathological associations; 
therefore, we present associations to subtype of adnexal-sourced specimen as this was 
the most commonly acquired specimen type (known n=1740; or presumed n=1647; 
Table 1B; Supplement D contains results also excluding presumed adnexal samples). 

The median age at diagnosis was lowest amongst C4.DIF (58 yrs.) and highest 
amongst C5.PRO (63 yrs.), p<0.0001. Stage was significantly associated with subtype 
(p<0.0001; Table 1B): with 94% of C1.MES at high-stage and only 74% of C4.DIF. 
Residual disease was significantly associated with subtype, with C1.MES tumors being 
the most enriched. Similarly, both tumor cellularity and necrosis were associated with 
subtype. Lowest cellularity was in the C1.MES and highest necrosis was seen in 
C2.IMM. BRCA1/BRCA2 pathogenic germline mutation status was not associated with 
subtype. We found CD8+ TIL levels, derived from prior work,(57) highest in C2.IMM: 
43% with high TIL and only 10% with absent/low CD8+ TIL. C5.PRO had the lowest 
CD8+ TIL, with 68% having absent/low CD8+ TIL. C4.DIF had the second highest level 
of CD8+ TIL at 22%. 

Median follow up time was 8.1 years for overall survival (OS) and 6.5 years for 
progression-free survival (PFS) (reverse Kaplan-Meier), and were slightly longer for 
C2.IMM and C4.DIFF. Significant difference in survival was observed between subtypes 
for both OS and PFS (Log-rank p<0.0001; Figure 5A), as previously reported.(9,10,13-
18,27) C2.IMM and C4.DIF had the best survival outcome and C1.MES had the poorest 
outcome. In multivariable analyses, we adjusted for risk factors known to be associated 
with survival: age at diagnosis, stage, residual disease, and germline deleterious 
BRCA1/2 status. Molecular subtypes were prognostic when adjusting for age and stage 
in both OS and PFS (Figure 5B). With the addition of CD8+ TIL, there was a change in 
the hazard ratio corresponding to subtype for both OS and PFS, but subtypes remained 
independently prognostic for OS only. With the addition of residual disease and/or 
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BRCA1/2 to the model, molecular subtypes lost independent prognostic value in both 
OS and PFS. 

Discussion: 

Any potential of gene-expression subtype information to guide patient management 
cannot be realized without a de facto standard and validated assay that can be applied 
in a single-patient setting using pathology-standard fixed tissues - such as would be 
encountered in the clinic. Here we have defined a de facto standard for HGSOC gene-
expression molecular subtypes using the consensus from two independent models 
derived from 1650 bona fide HGSOC samples with array data. Using these samples, we 
designed and validated PrOTYPE, robust and pragmatic 55-gene classifier based on 
the NanoString gene-expression platform. We evaluated the analytical validity of 
PrOTYPE by testing it in newly-synthesized CodeSets. Finally, we confirmed reported 
associations between subtype and clinico-pathological parameters. 

We have addressed limitations of prior work including designing PrOTYPE with an 
established single-sample normalization and batch correction approach.(35) PrOTYPE 
is built on the NanoString platform, known to be tolerant to different analytes and well 
suited for FFPE tissues.(31,32,58,59) This particular feature is critical to implementation 
in modern pathology labs and may also enable retrospective re-examination of archival 
specimen collections and clinical trials. Our model is not derived from a single dataset 
but instead uses two approaches to integrate information from 14 array studies and a 
consortium collection of >3000 tumors. Every sample included has been curated to 
ensure inclusion of a pure population of HGSOC, using either central review by expert 
gyne-pathologists (NanoString cohort) or a proven mechanism to minimize non-
HGSOCs from historical datasets (array data cohorts).(30) Using the intersection of 
parallel approaches as a de facto standard, we provide a first example of an HGSOC 
gene-expression subtype classifier derived using the step-wise best practice 
recommended by the Institute of Medicine.(26) The PrOTYPE assay is therefore at the 
so-called “bright line”, bringing gene-expression molecular subtypes to the stage at 
which evaluation for clinical utility and use may begin. 

Similar to NanoString’s Prosigna assay for breast cancer (31,32), we use a reference 
based strategy for single-sample classification and batch effect correction.(35) In our 
development phase, one limitation is that the chosen references are finite resources 
and will not be sufficient for long-term, widespread distribution. Less restricted reference 
source material will need to be chosen and integrated into the PrOTYPE assay to 
ensure sustainability. PrOTYPE is designed exclusively for gene-expression HGSOC 
molecular subtyping, application on other histotypes is uninterpretable. Further, the 
relationship between subtype and effects of neoadjuvant chemotherapy, a common 
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practice for modern management of HGSOC, are unclear. Mitigating this could be 
solved by using pre-treatment biopsies, however, diagnostic biopsies currently favor 
omentum for ease of access to the tumor mass and our data suggest the omental 
microenvironment strongly biases towards a C1.MES prediction. Thus, the clinical utility 
of PrOTYPE may relate to consistency of phenotypes predicted from multiple 
anatomical sites within a patient and remains to be tested. 

Our dataset enables validation of biological characteristics that smaller datasets have 
been unable to address. Consistent with prominent desmoplastic stroma reported from 
metastatic disease(60-62) we noted a systematic shift of all subtypes to a C1.MES 
phenotype at extra-adnexal sites. In addition, few cases of C1.MES were clear of visible 
macroscopic residual disease, suggesting a potential application for PrOTYPE may be 
predicting cytoreductability. Application of PrOTYPE to biopsied specimens may provide 
valuable information prior to surgery and allow investigation of whether C1.MES tumors 
are a logical choice for neo-adjuvant or other pre-surgical targeted therapies. However, 
given the limitations of our retrospective cohort, with potential heterogeneity in surgical 
practice, a well-designed prospective study is warranted to test this hypothesis. 

In multivariable models we observed waning prognostic value for molecular subtypes in 
the context of known age, stage, CD8+ TIL infiltration, residual disease, and germline 
deleterious BRCA1/2 status, albeit with reduced sample size. Previous studies have 
suggested there may be an overall enrichment of BRCA1 disruptions (including 
methylation, somatic and germline events together) within C2.IMM (63), however, data 
on somatic events affecting BRCA1/2, and other measures of homologous repair 
deficiency, are currently unavailable in our dataset. Nonetheless, subtype appears to 
capture some information for critical prognostic variables. However, for a disease with a 
generally poor prognosis, prediction may be more important. 

In keeping with previous observations, only a modest proportion of cases reflect a 
“pure” phenotype signature.(13,18) We suggest that thresholds for subtype prediction, 
and implied utility, should be determined empirically - these may be specific to a given 
intervention. While few clinical trials have invested in HGSOC gene-expression 
subtyping, at least one points to differential benefits of Bevacizumab across 
subtypes.(36) Potential benefits to C2.IMM are presently being tested using PrOTYPE 
in a trial of pembrolizumab in recurrent disease (NCT03732950). Likewise, there is an 
ongoing investigation in targeting both the reactive stromal features of C1.MES, in the 
BEACON trial (NCT03363867; combined Bevacizumab, Atezolizumab and 
Cobimetinib), and the stem-like features of C5.PRO, in a phase II study of Vinorelbine 
(NCT03188159). It remains to be seen whether stringent or lax subtype thresholding is 
important to patient selection for these interventions. Other umbrella multicenter 
pragmatic studies such as INOVATe (Individualized Ovarian Cancer Treatment Through 
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Integration of Genomic Pathology into Multidisciplinary Care) are incorporating 
PrOTYPE in their evaluations of guided treatment modalities.(64) 

While only small improvements in HGSOC outcomes have been achieved in the past 
decades, an increasing number of therapeutic options are emerging with a growing 
need to identify response groups to targeted therapies such as angiogenesis 
inhibitors,(36,65) immune modulators,(66-68) and PARP inhibitors.(69-71) While  In the 
context of these new therapeutics, PrOTYPE will enable objective testing of the clinical 
utility of intrinsic HGSOC gene-expression subtypes - a threshold that has previously 
been elusive. Similar to molecular profiling tools that are already emerging for other 
cancers, (31,32,72-74) the clinical-grade PrOTYPE assay is ready for integration into 
clinical trials as well as research applications. 
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Figure Legends 

Figure 1: A schematic representation of the process we followed to obtain a final, 
clinical-grade classifier for HGSOC. Please note that the schematics above are for 
orientation only and are not intended to be interpreted. In the first panel we outline how 
de facto subtype labels were assigned to NanoString data, starting with (A) two parallel 
approaches to build models from array data, and (B) applying the resulting final models 
onto the NanoString dataset, where the consensus of the two methods became the de 
facto gold standard with 79% (n=3030) of our total NanoString cohort having 
agreement, consensus label (CL). In the second panel, (C) we provide the framework 
used to derive a minimal gene set classifier using the CL NanoString data after 
removing samples that overlapped both the NanoString and Array datasets (overlap 
n=76). Finally, in (D) a synopsis of the biological and clinical correlates that were 
investigated to confirm the biological validity of gene-expression based subtypes 
compared to previous work. 

Figure 2: Evaluation metrics of consensus in subtype assignment between the All Array 
and TCGA models. (A) Confusion matrix comparing the agreement between the TCGA 
and the All Array approaches. In bold we present the results where there is agreement 
and highlighted in red are the most sizeable disagreements. We also present sensitivity, 
specificity, and F-score for each subtype. (B) Predictive entropy computed from per-
class probabilities generated by each of the TCGA and the All Array model. When 
entropy approaches 0, it is indicative that the probability used to assign a sample to 
class is close to 1, while a high entropy (approaching 2) indicates that assignment to 
any class has a roughly equal probability. Overall, samples where consensus was not 
reached, had higher entropy in both models (p < 0.0001; Mann-Whitney U test). 

Figure 3: Model selection metrics for a minimal gene classifier. (A) The aggregate 
accuracy left and F1-score right (for all samples in all studies) obtained by increasing 
numbers of genes and using the top n genes from each frequency list computed above, 
where n varied from 4 to 100 in increments of 5. Note that the top n genes from each 
study were not necessarily the same. B) Top: Boxplots of the prediction accuracy by 
study using the LASSO and the random forest algorithm. Each point in the boxplot 
corresponds to the individual study prediction (when left-out). Bottom: Heatmap 
depicting the importance rank of the top 50 ranking genes obtained from each data 
partition in the leave-one-study out scheme. 

Figure 4: Locked-down Predictor of Ovarian carcinoma molecular subTYPE 
(PrOTYPE). The schematic illustrates the four critical components of the clinical-grade 
PrOTYPE assay (Supplement E) consisting of: (1) 500ng of total RNA from primary 
chemo-naïve HGSOC and (2) 100ng (each) of validated reference specimens. Each of 
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these assayed individually by mixing specimen RNA with a (3) custom NanoString 
CodeSet (Supplemental Table SC7) containing 55 prediction model gene probes and 5 
control gene probes (*55+5 NanoString Assay). RNA is hybridized with CodeSet, 
processed on a NanoString nCounter Prep-Station, and imaged at maximum fields of 
view on a NanoString nCounter Digital Analyzer. Resulting raw data is then normalized 
and HGSOC molecular subtypes predicted with our PrOTYPE computational algorithms 
using either a web-based tool, or R-script. This process will return (4) a prediction 
probability for the assayed specimen, for each subtype, and a single predictive entropy 
value. The latter can be used to estimate the certainty of prediction where 0 entropy 
corresponds to a near perfect prediction or “pure” subtype, while 2 entropy corresponds 
to near equal chance of assignment to any subtype. 

Figure 5: Univariable and multivariable survival analysis with PrOTYPE subtypes. (A) 
Kaplan-Meir survival curves for Overall and Progression-free survival by molecular 
subtype. C2.IMM and C4.DIF had the best survival in both OS and PFS in univariable 
analyses, while C5.MES had the worst survival. While C2.IMM and C4.DIF had 
inseparable outcomes, other clinical features were distinct between these groups (see 
also Table 1B). (B) Multivariable survival analysis results from Cox proportional hazard 
models adjusting for different known prognostic risk factors. The top table provides 
overall survival results while the bottom portion provides progression-free survival 
results. Each column in the table represents an independent model that adjusts for 
different risk factors. To assess the significance of a factor, we used the omnibus 
Likelihood Ratio Test evaluating the likelihood with and without that factor in the model. 
As such, the resulting P values are associated with the entire factor and not a specific 
level of that factor; this is indicated by a vertical bar to clarify and the asterisks (*) 
indicate that the omnibus Likelihood Ratio Test P value was below 0.05 for the entire 
marked variable. The Score Test was used to compute confidence intervals, therefore 
these may not always match the P value results. 

Table 1: (A) The distribution of HGSOC molecular subtype within different anatomical 
specimen collection sites. (B) Clinical and pathological parameters across HGSOC 
molecular subtype. Percentages are column wise except for totals where they are 
computed row wise. P values are computed using one-way analysis of variance for 
numerical parameters, and chi-square test for categorical ones. 
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Table 1 

Sampling Site 

  Adnexal Presumed 
Adnexal 

Omentum Lower genital 
track 

Upper genital 
track 

Peritoneal 

C1.MES 429 (24.7%) 394 (23.9%) 256 (72.1%) 0 (0.0%) 8 (50.0%) 32 (45.7%) 

C2.IMM 447 (25.7%) 389 (23.6%) 69 (19.4%) 1 (100.0%) 2 (12.5%) 16 (22.9%) 

C4.DIF 550 (31.6%) 574 (34.9%) 23 (6.5%) 0 (0.0%) 2 (12.5%) 12 (17.1%) 

C5.PRO 314 (18.0%) 290 (17.6%) 7 (2.0%) 0 (0.0%) 4 (25.0%) 10 (14.3%) 

Total 1740 (45.4%) 1647 (43.0%) 355 (9.3%) 1 (0.0%) 16 (0.4%) 70 (1.8%) 

 

  C1.MES C2.IMM C4.DIF C5.PRO Total p value 
N (%) 823 (24.3%) 836 (24.7%) 1124 (33.2%) 604 (17.8%) 3387   
Age at Diagnosis             
Mean (sd) 61 (10.4) 60.4 (10.6) 57.8 (10.2) 62.7 (10.3) 60.1 (10.5) < 0.0001 
Median (IQR) 62 (54 - 68) 60 (53 - 68) 58 (50 - 65) 63 (56 - 70) 60 (53 - 67)   
Missing 13 15 22 15 65   
Stage             
Low 52 (6.5%) 164 (20.7%) 281 (26.4%) 95 (16.4%) 592 (18.3%) < 0.0001 
High 746 (93.5%) 627 (79.3%) 783 (73.6%) 484 (83.6%) 2640 (81.7%)   
Missing 25 45 60 25 155   
Residual Disease             
None 100 (27.5%) 143 (39.7%) 210 (43.4%) 116 (41.4%) 569 (38.2%) < 0.0001 
Any 264 (72.5%) 217 (60.3%) 274 (56.6%) 164 (58.6%) 919 (61.8%)   
Missing 459 476 640 324 1899   
Cellularity             
0-20 15 (1.9%) 10 (1.3%) 1 (0.1%) 6 (1.1%) 32 (1.0%) < 0.0001 
21-40 85 (10.7%) 33 (4.1%) 17 (1.6%) 17 (3.0%) 152 (4.8%)   
41-60 187 (23.6%) 129 (16.2%) 63 (6.1%) 49 (8.6%) 428 (13.4%)   
61-80 312 (39.3%) 329 (41.3%) 410 (39.7%) 202 (35.6%) 1253 (39.2%)   
81-100 195 (24.6%) 296 (37.1%) 543 (52.5%) 294 (51.8%) 1328 (41.6%)   
Missing 29 39 90 36 194   
Necrosis             
None 216 (31.7%) 178 (26.1%) 261 (30.5%) 134 (28.8%) 789 (29.4%) 0.001 
<=20% 432 (63.4%) 431 (63.2%) 542 (63.3%) 294 (63.1%) 1699 (63.3%)   
>20% 33 (4.8%) 73 (10.7%) 53 (6.2%) 38 (8.2%) 197 (7.3%)   
Missing 142 154 268 138 702   
BRCA1/BRCA2             
Wildtype 153 (79.7%) 134 (79.3%) 201 (74.2%) 111 (84.1%) 599 (78.4%) 0.1518 
BRCA1  26 (13.5%) 24 (14.2%) 47 (17.3%) 9 (6.8%) 106 (13.9%)   
BRCA2  13 (6.8%) 11 (6.5%) 23 (8.5%) 12 (9.1%) 59 (7.7%)   
Missing 631 667 853 472 2623   
Race             
White 515 (85.8%) 493 (81.4%) 669 (81.3%) 354 (86.1%) 2031 (83.2%) 0.0523 
Hispanic 82 (13.7%) 106 (17.5%) 150 (18.2%) 56 (13.6%) 394 (16.1%)   
Other 3 (0.5%) 7 (1.2%) 4 (0.5%) 1 (0.2%) 15 (0.6%)   
Missing 223 230 301 193 947   
CD8             
None 86 (21.2%) 19 (4.8%) 69 (11.6%) 132 (45.2%) 306 (18.1%) <0.0001 
Low 52 (12.8%) 19 (4.8%) 99 (16.6%) 65 (22.3%) 235 (13.9%)   
Med 210 (51.9%) 187 (47.1%) 297 (49.7%) 88 (30.1%) 782 (46.2%)   
High 57 (14.1%) 172 (43.3%) 132 (22.1%) 7 (2.4%) 368 (21.8%)   
Missing 418 439 527 312 1696   
Anatomical Site             
Adnexal 429 (52.1%) 447 (53.5%) 550 (48.9%) 314 (52.0%) 1740 (51.4%) 0.2188 
Presumed adnexal 394 (47.9%) 389 (46.5%) 574 (51.1%) 290 (48.0%) 1647 (48.6%)   
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Figure 2

Consensus of the Two Approaches on NanoString Data

C1.MES 922 94 17 44
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Kappa: 0.72 (0.70 – 0.74)
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# of events / n 2137 / 3203 1154 / 1650 424 / 643 143 / 213
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Final Subtype (Ref. C2.IMM)
C4.DIF 1.04 (0.92-1.17) * 0.93 (0.79-1.09) * 1.1 (0.83-1.44) 0.88 (0.52-1.48)
C5.PRO 1.21 (1.06-1.38) 0.91 (0.75-1.12) 1.23 (0.88-1.71) 0.88 (0.46-1.69)
C1.MES 1.41 (1.25-1.59) 1.25 (1.05-1.49) 1.33 (0.98-1.79) 0.99 (0.6-1.64)
Age 1.02 (1-1.03) * 1.03 (1.01-1.05) * 0.97 (0.94-1) 0.95 (0.89-1.01)
Stage (Ref. Low)
High 3.12 (2.7-3.61) * 3.5 (2.85-4.3) * 2.22 (1.55-3.18) * 2.03 (0.98-4.2) *
CD8 (Ref. None)
Low 1 (0.82-1.22) * 1.05 (0.75-1.47) 1.03 (0.56-1.91) *
Med 0.82 (0.7-0.97) 0.87 (0.65-1.16) 0.65 (0.38-1.11)
High 0.65 (0.53-0.8) 0.77 (0.53-1.1) 0.37 (0.18-0.75)
Residual Disease (Ref. None)
Any 1.72 (1.37-2.17) * 2.07 (1.37-3.13) *
BRCA (Ref. wt) 
BRCA1 0.95 (0.56-1.62) *
BRCA2 0.22 (0.09-0.52)
# of events / n 1138 / 1471 525 / 656 448 / 570 152 / 184

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)
Final Subtype (Ref. C2.IMM)
C4.DIF 1.05 (0.9-1.24) * 1.01 (0.79-1.3) 1.16 (0.88-1.52) 1.04 (0.6-1.82)
C5.PRO 1.09 (0.91-1.31) 0.96 (0.71-1.29) 1.27 (0.92-1.77) 0.77 (0.4-1.5)
C1.MES 1.3 (1.1-1.54) 1.2 (0.92-1.58) 1.16 (0.86-1.56) 0.74 (0.44-1.25)
Age 1.18 (1.14-1.22) * 1.15 (1.1-1.21) * 1.12 (1.07-1.18) * 1.06 (0.97-1.16)
Stage (Ref. Low)
High 3.22 (2.57-4.02) * 3.32 (2.39-4.62) * 2.67 (1.86-3.84) * 3.86 (1.85-8.06) *
CD8 (Ref. None)
Low 1.17 (0.87-1.59) 1.26 (0.9-1.77) 1.24 (0.65-2.34)
Med 0.98 (0.76-1.27) 1.06 (0.79-1.42) 0.86 (0.49-1.51)
High 0.76 (0.55-1.05) 0.98 (0.68-1.4) 0.84 (0.42-1.69)
Residual Disease (Ref. None)
Any 1.72 (1.39-2.13) * 1.83 (1.24-2.7) *
BRCA (Ref. wt) 
BRCA1 0.71 (0.41-1.21)
BRCA2 0.66 (0.34-1.26)
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