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SUMMARY
RNA viruses are amajor human health threat. The life cycles of many highly pathogenic RNA viruses like influ-
enza A virus (IAV) and Lassa virus depends on hostmRNA, because viral polymerases cleave 50-m7G-capped
host transcripts to prime viral mRNA synthesis (‘‘cap-snatching’’). We hypothesized that start codons within
cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report
the existence of this mechanism of gene origination, which we named ‘‘start-snatching.’’ Depending on the
reading frame, start-snatching allows the translation of host and viral ‘‘untranslated regions’’ (UTRs) to create
N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that
both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute
to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal
and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.
1502 Cell 181, 1502–1517, June 25, 2020 ª 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

In eukaryotes, ribosomes typically recognize mRNAs with a ter-

minal 50 cap structure followed by an untranslated region (UTR),

which can be tens to hundreds of nucleotides in length (Decroly

et al., 2011; Kochetov et al., 2008; Leppek et al., 2018). However,

a growing body of work has shown that translation can initiate in

the 50 UTRs of a large proportion of eukaryotic mRNAs, some-

times extremely close to the 50 cap, resulting in upstream open

reading frames (uORFs) (Andreev et al., 2015; Calvo et al.,

2009; Dikstein, 2012; Elfakess and Dikstein, 2008; Haimov

et al., 2017; Johnstone et al., 2016; Kochetov et al., 2008; Young

and Wek, 2016).

A large subphylum of RNA viruses, the segmented negative

strand RNA viruses (sNSVs), makes direct use of the 50 termini

of host mRNAs when transcribing their own genes. The sNSVs

include the families Arenaviridae, Peribunyaviridae, and Ortho-

myxoviridae. Highly contagious human and animal viruses like

influenza A virus (IAV) and Lassa virus (LASV) belong to these

families and are responsible for significant levels of morbidity

and mortality worldwide. In sNSVs, viral mRNA synthesis is

primed using short 50 methyl-7-guanosine (m7G) capped RNA

sequences, which the viral polymerase cleaves from host RNA

polymerase II (RNAPII) transcripts in a process known as ‘‘cap-

snatching’’ (Dias et al., 2009; Plotch et al., 1981; Reich et al.,

2014; Rialdi et al., 2017). Cap-snatching creates viral transcripts

that are genetic hybrids of host and viral sequences, with the

host-derived 50 sequences being highly diverse (Gu et al.,

2015; Koppstein et al., 2015; Rialdi et al., 2017; Sikora et al.,

2017). Once made, viral mRNAs are translated by the host

machinery.

In this manuscript, we hypothesized that by appropriating 50

terminal mRNA sequences from their hosts, sNSVs could obtain

functional upstream start codons (uAUGs), a mechanism we

termed ‘‘start-snatching.’’ Translation from host-derived up-

stream start codons in chimeric host-viral transcripts would ac-

cess upstream viral ORFs (uvORFs). Depending on the frame of

the uAUG relative to that of the canonical viral protein, two novel

chimeric types of protein in infected cells could be generated:

canonical viral proteins with host and viral UTR-derived N-termi-

nal extensions, and previously uncharacterized proteins read

from ORFs that are out-of-frame with, and overprinted on,

canonical viral ORFs. Below, we report on howwe tested this hy-

pothesis using genomics, cell biology, virology, and phyloge-

netic analyses.

RESULTS

IAV Cap-Snatches Sequences Containing uAUGs
IAV gene transcription is initiated by cap-snatching from a host

mRNA (Figure 1A). This process generates an IAV mRNA with

a 50 end portion derived from the host. This mechanism is used

to express viral genes that encode canonical viral proteins (Fig-

ure 1B, OUTCOME 1). We hypothesized that AUGs within host

sequences could generate upstream host-virus chimeric ORFs

with coding potential. Depending on the reading frame, a host-

derived uAUG might initiate the synthesis of two novel chimeric

genes encoding for an N-terminally extended viral protein (Fig-
ure 1B, OUTCOME 2, upper panel) or alternatively, an entirely

novel protein overprinted on the canonical viral ORF (Figure 1B,

OUTCOME 2, lower panel). These outcomes are contingent on

two assumptions: (1) uAUGs are present in cap-snatched host

sequences and can enable translation initiation, and (2) the 50

mRNA transcribed from the viral UTR should lack stop codons.

Furthermore, the absence of stop codons interrupting UTRs or

the downstream ORFs should be evolutionarily conserved.

To address the first point, we determined the abundance of

uAUGs in cap-snatched host sequences archived in a Decap

and 50 end sequencing (DEFEND-seq) dataset (Rialdi et al.,

2017) that we had previously generated from A549 cells infected

with the IAV A/Puerto Rico/8/34(H1N1) (PR8) (Figure 1C). AUG-

containing, host-derived capped sequences (Figure 1C, red

bars) ranged from 7–20 nt, with a median length of 11 nt, similar

to the distribution obtained for all cap-snatched sequences (Fig-

ure 1C, gray bars). Host-derived oligonucleotides with AUG co-

dons were present at similar ratios in all eight genome segments

of the virus and were present in all three reading frames, consti-

tuting �12% of all cap-snatched sequences (Figures 1D and

S1A). Similar results were also obtained when we performed

cap analysis of gene expression (CAGE) on primary human

monocyte-derived macrophages infected with a different strain

of IAV (A/Udorn/72(H3N2); Udorn) (Figure S1B; Table S1). These

results indicate that, upon infection, neither the virus nor the host

cells appear to prevent the formation of chimeric RNAs with

hybrid coding potential.

IAV 50 UTRs Are Translatable
We next performed a bioinformatic analysis to determine if stop

codons were absent from IAV sequences within the 50 UTRs and,
if so, whether this was evolutionarily conserved across IAV

strains. First, we analyzed the nucleotide sequence variability

of the 50 UTRs of all eight segments, using all IAV H1N1 strains

available from the NCBI Influenza Virus database (Zhang et al.,

2017). 50 UTRs of each individual segment are highly conserved

within each individual segment, as shown by the positional

weight matrices (Figure S2, top panels) and sequence alignment

(Figure S2, lower panels). We then translated the 50 UTR of each

genome segment in silico in all possible frames (Figure 2A, upper

panels) This revealed that the 50 UTR of every IAV genome

segment can maintain a reading frame in at least one frame (Fig-

ure 2A, upper panels, stop codons indicated by red boxes).

We found that the 50 UTRs of five out of the eight genome seg-

ments (PB2, HA, NP, NA, and NS) lacked upstream stop codons

in-framewith themajor ORF (Figure 2A, upper panels,major ORF

start codons indicated by green boxes). These segments thus

have the potential to code for N-terminally extended viral pro-

teins. Stop codons were also absent from the 50 UTRs of six of

the eight genome segments when these were read out of frame

with the major ORF (Figure 2A; segments PB2, PB1, PA, NA, M,

and HA). This suggested the intriguing possibility that, in the

presence of a host-donated start codon, these genome seg-

ments could make novel genes encoding hybrid polypeptides.

To probe the length of uvORFs, we translated viral sequences

that had cap-snatched uAUGs in our dataset in silico. The result

of these analyses (Figure 2A, lower panels) indicated the general

propensity to create chimeric ORFs, with half of the viral genome
Cell 181, 1502–1517, June 25, 2020 1503
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Figure 1. Upstream AUGs Are Present in Host-Derived Sequences of Viral mRNAs

(A) Schematic of cap-snatching during the transcription of a segmented negative sense RNA virus (sNSV) such as influenza A virus (IAV).

(B) Schematic showing how the presence of upstream AUGs (uAUGs) in host-derived cap-snatched RNA sequences may drive the formation of novel host-viral

chimeric proteins.

(C) Histograms showing the length distributions of all cap-snatched (CS) sequences (gray bars) or only CS sequences containing uAUGs (red bars) in A549 cells

infected with IAV (strain PR8) for 4 h, as determined by DEFEND-seq.

(D) Bar plots showing the percentages of uAUG containing CS sequences in each IAV genome segment.
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segments predicted to make sizable products (>30 aa) (Fig-

ure 2B). These ORFs overlap with canonical viral genes but are

read in different frames (overprinted). They range from over 40

residues (HA) to nearly 80 residues (PB1). Where N-terminal

extensions of the major ORF were possible, these ranged from

�8–21 aa in length (Figure 2B).

Thus, uvORFs are present in all genome segments and, if

licensed by host-derived uAUG-containing RNAs, could

generate polypeptides of varying length (Figure 2B).

Host-Virus mRNA Chimeras Associate with Elongating
Ribosomes
If cap-snatched host uAUGs did initiate translation of viral 50

UTRs, the 50 termini of viral mRNAs would be bound by initiating

ribosomes. We therefore performed ribosomal profiling of IAV in-

fected cells, in the presence of harringtonine, which blocks elon-
1504 Cell 181, 1502–1517, June 25, 2020
gation of de novo assembled 80S initiation complexes but not of

those already engaged in elongation. Ribosome-protected frag-

ments (RPFs) were mapped to both the human and viral ge-

nomes (Figures 3A and S3A–S3C). Mapping of RPF sequences

revealed an accumulation of ribosomes at the canonical initiation

site in mRNAs transcribed from all eight genome segments

(Figure 3B; main ORF AUG), consistent with previous reports

(Machkovech et al., 2019). As well as observing ribosomes accu-

mulating at the canonical initiation sites, we also observed RPFs

mapping to the host-derived sequence upstream of the 50 UTR,
suggesting that translation initiated in this region (Figure 3B, in-

sets). The total number of RPF reads mapping to host-derived

sequences for each segment was 5%–20% of the reads map-

ping to the canonical start codon (Figure 3C), broadly consistent

with the proportion of cap-snatched sequences containing

uAUGs (Figures 1D and S1B).



A

B

Figure 2. IAV 50 UTRs Are Conserved and Translatable

(A) Sequence analysis of all unique 50 UTR sequences from each segment of 10,904 H1N1 subtype IAV genomes (coding sense), showing (upper panels) the

translation of the 50 UTR in all three reading frames; and (lower panels) the predicted amino acid length (aa) distributions of N-terminal extensions to the major

gene product and of overprinted new ORFs. This is calculated from the distribution of uAUG positions in DEFEND-seq data and (for overprinted new ORFs) from

the position of stop codons in the IAV PR8.

(B) The numbers of translatable products that could be accessed from uAUGs in each genome segment of IAV.
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Figure 3. IAV mRNAs Can Be Translated from Host-Derived AUGs

(A) Proportion of reads that align to viral and human transcripts for the indicated experimental conditions.

(B) 50 end mapping of ribosome protected fragments (RPFs) in harringtonine-treated A549 cells infected with the IAV PR8 at 8 h post-infection, showing for each

segment of the IAV genome the distribution of reads in the cap-snatched regions (shown in insets) and virally encoded mRNA up to 10 nt after the canonical start

codon. The x axis is shown relative to the first virally encoded nucleotide.

(C) For each IAV genome segment, the number of ribosome-protected fragments (RPFs) upstream of the canonical AUG as a proportion of those mapping to the

canonical AUG is shown. Data are shown as the mean ± SD.

(D) Barplots showing the percentages of RPFs that contain an AUGwhen cells were treated with DMSO (black bars) or harringtonine (gray bars) immediately prior

to harvest, or from total mRNA-seq (white bars). Results from two sequencing replicates are shown as points, with bars showing the mean.
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Precisely mapping initiation sites very close to the cap is chal-

lenging, becausemanyof the heterogeneous50 mRNAendswould

be too short to extrude from the ribosome, making P-site phasing

problematic by standard Ribo-seq analysis. To address this, we

used the location of AUGs within the RPF to identify the reading

frame being translated. This suggested that initiation occurred in

all three reading frames (Figure S3D). uAUG codons were more

frequently close to the start of the viral UTR sequences, peaking

at the�2positionofmRNAs fromall genomesegments (numbered

from the first position in the coding sense of the viral genome
1506 Cell 181, 1502–1517, June 25, 2020
segment), and less frequent toward the 50 end of the host-derived

sequence (Figure S3D). As well as inferring upstream ribosome

initiation by mapping RPFs to protected uAUGs, we could test for

it directlybycomparing ribosomalprofileswithandwithoutharring-

tonine arrest. Harringtonine increased the proportion of RPFs from

cap-snatched sequences that contained anAUG, indicating trans-

lation was initiating on uAUGs in these host-derived sequences

(Figure 3D). Taken together, our data show that translation initiates

from cap-snatched host-derived uAUGs in viral mRNA chimeras,

albeit at lower frequencies than at canonical start codons.
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Host-Virus Protein Chimeras Are Expressed during
Infection, Recognized by T Cells, and Affect Virulence
To demonstrate that chimeric proteins are expressed during

infection, we performed mass spectrometry analyses of cell ly-

sates from infected cells. We also checkedwhether any chimeric

proteins could be integrated into viral progeny by analyzing pu-

rified virions (Figures 4A, S4A, and S4B).

There are limitations to this approach, as the likelihood of a

tryptic digest generating peptides that can be detected by the

mass spectrometer is lower for short proteins. This issue

reduces the chance of finding peptides derived from small over-

printed uvORFs (<30 aa), or that map to short N-terminal exten-

sions. Nevertheless, we were able to identify at least 2 distinct

peptides that were derived from the two long overprinted uvORFs

in the PB1 and PB2 segments, which we named PB1-UFO and

PB2-UFO, respectively (for ‘‘Upstream Frankenstein ORF’’). In

addition, we detected a UTR-encoded N-terminal extension of

NP, which we named NP-extension (NP-ext) (Figures 4A, 4B,

S4A, and S4B; Table S2A). Peptides from all three proteins were

present in PR8 IAV infected cell lysates (Figures 4B, left panels,

and S4A; Table S2A). These novel viral peptides were not de-

tected in uninfected controls (Figure S4A). We were also able to

identify peptides derived from the PB1-UFO protein when we

re-analyzed three previously published proteomic datasets of

IAV infection (Heaton et al., 2016) (Figure S4C; Table S2C). Only

NP-ext was detected in virions (Figure S4B; Table S2B), presum-

ably because influenza virions specifically package hundreds of

copies of NP, while there is no known mechanism to specifically

package other uvORF-encoded proteins (Hutchinson et al., 2014).

Quantification of the PB1-UFO, PB2-UFO, and NP-ext pro-

teins indicated that, although they are less abundant than the

major viral proteins, they are expressed at detectable levels

within an infected cell. When quantified, tryptic peptides from

these proteins were found between the 20th and 40th percentile

of normalized peptide intensities, including both host and viral

proteins, within our samples (Figures S4A and S4B). Taken

together, our data show that N-terminal extensions and over-

printed uvORFs are synthesized during IAV infection and are pre-

sent at a moderate abundance within infected cells.

We next asked whether chimeric host-viral proteins could

be recognized by the host’s immune system. To test this,

we created modified IAVs containing insertions of a class
Figure 4. uvORFs Are Expressed during Infection and Can Contribute

(A) The number of upstream viral open reading frames (uvORFs) that could be tra

detected in infected cell lysates by mass spectrometry (filled red circles).

(B) Tryptic peptides that map to translated uvORFs, detected by mass spectrom

(C) Schematic showing the generation of the PB1-UFO(SIIN) virus. DC2.4 cells w

OT-1 activation, assessed by CD69 and CD25 expression, was assayed by flow

(D) Schematic showing the generation of the NS-SIIN virus. Red bars indicate stop

cells were incubated with IAV antigen presentations, and co-cultured with OT1-

assayed by flow cytometry of CD69 and CD25 expression at 24 h post co-cultur

(E) Upper panel: schematic showingmutations that truncate NP-ext (NP-DEXT) an

also shown. Lower panel: weight loss and survival curves of 6- to 8-week-old BA

viruses. Data are an aggregate of 2 independent experiments of n = 3mice, using 2

(total n = 6/condition). *p < 0.05; data are shown as the mean ± SEM.

(F) Upper panel: schematic showing mutations that knocked out PB1-UFO (PB1

Wild-type PR8 is also shown. Lower panel: weight loss and survival curves of 6- t

indicated viruses. n = 10 mice/condition. *p < 0.05. Data are shown as the mean
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I-restricted epitope of ovalbumin (Porgador et al., 1997). Based

on the uvORFs predicted from our in silico analyses, we inserted

the epitope (OVAI; OVA 257-264; SL8; SIINFEKL) in frame with

the longest uvORF (PB1 frame 3 uvORF; PB1-UFO(SIIN) (Fig-

ure 4C) and one of the shortest uvORFs (NS, frame 2 uvORF;

NS-UFO(SIIN) (Figure 4D). In the case of PB1 segment, we inte-

grated sequences encoding OVAI directly into the UTR, placing

the epitope within the uvORF encoding PB1-UFO (Figure 4C, top

panels). For the NS segment, we used synonymous mutations in

the canonical viral gene to delete five naturally occurring stop co-

dons in the uvORF; we then inserted OVAI into the extended

uvORF, positioning the insertion in a flexible ‘‘linker’’ region of

the major viral gene NS1 (Thulasi Raman and Zhou, 2016). This

genetic configuration was chosen to ascertain whether uvORFs

are translated by default provided that they are not interrupted by

stop codons (Figure 4D, top panels).

MouseDC2.4cells infectedwithPB1-UFO(SIIN)activated trans-

genic OT-I CD8+ T cells (that are highly specific for mouse H-2 Kb

class I molecule complexed with SIINFEKL; Kb-SIIN) (Hogquist

et al., 1994) asdeterminedbyupregulationofCD25andCD69 (Fig-

ure 4C, lower panels). Recombinant IAV expressing SIIN(PB1-Ub-

SIIN) at high levels (Wei et al., 2019) was used as a positive control

(Figure 4C, right panels). No upregulation of CD25 and CD69 was

observed in mock treated samples. Similar results were obtained

with the NS-UFO(SIIN) virus. Here, OT-I CD8+ T cells were acti-

vated when incubated with bone marrow-derived dendritic cells

(BMDCs) infected with the NS-UFO(SIIN) virus (Figure 4D, right

panels). This was comparable to the activation seen in a control

experiment using a virus in which OVAI was inserted into the

stem of the viral NA protein (NA-SIIN) (Figure 4D, middle panels)

(Bottermann et al., 2018). Again, noo upregulation was observed

during mock infection. Taken together, our data with both the

PB1-UFO(SIIN) and the NS-SIIN viruses indicate that, unless

blocked by stop codons, uvORFs are translated and expressed

during infection, and T cell immunosurveillance extends to pep-

tides encoded by uvORFs.

Next, to probe if the expression of chimeric host-viral proteins

has an impact on viral pathogenesis, we generated a battery of

recombinant viruses, in which specific N-terminal extensions

or uvORFs were knocked out through the introduction of

premature stop codons (NP-Dext and UFOD, respectively). The

viruses were generated either in the PR8 (Figures 4E, 4F, and
to Virulence

nslated for each segment of the IAV genome (empty circles), highlighting those

etry across multiple experiments (summarizing data in Figures S4A and S4C).

ere infected with the indicated viruses and co-cultured with OT-I CD8+ T cells.

cytometry at 24 h post co-culture. vmRNA, viral mRNA.

codons mutated to permit uninterrupted NS1-UFO translation. Mouse BMDC

CD8+ T cells. OT-I activation, assessed by CD69 and CD25 expression, was

e.

d control mutations (NP-SYN), as engineered into the IAV PR8.Wild-type PR8 is

LB/c mice infected with 15 plaque-forming unit (PFU)/mouse of the indicated

independently plaque purified clones of the NP-DEXT or PR8;NP-SYN viruses

-UFOD) and control mutations (PB1-UFOSYN), as engineered into the IAV PR8.

o 8-week-old BALB/c mice infected with the indicated dose (per mouse) of the

± SEM.
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S4D), A/WSN/33(H1N1) (WSN) (Figure S4E), or mouse-adapted

A/California/04/2009(H1N1) (Cal09) (Figure S4F) backgrounds.

We also generated the reciprocal control viruses carrying synon-

ymousmutations (NPSYN;UFOSYN). Both genomic configurations

of control and knockout viruses maintained intact the canonical

viral ORFs (Table S3).

The mutant viruses did not display gross alterations in viral

growth in vitro (Figures S4D–S4F). This was independent of

viral background and also of the cell type infected (Figures

S4D–S4F). To determine if interrupting upstream translation

had effects in vivo, we focused on the NP-Dext and PB1-

UFOD viruses in the PR8 background. The strategy used to

generate these viruses is shown in the top panels of Figures

4E and 4F.

We found that the NP-Dext viruses were less virulent in mice

compared to the control NP-SYN viruses (Figure 4E), suggest-

ing that NP-ext expression contributes to virulence. A similar

role for NP-ext was recently proposed for the pandemic

2019 IAV (pdm2009) strain, in which an extended NP protein

was found to contribute to virulence in mice and pigs (Wise

et al., 2019). Importantly, however, pdm2009 viruses translate

NP-ext from a uAUG encoded in the 50 UTR of NP, but no cor-

responding uAUG is encoded by the PR8 virus used in

our study.

The PB1-UFOD viruses displayed increased virulence when

compared to the PB1-UFOSYN viruses in vivo, although in this

case an effect was only observed at high infectious doses (Fig-

ure 4F). Gene expression analyses suggested that there were

distinct transcriptomic signatures in the lungs of mice infected

with high doses of the PB1-UFOD or PB1-UFOSYN viruses

(Figures S4G and S4H; Table S4A). Gene Ontology analysis of

differentially expressed genes indicated changes in a number

of pathways, including leukocyte activation and pro-inflamma-

tory cytokine secretion (Figure S4I; Table S5). Immune cell dys-

regulation may therefore be at least partially responsible for the

differences in morbidity and mortality during infection with the

PB1-UFOD or PB1-UFOSYN viruses.

Together, these functional data show that uvORFs are ex-

pressed during IAV infections, can be detected by the adap-

tive immune system, and can modulate the severity of

infection.
Figure 5. uvORFs Are Conserved

(A) Conservation analysis of PB1-UFO protein sequences across all IAV subtype

(B) Pie charts showing percentages of sequences in H1N1, H3N2, and H5N1 IAV s

50 aa long (orange), and <30 aa long (yellow).

(C) Outline of the propagator model analysis. Diagrams describe possible outcom

(D) Frequency propagator ratios of the indicated classes of mutations occurring in

used for the test (G(x); yellow), and neutral class (G0(X); blue) ratios are shown. The

the neutral class consists of synonymous mutations in the PB1 ORF that do not

indicate sampling uncertainties. See also Figure 5C for interpretations

(E) Frequency propagator ratios, as in (D), but with the test class comprising the

(F) Frequency propagator ratios, as in (D), but with the test class comprising the

(G) Number of predicted PB1-UFO epitope-allele interactions for frequent 11 hum

possible unique identities and predicted to bind selected MHC-I alleles. Number o

epitopes are shown in histograms, next to the heatmaps.

(H) Locations of PB1-UFO peptides that are predicted to result in strong (Kd <500

This plot is juxtaposed with percent identity plot of PB1-UFO (lower panel) acros

(Zhang et al., 2017).
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Chimeric Host-IAV Proteins Are Conserved
We next asked if NP-ext and PB1-UFO are conserved across

different strains. The ability to express NP-ext without interrup-

tion by stop codons in the 50 UTR was maintained in 99.9% of

IAV isolates present in the NCBI Influenza database (Zhang

et al., 2017) (Figures S2, S5A, and S5B). Sequence analysis of

the translated 50 UTR also suggested that N-terminally extended

sequences would be similar within IAV subtypes (Figure S5C).

There are many reasons why these sequences are conserved,

including constraints imposed by RNA structure and the require-

ment to interact with the viral polymerase complex (Fodor, 2013).

Whatever the primary selective pressure, the result of the con-

servation of the 50 UTR sequence is that the ability to express

NP-ext is nearly universal among IAV strains.

The ability to express PB1-UFO requires not only a lack of stop

codons in the appropriate frame of the 50 UTR, but also themain-

tenance of a uvORF overprinted on the canonical PB1 ORF. We

first analyzed sequences of the IAV subtypes H1N1, H3N2, and

H5N1.We found that PB1-UFO is conservedwithin each of these

three virus subtypes (Figure 5A), and stop codons resulting in

PB1-UFO proteins <77 aa long were infrequent (Figure 5B).

To understand the factors that contribute to the maintenance

of PB1-UFO ORF length and amino acid sequence composition

within the IAV, we first looked at the probability that an ORF

similar in length to PB1-UFO could have arisen stochastically

in the IAV PB1 segment. We used a sequence randomization

model (Figure S5D) on the H3N2 subtype of IAV, the subtype

for which the greatest number of complete sequences were

available. We found that �77% of the sequences in the NCBI

Influenza database (Zhang et al., 2017) encoded a 77-aa PB1-

UFO (Figure S5E) that is significantly longer than the �15–30

aa long ORFs expected by chance (Figures S5E–S5G). We

also found that these predicted ORFs would require multiple

(30–70) additional synonymous mutations in order to generate

an ORF that is of similar length to PB1-UFO (Figure S5H).

The above analysis does not take into account constraints

imposed by nucleotide biases in the viral UTR or canonical

PB1 ORF or from viral RNA structure. To examine their roles in

the maintenance of the PB1-UFO ORF we used the frequency

propagator method (Luksza and Lässig, 2014; Strelkowa and

Lässig, 2012) (Figures 5C and S6A). This method can determine
s.

ubtypes that have a PB1-UFO that is 77 aa long (blue), 50–77 aa long (gray), 30–

es and interpretations of calculated g(x) ratios

PB1-UFO relative to the PB1 open reading frame of H3N2 viruses. Top: regions

test class is the region of PB1-UFOORF that overlaps only with the viral 50 UTR;
overlap with PB1-UFO. All nucleotides positions were considered. Error bars

C-terminal region of the PB1-UFO ORF.

region in the main PB1 ORF overlapping the PB1-UFO reading frame.

an HLA alleles. Heatmaps show number of PB1-UFO epitopes derived from all

f unique identities (i.e., unique influenza A virus sequences) encoding predicted

nM) unique interacting HLA-epitope pairs across the PB1-UFO reading frame.

s 3,140 unique PB1-UFO sequences taken from the NCBI Influenza Database
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if these factors imposed constraints on the PB1-UFO amino acid

sequence. The model and its possible outcomes are shown and

discussed in detail in Figures 5C and S6A and the STAR

Methods.

Briefly, mutations that occur in the viral UTR region, which

encodes the N-terminal part of PB1-UFO, undergo negative se-

lection (Figure 5D; g < 1). This indicates that mutations in the viral

UTR, should they occur, have a low probability of being propa-

gated down the IAV strain tree. On the other hand, when we

consider the nucleotide sequences that encode the overlapping

regions of PB1-UFO and the canonical PB1 ORF, we see that

there is heterogeneous/neutral selection occurring on mutations

in the PB1-UFO ORF (g z 1). This is most likely shaped by the

requirement to maintain the main PB1 ORF sequence, as muta-

tions that maintain the PB1 ORF aa sequence (synonymous mu-

tations in PB1 ORF) are more likely to be fixed in the population

(Figure 5E; red line; g < 1). Mutations that change the PB1 amino

acid sequence instead undergo negative selection (Figure 5F;

blue line; g < 1) and are unlikely to be propagated down the strain

tree, consistent with PB1 ORF being fixed and essential for IAV.

Selection in these regions is unlikely to be dominated by RNA

structural constraints because similar effects are observed when

RNA secondary structure is taken into account for our analysis

(Figures S6B–S6D). Overall, our analyses suggest that PB1-

UFO conservation is largely dictated by the need to preserve

both the viral UTR nucleotide sequence and the amino acid

sequence of the main PB1 ORF. Taken together, this suggests

that the evolution of the PB1-UFO ORF is heavily constrained

by converging selective pressures.

Because we had shown that peptides derived from PB1-UFO

could be presented to the immune system (Figures 4C and 4D),

we asked whether epitope-HLA class I interactions could play a

role in shaping PB1-UFO sequence. We found that multiple

unique PB1-UFO peptides were predicted to bind to and interact

with various HLA types (Figure 5G; Table S6). Notably, high-affin-

ity (<500 nM) HLA-epitope pairs were concentrated in regions of

PB1-UFO where conservation was low, suggesting that immune

pressure on PB1-UFO may lead to some diversifying selection

on the protein (Figure 5H).

Chimeric Host-Virus Proteins of Other Viruses
Finally, we asked whether our finding that start-snatching gener-

ates novel ORFs could be generalized from IAV to other sNSVs.

We began by looking at another member of the Orthomyxoviri-

dae family, influenza B virus (IBV), by performing DEFEND-seq

on A549 cells infected with IBV. The host-derived sequences

that IBV obtains by cap-snatching had comparable median

lengths to those appropriated by IAV (Figure S7A). Sequence

analysis indicates that uAUG-initiated translation could read

through the 50 UTR of every IBV genome segment in at least

one frame and predicted at least two long overprinted new

ORFs (PA and NA segments) (Figures 6A and 6B), as well as

N-terminal extensions of six of the eight major viral proteins (Fig-

ures 6A and S7B).

Next, we looked at other families of sNSVs. We performed

CAGE analysis on cells infected by Lassa virus (LASV), amember

of the family Arenaviridae and an emerging virus that in the past

decade has caused several epidemics of hemorrhagic fever.
LASV genomes comprise two ambisense segments. Themedian

cap-snatched length of LASV mRNAs was seven nucleotides

(Figure S7C) in agreement with structural prediction of the

LASV polymerase (Wallat et al., 2014). Sequence analysis indi-

cates that these uAUGs could lead to the translation of N-termi-

nal extensions of the GPC protein, as well as the formation of two

overprinted new ORFs of �50 and 80 aa from the viral mRNAs

encoding the nucleoprotein (N) and Z proteins of LASV (Fig-

ure 6C, 6D, and S7D). The proportions of uAUGs detected in

cap-snatched sequences from IBV and LASV were dependent

on viral segments and ranged between 4% and 12% (Table S7).

We also tested the hypothesis that translation of UTR-derived

sequences could occur in other sNSVs by using minireplicon as-

says encoding a luciferase reporter to a member of the Phenui-

viridae (Heartland banyangvirus; L segment UTRs). By mutating

the canonical AUG, we identified low but readily detectable

levels of upstream translation (Figure S7E).

Overall, these data suggest that generation of chimeric virus-

host ORFs is a common feature of sNSVs. To quantify the poten-

tial pervasiveness of this mechanism and the likelihood of novel

ORFs being conserved and functionalized into new genes, we

analyzed RNA virus genomic sequences for their propensity to

generate novel proteins by performing in silico analyses of their

genomes. Although the exact levels of upstream translation will

depend on a range of factors, including the intrinsic properties

of viral polymerase complexes and, potentially, mechanisms

that modulate upstream AUG translation, our results indicate

the genomic potential of start-snatching (Figure 7). Given that

viral mRNA and proteins are among the most highly expressed

biotypes in infected cells, our data support the idea that all

cap-snatching virus could expand their proteome by start-

snatching uAUGs from their hosts.

DISCUSSION

In thismanuscript, we describe the existence of amechanism em-

ployed by sNSVs to generate chimeric host-virus genes. This

mechanism, ‘‘start-snatching,’’ involves the co-opting of start co-

dons from host mRNA sequences to expand the viral proteome.

This mechanism appears to be accessible to all sNSVs, including

major human pathogens such as IAV and LASV. Start-snatching

allows the translation of proteins from cryptic uvORFs, either as

canonical viral proteinswithN-terminal extensions, or asUFOpro-

teins overprinted on the canonical viral ORF. In this study,we have

identified examples of both types of uvORF in IAV infections. We

have shown that translation can initiate on uAUGs in the host-

derived sequence of viral mRNAs, and that this leads to the

expression of chimeric host-virus proteins that can be detected

in infected cells. In our hands, the ablation of uvORFs did not

impact viral replication in vitro but had a moderate effect in vivo,

which would be consistent with uvORFs encoding accessory pro-

teins. We found that uvORFs can be recognized by the immune

system, and wemodeled the contribution of different evolutionary

forces at playonuvORFsby characterizing viral-intrinsic and host-

immune features that contribute to their evolution. Finally, we

showed experimentally and by sequence analysis that the capa-

bility to express uvORFs through start-snatching is widespread

among the sNSVs.
Cell 181, 1502–1517, June 25, 2020 1511
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Figure 6. uvORFs Are Encoded by Cap-Snatching Viruses from Diverse Families

(A) The number of host-virus chimeric protein species potentially encoded by influenza B virus (IBV; B/Wisconsin/01/2010).

(B) Sequence analysis of the PA and NA segments of IBV, showing the translation of the 50 UTR in all three reading frames and the predicted length distributions of

N-terminal extensions to the main ORF and of overprinted new ORFs, calculated from uAUG positions in DEFEND-seq data.

(C) The number of host-virus chimeric protein species potentially encoded by the ambisense genome of Lassa virus (LASV; Josiah strain), in both forward and

reverse senses. The ORF encoded by the segment is indicated in the square brackets.

(D) Sequence analysis of L and S segments of LASV in the indicated orientations, showing a schematic of genome organization, the translation of the 50 UTR in all

three reading frames, and the predicted length distributions of overprinted new ORFs, calculated from uAUG positions in CAGE-seq data.
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Chimeric mRNAs Encode Novel Viral Proteins
We hypothesized that cap-snatching of sNSVs could generate

ORFs that are encoded by two genomes (human and virus).

Consistent with this, our analyses indicate that roughly 10% of

IAV mRNA contains host-derived uAUGs (Figures 1D and S1B).
1512 Cell 181, 1502–1517, June 25, 2020
Furthermore, uvORFs are translated in at least three of the eight

IAV genome segments, generating NP-ext, PB2-UFO, and PB1-

UFO (Figures 2 and 4). Genetic evidence suggested that many

other uvORF proteins are also likely to be expressed, although

we did not detect them in our current study, potentially due to
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Figure 7. Start-Snatching Increases the Number of Potential ORFs

in sNSVs

The increase in number of potential ORFs in cap-snatching viruses when

uvORFs are considered. Black, number of canonical ORFs; yellow, number of

new overprinted ORFs >30 aa; red, number of new extensions. LCMV, lym-

phocytic choriomeningitis virus; EMARV, European mountain ash ringspot-

associated emaravirus.
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the substantial sequence overlap of N-terminal extensions with

canonical viral proteins and the short lengths of many over-

printed ORFs. Overall, our analysis indicates that multiple fam-

ilies of viruses can generate chimeric RNAs and could produce

proteins via this mechanism (Figures 6 and 7).

Conservation and Function of uvORFs
Our analysis shows that most sNSV infections lead to expression

of chimeric genes and uvORFs. Because they are host and virally

encoded, it is therefore reasonable to ask who benefits from their

expression. Key considerations in this regard, and based on our

analysis are:

(1) Epitopes encoded in uvORFs are recognized by the adap-

tive immune system. MHC I presentation of uvORF-

derived peptides poses the risk of an adaptive immune

response against cells infected with sNSVs, analogous

to the risks posed to IAV by the presentation of alternative

reading frames (ARFs) and defective ribosomal products

(DRiPs) (Dolan et al., 2010; Wei et al., 2019; Wei and Yew-

dell, 2017, 2019; Zanker et al., 2019). Indeed, the risks

posed to the virus by the presentation of uvORFs are

potentially even higher due to the high conservation of

these sequences.

(2) Two uvORFs considered here (NP-ext and PB1-UFO) are

both highly conserved across multiple strains of IAV.

However, merely assessing conservation is insufficient,

as other forms of selection also act on IAV genome se-

quences. In particular, genome packaging signals in the

primary RNA sequence are concentrated in the terminal

regions of each genome segment (Dadonaite et al.,

2019; Gog et al., 2007; Hutchinson et al., 2010), resulting

in a suppression of synonymous codon usage (Gog et al.,

2007; Jagger et al., 2012). In overprinted regions, like

PB1-UFO, there is also selective pressure conferred by

the sequence encoding the canonical ORF. We observe
both of these effects (Figures 5D–5F). Despite this, we

also observe that (1) nonsense mutations do not occur

frequently in the population (Figures S5D–S5H), and (2)

missense mutations that do eventually accumulate in

the PB1-UFO ORF tend to be those that change poten-

tially immunogenic epitopes (Figures 5G and 5H).

This information, and the mere fact that full-length PB1-UFO is

present in more than 75% of all IAV isolates and NP extensions

are present in more than 99% of IAV isolates, suggests that mul-

tiple forces at the host-virus interface drive the virus to maintain

the full-length proteins in their sequences. The relative contribu-

tions of distinct evolutionary forces in maintaining these proteins

are not yet clear.

An important point to bemade about uvORFs is that conserva-

tion and/or expression does not equate to functionality. While

some uvORFs might have gained functions, we predict others

will exist as afunctional, evolutionary spandrels. Such uvORFs

are stuck in a place where they have to be made but suffer too

many external constraints to productively sample evolutionary

space for functionalization. All things considered, we can fairly

surmise that any cost the virus might incur through uvORFs be-

ing made is outweighed by the fitness benefits of maintaining a

genetic architecture that allows for their expression. The aware-

ness of uvORF existence, and their pervasiveness in the viral

world, is thus critical for our understanding of viral biology, viral

evolution, and host immune surveillance.
Gene Origination through Overprinting and the Mis-
naming of "UTRs"
Genetic overprinting typically occurs when a pre-existing

reading frame acquires mutations that enable translation in alter-

native reading frames while maintaining the function of the

ancestral frame. This is an important mechanism for the creation

of new proteins, especially in the context of compact genomes

(viral, prokaryotic, and eukaryotic organelles) with little coding

capacity (Keese and Gibbs, 1992; Kovacs et al., 2010; Poulin

et al., 2003; Sabath et al., 2012).

While genetic overprinting could be selectively advantageous

for some organisms, the evolution of overprinted genes is prob-

lematic. Any evolution of the overprinted ORFwill be constrained

by the effects of mutations in the underlying ORF. In addition, es-

tablished overlapping ORFs typically have dedicated mecha-

nisms for their expression, such as ribosomal scanning or frame-

shifting, which allow for efficient and regulated expression

patterns. Exploring the limited evolutionary space that satisfies

all of these constraints presumably requires the overprinted

gene to provide a strong selective advantage.

Start-snatching exposes the 50 coding regions of sNSV ge-

nomes to low levels of non-specific out-of-frame translation.

This ‘‘genetic feature’’ could facilitate the evolution of novel

genes through genetic overprinting, without having to evolve a

dedicated method to express an overprinted ORF before that

ORF could provide a selective advantage.

A similar argument applies to the evolution of alternative up-

stream translation mechanisms for N-terminally extended pro-

teins: if an N-terminal extension provided by start-snatching was

selectively advantageous, the virus could evolve to directly
Cell 181, 1502–1517, June 25, 2020 1513
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encode an uAUG in theUTR andmake the generation of extended

protein host-independent and heritable. In this respect, it is inter-

esting to note that some recent strains of IAV have evolved to

encode a uAUG in the UTR of NP that allows it to express an

N-terminally extended protein that can modulate virulence (Wise

et al., 2019). In essence, start-snatching might simply be a way

to increase the chances of UTR translation by outsourcing

uAUG to non-viral genomic material.

The translation of 50 UTRs (that implies their misnaming) oc-

curs frequently in eukaryotic genes. uORFs are, in fact, perva-

sively expressed, with some functioning as short biologically

active polypeptides (Andrews and Rothnagel, 2014; Calvo

et al., 2009; Combier et al., 2008; Sendoel et al., 2017; Starck

et al., 2016; Wang and Rothnagel, 2004; Wen et al., 2009).

uORFs are abundantly expressed in cancer cells (Sendoel

et al., 2017) and activated T cells (Starck et al., 2016). Overall,

future work will be needed to redefine what, in reality, a gene is.

Lessons for Other Viruses
The capacity of a pathogen to overcome host barriers and estab-

lish infection is based on the expression of pathogen-derived

proteins. To understand how a pathogen antagonizes the host

and establishes infection we need to have a clear understanding

of what proteins a pathogen encodes, how they function, and the

manner in which they contribute to virulence. The current dogma

about many life-threatening pathogens is that they encode a

small repertoire of proteins because of their limited genome

size. RNA viruses, such as IAV, are a prime example of this.

Here, we have shown that IAV, IBV, LASV, and likely most, if

not all, other sNSVs, can use host RNA to expand their genetic

repertoire. Similar to novel human genes which originated from

other mechanisms and contributed to organismal evolution

(Kaessmann, 2010; Ohno, 1970), we expect chimeric genes to

shape (and have shaped) host-virus relationships.
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Strelkowa, N., and Lässig, M. (2012). Clonal interference in the evolution of

influenza. Genetics 192, 671–682.

Stuller, K.A., Cush, S.S., and Flaño, E. (2010). Persistent gamma-herpesvirus

infection induces a CD4 T cell response containing functionally distinct

effector populations. J. Immunol. 184, 3850–3856.

Takahashi, H., Lassmann, T., Murata, M., and Carninci, P. (2012). 50 end-
centered expression profiling using cap-analysis gene expression and next-

generation sequencing. Nat. Protoc. 7, 542–561.

Thulasi Raman, S.N., and Zhou, Y. (2016). Networks of Host Factors that

Interact with NS1 Protein of Influenza A Virus. Front. Microbiol. 7, 654.

Tilston-Lunel, N.L., Shi, X., Elliott, R.M., and Acrani, G.O. (2017). The Potential

for Reassortment between Oropouche and Schmallenberg Orthobunyavi-

ruses. Viruses 9, 220.

Tyanova, S., Temu, T., and Cox, J. (2016). The MaxQuant computational plat-

form for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11,

2301–2319.

Wallat, G.D., Huang, Q., Wang, W., Dong, H., Ly, H., Liang, Y., and Dong, C.

(2014). High-resolution structure of the N-terminal endonuclease domain of

the Lassa virus L polymerase in complex with magnesium ions. PLoS ONE

9, e87577.

Wang, X.Q., and Rothnagel, J.A. (2004). 50-untranslated regions with multiple

upstream AUG codons can support low-level translation via leaky scanning

and reinitiation. Nucleic Acids Res. 32, 1382–1391.

Wei, J., and Yewdell, J.W. (2017). Autoimmune T cell recognition of alternative-

reading-frame-encoded peptides. Nat. Med. 23, 409–410.

Wei, J., and Yewdell, J.W. (2019). Flu DRiPs in MHC Class I Immunosurveil-

lance. Virol. Sin. 34, 162–167.

http://refhub.elsevier.com/S0092-8674(20)30630-9/sref33
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref33
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref33
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref34
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref35
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref36
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref36
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref37
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref38
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref38
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref39
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref39
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref39
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref40
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref40
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref40
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref41
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref41
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref41
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref42
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref42
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref42
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref43
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref44
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref44
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref44
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref45
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref45
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref46
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref46
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref47
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref48
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref48
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref49
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref49
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref49
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref50
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref50
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref51
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref52
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref52
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref52
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref52
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref53
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref53
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref53
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref54
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref54
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref54
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref55
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref55
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref56
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref56
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref56
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref56
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref57
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref57
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref57
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref57
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref58
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref58
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref58
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref58
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref59
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref59
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref59
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref60
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref60
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref61
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref61
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref62
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref62
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref62
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref63
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref63
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref63
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref63
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref63
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref64
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref64
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref65
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref65
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref65
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref66
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref66
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref67
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref67
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref67
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref67
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref68
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref68
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref69
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref69
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref69
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref70
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref70
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref70
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref70
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref71
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref71
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref72
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref72
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref72
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref73
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref73
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref73
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref74
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref74
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref74
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref74
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref75
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref75
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref75
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref75
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref76
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref76
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref77
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref77


ll
OPEN ACCESSArticle
Wei, J., Kishton, R.J., Angel, M., Conn, C.S., Dalla-Venezia, N., Marcel, V., Vin-

cent, A., Catez, F., Ferre, S., Ayadi, L., et al. (2019). Ribosomal Proteins Regu-

late MHC Class I Peptide Generation for Immunosurveillance. Mol. Cell 73,

1162–1173.

Wen, Y., Liu, Y., Xu, Y., Zhao, Y., Hua, R., Wang, K., Sun, M., Li, Y., Yang, S.,

Zhang, X.J., et al. (2009). Loss-of-function mutations of an inhibitory upstream

ORF in the human hairless transcript cause Marie Unna hereditary hypotricho-

sis. Nat. Genet. 41, 228–233.

Westerhof, L.M., McGuire, K., MacLellan, L., Flynn, A., Gray, J.I., Thomas, M.,

Goodyear, C.S., and MacLeod, M.K. (2019). Multifunctional cytokine produc-

tion reveals functional superiority of memory CD4 T cells. Eur. J. Immunol. 49,

2019–2029.

Wise, H.M., Gaunt, E., Ping, J., Holzer, B., Jasim, S., Lycett, S.J., Murphy, L.,

Livesey, A., Brown, R., Smith, N., et al. (2019). An alternative AUG codon that

produces an N-terminally extended form of the influenza A virus NP is a viru-

lence factor for a swine-derived virus. bioRxiv. https://doi.org/10.1101/

738427.

Ye, J., Sorrell, E.M., Cai, Y., Shao, H., Xu, K., Pena, L., Hickman, D., Song, H.,

Angel, M., Medina, R.A., et al. (2010). Variations in the hemagglutinin of the
2009 H1N1 pandemic virus: potential for strains with altered virulence pheno-

type? PLoS Pathog. 6, e1001145.

Young, S.K., and Wek, R.C. (2016). Upstream Open Reading Frames Differen-

tially Regulate Gene-specific Translation in the Integrated Stress Response.

J. Biol. Chem. 291, 16927–16935.

Zanker, D.J., Oveissi, S., Tscharke, D.C., Duan, M., Wan, S., Zhang, X., Xiao,

K., Mifsud, N.A., Gibbs, J., Izzard, L., et al. (2019). Influenza A Virus Infection

Induces Viral and Cellular Defective Ribosomal Products Encoded by Alterna-

tive Reading Frames. J. Immunol. 202, 3370–3380.

Zhang, Y., Aevermann, B.D., Anderson, T.K., Burke, D.F., Dauphin, G., Gu, Z.,

He, S., Kumar, S., Larsen, C.N., Lee, A.J., et al. (2017). Influenza Research

Database: An integrated bioinformatics resource for influenza virus research.

Nucleic Acids Res. 45 (D1), D466–D474.

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk,

O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-ori-

ented resource for the analysis of systems-level datasets. Nat. Commun.

10, 1523.
Cell 181, 1502–1517, June 25, 2020 1517

http://refhub.elsevier.com/S0092-8674(20)30630-9/sref78
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref78
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref78
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref78
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref79
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref79
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref79
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref79
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref80
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref80
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref80
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref80
https://doi.org/10.1101/738427
https://doi.org/10.1101/738427
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref82
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref82
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref82
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref82
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref83
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref83
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref83
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref84
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref84
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref84
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref84
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref85
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref85
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref85
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref85
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref86
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref86
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref86
http://refhub.elsevier.com/S0092-8674(20)30630-9/sref86


ll
OPEN ACCESS Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-CD25-APC (PC61.5) Thermo Fisher Cat #17-0251-82; RRID: AB_469366

anti-CD8-Alexaflor488 (53-6.7) Thermo Fisher Cat #53-0081-82; RRID: AB_469897

anti-Va2-E450 (B20.1) Thermo Fisher Cat #48-5812-82; RRID: AB_10804752

anti-Vb5-PE (MR9-4) BD Biosciences Cat # 553190; RRID: AB_394698

anti-CD44-PerCp-Cyanine5.5 (IM7) Thermo Fisher Cat #45-0441-82; RRID: AB_925746

anti-CD69-PE-Cy7 (H1.2F3) Thermo Fisher Cat #25-0691-82; RRID: AB_469637

Anti-NP antibody BioRad Cat # MCA400; RRID: AB_2151884

m-IgGk BP-HRP Santa Cruz Cat # sc-516102; RRID: AB_2687626

Bacterial and Virus Strains

A/Puerto Rico/8/34 (H1N1) (PR8) de Wit et al., 2004 N/A

PR8; PB1-UFOD This study N/A

PR8; PB1-UFOSYN This study N/A

PR8; PB1-EXT+ This study N/A

PR8; NP-EXTD This study N/A

PR8; NP-EXTSYN This study N/A

A/California/04/09(H1N1) (Cal09) Ye et al., 2010 N/A

Cal09; PB1-UFOD This study N/A

Cal09; PB1-UFOSYN This study N/A

Cal09; PB2-UFOD This study N/A

Cal09; PB2-UFOSYN This study NA

Cal09; PA-UFOD This study NA

Cal09; PB1-UFOSYN This study NA

Cal09; HA-UFOD This study NA

Cal09; HA-UFOSYN This study NA

A/WSN/33(H1N1) (WSN) Hoffmann et al., 2000 N/A

WSN; PB1-UFOD This study N/A

WSN; PB1-UFOSYN This study N/A

WSN; PB2-UFOD This study N/A

WSN; PB2-UFOSYN This study N/A

WSN; PA-UFOD This study N/A

WSN; PA-UFOSYN This study N/A

WSN; HA-UFOD This study N/A

WSN; HA-UFOSYN This study N/A

PB1-UFO(SIIN) This study N/A

NS-UFO(SIIN) This study N/A

PB1-SIIN Wei et al., 2019 N/A

NA-SIIN MRC-University of GlasgowCentre for Virus

Research; As Bottermann et al., 2018

N/A

A/Udorn/72(H3N2) The Roslin Institute, University of

Edinburgh; As Clohisey et al., 2020

N/A

LASV (Josiah strain) Department of Pathology, the University of

Texas Medical Branch

N/A

B/Wisconsin/01/2010 Department of Microbiology, Icahn School

of Medicine at Mount Sinai

N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Primary CD14+ human monocytes The Roslin Institute, University of

Edinburgh; As Clohisey et al., 2020

N/A

Chemicals, Peptides, and Recombinant Proteins

Dulbecco’s Modified Eagle

Medium (DMEM)

Thermo Fisher / GIBCO Cat#11965175

Minimum Essential Medium (MEM) Sigma-Aldrich Cat# 51411C

Purified Agar Oxoid Cat #: LP0028

Trypsin from bovine pancreas, TPCK-

treated

Sigma-Aldrich Cat #: T1426-500MG

Protease Inhibitor Cocktail Set III, EDTA-

Free - Calbiochem

EMD Millipore Cat# 539134-10ML

Trypsin Sigma-Aldrich Cat# T8802-100MG

TRIzol Reagent Thermo Fisher Scientific Cat#15596018

SimplyBlueTM SafeStain Thermo Fisher Scientific Cat# LC6060

NuPage 4�12% BT Gel 1.5mm 12w 10

Per Box

Thermo Fisher Scientific Cat# NP0322BOX

MG-132 Sigma-Aldrich Cat# M7449-1ML

NuPAGE MOPS SDS Running Buffer (20X) Thermo Fisher Scientific Cat# NP0001

Ovalbumin (257-264) chicken Sigma-Aldrich Cat# S7951

LT-1 transfection reagent Mirius Cat# MIR 2304

recombinant human colony-stimulating

factor 1

A gift from Chiron, Emeryville, CA, US; As

Clohisey et al., 2020

N/A

Lys-C lysyl endopeptidase Wako 121-05063

Harringtonine LKT biochemicals H0169

Cycloheximide Sigma-Aldrich Cat# C7698

Sequencing grade modified trypsin Promega 9PIV511

Critical Commercial Assays

Dual Luciferase Reporter Assay System Promega Cat#E1910

CD8a+ T Cell Isolation Kit Miltenyi Biotec Cat#130-104-075

EasySep Mouse CD8+ T Cell Isolation Kit StemCell Technologies Cat# 19853

PureLink RNA Mini Kit 250 Reactions Thermo Fisher Scientific Cat# 12183025

PureLink DNase Set Thermo Fisher Scientific Cat# 12185010

miRNeasy Mini Kit QIAGEN Cat# 217004

Q5 site directed mutagenesis kit NEB Cat# E0554S

Ribo-Zero Gold rRNA Removal Kit

(Human/Mouse/Rat)

Illumina Cat# MRZG12324

SMARTer total RNA Pico kit Clontech Cat# 634411

TruSeq Stranded Total RNA Library Prep Kit Illumina Cat # 20020596

Deposited Data

CAGE sequencing of WSN IAV virus

infected cells

Clohisey et al., 2020 https://fantom.gsc.riken.jp/5/data/

DEFEND seq of PR8 IAV infected A549 cells Rialdi et al., 2017 GEO: GSE96677

DEFEND seq of IBV infected A549 cells This study GEO: GSE85474

Ribosome Profiling of PR8 IAV infected cells This study GEO: GSE148245

CAGE sequencing of LASV infected

vero cells

This study GEO: GSE148122

RNA seq of PR8; PB1-UFOD and PR8;PB1-

UFOSYN infected mouse lungs

This study GEO: GSE128519

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GISAID Database Shu and McCauley, 2017 https://www.gisaid.org

NCBI Influenza Virus Database Zhang et al., 2017 http://www.ncbi.nlm.nih.gov/genomes/

FLU/Database

Mass spectrometry Data: PR8 IAV infected

A549 and 293T cells

This study Table S2A

Mass spectrometry Data: WSN IAV Virions Hutchinson et al., 2014 https://massive.ucsd.edu/ProteoSAFe/

datasets.jsp using the MassIVE ID

MSV000078740; Table S2B

Mass spectrometry Data:

Immunoprecipitation of PR8 IAV RdRp

Heaton et al., 2016 Table S2C

Experimental Models: Cell Lines

Dog: MDCK ATCC CCL-34; RRID: CVCL_0422

Human: A549 ATCC CCL-185; RRID: CVCL_0023

Human: 293T ATCC CRL-3216; RRID: CVCL_0063

Cow: MDBK Sigma 90050801-1VL; RRID: CVCL_0421

Monkey: Vero ATCC CCL-81; RRID: CVCL_0059

Mouse: DC2.4 Sigma-Aldrich Cat# SCC142; RRID: CVCL_J409

Hamster: BSR-T7/5 Buchholz et al., 1999 N/A

Experimental Models: Organisms/Strains

Mouse: BALB/cJ (6-8 weeks) Jackson Laboratories 00651

Chicken: Specific Pathogen Free

Fertile Eggs

Charles River Cat #: 10100329

Mouse: OT-I: C57BL/6-Tg(TcraTcrb)

1100Mjb/J

The Jackson Laboratory / in-house;

Hogquist et al., 1994

Cat# 003831; RRID: IMSR_JAX:003831

Mouse: C57BL/6 (10-14 weeks) Envigo N/A

Oligonucleotides

DEFEND-seq cDNA synthesis–3’ primer Rialdi et al., 2017 N/A

qPCR Primers This Study Table S4B

Recombinant DNA

PR8 pDUAL plasmids A kind gift of Prof Ron Fouchier; de Wit

et al., 2004

N/A

Cal09 pDP2002 plasmids A kind gift of Prof Daniel Perez.; Ye

et al., 2010

N/A

pT7HRTMRen(-) MRC-University of GlasgowCentre for Virus

Research; Rezelj et al., 2019

N/A

pTMHRTN MRC-University of GlasgowCentre for Virus

Research; Rezelj et al., 2019

N/A

pTMHRTL MRC-University of GlasgowCentre for Virus

Research; Rezelj et al., 2019

N/A

pTM1-FFLuc MRC-University of GlasgowCentre for Virus

Research; Rezelj et al., 2019

N/A

pRL-TK Promega E2241

Software and Algorithms

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/

index.shtml

MaxQuant Cox and Mann, 2008 https://www.biochem.mpg.de/5111795/

maxquant

Cutadapt Martin, 2011 https://cutadapt.readthedocs.io/en/stable/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

FlowJo Treestar N/A

Metascape Zhou et al., 2019 https://metascape.org/gp/index.html#/

main/step1

Vienna RNA Webserver Gruber et al., 2008 http://rna.tbi.univie.ac.at

FastTree Price et al., 2010 http://www.microbesonline.org/fasttree

RAxML Stamatakis, 2014 https://cme.h-its.org/exelixis/web/

software/raxml/index.html

TreeTime Sagulenko et al., 2018 https://github.com/neherlab/treetime

PANDASeq Masella et al., 2012 https://github.com/neufeld/pandaseq

NetMHC (v3.4 and v4.0) Andreatta and Nielsen, 2016 https://services.healthtech.dtu.dk/service.

php?NetMHC-4.0

MUSCLE Edgar, 2004 https://www.drive5.com/muscle/

HISAT2 Kim et al., 2015 http://daehwankimlab.github.io/hisat2

Prism 8 Graphpad N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to and will be fulfilled by Lead Contact Ivan Marazzi (ivan.marazzi@

mssm.edu).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data and Code Availability
The datasets for CAGE sequencing of A/Udorn/72 (H3N2) IAV virus infected cells are reported in Clohisey et al. (2020) deposited in

https://fantom.gsc.riken.jp/5/data/. Datasets for DEFEND-seq of PR8-IAV infected A549 cells were taken from a pre-existing dataset

[GEO: GSE96677] (Rialdi et al., 2017). DEFEND-seq of IBV infected cells were generated in this study and deposited in GEO:

GSE85474. Ribosome profiling profile of PR8 IAV infected cells were generated in this study and deposited in GEO: GSE148245.

The datasets for CAGE sequencing of LASV infected Vero cells were generated in this study and deposited in GEO: GSE148122.

RNA seq of PR8; PB1-UFOD and PR8;PB1-UFOSYN infected mouse lungs was generated in this study and deposited in

GSE128519. Mass spectrometry data for PR8 infected IAV infected A549 and 293 cells was generated in this study and presented

in Table S2A. Mass spectrometry of WSN IAV virions was analyzed from datasets generated in Hutchinson et al. (2014), and taken

from https://massive.ucsd.edu/ProteoSAFe/datasets.jsp using the MassIVE ID MSV000078740. Tables are also found in Table S2B.

Mass spectrometry data for PB1-UFO interactions with IAV polymerase subunits was analyzed using datasets from Heaton et al.

(2016) and presented in Table S2C.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells cultures
Madin–Darby Canine Kidney (MDCK) cells, A549 human lung epithelial cells, Vero (ATCC-CCL81) and 293T human embryonic kidney

cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; GIBCO) supplemented with 10% fetal bovine serum (FBS;

GIBCO). Madin-Darby Bovine Kidney (MDBK) cells were cultured in Minimum Essential Medium (MEM; Sigma) supplemented

with 2 mM L-glutamine and 10% fetal calf serum (FCS). BSR-T7/5 golden hamster cells (Buchholz et al., 1999) were cultured in Glas-

gow Minimal Essential Medium (GMEM) supplemented with 10% FCS and 10% tryptose phosphate broth under G418 selection. All

cells were maintained at 37C and 5% CO2.

Mice
For infection studies: Six to eight-week-old female BALB/cmice were obtained from Jackson Laboratories (Bar Harbor, ME). All mice

infection procedures were performed following protocols approved by the Icahn School of Medicine at Mount Sinai Institutional
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Animal Care and Use Committee (IACUC). Animal studies were carried out in strict accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the National Research Council.

For antigen presentation experiments: female OTI (Hogquist et al., 1994) mice were bred in-house on amixed genetic background.

Animals were kept in dedicated barrier facilities, proactive in environmental enrichment under the EU Directive 2010 and Animal (Sci-

entific Procedures) Act (UK HomeOffice license number 70/8645) with ethical review approval (University of Glasgow). Animals were

cared for by trained and licensed individuals and humanely sacrificed using Schedule 1 methods.

For BMDC Isolation: 10-14 week old naive female C57BL/6 mice, purchased from Envigo (UK) and maintained at the University of

Glasgow under standard animal husbandry conditions in accordance with UK home office regulations and approved by the local

ethics committee.

Virus Strains
Wild-type viruses

A/Puerto Rico/8/34(H1N1) (PR8) virus was generated by reverse genetics and propagated in 9-11 day old embryonated chicken eggs

(Charles River, Cat # 10100329). Mouse-adapted A/California/04/09(H1N1) (Cal09) was generated by reverse genetics (Ye et al.,

2010) and propagated on MDCK cells in the presence of 1 mg/ml TPCK-trypsin, as described previously (Hutchinson et al., 2008).

The influenza virus A/WSN/33(H1N1) (WSN) (Hoffmann et al., 2000) was propagated on MDBK cells. A/Udorn/72(H3N2) (Udorn)

was propagated on MDCK cells in the presence of 1 mg/ml TPCK-trypsin, as described previously (Clohisey et al., 2020; Hutchinson

et al., 2014). Plaque assays were carried out in MDCK cells and visualized by immunocytochemistry or staining with crystal violet or

Coomassie blue, as previously described (Gaush and Smith, 1968) (See below also for method details).

Mutant viruses

All mutant and control viruses were generated using a plasmid-based reverse genetics system (Fodor et al., 1999; Ye et al., 2010),

using either the A/Puerto Rico/8/1934 (PR8), A/WSN/33 (WSN) or mouse-adapted A/California/4/09 (Cal09) strains as the backbone.

Plasmids used for reverse genetics were the PR8 pDUAL plasmids (de Wit et al., 2004) and the Cal09 pDP2002 plasmids (Ye et al.,

2010) (a kind gift of Prof Daniel R. Perez (University of Georgia, USA). Site-directedmutagenesis of plasmids was performed using the

Q5 site-directed mutagenesis kit (QIAGEN); the edited NS segment sequence required for the PR8-NS.F3.SIIN mutant virus

(described in Figure 4) was synthesized by Genewiz.

PB1-UFO(SIIN) virus

OVA257-264 (SIINFEKL) epitope was inserted into the 50UTR of the PB1 segment of the influenza A virus (IAV) genome at position 1

before the PB1 start codon. This insertion did not result in an N-terminal extension of or mutations in the PB1 protein, but results in the

insertion of the OVA257-264 antigenic epitope in frame with the PB1-UFO protein.

NS-UFO(SIIN) virus

TheOVA257-264 (SIINFEKL) epitopewas inserted into frame 2 of the NS segment of the IAV genome, in a region corresponding to the

linker sequence of the NS1 protein (encoded in frame). This effectively replaced codons 79-84 of NS1, while retaining the sequence of

NEP. The replacement sequencewas flanked by two upstream nucleotides and one downstream nucleotide to introduce a frameshift

into frame 2. Premature stop codons in frame 2 were also mutated at positions�4, 27, 32, 74 and 77, relative from the start codon of

NS1, to generate a 106 amino acid long NS-UFO sequence, extending it from the original 4 amino acid long uvORF in reading frame 2.

PB1-SIIN virus and NA-SIIN viruses

These viruses have been described in Wei et al. (2019) and Bottermann et al. (2018) respectively.

PR8; PB1-UFOD, PR8; PB1-UFOSYN, PR8; PB1-EXT+ viruses

PR8; PB1-UFOD contains a C to T nucleotide substitution 9 nucleotides after the start of PB1 open reading frame. This generates a

premature stop codon in the PB1-UFO ORF. Its control virus, PR8; PB1-UFOSYN, contains a C to G nucleotide substitution at the

same position. Both viruses retain the amino acid sequence of the PB1 ORF. PR8; PB1-EXT+ contains a T to C nucleotide substi-

tution three nucleotides before the start of PB1 open reading frame. This disrupts a conserved stop codon (‘‘TGA’’) in frame with

PB1 ORF, resulting in the N-terminal extension of the PB1-ORF. PB1-UFOORF is maintained in this virus. Mutations were confirmed

by sequencing both plasmids and viruses. All viruses were expanded in 9-11 day old embryonated chicken eggs after rescue. The

stock virus titers were calculated from the average of three independent experiments.

PR8; NP-EXTD, PR8; NP-EXTSYN viruses

PR8; NP-EXTD contains an A to T nucleotide substitution 6 nucleotides before the start of the NP open reading frame. This generates

an in-frame stop codon that results in the loss of the N-terminal NP-extension. Its control virus, PR8; NP-EXTSYN, bears an A to G

nucleotide substitution at the same position in the UTR, preserving the NP-extension. Mutations were confirmed by sequencing

both plasmids and viruses, and 3 independent plaque purified clones of each virus, grown on MDCK cells, were used in subsequent

experiments. Stock virus titers were calculated from the average of three independent experiments.

WSN; PB1-UFOD, WSN; PB1-UFOSYN, Cal09; PB1-UFOD, Cal09; PB1-UFOSYN viruses

WSN; PB1-UFOD and Cal09; PB1-UFOD viruses contain C to U nucleotide substitutions 9 nucleotides after the start of PB1 open

reading frame. This generates a premature stop codon in the PB1-UFO ORF. Their control viruses, WSN; PB1-UFOSYN and

Cal09; PB1-UFOSYN respectively, contain C to G nucleotide substitutions at the same positions. All the viruses retain the amino

acid sequence of the PB1 ORF.
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WSN; PB2-UFOD, WSN; PB2-UFOSYN, Cal09; PB2-UFOD, Cal09; PB2-UFOSYN viruses

WSN; PB2-UFOD and Cal09; PB2-UFOD viruses contain A to T nucleotide substitutions 12 nucleotides after the start of PB2 open

reading frame. This generates a premature stop codon in the PB2-UFO ORF. Their control viruses, WSN; PB2-UFOSYN and

Cal09; PB2-UFOSYN respectively, contain a A to C nucleotide substitutions at the same position. All the viruses retain the amino

acid sequence of the PB2 ORF.

WSN; PA-UFOD, WSN; PA-UFOSYN, Cal09; PA-UFOD, Cal09; PA-UFOSYN viruses

WSN; PA-UFOD andCal09; PA-UFOD viruses contain C to T nucleotide substitutions 42 nucleotides after the start of PA open reading

frame. This generates a premature stop codon in the PA-UFO ORF. Their control viruses,WSN; PA-UFOSYN and Cal09; PA-UFOSYN

respectively, contain C to A nucleotide substitutions at the same position. All the viruses retain the amino acid sequence of the

PA ORF.

WSN; HA-UFOD, WSN; HA-UFOSYN viruses

WSN; HA-UFOD viruses contain A to T nucleotide substitutions 45 nucleotides after the start of HA open reading frame. This gener-

ates a premature stop codon in the HA-UFO ORF. Their control viruses, WSN; HA-UFOSYN and Cal09; PA-UFOSYN respectively,

contain A to C nucleotide substitutions at the same position. All the viruses retain the amino acid sequence of the HA ORF.

Cal09; HA-UFOD, Cal09; HA-UFOSYN viruses

Cal09; HA-UFOD viruses contain G to T nucleotide substitutions 52 nucleotides after the start of HA open reading frame. This gen-

erates a premature stop codon in the HA-UFOORF. Its control virus,Cal09; HA-UFOSYN contains an G to C nucleotide substitution at

the same position. All the viruses retain the amino acid sequence of the HA ORF.

Primary CD14+ human monocytes

Primary CD14+ human monocytes were isolated from whole blood samples under ethical approval from Lothian Research Ethics

Committee (11/AL/0168). Cells were obtained from blood donated by 4 anonymous healthy volunteers. Volunteers were not treated

with any drugs. Some volunteers have donated blood used in multiple experiments outside this study. Health status is not assessed.

Plasmids

Plasmids used for HRTV minireplicon assays were the Renilla-luciferase-encoding pT7HRTMRen(–); the viral-gene-encoding

pTMHRTN and pTMHRTL and the firefly-luciferase-encoding control plasmid pTM1-FFluc (Rezelj et al., 2019).

METHOD DETAILS

Growth kinetics of Viruses in Cell Culture
A549 or MDCK cells were infected with the indicated viruses at a multiplicity of infection (MOI) of 0.001 and incubated for one hour at

37�C. Infected cells were washed twice, and then cultured with Opti-MEM and TPCK-treated trypsin at 37�C for 72 h. Supernatants

were collected at the indicated time points. Viral titers were determined by plaque assays.

Quantification of IAV titers by Plaque Assays
Plaque assay in MDCK cells were performed as described previously (Gaush and Smith, 1968). Briefly, serially diluted culture super-

natants of infected cells were adsorbed on layers of confluent MDCK cells for 1 hour. Infected cells were then overlaid with 2ml of

DMEM, 25mM HEPES, 2mM glutamine, 100ug/ml penicillin-streptomycin, 1ug/ml TPCK-trypsin and 0.8% Oxoid Agar. Plates

were incubated for 48-72h until plaques were observed. Plaque were then fixed in 4% formaldehyde and visualized through staining

with 1% crystal violet solution. Alternatively, MDCK cells were overlaid with DMEMmixed 1:1 with 2% (w/v) low gelling temperature

agarose in PBS and supplemented with 1ug/ml TPCK-trypsin, incubated for 48-72h until plaques were observed, and then either

fixed and stained directly (with 0.2% (w/v) Coomassie Brilliant Blue R in 7.5% (v/v) acetic acid and 50% (v/v) ethanol) or fixed in

80% chilled acetone and visualized by immunocytochemistry (permeabilized in 1% Triton X-100 in PBS, blocked in 10% FBS in

PBS, immunostained with mouse anti-NP (BioRad: Cat# MCA400) and peroxidase-conjugated rabbit anti-mouse IgG (Santa

Cruz; Cat # sc-516102) and visualized with True Blue Peroxidase).

Ribosome profiling and analysis
A549 cells were infected in a 10cm dish with A/Puerto Rico/8/1934 (H1N1, PR8) at a MOI of 3. At 8h post infection, ribosome profiling

libraries were prepared as previously described (McGlincy and Ingolia, 2017) with the following exceptions. Infected cells were

treated with either DMSO or 5mg/mL harringtonine for 15 minutes. Cell lysis was performed by flash freezing in liquid nitrogen prior

to the addition of ice-cold lysis buffer. rRNA removal was performed as previously described (Wei et al., 2019). Sequencing was per-

formed two lanes of a HiSeq using a 2x150 bp configuration.

Mass Spectrometry experiments (in infected cell lysates)
A549 or HEK293T cells were infected with PR8 virus stock at multiplicities of infection of 3 and 5 respectively. At 8h or 24h post infec-

tion, cells were scraped, washed twice in PBS with protease inhibitors (Calbiochem), before being snap-frozen in liquid nitrogen.

Where indicated, MG132 was added to the cell culture media 4h prior to sample collection. Mock infected samples were included

as negative controls. To prepare cell lysates for mass spectrometry, cell pellets were lysed in lysis buffer (50mMTris pH8, 1%NP-40,

100mM NaCl, protease inhibitors) on ice. NaCl concentration was then brought up to 500mM by adding salt drop-wise into the
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solution while agitating. Lysates were rotated for 30min at 4�C before an equal volume of water was added to the sample to bring

NaCl concentration back to 250mM. Samples were then centrifuged at full speed for 15 min at 4�C. 4x Laemmli buffer (200mM

Tris-HCl pH6.8, 8% SDS, 40% glycerol, 0.588M B-mercaptoethanol, 50mM EDTA and 0.08% Bromophenol Blue) was then added

to the supernatant to 1x concentration, and 5ml of the lysate was loaded on a 4%–12% Bis-Tris gel (Novex). Gels were run under a

hood for 150V for 1h15min in 1X MOPS running buffer and stained in SimplyBlueTM SafeStain (Invitrogen), following the manufac-

turer’s recommended protocol. Once stained, gel bands corresponding to 40-60kDa and < 15kDawere excised. Gel slices were sub-

ject to in-gel tryptic digests as previously described (Rosenfeld et al., 1992).

Digested samples were analyzed on a Thermo Fisher Orbitrap Fusionmass spectrometry system equipped with an Easy nLC 1200

ultra-high pressure liquid chromatography system interfaced via a Nanospray Flex nanoelectrospray source. Samples were injected

on a C18 reverse phase column (25 cm3 75 mm packed with ReprosilPur C18 AQ 1.9 mm particles). Peptides were separated by an

organic gradient from 5% to 30% ACN in 0.1% formic acid over 70 minutes at a flow rate of 300 nL/min. The MS continuously ac-

quired spectra in a data-dependent manner throughout the gradient, acquiring a full scan in the Orbitrap (at 120,000 resolution with

an AGC target of 200,000 and a maximum injection time of 100 ms) followed by as many MS/MS scans as could be acquired on the

most abundant ions in 3 s in the dual linear ion trap (rapid scan type with an intensity threshold of 5000, HCD collision energy of 29%,

AGC target of 10,000, a maximum injection time of 35 ms, and an isolation width of 1.6 m/z). Singly and unassigned charge states

were rejected. Dynamic exclusion was enabled with a repeat count of 1, an exclusion duration of 20 s, and an exclusionmasswidth of

± 10 ppm. Raw mass spectrometry data were assigned to human protein sequences and MS1 intensities extracted with the Max-

Quant software package (version 1.6.8) (Cox and Mann, 2008). Data were searched against the SwissProt human protein database

(downloaded on October 10, 2019) and a custom influenza A virus database comprising all six open-reading frames greater than 10

amino acids for the IAV (strain PR-8) genomic sequence. Variable modifications were allowed for N-terminal protein acetylation,

methionine oxidation, and lysine acetylation. A static modification was indicated for carbamidomethyl cysteine. All other settings

were left using MaxQuant default settings.

Mass Spectrometry experiments (in virions)
The purification of influenza virions and collection of mass spectra by LC-MS/MS has been described previously (Hutchinson et al.,

2014), and followed previously-described protocols for purification, mass spectrometry and data analysis (Hutchinson and Stegmann,

2018). Briefly, the IAV WSN was propagated on MDBK cells. Six viral stocks were prepared, of which half were subjected to haemad-

sorption on chicken red blood cells to stringently remove non-viral material. Virus particles were then purified by sucrose gradient ul-

tracentrifugation, lysed in urea, reduced, alkylated and digested with trypsin and LysC. Tryptic peptides were analyzed by liquid chro-

matography and tandem mass spectrometry (LC-MS/MS) using an Ultimate 3000 RSLCnano HPLC system (Dionex, Camberley, UK)

run in direct injectionmode and coupled to aQExactivemass spectrometer (Thermo Electron, Hemel Hempstead, UK) in ‘Top 10’ data-

dependent acquisition mode. Raw files describing these mass spectra have been deposited at the Mass spectrometry Interactive Vir-

tual Environment (MassIVE; Center for ComputationalMassSpectrometry atUniversity of California, SanDiego) and canbe accessedat

https://massive.ucsd.edu/ProteoSAFe/datasets.jsp using the MassIVE ID MSV000078740. For the purposes of this project, data were

re-analyzed using MaxQuant 1.5.8.3 analysis software (Tyanova et al., 2016) using standard settings and the following parameters: la-

bel-free quantitation and the iBAQalgorithm (Schwanhäusser et al., 2011) enabled; enzyme: trypsin/P; variablemodifications: oxidation

(M) and acetyl (Protein N-ter); and fixed modifications: carbamidomethyl (C); digestion mode: semi-specific free N terminus. Peptide

spectra were matched to custom databases containing the IAV WSN proteome (including full-length translations of all six reading

frames), an edited version of the Bos taurus proteome (UP000009136; retrieved from UniProt on 16/05/2017) in which all instances

of the ubiquitin sequence had been deleted, and a single repeat of the ubiquitin protein sequence.

DEFEND sequencing of IBV infected cells
DEFEND-seq was performed as previously described (Rialdi et al., 2017). Briefly, RNA was extracted from A549 cells infected with

influenza B virus (B/Wisconsin/01/2010) for 8 hours using Trizol (Invitrogen) and subjected to DNase treatment (QIAGEN). 5mg of

DNase treated RNA was then incubated with 10U of Tobacco Acid Phosphotase (Epicentre; 37�C, 1.5h) to remove mRNA 50caps.
Sodium periodate was then added (to 500mM) into the reaction to block the 30OH. The reaction was then allowed to proceed for

1.5h at 4�C, before being blocked by the addition of 1/10 volume 1M L-lysine, and incubating for an additional 10min at room tem-

perature. RNA was purified with 1.8X AMPure XP beads (Beckman Coulter). Barcoded with RNA adapters were then ligated to the

50ends of RNAs overnight at 16�C. Adaptor-ligated RNAwas purified using 1.8X volume of AMPure XP beads. Ribosomal RNAs were

removed using the Ribo-Zero Gold rRNA Removal Kit (Human/Mouse/Rat) (Illumina), according to the manufacturer’s protocol.

cDNA synthesis was performed using a custom 30 primer ((50-AGA CGT GTG CTC TTC CGA TCT N*N*N*N*N*N*-30, Bioo Scientific,

N* = randomized bases) for 2min at 65�C. Illumina adapters were added by PCR, and products were size-selected (200-400bp) using

BluePippin 2%M1 gels (Sage Scientific). The library was validated on the Agilent Bioanalyzer, and samples were sequenced on the

Illumina HiSeq 2500 platform in a 100bp SE read run format.

Preparation of CAGE libraries from LASV infected cells
Vero cells (ATCC-CCL81) grown on T75 flask were infected with recombinant LASV (Josiah strain) at MOI 0.1. At 2 days post infection,

cells were lysed in Trizol (Invitrogen). The infection work with pathogenic Lassa virus and RNA lysate preparation were performed at the
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BSL4 facilities in Galveston National Laboratory in the University of Texas Medical Branch in accordance with institutional health and

safety guidelines and federal regulations. Total RNA from the trizol-treated lysates was isolated and DNase treated using the Purelink

RNA Minikit (Invitrogen). The purified RNA was then submitted for CAGE-sequencing at Kabushiki Kaisha DNAFORM, Japan.

Mouse Infection studies
All mice infection procedures were performed following protocols approved by the Icahn School of Medicine at Mount Sinai Institu-

tional Animal Care and Use Committee (IACUC). Animal studies were carried out in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Research Council. Six to eight-week-old female BALB/c mice

were obtained from Jackson Laboratories (Bar Harbor, ME). Mice were anesthetized by intraperitoneal injection of amixture of 85mg/

kg ketamine and 12.5mg/kg xylazine before infection before being inoculated intranasally with 50ml virus re-suspended in PBS. Mice

were monitored daily for clinical signs of illness and weight loss after infection. Upon reaching 75% of initial body weight, animals

were humanely euthanized with carbon dioxide (CO2) as per the IACUC protocol.

Preparation of RNA sequencing Libraries (Infected Mice)
3micewere intranasally (i.n.) infectedwith 100 plaque-forming units (PFU) of viruses in a volumeof 50 mL and euthanized at 6 days post-

inoculation (d.p.i.). Themiddle lobe of the lungwas collected for total RNA extraction, and the post-caval lobes of the lungwas collected

to determine virus titers by plaque assay on MDCK cells. Lung tissue was then homogenized in Trizol (Invitrogen), and RNA was ex-

tracted as per manufacturer’s guidelines. Libraries were constructed using the Illumina TruSeq Stranded Total RNA Library Prep Kit.

SIINFEKL expression analysis
For T cell activation assays with PB1-UFO(SIIN) and PB1-SIIN viruses, OT-I T cells were harvested from the spleen and lymph nodes

of OTI transgenic mice and purified on the AutoMACS with the CD8a+ T Cell Isolation Kit (Miltenyi, Germany). DC2.4 cells were in-

fected with influenza A viruses for 18 hours, and then co-cultured with OTI T cells. T cells were stained with anti-CD25 and anti-CD28

labeled antibodies at 24 hours post co-culture for activation assays. T cell proliferation assayswere conducted at 48 hours post infec-

tion by measuring CellTrace Violet staining by flow cytometry.

For T cell activation assays with the NS-UFO(SIIN) and NA-SIIN viruses, IAV antigen was propagated by infecting MDCK cells with

IAV PR8 wild-type, PR8 containing an NS segment with SIINFEKL inserted into frame 3 (PR8-NS.F3.SIIN) or PR8 containing an NA

segment with SIINFEKL inserted into frame 1 (PR8-NA.SIIN) (Bottermann et al., 2018). The IAV antigen preparationswere prepared as

described (Stuller et al., 2010; Westerhof et al., 2019). Briefly, MDCK cells were infected for 48 h with each IAV stain and then centri-

fuged, resuspended in 0.1 M glycine buffer containing 0.9% NaCl (pH 9.75), and shaken at 4�C for 20 min. Preparations were

sonicated 4 times at 10 s intervals before centrifugation, and the supernatant stored at �80�C.
Bone marrow was then taken from 10-14 week old naive female C57BL/6 mice, purchased from Envigo (UK) and maintained at the

University ofGlasgowunder standard animal husbandry conditions in accordancewithUKhomeoffice regulations and approvedby the

local ethics committee. Bone marrow derived dendritic cells (BMDCs) were prepared as previously described (Westerhof et al., 2019).

Briefly, the tibias and femurs were flushed to obtain bone marrow cells. Red blood cells were lysed. Cells were then cultured in RPMI

with 10%FCS, 100ug/ml penicillin-streptomycin and 2mML-glutamine, in the presences ofGM-CSF (prepared fromX-63 supernatant),

for 7 days, with media supplemented on day 2 and replaced on day 5. DCs were then harvested and incubated overnight with IAV an-

tigen preparations. Control BMDCs were incubated with SIINFEKL peptide (Ovalbumin (257-264), chicken, Sigma-Aldrich) for 1 h

at 37�C.
Lymph nodes (LN) (inguinal, brachial, axillary and cervical) and spleenwere obtained fromOTImice sacrificed at weeks 12-13. CD8

T cells were negatively selected from LN and spleen using EasySep Mouse CD8+ T Cell Isolation Kit (Stemcell technologies).

BMDCs that had been exposed to viral antigen were co-cultured with CD8+ OTI T cells for 24 h. Activated T cells were detected by

immunostaining with antibodies against Va2-E450 (Thermo Fisher), Vb5-PE (M59-4 BD Biosciences), CD8-Alexaflor488 (53-6.7

Thermo Fisher), CD25-APC (PC61.3 Thermo Fisher), CD44-PerCpC5.5 (IM7 Thermo Fisher), and CD69-PerCy7 (H1.2F3 Thermo

Fisher). Data were acquired with a BD Fortessa cell analyzer and analyzed by FlowJo (BD, version 10).

Minireplicon Assays
Minireplicon assays were performed as previously described (Rezelj et al., 2019; Tilston-Lunel et al., 2017). Briefly, and using the

plasmids indicated above, LT-1 transfection reagent (Mirus) was used to transfect sub-confluent BSR-T7/5 cells. After 24 h cells

were processed using a Dual-Luciferase Reporter Assay System (Promega), with luciferase measured using Glowmax 20/20 lumin-

ometer (Promega).

QUANTIFICATION AND STATISTICAL ANALYSES

Mouse Infection Studies
Statistical significance between survival curves were compared using Log-rank (Mantel-Cox) test using Graphpad Prism 8.0 soft-

ware. Two tailed Student’s t tests under the assumption of equal variances between groups were used to compare weight loss in

mice from different groups for each day post infection. Data are shown as +/- SEM.
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Quantitative qPCR assays
qPCR assays were done with 4 biological replicates (4 infected mice/condition). Statistical significance in gene expression was

calculated with Graphpad Prism 8.0 software, and determined using one-tailed Student’s t test under the assumption of equal var-

iances between groups. Data are shown as mean +/- SEM.

CAGE sequencing of WSN IAV virus infected cells
The sequencing of cap-snatched leader sequences was described in detail in a recent publication (Clohisey et al., 2020). Briefly,

primary CD14+ humanmonocytes were isolated from 4 volunteer donors under ethical approval from Lothian Research Ethics Com-

mittee (11/AL/0168) and cultured in the presence of 100 ng/ml (104 U/ml) recombinant human colony-stimulating factor 1 (a gift from

Chiron, USA) for 8 days to differentiate them into macrophages. Monocyte-derived macrophages were then infected with influenza

(Udorn) at an MOI of 5, harvested at 0, 2, 7 and 24 hours post-infection (times defined as starting after a 1h adsorption step), and

processed for RNA extraction using a miRNeasy Mini Kit (QIAGEN). Cap analysis of gene expression (CAGE) was performed as

part of the FANTOM5 project, following the procedure of (Takahashi et al., 2012). Data were processed as in (Forrest et al., 2014)

using custom Python scripts available at https://github.com/baillielab/influenza_cage ’ATG analysis.’ The datasets analyzed during

the current study are available in the Fantom5 repository, https://fantom.gsc.riken.jp/5/data/

Ribosome sequencing analyses
Footprints were obtained by first removing the AGATCGGAAGAGC linker and filtering for low quality sequences with Cutadapt (Mar-

tin, 2011). Contigs were then generated from the paired end reads with PANDASeq (Masella et al., 2012) using default parameters.

Concurrent demultiplexing of the libraries by sample ID and UMI extraction was then performed. Reads were then aligned against

rRNA and tRNA sequences with Bowtie (Langmead et al., 2009) to remove these contaminating sequences. Unmapped reads

were aligned against a custom reference containing the human genome (hg38) and the eight genome segments of PR8 with HISAT2

(Kim et al., 2015). Host primer sequences were extracted from this alignment as well as unmapped reads by searching for a match to

conserved nucleotides at the 50 end of the influenza mRNA (GC[GA]AAAGCAGG). These reads were kept if the sequences could be

extended to unambiguously assign it to a segment. Finally, 50 end mapping was performed on these and all reads mapping to PR8.

RNA sequencing Analyses
After adaptor removal with cutadapt (Martin, 2011) and base-quality trimming to remove 30read sequences if more than 20 baseswith

Q < 20 were present, paired-end reads were mapped to the mouse (mm10) reference genome with STAR (Dobin et al., 2013), and

gene-count summaries were generated with featureCounts (Liao et al., 2014). DESeq2 (Love et al., 2014) was used to variance-

normalize the data before a 1-factor model (gene �ConditionTimeMutant) was applied to identify differentially expressed genes.

Differentially expressed genes were identified as genes that had a 2-fold difference, with an adjusted p .value < 0.01. RNA-seq

raw data are deposited in GEO: GSE128519. Gene ontology analysis was performed using Metascape (Zhou et al., 2019).

LASV CAGE sequencing Analyses
Unique chimeric host-virus reads were extracted from the resulting FASTQ files by searching for amatch to conserved nucleotides at

the 50 end of the LASV (Josiah Strain) mRNAs (GCAC[M]G[N]GGATCCT), allowing for a maximum of 1 mismatch, and removing all

reads with ambiguously mapped nucleotides. The reference genome of LASV was obtained from UniProt (Accessions: J04324

and U73034). Reads were kept if at least 60 nucleotides could be mapped and assigned unambiguously to the viral reference se-

quences. Each read was then split into host derived or virus derived sequences based on the sequences of viral 50 end (GCAC[M]

G[N]GGATCCT). To calculate potential uvORF length, each read was extended bioinformatically, based off the mapped genome

segment and coding sense, and translated from the first AUG found in the read.

Sequence Randomization Model for PB1-UFO length
Influenza A PB1 nucleotide sequences were obtained from the NCBI database (Zhang et al., 2017). Only unique sequences contain-

ing complete 50UTR regions were included. Sequences containing ambiguous nucleotides were excluded. Multiple sequence align-

ment was then performed by using MUSCLE (Edgar, 2004).

We then constructed a codon usage table for each individual nucleotide sequence. To run the random sequence model, each

nucleotide sequence was translated into two protein sequences in the two translation reading frames of interest: the canonical

PB1 open reading frame (Pr-ORF) and PB1-UFO frame (Pr-UFO). Pr-UFO was considered as the observed protein sequence. Based

on the frequencies of synonymous codons within a codon usage table, each Pr-ORF was reverse translated into multiple random

nucleotide sequences in the open reading frame (Nt-ORFs) 1,000 times. 1,000 Nt-ORFs were then translated into proteins in the

UFO frame (Pr-UFOs) which were considered as the expected protein sequences and their protein lengths were computed. We

used the length of observed Pr-UFO and the lengths of expected Pr-UFOs to calculate the z-score for each nucleotide sequence.

In total, 3140 unique IAV PB1 (H3N2 only: 499) sequences were included in the analysis. From the z-scores, P values were calculated

for the Pr-UFOs occurrence biases. A threshold of p < 0.05 was used for the prediction of the likelihood of IAV PB1 sequences that

were able to be translated. Similar analyses were also performed for other genome segments.
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Frequency Propagator Ratio Analysis
Sequence dataset

Our study was based on a dataset of 26,742 human influenza A/H3N2 sequences available from the GISAID database (Shu and

McCauley, 2017), which contains 6,244 unique PB1 strains. For downstream analyzes, we included only sequences that are had

a complete 50 and 30UTR.
Prediction of RNA secondary structure

We used the most abundant unique, full length PB1 nucleotide sequence as an input to predict RNA secondary structure. RNA

secondary structure was predicted using RNAfold from the ViennaRNA Webserver (version 2.4.13) (Gruber et al., 2008), using the

default settings to calculate the minimum free energy (MFE) structure of the PB1 segment RNA. The output structure was saved

in a dot-bracket format, and used to partition nucleotides into probable loop and stem regions for downstream analyses.

Strain tree reconstruction

Our analysis was based on an ensemble of strain trees obtained from the PB1 sequence dataset described above. Such trees

describe the genealogy of influenza strains resulting from an evolutionary process under selection (Strelkowa and Lässig, 2012).

Trees were constructed with maximum-likelihood phylogenies using FastTree (Price et al., 2010).We used a general time-reversible

model. We further refined the tree topology with RAxML (Stamatakis, 2014).Given the output topology, we reconstructed maximum-

likelihood sequences and timing of internal nodes with the TreeTime package (Sagulenko et al., 2018).

Frequency Propagator Ratio analysis

A detailed discussion of this method has previously been presented in Strelkowa and Lässig (2012) and Luksza and Lässig (2014).

Briefly, for a given polymorphism time-series, the frequency propagator GðxÞ can be used as a statistical measure of selection.

GðxÞ is defined as the conditional probability that a mutation class of interest, with an initial frequency of xi, reaches a frequency

of x > xi at a later point in time. This is estimated in our dataset as

GðxÞ = nðxÞ
n

where nðxÞ is the number of mutations that reach frequency x
and n is the total number of mutations

Data availability might vary, depending on the year of sequence collection (fewer data points are available in the earlier years). As

such, to attain a more robust measure of selection, we use the ratio of propagators between our mutation class of interest, GðxÞ,
against a neutral reference class of mutations, G0ðxÞ, to calculate

gðxÞ = GðxÞ
GoðxÞ
where,
GðxÞ is the likelihood a mutation in a given class reaches frequency, x

GoðxÞ is the likelihood a mutation in the neutral reference class of mutations reaches the same frequency x.

The frequency propagator ratio takes into account both numbers and histories of the mutation class of interest. It is a robust mea-

sure of selection because it is (a) largely independent of data entry frequency, and (b) insensitive to clonal expansion of mutations.

At the limit x = 1, the propagator ratio gðxÞ reduces to g, where

g =
d=n

d0=n0
and,
d is the # of mutations in our class of interest that reach fixation

n is the total # of mutations in the same class of interest

d0 is the # of mutations in a neutral reference mutation class that reaches fixation

n0 is the total # of mutations in the same neutral reference mutation class.

Selection on a mutation class of interest can be inferred from the value of g. g < 1 suggests evolutionary constraints (negative se-

lection) on the mutation class of interest relative to the reference class, where a fraction ð1 � gÞ of the mutations are under negative

selection. g > 1 suggests that fixation of the mutation class of interest undergoes positive selection, and that at least a fraction

ðg�1Þ=g of that mutation class is beneficial. gz1 suggests weak or heterogenous selection acting on the mutation class of interest,

relative to that of the neutral reference class.

To quantify selection occurring across the PB1-UFO frame, we calculated mutation frequencies in the set of codons derived from

the following three regions (R1-R3)
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R1: sequences that encode the N-terminal of PB1-UFO and the viral 50UTR
R2: sequences that encode the C-terminal of PB1-UFO and overlap with the N-terminal of PB1

R3: Sequences that encode for the C-terminal region of the main PB1 ORF and do not overlap with PB1-UFO.

We chose to use synonymous mutations in the main PB1 ORF (reading frame) in R3 as our neutral reference class to calculate

G0ðxÞ, as we reasoned that the majority of such mutations evolve near neutrality.

To quantify selection on the N-terminal of PB1-UFO in R1, we calculated theGðxÞ for two classes ofmutations: Those that changed

(non-synonymous in PB1-UFO) or did not change (synonymous in PB1-UFO) the amino acid sequence of PB1-UFO. We used

synonymous mutations occurring the PB1 ORF in R3 as our neutral reference class (G0ðxÞ). We found that g< 1 for both cases,

suggesting that mutations occurring in this region of PB1-UFO were not likely to be fixed over time, and mostly undergo negative

selection, relative to our reference class.

To quantify selection on the C-terminal of PB1-UFO in R2, we again calculated the GðxÞ for mutations that changed (non-synon-

ymous in PB1-UFO) or did not change (synonymous in PB1-UFO) the amino acid sequence of PB1-UFO. We used synonymous

mutations occurring the PB1 ORF in R3 as our neutral reference class ðG0ðxÞÞ. We found that gz1 for both cases, suggesting

that mutations occurring in this region of PB1-UFO underwent heterogenous selection, relative to that of the reference class.

Since R2mutations in PB1-UFO appear to undergo heterogeneous selection, we asked if selection occurring on themain PB1ORF

was a contributing factor. To do so, we calculated the GðxÞ for mutations that changed (non-synonymous in PB1) or did not change

(synonymous in PB1) the amino acid sequence of PB1 in R2. Synonymous mutations occurring the PB1 ORF in R3 as our neutral

reference class ðG0ðxÞÞ. Here we found that g > 1 for synonymous mutations and g < 1 for non-synonymous mutations, suggesting

that mutations that do NOT alter the amino acid sequence of PB1 are preferentially fixed over time. This suggests to us that part of the

reason why PB1-UFO is undergoing heterogeneous selection in R2 is that there is a requirement to maintain the protein sequence of

PB1. This is not surprising, given that PB1 is an integral part of the viral RNA dependent RNA polymerase complex.

Finally, to interrogate the effect of RNA structure, we classified nucleotides as pairing or non-pairing based on the MFE structure

(discussed above) calculated by RNAFold. We masked nucleotides that were predicted to base pair (‘‘stem-forming’’) from down-

stream analyses as we reasoned that mutations in these nucleotides are likely to affect both RNA structure AND protein sequence,

thus confounding later interpretations of the data. Regions that were not predicted to base pair (‘‘loop nucleotides’’) were then used

for downstream calculations of frequency propagator ratios. Mutation frequencies were calculated in the same regions (R1, R2 and

R3) and reading frames (PB1-UFO versus PB1) as described above. We found that similar effects to before were found, suggesting

that RNA structure was not a major contributor to the maintenance of the PB1-UFO frame.

Note: The absolute number of polymorphism histories that reach a given frequency are finite (since the tree is constructed over a

defined period of time). This can give rise to sampling fluctuations. These sampling uncertainties are reported as error bars in

our figures.

Epitope predictions for PB1-UFO
Analyses were done using NetMHC3.4 and NetMHC4.0 (Andreatta and Nielsen, 2016). Binders were filtered using KD threshold of

500 nM. The collection of viralMHC-I epitopeswas downloaded from IEDBdatabase and preformatted for BLAST usage (makeblastdb

-in iedb.fasta -parse_seqids -dbtype prot). Predicted epitopes from PB1-UFOwere BLASTed against IEDB and the human proteome.

For comparison with viral antigens we used the following commands: blastp -db iedb.fasta -query antigens.fasta -outfmt ‘‘6

qseqid sseqid pident ppos positivemismatch gapopen length qlen slen qstart qend sstart send qseq sseq evalue bitscore’’ -word_size

3 -gapopen 32767 -gapextend 32767 -evalue 1 -max_hsps_per_subject 1 -matrix BLOSUM62 -max_target_seqs 10000000 -out anti-

gens.iedb.blast.out. For comparison with human proteome we used the command: blastp -db human.proteome.fasta -query anti-

gens.fasta -outfmt ‘‘6 qseqid sseqid pident ppos positivemismatch gapopen length qlen slen qstart qend sstart send qseq sseq evalue

bitscore’’ -word_size 3 -gapopen 32767 -gapextend 32767 -evalue 1 -max_hsps_per_subject 1 -matrix BLOSUM62 -max_target_seqs

10000000 -out antigens.human.proteome.blast.out. To find perfectmatches between predicted epitopes and human proteome or viral

antigens, we used the last command. First, we preformatted the human proteome (ensemble archive from December 2016): lastdb -p

human.proteome human.proteome.fasta. Thenwe used following command to compare epitopes to this database: lastal -f MAF -r 2 -q

1 -m 100000000 -a 100000 -d 15 -l 4 -k 1 -j1 -P 10 human.proteome antigens.netMHC.score.fasta > antigens.human.last.out. Finally,

obtained results were processed with bash and python and finally analyzed in PRISM 8. Similar processing was performed with viral

antigens.
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Figure S1. uAUGs Are Present in Viral mRNAs, Related to Figure 1

(A) Incorporation of host transcript sequences increases the diversity of putative alternative start codons. For each viral genome segment, the frequency and

position of alternative start codons is shown relative to native start of the viral genes. For each reading frame, the frequency and location of the first in-frame stop

codon are indicated.

(B) Percentages of cap-snatched sequences that contain AUG codons, as identified by CAGE. Data are shown relative to all the viral reads from the specified

genome segments.
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Figure S2. Viral 50 UTRs Are Conserved, Related to Figure 2

Multiple sequence alignments of unique H1N1 IAV 50UTRs per genome segment (n = 10904). The overall distribution of each unique nucleotide sequence is

indicated on the left, and the consensus sequence of each UTR is indicated below each alignment. The top panels show the positional weight matrix of each

nucleotide across the UTRs.
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Figure S3. IAV mRNAs Can Be Translated from Host-Derived AUGs, Related to Figure 3

(A) Length distribution of ribosome profiling reads that aligned to human (left panel) and viral (right panel) transcripts in DMSO (Ribo) or harringtonine (Ribo + Harr)

treated samples.

(B) Metagene alignment of average P site density around annotated start codons in human (left panel) or viral (right panel) transcripts in DMSO treated samples.

(C) Metagene alignment of average P site density around annotated start codons in human (left panel) or viral (right panel) transcripts in harringtonine treated

samples.

(D) Frequency of AUG codons by position relative to the viral transcription initiation site. Bars show the mean frequency and are color coded according to frame.

Error bars indicate the standard deviation.
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Figure S4. uvORFs Are Expressed during Infection and Can Contribute to Virulence, Related to Figure 4

(A) Plots showing the position of uvORF peptides found in lysates of cells (A549 or 293) infected with A/PR/8/34 virus at 8 or 24h post infection. The specific cell

lysates they were found in are indicated on the right. 1: MG132 treated, 2: DMSO treated. Peptide locations are drawn relative to uvORFs (gray regions) and

canonical ORFs (blue regions) and are colored by the log10 of their intensities, relative to the sample median.

(B) Same as in (A), but for uvORF peptides found within purified A/WSN/33 virions.

(C) Same as in (A), but for uvORF peptides found from an independent, previously published dataset.

(D) In vitro growth curves of the indicated mutant (UFOD) and control (UFOSYN) viruses made in the PR8 background, and performed on MDCK cells. Error bars

indicate the standard deviation of 3 replicates.

(E) In vitro growth curves of the indicated mutant (UFOD) and control (UFOSYN) viruses made in the WSN/33 background, and performed on MDCK cells.

(F) In vitro growth curves of the indicated mutant (UFOD) and control (UFOSYN) viruses made in the Cal/09 background, and performed on A549 cells. Error bars

indicate the standard deviation of 3 replicates.

(G) Heatmap of differentially expressed genes (Fold Change > 2, p < 0.01) found in the lungs of mice infected with 100PFU of either the PR8;PB1-UFOD or

PR8;PB1-UFOSYN viruses at day 6 post infection.

(H) qPCR validation of four significantly changed genes identified in (G) (highlighted with green text). Each dot represents the lung of one mouse infected with

100PFU of the indicated viruses, collected at day 6 post infection. P values were calculated through a one tailed t test. *p < 0.05

(I) Gene ontology analysis of genes shown in (G).
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(legend on next page)
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Figure S5. uvORFs Are Conserved, Related to Figure 5

(A) Bar plot showing the number of unique NP sequences that give rise to the full length, extended NP protein of �514aa, or those that result in truncated (non-

extended) uvORFs.

(B) Percentages of unique NP sequences that preserve the propensity to code for NP-extension.

(C) Top five most common NP extension protein sequences in three types of influenza A strains, H1N1, H3N2 and H5N1.

(D) Schematic showing the model used to calculate the expected versus observed PB1-UFO sequence lengths.

(E) Density plot of predicted length of H3N2 PB1-UFO protein sequences. Sequences predicted to generate a protein of 77aa are shown in medium blue, shorter

than 77aa in light blue, and those longer than 77aa are in dark blue. Sequences predicted not to generate PB1-UFO protein are shown in gray.

(F) P value distribution/volcano plot of H3N2 PB1-UFO protein sequence length. Each dot represents the difference between observed length and expected

length of each individual sequence.

(G) Density plot showing the distribution of expected lengths of H3N2 PB1-UFO proteins, based on random codon-shuffled sequences.

(H) Line plot showing the number of synonymous mutations in frame of WT H3N2 PB1 (x axis) that are required to generate stop codons in frame of H3N2 PB1-

UFO (y axis).
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Figure S6. Controls Related to Propagator Analysis, Related to Figures 5C–5F

(A) Schematic of analysis steps taken to quantify selection occurring on synonymous and non-synonymous mutations in the PB1-UFO ORF. Propagator model

analyses were done by either not taking (Figure 5B and 5D) or taking the RNA structure of IAV PB1 segment into account (Figures 5C–5E).

(B) Frequency propagator ratios of the indicated classes of mutations occurring in PB1-UFO relative to the PB1 open reading frame of H3N2 viruses. The region

used to calculate the test class ratio (G(X)) is indicated in yellow, and the region used to calculate the neutral class ratio (G0(X)) is indicated in blue in the top

schematic. Here, the test class is the region of the PB1-UFO ORF that overlaps only with the virally-encoded 50UTR; the neutral class consists of synonymous

mutations in the PB1 ORF that do not overlap with PB1-UFO. Only nucleotides within predicted loop regions (i.e., non-pairing) positions were considered. Error

bars indicate sampling uncertainties. gðxÞ< 1: negative selection, gðxÞz1: weak/heterogeneous selection; gðxÞ> 1: positive selection; see also Figure 5C)

(C) Frequency propagator ratios, as in (B), but with the test class comprising the C-terminal region of the PB1-UFO ORF.

(D) Frequency propagator ratios, as in (B), but with the test class comprising the region in the main PB1 ORF overlapping the PB1-UFO reading frame.
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Figure S7. DEFEND-Seq and CAGE Analysis of Other Cap-Snatching Viruses, Related to Figure 6

(A) Distribution of lengths for cap-snatched sequences found in IBV, as determined by DEFEND-seq.

(B) Host derived uAUGs give rise to long uvORFs (> 30aa). (Upper panels) Predicted peptide sequences derived upon translation of all three ribosome reading

frames in the indicated IBV genome segments. (Lower panels) Predicted distribution of the lengths of new ORF and extension peptides generated from each

reading frame of the viral 50UTR. Peptide lengths are calculated based on AUG positions obtained through DEFEND-sequencing.

(C) Distribution of lengths for cap-snatched sequences found in LASV infected cells, as determined by CAGE-seq.

(D) Host derived uAUGs enable reverse sense genome segments of Lassa virus L and S to give rise to uvORFs and extensions. (Upper panels) Schematic of

proteins encoded in the indicated reading frames in either the L or S segment. Lassa virus RNA is ambisense. (Middle panels) Predicted peptide sequences

derived upon translation of all three reading frames in the reverse sense L and S segments. (Lower panels) Predicted distribution of the lengths of new ORFs and

extension peptides generated from each reading frame of the viral 50UTR. Peptide lengths are calculated based on AUG positions obtained through CAGE.

(legend continued on next page)
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(E) (Left panels) Schematic showing (in coding sense) the 50 termini of viral reporter RNAs, in which a viral untranslated region (UTR) flanks a luciferase (Luc)

reporter gene. Reporter RNAswere used to assess upstream translation in the mRNAs of Heartland virus (HRTV). The 50 terminus of themRNAs consisted of cap-

snatched sequence from host mRNAs (cap), followed by a viral 50 UTR (50 UTR) and the reporter gene (Luc). Cap structures are indicated as circles, the most

N-terminal AUG as a triangle, AUG mutations as crosses and stop codons as lines. (Right panels) Luc expression when these reporters were included in min-

ireplicon assays, as a percentage of expression with the WT construct, showing the means and s.d. of 3 repeats compared to WT-STOP by Student’s 2-tailed t

test (n.s.: p R 0.05, *p < 0.05, ***p % 0.0005).
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