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Abstract

In eukaryotes, the anaphase-promoting complex/cyclosome (APC/C) regulates the ubiquitin-

dependent proteolysis of specific cell cycle proteins to coordinate chromosome segregation in 

mitosis and entry into G1 (refs 1,2). The APC/C’s catalytic activity and ability to specify the 

destruction of particular proteins at different phases of the cell cycle are controlled by its 

interaction with two structurally related coactivator subunits (Cdc20 and Cdh1). Coactivators 

recognize substrate degrons3, and enhance the APC/C’s affinity for its cognate E2 (refs 4–6). 

During mitosis, cyclin-dependent kinase and polo kinase control Cdc20 and Cdh1-mediated 

activation of the APC/C. Hyper-phosphorylation of APC/C subunits, notably Apc1 and Apc3, is 

required for Cdc20 to activate the APC/C7–12, whereas phosphorylation of Cdh1 prevents its 

association with the APC/C9,13,14. Since both coactivators associate with the APC/C through 

their common C box15 and IR (Ile-Arg) tail motifs16,17, the mechanism underlying this 

differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, 

using cryo-electron microscopy (cryo-EM) and biochemical analysis, we define the molecular 

basis of how APC/C phosphorylation allows for its control by Cdc20. An auto-inhibitory (AI) 

segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with 

the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the AI segment 

displaces it from the C-box binding site. Efficient phosphorylation of the AI segment, and thus 

relief of auto-inhibition, requires the recruitment of Cdk-cyclin-Cks to a hyper-phosphorylated 

loop of Apc3. We also find that the small molecule inhibitor, tosyl-L-arginine methyl ester 

(TAME), preferentially suppresses APC/CCdc20 rather than APC/CCdh1, and interacts with both the 

C-box and IR-tail binding sites. Our results reveal the mechanism for the regulation of mitotic 
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APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of 

this state.

To understand how multi-site phosphorylation of numerous APC/C subunits stimulates the 

capacity of Cdc20 to control the APC/C we determined a series of APC/C structures in 

different functional states to near-atomic resolution (Extended Data Table 1a). We used the 

kinases Cdk2-cyclin A3-Cks2 and Polo (Plk1) to in vitro phosphorylate recombinant human 

APC/C11,12,18,19 (Extended Data Fig. 1a), obtaining APC/C in the mitotic state that can be 

activated by Cdc20 (Extended Data Fig. 1b lanes 9, 10). This reconstituted APC/C 

recapitulates Cdk and Plk1-dependent activation of endogenous APC/CCdc20 (refs 8–12). 

Kinase treatment resulted in a complete upshift of the Apc3 subunit as visualized on SDS-

PAGE, indicative of stoichiometric phosphorylation (Extended Data Fig. 1a, b). Almost 150 

phosphorylation sites were identified in phospho-APC/C by mass spectrometry (Extended 

Data Tables 2 and 3), matching published data12,20–22. These sites lie within disordered 

regions of the APC/C 23. Incubating the APC/C with both Cdk2 and Plk1 simultaneously 

was necessary to obtain full activation (Extended Data Fig. 1b). Consistent with12, treatment 

with Cdk2-cyclin A3-Cks2 alone resulted in lower APC/C activation, whereas 

phosphorylation with Plk1 alone did not activate the APC/C.

To gain insights into the molecular interactions between Cdc20 and mitotic APC/C, a ternary 

complex was assembled using phosphorylated APC/C, Cdc20 and a high affinity substrate 

Hsl1 (APC/CCdc20-Hsl1) (Extended Data Fig. 1d) for cryo-EM analysis (Fig. 1a, b, Extended 

Data Fig. 1e-g, Extended Data Table 1). Due to the low occupancy of Cdc20 bound to the 

APC/C, combined with conformational heterogeneity, only 9% of the particles were used for 

the final reconstruction of APC/CCdc20-Hsl1, with the remainder being in either the apo state 

(72%) or in a hybrid state (Extended Data Fig. 2). Most static regions of the complex extend 

beyond 3.9 Å resolution, whereas the catalytic module (Apc2 and Apc11), as well as the 

WD40 domain of Cdc20, are more flexible (Extended Data Fig. 3a).

APC/CCdc20-Hsl1 adopts an active conformation with the catalytic module in the upward 

position reminiscent of APC/CCdh1-Hsl1 (ref. 6) (Fig. 1a, b, Extended Data Fig. 4a, b and 

Supplementary Video 1) and in agreement with a low-resolution negative-stain EM 

reconstruction of APC/CCdc20 (ref. 24). Relative to Cdh1WD40, the Cdc20WD40 domain is 

shifted away from the APC/C by as much as 10 Å (Extended Data Fig. 3b). Its interaction 

with the APC/C involves only its N-terminal domain (Cdc20NTD) and the C-terminal IR tail 

(Cdc20IR) (Fig. 1c, Extended Data Fig. 3c-e, 4c, d). Compared with Cdh1NTD, Cdc20NTD 

forms fewer contacts with both Apc1 and Apc8B (Fig. 1c). However, the crucial C box motif 

(DRYIPxR) represents a structurally conserved region common to both coactivators (Fig. 1c 

I, Extended Data Fig. 3c, d, 4d). The Cdc20C box forms a network of electrostatic 

interactions with Apc8B, centred on a crucial Arg78 (ref. 23), and augmented by non-polar 

interactions involving its Tyr79 and Ile80 residues (Fig. 1c I). A KILR motif also present 

within Cdc20NTD is essential for Cdc20 association with the APC/C25 and the APC/

CCdc20-Hsl1 structure reveals that Ile130 and Leu131 of Cdc20KILR are inserted into a 

hydrophobic pocket of the TPR (tetratricopeptide repeat) superhelix of Apc8B, further 

stabilizing the conformation of the C box (Fig. 1c II). Similar C-box stabilization is present 
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in Cdh1NTD, but is instead provided by a loop structurally unrelated to Cdc20KILR (Fig. 

1c)23. By contrast, the KLLR-motif of Cdh1NTD is located in a leucine zipper-like α-helix 

(α3) that forms a hydrophobic interface with Apc1 (ref. 23) (Fig. 1c, Extended Data Fig. 

4d). The absence of an equivalent to the Cdh1 α3-helix in Cdc20 suggests a weaker mode of 

binding of Cdc20NTD relative to Cdh1NTD.

EM density for Cdc20IR is weaker than for Cdh1IR and it lacks the associated α-helix of 

Cdh1IR (Extended Data Fig. 3e). This could account for the lower affinity of the APC/C for 

Cdc20IR compared with Cdh1IR (ref. 17). Nonetheless, the crucial Ile-Arg interaction of 

Cdc20IR with the TPR superhelix of Apc3A is conserved between the two coactivators 

(Extended Data Fig. 3e I). Importantly, because in the APC/CCdc20-Hsl1 EM structure, 

densities corresponding to phosphorylated residues are not visible, we find no evidence that 

phosphorylated regions of the APC/C either directly or indirectly contact Cdc20. This 

suggested that APC/C phosphorylation invokes a conformational change of apo APC/C that 

promotes its association with Cdc20.

To explore this possibility, we determined cryo-EM structures of apo APC/C in both the 

unphosphorylated and phosphorylated states at near-atomic resolution (Fig. 2a, b and 

Extended Data Fig. 5a, b, Extended Data Table 1 and Supplementary Video 1). In both 

states, the catalytic module adopts an inactive conformation (Extended Data Fig. 4a, b) as 

seen in the previous 8 Å resolution reconstruction6. However, three-dimensional 

classification of the atomic resolution EM maps of both apo states showed that the majority 

of Apc3A adopts a closed conformation resembling the Apc3 crystal structure in which an 

α-helix (TPR12A) occupies and blocks the IR-tail binding pocket (Extended Data Fig. 

5c)26. In ~30% of particles Apc3A adopts an open conformation identical to the IR tail-

bound state. Thus interconversion of Apc3A between closed and open-IR tail accessible 

states is not controlled by phosphorylation.

Phosphorylated and unphosphorylated apo APC/C EM maps are very similar in structure 

(Extended Data Fig. 5a, b), except for a significant difference in the region of the C-box 

binding site (Fig. 2c-f). In unphosphorylated APC/C, an unassigned segment of EM density 

of ~15 residues indicative of an elongated loop connected to a short α-helix is located at the 

C-box binding pocket of Apc8B (Fig. 2c-e). The equivalent EM density is not present in 

phosphorylated APC/C (Fig. 2f). The Apc1WD40 domain, positioned in close proximity to 

this density, incorporates two highly phosphorylated regions (residues 307-395 [300s loop] 

and residues 515-579 [500s loop]) (Fig. 2c, d, Extended Data Table 2), which have not 

previously been assigned in either APC/CCdc20-Hsl1 or APC/CCdh1-Emi1 structures23. The 

300s loop would be predicted to project towards the C-box binding site of Apc8B (Fig. 2c, 

d, Extended Data Fig. 5d), implicating it as a candidate for the unassigned density segment.

We determined the structure of an APC/C mutant with the 300s loop of Apc1 deleted 

(APC/CΔApc1-300s) (Fig. 2g and Extended Data Table 1a). In this structure, the C-box 

binding pocket of APC/CΔApc1-300s is devoid of EM density even without in vitro 
phosphorylation (Fig. 2g), consistent with its assignment to the 300s loop. Furthermore, 

ubiquitination assays showed that APC/CΔApc1-300s was constitutively activated by Cdc20 

and that phosphorylation did not enhance its activity (Fig. 3a compare lanes 6, 7 to 8, 9). 
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This indicates that unphosphorylated APC/C is maintained in an auto-inhibited 

conformation by an Apc1 auto-inhibitory (AI) segment, present within the 300s loop that 

sterically impedes the C-box site from binding Cdc20. In support of this idea, analytical size 

exclusion chromatography showed that Cdc20 forms a binary complex with phosphorylated 

APC/C, but not with unphosphorylated APC/C (Extended Data Fig. 6a), in agreement 

with10,12.

To identify the AI segment within the Apc1 300s loop, we synthesized a set of eight 

overlapping peptides of 20 residues, spanning the 300s loop, and tested their potential to 

inhibit APC/CΔApc1-300s (Fig. 3b). Strikingly, peptide 7 (residues 361-380, Fig. 3b lane 9) 

potently suppressed Cdc20-dependent APC/CΔApc1-300s activity. Interestingly, an Arg368-

Phe369 pair of this peptide, that resembles the Arg78-Tyr79 of the C box, is flanked by four 

serine residues phosphorylated in mitotic APC/C (Fig. 3c, Extended Data Table 2)12,21,22.

EM density for the AI segment is weak, probably due to partial occupancy at the C-box site 

(Fig. 3c). Nevertheless, side chain density similar to Arg78-Tyr79 of the C box suggests a fit 

for the Arg-Phe of peptide 7 (Arg368-Phe369) (Fig. 3c). To test the possibility that the Apc1 

AI segment corresponds to peptide 7, we synthesized mutants of peptide 7 and also 

introduced the equivalent mutations into Apc1 of the recombinant APC/C. Significantly, 

replacing Arg368 with Glu in Apc1 resulted in a Cdc20-dependent activation of 

unphosphorylated APC/C (Fig. 3d), and reduced the inhibitory potency of peptide 7 towards 

APC/CΔApc1-300s (Extended Data Fig. 6c). A similar result was obtained on substituting 

glutamates for the four neighbouring serine residues (Ser364, Ser372, Ser373 and Ser377 

[APC/CApc1-4S/E]) to mimic phosphorylation (Fig. 3d and Extended Data Fig. 6c). 

Phosphorylation of Ser377 of peptide 7 relieved the inhibition only partially. These findings 

suggest that Arg368 anchors the Apc1 AI segment to the C-box binding site, mimicking the 

Cdc20C box, and maintaining the apo APC/C in an auto-inhibited state. Phosphorylation of 

the four neighbouring serine residues would destabilize its association with the C-box site 

(Fig. 3c, 4a). This mechanism could be further tested in the in vivo context by cellular 

assays.

Our results so far reveal that the critical determinant of APC/CCdc20 activation by 

phosphorylation is displacement of the Apc1 AI segment from the C-box site. However, 

since Apc3 is hyper-phosphorylated in mitosis, and Cks stimulates both Cdk-dependent 

activation of APC/CCdc20 (refs 18,19) and Apc1 and Apc3 phosphorylation18, and interacts 

with Apc3 (refs 18,27,28), we tested whether Apc3 phosphorylation also had a role in 

APC/C activation. In Apc3 about 50 phospho-sites are clustered in a large disordered loop 

comprising residues 180-450 (Extended Data Table 2) located on the same face of the 

APC/C as the Apc1 300s loop (Fig. 2c). In contrast to APC/CΔApc1-300s, instead of 

stimulating unphosphorylated APC/C, deletion of the Apc3 loop (APC/CΔApc3-loop) reduced 

the phosphorylation-mediated activation of APC/C (Fig. 3a lanes 10-13). Similarly, Cdk2-

cyclin A3 failed to stimulate the APC/C activity in the absence of Cks2 (Extended Data Fig. 

1b). However, combining deletions of both the Apc3 and Apc1 300s loops (APC/

CΔApc1-300s&Apc3-loop) restored activity to that of wild type (WT) phosphorylated APC/C 

(Fig. 3a lanes 14-15). Since deletion of the Apc3 loop disrupts APC/C association with Cdk-

cyclin-Cks (Extended Data Fig. 1c, lanes 6, 8), a likely explanation for our results and for 
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the lag phase that accompanies APC/C activation by Cdk1-cyclin B-Cks19, is that Apc3 

phosphorylation recruits Cdk-cyclin-Cks through Cks18,27,28 to stimulate Apc1 AI 

segment phosphorylation. Cdk-cyclin-Cks association with the Apc3 loop would allow for a 

kinetically more efficient intra-molecular phosphorylation of the Apc1 AI segment that only 

becomes accessible to Cdk when transiently displaced from the C-box site (Fig. 3c, 4a).

To determine whether Apc3 loop-mediated interactions with the Cks2 subunit facilitated 

Apc1 300s loop phosphorylation, we analysed phosphorylation of the Apc1 300s loop in 

conditions where such interactions are disrupted. Either deletion of the Apc3 loop or 

omission of the Cks2 subunit from the phosphorylation reaction, conditions that reduce 

APC/C activation (Fig. 3a and Extended Data Fig. 1b), resulted in the same reduction of 

Apc1 300s loop phosphorylation (Extended Data Table 2). Specifically, mitotic phospho-

sites associated with relief of AI segment auto-inhibition (Ser364, Ser372 and Ser373) 

(Extended Data Table 2, columns 3 and 8) are not modified when Cdk targeting to Apc3 is 

disrupted (Extended Data Table 2, columns 4 and 5). In agreement with 12,22 Ser362 and 

Ser364 are phosphorylated by Plk1 and Cdk2-cyclin A3-Cks2, respectively, indicating that 

Ser364 phosphorylation confers partial activation, whereas phosphorylation of Ser372 and 

Ser373 requires the presence of both kinases, possibly due to inter-dependent priming 

reactions. Since the stimulatory phosphoSer364 of the AI segment (Fig. 3c) is a non Cdk-

consensus site, the relaxed specificity of Cdk2-cyclin A3-Cks2 phosphorylation of this site 

may be conferred through targeting of the kinase to the APC/C through the Apc3 loop.

Cdc20 and Cdh1 bind to common sites on the APC/C yet only Cdc20 association is 

regulated by APC/C phosphorylation. In agreement with9, we find that Cdh1 activates 

unphosphorylated and phosphorylated APC/C to a similar extent (Extended Data Fig. 6d, e). 

Comparing unphosphorylated APC/C and APC/CΔApc1-300s we detect some stimulation with 

APC/CΔApc1-300s at low Cdh1 concentrations (Extended Data Fig. 6e) . This is consistent 

with the enhancement of Cdh1 binding to phosphorylated APC/C and APC/CΔApc1-300s 

(Extended Data Fig. 6b). Testing the phosphorylation-dependent activity of a set of Cdc20-

Cdh1 chimeras indicated that the more extensive interactions involving Cdh1 and the 

APC/C, mediated by both Cdh1NTD and Cdh1IR (Extended Data Fig. 6d), with a 

contribution from the Cdh1NTD-α3 helix (Fig. 1c and Extended Data Fig. 6f), account for 

the capacity of Cdh1 to activate unphosphorylated APC/C. Although Cdh1 association 

would also require displacement of the Apc1 AI segment, a potential mechanism to explain 

the dependency of Cdc20 on APC/C phosphorylation is that the higher affinity of Cdh1 for 

the APC/C (Extended Data Fig. 6e) is sufficient to compete for the AI segment at the C-box 

binding site.

Our findings suggest the interesting possibility of exploiting differences in the affinities of 

the two coactivators for the design of inhibitors that specifically target mitotic APC/CCdc20 

and thus suppress cell proliferation. A small molecule, tosyl-L-arginine methyl ester 

(TAME), was reported to inhibit APC/C activation by both Cdc20 and Cdh1 through a 

proposed mechanism involving competition for the IR-tail binding site of coactivator29. 

However, we found that TAME is a more potent inhibitor of APC/CCdc20 than APC/CCdh1 

(Fig. 4b). To understand the molecular basis underlying this inhibition, we determined the 

structure of APC/CΔApc1-300s in complex with TAME (Extended Data Table 1). We observed 
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TAME density not only at the IR-tail binding site, but also at the C-box binding site (Fig. 4c, 

d). This is consistent with the structural similarities of the IR-tail and C-box bindings sites of 

Apc3A and Apc8B, respectively23, although there are critical differences. In Apc3A, TAME 

is reminiscent of the Ile-Arg motif of the coactivator IR tail, whereas in Apc8B, TAME 

resembles the Arg-Tyr/Phe of the coactivator C box (Extended Data Fig. 7). The mechanism 

of TAME inhibition of APC/CCdc20 through a tosyl-Arg motif to block the Cdc20 C-box 

binding site is reminiscent of the Apc1 AI segment that is displaced by APC/C 

phosphorylation. Both utilize a common structural motif (Arg-aromatic) that mimics Arg78 

and Tyr79 of the Cdc20C box to exploit the lower (relative to Cdh1) affinity of Cdc20 for the 

APC/C.

How phosphorylation regulates mitotic APC/C activation by Cdc20 has been a long-standing 

puzzle. Our in vitro studies show that of almost 150 phospho-sites in mitotic APC/C, only a 

few in Apc1 directly regulate Cdc20 binding through displacement of the AI segment. This 

study has relevance to understanding the control of other large multimeric complexes by 

multi-site phosphorylation.

Methods

Expression and purification of recombinant human APC/C

The genes for recombinant human APC/C were cloned into a modified MultiBac system, 

expressed and purified as described30. The C-terminus of Apc4 was fused to a TEV 

(tobacco etch virus)-cleavable StrepIIx2 tag.

Protein kinase purification

All four proteins (Cdk2, cyclin A3 [residues 174-432], Cks2 and Plk1) for the kinases were 

expressed individually in BL21 (DE3) Star cells at 18°C overnight. Pellets containing GST-

tagged Cdk2, His-tagged cyclin A3 and His-SUMO-tagged Cks2 were combined and 

resuspended in the CDK lysis buffer (50 mM Tris/HCl pH 7.4, 180 mM NaCl, 5% glycerol 

and 2 mM DTT) supplemented with 0.1 mM PMSF, lysozyme, 5 units/ml benzonase and 

CompleteTM EDTA-free protease inhibitors. After sonication, the cells were centrifuged at 

20,000 rpm for 1 h at 4°C and the supernatant was incubated with the Glutathione 

Sepharose™ 4B (GE Healthcare) for 3 h at 4°C. The resins were washed with the CDK lysis 

buffer and the GST-tag of Cdk2 was cleaved off with 3C PreScission protease overnight at 

4°C. The flow-through from the resins was collected and TEV cleaved overnight at 4°C. 

Finally, the protein complex was purified by a Superdex200 16/60 column (GE Healthcare).

The Polo kinase Plk1 with an N-terminal His-MBP tag was purified with a HisTrap HP 

column (GE Healthcare) in the PLK lysis buffer (50 mM Tris/HCl pH 7.5, 300 mM NaCl, 

20 mM imidazole, 5% glycerol and 2 mM β-mercaptoethanol). The column was washed 

intensively with high salt buffer (50 mM Tris/HCl pH 7.5, 1 M NaCl, 20 mM imidazole, 5% 

glycerol and 2 mM β-mercaptoethanol). Proteins were eluted with a gradient of the elution 

buffer (50 mM Tris/HCl pH 7.5, 300 mM NaCl, 300 mM imidazole, 5% glycerol and 2 mM 

β-mercaptoethanol) followed by TEV-cleavage overnight at 4°C. The sample was re-applied 

onto the HisTrap HP column to remove the His-tag, uncleaved proteins and nickel 
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contaminations. The collected flow-through was concentrated and loaded onto a Superdex75 

16/60 column (GE Healthcare) for final purification.

In vitro phosphorylation of recombinant human APC/C

Concentrated APC/C after Resource Q (QIAGENE) was treated with Cdk2-cyclin A3-Cks2 

and Plk1 in a molar ratio of 1 : 1.5 (APC/C : kinases) in a reaction buffer of 40 mM Hepes 

pH 8.0, 10 mM MgCl2 and 0.6 mM DTT with 5 mM ATP and 50 mM NaF. The reaction 

mixture was incubated at 30°C for 30 min before the final purification step by a Superose 6 

3.2/300 column (GE Healthcare).

Expression and purification of the substrate Cdk2-cyclin A2-Cks2 and Cdc20

Full length human cyclin A2 was cloned into the pETM41 vector with an N-terminal His-

MBP tag. The protein was expressed in BL21 (DE3) Star cells at 18°C overnight. Pellets 

containing Cdk2, cyclin A2 and Cks2 were co-lysed for purification following a similar 

protocol as for the kinase purification.

Full length human Cdc20 was cloned into a modified pFastBac HTa vector with an N-

terminal His-MBP tag. The generated virus was amplified and expressed in Sf9 cells. 

Harvested cell pellets were resuspended in Cdc20 lysis buffer (50 mM Hepes pH 7.8, 500 

mM NaCl, 30 mM imidazole, 10% glycerol and 0.5 mM TCEP) supplemented with 0.1 mM 

PMSF, 5 units/ml benzonase and CompleteTM EDTA-free protease inhibitors and loaded 

onto a HisTrap HP column (GE Healthcare). Proteins were eluted with a gradient to 300 mM 

imidazole. Collected peak fractions were TEV-cleaved overnight in the dialysis bag (cutoff 

6-8 kDa) against the dialysis buffer (50 mM Hepes, pH 7.8, 300 mM NaCl, 5% glycerol and 

0.5 mM TCEP) at 4°C. The protein was re-applied onto the HisTrap HP column and the 

flow-through was collected.

Complex formation of APC/CCdc20-Hsl1 and APC/CΔApc1-300s-TAME

In vitro phosphorylated APC/C was treated with 40 µM CDK1/2 inhibitor iii (ENZO Life 

Sciences) before incubating with purified Cdc20 and Hsl1 (with a molar ratio of 1:1.5:2) on 

ice. The complex was purified by a Superose 6 3.2/300 column using the Microakta system.

TAME (Sigma-Aldrich) was dissolved in 50% DMSO and 50% APC/C gel filtration buffer 

at a concentration of 1 M. 4 mM TAME was added to purified APC/CΔApc1-300s and 

incubated on ice for 1 hour before freezing cryo-grids.

Ubiquitination assays

The ubiquitination assay was performed with 60 nM recombinant human APC/C, 90 nM 

UBA1, 300 nM UbcH10, 300 nM Ube2S, 70 µM ubiquitin, 2 µM substrate Cdk2-cyclin A2-

Cks2 or Hsl1, 5 mM ATP, 0.25 mg/ml BSA, 15 µM CDK1/2 inhibitor iii and different 

concentrations of purified human Cdc20 (5-30 nM) or Cdh1 (5-30 nM) in a 10 µl reaction 

volume with 40 mM Hepes pH 8.0, 10 mM MgCl2 and 0.6 mM DTT (figure legends 

indicate the exact coactivator concentration used in each assay). Reaction mixtures were 

incubated at room temperature for various time points and terminated by adding SDS/PAGE 
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loading dye. Reactions were analyzed by 4-12% NuPAGE Bis-Tris gels followed by Western 

blotting with an antibody against the His-tag of ubiquitin (Clonetech cat code 631212).

For the chimeric Cdh1-Cdc20 assay, the following domain boundaries were used to generate 

chimeric Cdh1-Cdc20 proteins: Cdh1NTD (residues 1-168), Cdh1WD40 (residues 169-475), 

Cdh1IR (residues 476-496), Cdc20NTD (residues 1-165), Cdc20WD40 (residues 166-475), 

Cdc20IR (residues 476-499). 10 nM of the chimeric proteins were used in the assay.

Peptide and TAME assays

Eight peptides (Designer BioScience) spanning the Apc1 300s loop were synthesized for 

identification of the Apc1 AI segment. Each peptide contains 20 amino acids, with a ten-

residue overlap with the neighbouring peptides: peptide 1 (LTAHLRSLSKGDSPVTSPFQ); 

peptide 2 (GDSPVTSPFQNYSSIHSQSR); peptide 3 (NYSSIHSQSRSTSSPSLHSR); 

peptide 4 (STSSPSLHSRSPSISNMAAL); peptide 5 (SPSISNMAALSRAHSPALGV); 

peptide 6 (SRAHSPALGVHSFSGVQRFN); peptide 7 (HSFSGVQRFNISSHNQSPKR) and 

peptide 8 (ISSHNQSPKRHSISHSPNSN). The following mutant peptides of peptide 7 were 

used to assess the relief of inhibition: peptide R368E (HSFSGVQEFNISSHNQSPKR), 

peptide 4S/E (HSFEGVQRFNIEEHNQEPKR) and peptide pS377 

(HSFSGVQRFNISSHNQphosphoSPKR). The peptides were dissolved at a concentration of 

10 mM in 100% dimethylsulfoxide (DMSO) and diluted using the APC/C gel filtration 

buffer. The ubiquitination assay was performed using a final concentration of 200 μM 

peptide. The TAME assay was performed at a similar condition using 0.5-3 mM TAME and 

the substrate Hsl1.

Size exclusion chromatography to assess coactivator binding

Purified APC/C samples (1 mg/ml) were incubated with either Cdh1 or Cdc20 at a molar 

ratio of 1:1.5 on ice for 30 min. The sample was spun down at 13,000 rpm for 5 min to 

remove any precipitates or aggregates before injecting onto a Superose 6 3.2/300 column 

using the Microakta system. The eluted peak fractions were analysed by SDS-PAGE and 

Western-blotting.

Mass Spectroscopy

Purified proteins were prepared for mass spectrometric analysis by in solution enzymatic 

digestion, without prior reduction and alkylation. Protein samples were digested with trypsin 

or elastase (Promega), both at an enzyme to protein ratio of 1:20. The resulting peptides 

were analysed by nano-scale capillary LC-MS/MS using an Ultimate U3000 HPLC 

(ThermoScientific Dionex) to deliver a flow of approximately 300 nl/min. A C18 Acclaim 

PepMap100 5 µm, 100 µm × 20 mm nanoViper (ThermoScientific Dionex), trapped the 

peptides prior to separation on a C18 Acclaim PepMap100 3 µm, 75 µm × 250 mm 

nanoViper (ThermoScientific Dionex, San Jose, USA). Peptides were eluted with a 90 min 

gradient of acetonitrile (2% to 50%). The analytical column outlet was directly interfaced 

via a nano-flow electrospray ionization source, with a hybrid quadrupole orbitrap mass 

spectrometer (Q-Exactive Plus Orbitrap, ThermoScientific). LC-MS/MS data were then 

searched against an in house LMB database using the Mascot search engine (Matrix 
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Science) 31, and the peptide identifications validated using the Scaffold program (Proteome 

Software Inc.)32. All data were additionally interrogated manually.

Electron microscopy

Freshly purified APC/C samples were first visualized by negative-staining EM to check the 

sample quality and homogeneity and to get initial low-resolution reconstructions. 

Micrographs were recorded on an FEI Spirit electron microscope at an accelerating voltage 

of 120 kV and at a defocus of approximately -1.5 µm. For cryo-EM, 2 µl aliquots of the 

sample at ~0.15 mg/ml were applied onto the Quantifoil R2/2 grids coated with a layer of 

continuous carbon film (approximately 50 Å thick). Grids were treated with a 9:1 

argon:oxygen plasma cleaner for 20 to 40 s before use. The grids were incubated for 30 s at 

4°C and 100% humidity before blotting for 5 s and plunging into liquid ethane using an FEI 

Vitrobot III. The grids were loaded into an FEI Tecnai Polara electron microscope at an 

acceleration voltage of 300 kV. Micrographs were taken using EPU software (FEI) at a 

nominal magnification of 78,000 which yields a pixel size of 1.36 Å/pixel. They were 

recorded by an FEI Falcon III direct electron detector with a defocus range of -2.0 to -4.0 

µm. The exposure time for each micrograph was 2s at a dose rate of 27 electrons/Å2/s. 34 

movie frames were recorded for each micrograph as described33.

Image processing

All movie frames were aligned by motioncorr program34 before subsequent processing. 

First, the contrast transfer function parameters were calculated with CTFFIND3 or Gctf 

35,36. Particles in 264 pixels x 264 pixels were selected by automatic particle picking in 

RELION 1.4 (ref. 37). The following steps were performed to exclude bad particles from the 

dataset: 1) automatically picked particles in each micrograph were screened manually to 

remove ice contaminations38; 2) after particle sorting in RELION, particles with poor 

similarity to reference images were deleted; 3) 2-dimensional classification was performed 

and particles in bad classes with poorly recognizable features were excluded. The remaining 

particles were divided into six classes using three-dimensional classification in RELION. 

During this process particles with conformational heterogeneity and leftover bad particles 

were removed from the final reconstruction. After 3D-refinement, beam-induced particle 

motion was corrected using particle polishing in RELION33,39. All resolution estimations 

were based on the gold-standard Fourier Shell Correlation (FSC) calculations using the FSC 

= 0.143 criterion. The model for the apo state (Fig. 2a, b, combined apo APC/C structure) 

was built based on a 3.4 Å resolution map, reconstructed by combined data collected from 

pure apo phosphorylated APC/C and the apo state particles classified from the APC/

CCdc20-Hsl1 complex (Extended Data Fig. 2, Extended Data Table 1). This map allowed for 

model building of regions which were less well resolved and presented as poly-alanines in 

the previous APC/CCdh1-Emi1 structure23, including Apc2NTD, Apc1 loops in both the 

WD40 domain and the middle domain and regions in Apc5NTD. A summary of all EM 

reconstructions obtained in this work is listed in Extended Data Table 1a.

Model building

Model building of both apo APC/C and APC/CCdc20-Hsl1 structures were performed in 

COOT40. Initially, available atomic structure of human APC/CCdh1-Emi1 (PDB 4UI9)23 and 
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the crystal structure of Cdc20WD40 (PDB 4GGC)41 were rigid-body fitted in individual 

subunits into the cryo-EM maps in Chimera42. All fitted structures were rebuilt according to 

the cryo-EM map. Cdc20NTD, Cdc20CTD and several loop regions not seen in previous 

structures were built ab initio. The models were refined by REFMAC 5.8 (ref. 43). A 

REFMAC weight of 0.04 was defined by cross-validation using half reconstructions44. A 

resolution limit of 3.6 Å or 3.5 Å was used for the APC/CCdc20-Hsl1 and the apo APC/C 

structure, respectively. All available crystal structures or NMR structures were used for 

secondary structure restraints. The refinement statistics are summarized in Extended Data 

Table 1b.

Map Visualization

Figures were generated using Pymol and Chimera42.

Sequence alignment

Sequence alignment was performed using Jalview45.
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Extended Data

Extended Data Figure 1. Preparations and EM images of different APC/C samples used for 
structural studies.
a, Recombinant human APC/C was in vitro phosphorylated using Cdk2-cyclin A3, Cdk2-

cyclin A3-Cks2 or Plk1 alone or with both Cdk2-cyclin A3-Cks2 and Plk1. The 

phosphorylated APC/C samples are shown on SDS-PAGE. b, In vitro phosphorylated 

recombinant human APC/C can be fully activated by Cdc20 to ubiquitylate a native 

substrate Cdk2-cyclin A2-Cks2 when both kinases were added (lanes 9, 10). Without Cks2 
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(lanes 3, 4) or with Plk1 alone (lanes 7, 8) no activation of the APC/C could be observed, 

whereas treating with Cdk2-cyclin A3-Cks2 alone (lanes 5, 6) resulted in its partial 

activation. A time course was recorded at 15 and 30 min and 20 nM of Cdc20 was used. 

This experiment was replicated three times. Anti-Apc3 antibodies (BD Bioscience, cat. 

code: 610454) were used as a loading control. c, Purified APC/C WT and mutant samples 

with and without kinase treatment (both Cdk2-cyclin A3-Cks2 and Plk1). Upon deletion of 

the Apc3 loop, no association of the Cdk2-cyclin A3-Cks2 kinase to the APC/C could be 

observed (lanes 6 and 8). d, Purified APC/CCdc20-Hsl1 ternary complex on SDS-PAGE. e, A 

typical cryo-EM micrograph of APC/CCdc20-Hsl1 representative of 15,582 micrographs. f, 
Gallery of two-dimensional averages of APC/CCdc20-Hsl1 showing different views; 

representative of 100 two-dimensional averages. g, Gold-standard FSC curves of all APC/C 

reconstructions in this work. See Supplementary Fig.1 for gel source data.

Extended Data Figure 2. Three-dimensional classification of APC/CCdc20-Hsl.
The initial particles after 2-dimensional classification were divided into six classes by 3-

dimensional classification module using RELION. The resultant classes were grouped into 

four categories: (i) 9.0% in the active ternary state with coactivator and substrate bound; (ii) 

11.3% in a hybrid state with coactivator bound, but the APC/C in the inactive conformation; 

(iii) 71.6% in the inactive apo state; (iv) 8.1% has poorer reconstruction due to some bad 

particles. The first class in the active ternary state containing 179,660 particles was used for 

3-dimensional refinement and movie correction to obtain the final reconstruction at 3.9 Å.
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Extended Data Figure 3. Comparison of Cdc20 and Cdh1 association to the APC/C.
a, The catalytic module (Apc2-Apc11) of the APC/CCdc20-Hsl1 complex is flexible and 

almost no density accounting for Apc11 (pink, modelled based on the structure of APC/

CCdh1-Emi1, PDB 4UI9)23 could be observed. b, The WD40 domain of Cdc20 (purple) 

occupies a similar position as Cdh1WD40 (grey), but it is displaced from the APC/C by as 

much as 10 Å. c, d, EM density for Cdc20C box allowed for ab initio model building and the 

C-box interaction with Apc8B (cyan) is well conserved between the two coactivators. e, 
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Both Cdc20IR and Cdh1IR associates with Apc3A (orange), although the EM density for 

Cdc20IR is much weaker (not shown) and the C-terminal α-helix in Cdh1IR is absent.

Extended Data Figure 4. Conformational changes of the APC/C between the inactive apo and the 
active ternary states and domain and sequence analysis of Cdc20.
a, b, Subunits that undergo conformational changes upon coactivator and substrate binding 

are highlighted in their ternary state and coloured as in Fig. 1, while the corresponding 

proteins in the inactive apo state are in lighter shades. In the active conformation, the 

platform subdomain containing subunits Apc1, Apc4 and Apc5 is shifted upward, inducing a 

Zhang et al. Page 14

Nature. Author manuscript; available in PMC 2016 October 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



large movement of the catalytic module to enable E2 access. c, Domain organization of 

Cdc20. d, Sequence alignment of Cdc20NTD and Cdh1NTD with α-helices represented as 

cylinders (purple and grey for Cdc20NTD and Cdh1NTD, respectively) underneath the 

sequences and the C box and KILR/KLLR motif highlighted.

Extended Data Figure 5. Comparison of apo APC/C in unphosphorylated and phosphorylated 
states.
a, b, Superposition of the apo unphosphorylated (magenta) and phosphorylated (cyan) 

APC/C EM maps revealed little conformational differences except in the vicinity of the C-
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box binding site. c, Apc3A is in an equilibrium between open (light blue) and closed 

(orange) conformations. While in the inactive apo state, the majority of Apc3A is in the 

closed state, association of Cdc20IR stabilizes the open state. d, Sequence alignment of the 

Apc1 300s loop across different species human, mouse, Xenopus tropicalis (Western clawed 

frog) and Danio rerio (zebrafish). Phosphorylation sites are indicated and residues 361-380 

accounting for the Apc1 AI segment are boxed.

Extended Data Figure 6. Analytical gel filtration and activity assays.
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a, With equal amount of input Cdc20, phosphorylated APC/C could form a stable binary 

complex with Cdc20 after a gel filtration purification step (lane 5), whereas 

unphosphorylated APC/C could not (lane 4). b, Both unphosphorylated and phosphorylated 

APC/C associate with Cdh1 stably on gel filtration, as well as APC/CΔApc1-300s. Anti Cdc20 

antibody (Santa Cruz Biotechnology, cat. code: sc-8358) and anti Cdh1 antibody (Sigma, 

cat. Code: C7855) were used for detection; antibodies to Apc4 (ref. 6) served as a loading 

control and unphosphorylated APC/C alone is used as a negative control for Western-

blotting. c, Point mutations of peptide 7 (residues 361-380), either when Arg368 was 

mutated to glutamate or when the four neighbouring serines were mutated to phospho-

mimics (Glu), caused the peptide to abolish its inhibition effect and restored the APC/C 

activity (lanes 4, 5). Phosphorylation of a single Ser377 only resulted in partial activation of 

the APC/C (lane 6). d, Chimeric proteins composed of the NTD, the WD40 domain and the 

IR tail of either Cdc20 or Cdh1 were purified to study their differences in APC/C activation. 

Both the NTD and the CTD of the coactivators are essential for their association with the 

APC/C. Swapping both NTD and CTD of Cdh1 with Cdc20 makes it phosphorylation 

sensitive (lanes 7, 8), similar to Cdc20 (lanes 9, 10) and vice versa. e, Upper panel: Cdh1 

can activate both unphosphorylated and phosphorylated APC/C similarly, whereas Cdc20 

requires APC/C phosphorylation for its activity. Lower panel: A titration of Cdh1 against 

unphosphorylated APC/C and APC/CΔApc1-300s showed enhanced activity in the absence of 

the Apc1 AI segment at low Cdh1 concentration (≤ 10 nM), whereas Cdc20 requires 

displacement of the AI segment for its activity. f, Deletion of the Cdh1 α3-helix resulted in 

reduced activation of the APC/C and makes Cdh1 more phosphorylation sensitive. The 

substrate Cdk2-cyclin A2-Cks2 was used for assay in c and Hsl1 for the assays in d-f. 20 nM 

Cdc20 was used in c, 10 nM chimeric coactivators in d and 30 nM coactivators in f. 
Experiments in a and b were replicated two times, in c, e and f three times and in d four 

times. See Supplementary Fig.1 for gel source data.
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Extended Data Figure 7. TAME competes with Cdc20 to bind at the IR-tail and the C-box 
binding sites.
a, TAME (C-atoms in limon) is superimposed with Cdc20IR (purple) and the arginine motif 

in both structures engages the same binding site on Apc3A (orange). b, The tosyl-Arg motif 

of TAME overlaps with Arg78-Tyr79 of Cdc20C box at the C-box binding site to out-

compete Cdc20. c, A density for TAME was also observed within a pocket of the Apc8A 

TPR superhelix, similar to that of Apc8B.
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Extended Data Table 1
EM data collection, processing statistics and structure 
refinement statistics

a. Statistics of all cryo-EM reconstructions

Samples Particles used for final 
reconstruction

Resolution (Å)

APC/CCdc20-Hsl1 179,660 (9.0%) 3.9

apo unphosphorylated APC/C 347,317 (49.5%) 3.8

apo phosphorylated APC/C
(apo phosphorylated APC/C data only)

83,642 (63.1%) 4.3

combined apo APC/C
(both apo phosphorylated APC/C data a nd apo 
phosphorylated particles classified from APC/Ccdc2D-Hsl1)

921,993 (70.8%) 3.4

apo APC/CΔApc1-300s mutant 262,090 (80.2%) 3.8

APC/CΔApc1-300s-TAME 246,065 (78.2%) 4.0

b. Statistics of APC/Ccdczo-Hsl1 and combined apo APC/C structure determination

Data collection APC/CCdc20-Hsl1 combined apo APC/C

    EM FEI Polara, 300k eV FEI Polara, 300k eV

    Detector FEI Falcon Ill FEI Falcon Ill

    Pixel size (Å) 1.36 1.36

    Defocus range (µm) 2.0-4.0 2.0-4.0

Reconstruction

    Software RELION 1.4 RELION 1.4

    Accuracy of rotations (degrees) 1.268 0.884

    Accuracy of translations (pixels) 0.81 0.62

    Final resolution (Å) 3.9 3.4

Refinement

    Software RefMac 5.8 RefMac 5.8

    Refmac weight 0.04 0.04

    Resolution limit (Å) 3.6 3.5

    Residue number 8101 7904

    Average Fourier shell correlation 0.6439 0.7778

    R factor 0.3815 0.3451

    Rms bond length (Å) 0.0125 0.0141

    Rms bond angle (°) 1.6973 1.7435

Validation

    Ramachandran plot

        Preferred 7544 (93.12%) 7447 (94.22%)

        Allowed 327 (4.04%) 264 (3.34%)

        Outliers 230 (2.84%) 193 (2.44%)

Zhang et al. Page 19

Nature. Author manuscript; available in PMC 2016 October 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Table 2
Phosphorylation sites of Apc1 and Apc3 subunits of in 
vitro phosphorylated APC/C identified by mass 
spectrometry

Protein Phospho-sites APC/CWT APC/CWT APC/CΔApc3-loop APC/CWT APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3 Cdk2-cyclinA3-Cks2 + Plkl Cdk2-cyclinA3-Cks2 Plkl Cdk2-cyclinA3-Cks2 + Plkl

Apc1 LVG S60LQE 3

QEVT65IHE 3(interphase)

PPGS202PRE 1,2,3

LFGS233SRV N.D. N.D. 2

LKFS286EQG 1,3

QGGT291PQN 1,2,3

NVAT297SSS

VATS298SSL

ATSS299SLT

RSLS309KGD N.D. 3(interphase)

KGDS313PVT 3

SPVT316SPF 3

PVTS317PFQ 3

HSRS341PSI 1,2,3

RSPS3431SN 1,3

AALS351RAH 3

RAHS355PAL 1,2,3

GVHS362FSG 1,2,3

HSFS364GVQ 1,3

FNIS372SHN 3

NISS373HNQ 1,3

HNQS377PKR 1,2,3

ISHS386PNS N.D. 3(interphase)

SPNS389NSN N.D. 3

SNGS394FLA

WTET4161TN

VLYT501GVV

PAPS518LTM N.D. N.D. N.D. 3

PSLT520MSN N.D. N.D. 1(interphase),3

LTMS522NTM N.D. N.D. 3(interphase)

MSNT524MPR N.D. N.D. 3(interphase)

RPST530PLD 1(interphase),2,3

DGVS536TPK

GVST537PKP 1,3
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Protein Phospho-sites APC/CWT APC/CWT APC/CΔApc3-loop APC/CWT APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3 Cdk2-cyclinA3-Cks2 + Plkl Cdk2-cyclinA3-Cks2 Plkl Cdk2-cyclinA3-Cks2 + Plkl

KPLS542KLL N.D. 2

LLGS547LDE 1,3

VLLS555PVP 1,2,3

LRDS563SKL 3

RDSS564KLH N.D. 2,3

LHDS569LYN 1(interphase),3

EDCT576FQQ

QLGT582YIH

LELS600NGS N.D. 2

FEGS686LSP 3

GSLS688PVI 1,2,3

ARPS699ETG 3

PSET701GSD 3

ETGS703DDD 3(interphase)

LCLS731PSE l,3(interphase),2

NRFS916FRH 3

FRHS920TSV

RHST921SVS

HSTS922VSS

VLSS1001DVP

KHKS1347PSY

KSPS1349YQI

Apc3 LPNS183CTT 3

NSCT185TQV

SCTT186QVP

PNHS192LSH

HSLS194HRQ

QPET200VLT

TVLT203ETP 2

LTET205PQD 1,2,3

PQDT2091El 1

NLES219SNS N.D. 3(interphase)

LESS220NSK N.D. 2,3

SSNS222KYS 3

SKYS225LNT

SLNT228DSS

NTDS230SVS

TSDS231VSY
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Protein Phospho-sites APC/CWT APC/CWT APC/CΔApc3-loop APC/CWT APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3 Cdk2-cyclinA3-Cks2 + Plkl Cdk2-cyclinA3-Cks2 Plkl Cdk2-cyclinA3-Cks2 + Plkl

SSVS233YID

YIDS237AVI

AVIS241PDT 3

SPDT244VPL 1,3

GTGT251SII

TGTS252SIL 3

SILS255KQV

KPKT264GRS N.D. N.D. 2

TGRS267LLG N.D.

AALS276PLT 3

SPLT279PSF 3

LTPS281FGI

PLET289PSP

ETPS291PGD N.D. 1

QNYT302NTP 1,3

YTNT304PPV 1,3

DVPS312TGA 1,3

VPST313GAP 1,3

IGQT327GTK N.D. N.D. N.D. 3

QTGT329KSV

GTKS331VFS N.D. N.D. N.D.

SVFS334QSG N.D. N.D. 2

FSQS336GNS N.D. N.D. 2

REVT343PIL 1

LAQT349QSS

QTQS351SGP

TQSS352GPQ

GPQT356STT

PQTS357TTP

QTST358TPQ

TSTT359PQV

QVLS364PTI 1

LSPT3661TS 1,2

PTIT368SPP

TITS369PPN 1,2,3

RLFT383SDS 2

LFTS384DSS 2

TSDS386STT 2
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Protein Phospho-sites APC/CWT APC/CWT APC/CΔApc3-loop APC/CWT APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3 Cdk2-cyclinA3-Cks2 + Plkl Cdk2-cyclinA3-Cks2 Plkl Cdk2-cyclinA3-Cks2 + Plkl

SDSS387TTK 2

DSST388TKE

SSTT389KEN 2

GGIT419QPN

INDS426LEI 1,2

LEIT430KLD 1

KLDS434S11 1

LDSS435llS 1,2

SIIS438EGK 2

GKIS443TIT

KIST4441TP 2,3

STIT446PQI 1,2

MNFS761WAM

IMGT800DES

TDES803QES

SQES806SMT

QESS807MTD

SSMT809DAD

ADDT814QLH

AAES821DEF

The pink shading shows the presence of phosphorylation sites and the white indicates its absence.

Following references were used for comparison:
1.

Kraft et al. EMBO J 2003
2.

Steen et al. PNAS 2008
3.

Hegemann et al. Sci Signal 2011

The phosphorylation sites within the Apel Al segment are highlighted in light purple shadows. Phosphorylation sites of the 
remaining APC/C subunits are summarized in Extended Data Table 3.

Extended Data Table 3
Summary of phosphorylation sites of in vitro 
phosphorylated APC/C subunits (excluding Apc1 and 
Apc3) identified by mass spectrometry

Protein Phospho-sites APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3-Cks2 + Plkl

Apc2 ELDS205RYA

LLQS218PLC 2

RPAS314PEA 1,2,3

SLETS466GQD

GQDS470EDD 3
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Protein Phospho-sites APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3-Cks2 + Plkl

EDDS374GEP

HQFS532FSP 2

FSFS534PER 1,2,3

LIDS732DDE 3(interphase)

DDES736DSG 3(interphase)

ESDS738GMA 3(interphase)

GMAS742QAD

Apc4 ARVT199GIA

KGKY469FNV 1

DLVS488PPN

LDES757SDE

DESS758DEE

EVLS777ESE 2,3

LSES779EAE 1

Apc5 PMMTl5NGV 2

HKTS130VVG

MELT178SRD 3

ELTS179RDE 3

LDVS195VRE 1,2

QQAS221LLK 2,3

NDET228KAL

KALT232PAS 2

VASS674AAS 2

Apc6 KDES112GFK 1,3

NllS559PPW 1,2,3

EKQT573AEE

AEET577GLT

TGLT580PLE 1,2,3

PLET584SRK

LETS585RKT 2,3

TPDS592RPS N.D.

SRPS595LEE N.D. 1

LEET599FEI 1

MNES607DMM

LETS614MSD

Apc7 VRPS119TGN 1

RPST120GNS 1

TGNS123AST 1,3
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Protein Phospho-sites APC/CWT APC/CWT References

Kinases used No treatment Cdk2-cyclinA3-Cks2 + Plkl

NSAS125TPQ 1,3

SAST126PQS 2,3

MEGS573GEE

LEGS582DSE

GSDS584EAA

Apc8 QGET562PTT 1,2

TPTT565EVP 1,2

ANNT582PTR 1,2,3

NTPT584RRV 1

RRVS588PLN 2,3

LNLS593SVT 3

SSVT596P 2,3

Apc12 VGGS42DGE

IGLS5lSDP

GLSS52DPK

DPKS56REQ N.D.

NRSS78QFG

Apc15 DEDS76EED

EEDS80EDD

YNES98PDD

Apc16 SSSS8SAG N.D.

VSGS16SVT N.D.

FSVS26DLA N.D.

The pink shading shows the presence of phosphorylation sites and the white indicates its absence.

Following references were used for comparison:
1.

Kraft et al. EMBO J 2003
2.

Steen et al. PNAS 2008
3.

Hegemann et al. Sci Signal 2011

Phosphorylation sites of the Apel and Apc3 subunits are summarized in Extended Data Table 2.
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Figure 1. EM reconstructions of the APC/CCdc20-Hsl1 complex and comparison of Cdc20NTD 

and Cdh1NTD.
a, b, Two views of APC/CCdc20-Hsl1 shown in cartoon with the D box and Cdc20IR 

highlighted in surface representation. Cdc20 binds to the APC/C in juxtaposition to Apc10 

to form the substrate recognition module. Apc11 is modelled based on the APC/CCdh1-Emi1 

structure (PDB 4UI9)22. c, Both Cdc20NTD (purple) and Cdh1NTD (grey, aligned to APC/

CCdc20-Hsl1)23 interact with Apc1 and Apc8B , whereas Cdh1NTD contains an additional α3-

helix associating with Apc1. I) The crucial C box motif is well conserved between the two 

coactivators and forms extensive interactions with Apc8B. II) The KLLR motif of Cdh1 is 

present in the α3-helix to engage Apc1, whereas the related Cdc20KILR motif contacts 

Apc8B to augment C-box binding.
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Figure 2. Apo unphosphorylated APC/C is repressed by an Apc1 auto-inhibitory (AI) segment.
a, b, Two views of the phosphorylated apo APC/C structure in cartoon within the 3.4 Å EM 

map (grey). The catalytic module (Apc2 and Apc11) is in the inactive conformation. c, d, an 

EM map of unphosphorylated APC/C. Apc1 has two highly phosphorylated loops within its 

WD40 domain (green). Whereas the 300s loop (residues 307-395) is pointing towards the 

Apc1 AI segment density (dark green) at the C-box binding site (dark grey box), the 500s 

loop is facing in the opposite direction. The hyper-phosphorylated Apc3 loop (residues 

180-447) is located at the back of APC/C and functions as a Cdk recruitment site. The views 

in b and c are similar to Fig. 1b. e-g, Close-up views of the C-box binding site in the EM 

maps of apo unphosphorylated and phosphorylated APC/C and an APC/CΔApc1-300s mutant 

with the Apc1 300s loop deleted. An elongated loop density (dark green) for the Apc1 AI 

segment was observed in the apo unphosphorylated state (e), but the density is absent in apo 

phosphorylated APC/C (f). Deletion of the Apc1 300s loop shows a similar loss of C-box 

site associated density (g).
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Figure 3. The Apc1 AI segment binds to the C-box binding site and mimics the Cdc20C box.
a, Cdk2-cyclin A2-Cks2 was used for ubiquitination assays. In vitro phosphorylated APC/C 

(both Cdk2-cyclin A3-Cks2 and Plk1) can be activated by Cdc20 (lanes 1-5). Deletion of the 

Apc1 300s loop activated the APC/C without phosphorylation (lanes 6-7), and kinase 

treatment of APC/CΔApc1-300s does not enhance APC/C activity. The APC/CΔApc3-loop 

mutant showed similar activity as unphosphorylated APC/C (lanes 10-11 vs 2-3 and 4-5), 

but had reduced activation by phosphorylation. Nevertheless, deletion of both Apc1 300s 

and Apc3 loops (APC/CΔApc1-300s&Apc3-loop) restored activity to that of WT phosphorylated 

APC/C and unphosphorylated APC/CΔApc1-300s (lanes 14-17). b, Identification of the Apc1 

AI segment occupying the C-box binding site by assessing the inhibitory effect of eight 

peptides spanning the Apc1 300s loop. A single peptide (peptide 7, residues 361-380) 

suppressed the activity of APC/CΔApc1-300s (lane 9), indicating that this peptide blocks the 

C-box binding site. A control with WT unphosphorylated APC/C (unp.APC/CWT) is in lane 

11. c, The Apc1 AI segment (peptide 7, residues 361-380) shares sequence similarity with 

Cdc20C box. A model for the AI segment (green) was fitted into the EM density of the apo 

unphosphorylated APC/C map (grey). Arg368 overlaps with the crucial Arg78 of 

Cdc20C box (purple, right panel). The flanking serines shown to be phosphorylated are 

highlighted as red spheres. Ser377 is outside the observed EM density. d, Mutation of a 

single Arg368 residue (APC/CApc1-R368E) or mutating its four neighbouring serine residues 

(Ser364, Ser372, Ser373, Ser377) to glutamates (APC/CApc1-4S/E) activated the APC/C 

without phosphorylation. 30 nM Cdc20 was used for assay in a and 20 nM Cdc20 for assays 
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in b and d. Experiments in a and d were replicated three times and in b five times. See 

Supplementary Fig.1 for gel source data.
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Figure 4. Mechanism for APC/C activation by mitotic phosphorylation and the molecular basis 
for TAME inhibition.
a, Cartoon showing the mechanism of APC/C activation by Apc1 and Apc3 phosphorylation 

induced relief of auto-inhibition. Artificial relief of AI segment auto-inhibition, either by its 

deletion or by phospho-mimicking mutants, obviates the need to phosphorylate Apc3. b, 

TAME has only a small inhibitory effect on APC/CCdh1 (lanes 1-4), whereas it significantly 

reduced APC/CCdc20 activity (lanes 5-8). The activity assay was performed with 

phosphorylated WT APC/C and substrate Hsl1 at a coactivator concentration of 10 nM. This 

experiment was replicated three times. See Supplementary Fig.1 for gel source data. c, d, 

EM reconstruction of APC/CΔApc1-300s in complex with TAME showed densities (dark blue) 

for TAME (C-atoms in limon) at both the IR-tail binding site (c), and the C-box binding site 

(d). Their positions overlap well with the crucial Arg78 and Tyr79 of Cdc20C box and Ile498 

and Arg499 of Cdc20IR thereby inhibiting Cdc20 association (Extended Data Fig.7).
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