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Abstract Genetic interactions, including synthetic lethal effects, can now be systematically

identified in cancer cell lines using high-throughput genetic perturbation screens. Despite this

advance, few genetic interactions have been reproduced across multiple studies and many appear

highly context-specific. Here, by developing a new computational approach, we identified 220

robust driver-gene associated genetic interactions that can be reproduced across independent

experiments and across non-overlapping cell line panels. Analysis of these interactions

demonstrated that: (i) oncogene addiction effects are more robust than oncogene-related synthetic

lethal effects; and (ii) robust genetic interactions are enriched among gene pairs whose protein

products physically interact. Exploiting the latter observation, we used a protein–protein

interaction network to identify robust synthetic lethal effects associated with passenger gene

alterations and validated two new synthetic lethal effects. Our results suggest that protein–protein

interaction networks can be used to prioritise therapeutic targets that will be more robust to

tumour heterogeneity.

Introduction
Large-scale tumour genome sequencing efforts have provided us with a compendium of driver

genes that are recurrently altered in human cancers (Vogelstein et al., 2013). In some cases, these

genetic alterations have been associated with altered sensitivity to targeted therapies. Examples of

targeted therapies already in clinical use include approaches that exploit oncogene addictions, such

as the increased sensitivity of BRAF mutant melanomas to BRAF inhibitors (Chapman et al., 2011),

and approaches that exploit non-oncogene addiction/synthetic lethality, such as the sensitivity of

BRCA1/2 mutant ovarian or breast cancers to PARP inhibitors (Lord and Ashworth, 2017). An ongo-

ing challenge is to associate the presence of other driver gene alterations with sensitivity to existing

therapeutic agents (Barretina et al., 2012; Iorio et al., 2016) or to identify candidate therapeutic

targets whose inhibition may provide therapeutic benefit to patients with specific mutations.

Towards this end, multiple groups have performed large-scale loss-of-function genetic perturbation

screens in panels of tumour cell lines to identify vulnerabilities that are associated with the presence

or absence of specific driver gene mutations (i.e. genetic interactions) (Behan et al., 2019;

Campbell et al., 2016; Marcotte et al., 2016; McDonald et al., 2017; Meyers et al., 2017;

Tsherniak et al., 2017). Others have performed screens in ‘isogenic’ cell line pairs that differ only by

the presence of a specific oncogenic alteration (Martin et al., 2017; Steckel et al., 2012). Despite

these large-scale efforts, very few genetic interactions have been identified in more than one study

(recently reviewed Ryan et al., 2018). Even in the case of cancer driver genes subjected to multiple

screens, such as KRAS, few genetic interactions have been identified in more than one
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screen (Downward, 2015). This lack of reproducibility may be due to technical issues, for example

false positives and false negatives due to inefficient gene targeting reagents (Kaelin, 2012), and/or

real biological issues, such as the context specificity of genetic interactions (Henkel et al., 2019;

Ryan et al., 2018). We refer to those genetic interactions that can be reproduced across multiple

screens and across distinct cell line contexts as robust genetic interactions. Given that tumours

exhibit considerable molecular heterogeneity both within and between patients there is a real need

to: (i) identify robust genetic interactions that can be reproduced across heterogeneous cell line pan-

els, reasoning that these reproducible effects will be more likely to be robust in the face of the

molecular heterogeneity seen in human cancers; (ii) prioritise these robust genetic interactions for

further therapeutic development; and (iii) understand the characteristics of robust genetic interac-

tions in cancer as a means to predict new therapeutic targets.

To achieve this, we developed, and describe here, a computational approach that leverages

large-scale cell line panel screens to identify those genetic interactions that can be reproducibly

identified across multiple independent experiments. We found that for all oncogenes studied, the

most significant reproducible dependency identified was an oncogene-addiction rather than a syn-

thetic lethal effect. Excluding oncogene addictions, we found 220 reproducible genetic interactions.

In investigating the nature of these robust genetic interactions, we found that they are significantly

enriched among gene pairs whose protein products physically interact. This suggests that incorpo-

rating prior knowledge of protein–protein interactions may be a useful approach to guide the selec-

tion of reproducible ‘hits’ from genetic screens as candidates worth considering as therapeutic

targets in cancer. We demonstrate the utility of the approach in identifying robust synthetic lethal

interactions from chemogenetic screens and in identifying synthetic lethal interactions associated

with ‘passenger’ gene alterations.

Results

A ‘discovery and validation’ approach to the analysis of loss-of-function
screens identifies reproducible genetic dependencies
We first wished to identify genetic interactions that could be independently reproduced across mul-

tiple distinct loss-of-function screens. To do this, we obtained gene sensitivity scores from four

large-scale loss-of-function screens in panels of tumour cell lines, including two shRNA screens

(DRIVE [McDonald et al., 2017], DEPMAP [Tsherniak et al., 2017]) and two CRISPR-Cas9 mutagen-

esis screens (AVANA [Meyers et al., 2017], SCORE [Behan et al., 2019]). We harmonised the cell

line names across all studies, so they could be compared with each other and also with genotypic

data (Barretina et al., 2012; Iorio et al., 2016; Figure 1A). In total, 917 tumour cell lines were

screened in at least one loss-of-function study. Only 50 of these cell lines were common to all four

studies while 407 cell lines were included in only a single study (Figure 1B). It is the partially overlap-

ping nature of the screens that motivated the subsequent approach we took for our analysis. We

used a ‘discovery set’ and ‘validation set’ approach to identifying genetic interactions across multiple

screens - first identifying associations between driver gene alterations and gene inhibition sensitivity

in the discovery study and then testing the discovered dependency in the validation study

(Figure 1C). However, to ensure that any reproducibility observed was not merely due to cell lines

common to both datasets, we first removed cell lines from the validation dataset if they were pres-

ent in the discovery dataset (Figure 1C). For example, when using DEPMAP as the discovery dataset

and AVANA as the validation dataset, we performed the validation analysis on the subset of cell

lines that were present in AVANA but not in DEPMAP. In doing so, we ensured that any genetic

interactions discovered were reproducible across different screening platforms (either distinct gene

inhibition approaches, that is shRNA vs CRISPR, or distinct shRNA/CRISPR libraries) and also robust

to the molecular heterogeneity seen across different cell line panels.

Similar to our previous work (Bridgett et al., 2017; Campbell et al., 2016) we integrated copy

number profiles and exome sequencing data to annotate all cell lines according to whether or not

they featured likely functional alterations in any one of a panel of cancer driver

genes (Vogelstein et al., 2013) (see Materials and methods, Supplementary file 1). We then identi-

fied associations between driver gene alterations and sensitivity to the inhibition of specific genes

using a multiple regression model. This model included tissue type, microsatellite instability and
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Figure 1. Identifying robust genetic interactions using partially overlapping loss-of-function screens. (A) Workflow

showing the integration of four different loss-of-function screen datasets. (B) Venn diagram showing the overlap of

cell lines between the four datasets analysed in this study. (C) Workflow showing how robust genetic interactions

are identified using discovery and validation sets.
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driver gene status as independent variables and gene sensitivity score as the dependent variable

(Materials and methods). Microsatellite instability was included as a covariate as it has previously

been shown to be associated with non-driver gene specific dependencies (Behan et al., 2019), while

tissue type was included to avoid confounding by tissue type. We focused this analysis on ‘selectively

lethal’ genes - that is those genes whose inhibition killed some, but not all cell lines

(Materials and methods, Supplementary file 2). We analysed each pair of screens in turn and con-

sidered a genetic dependency to be reproducible if it was validated in at least one discovery/valida-

tion pair. Using this approach, we tested 142,477 potential genetic dependencies between 61 driver

genes and 2421 selectively lethal genes. We identified 1530 dependencies that were significant in at

least one discovery screen (Figure 2A, Figure 2—figure supplement 1). All 61 driver genes had at

least one dependency that was significant in at least one discovery screen while less than half of the

selectively lethal genes (1,141/2,421) had a significant association with a driver gene. Of the 1530

dependencies that were significant in at least one discovery screen, only 229 could be validated in a

second screen (Supplementary file 3, Figure 2A). For example, in the AVANA dataset TP53 muta-

tion was associated with resistance to inhibition of both MDM4 and CENPF, but only the association

with MDM4 could be validated in a second dataset (Figure 2B and C). Similarly, in the DEPMAP

dataset NRAS mutation was associated with increased sensitivity to the inhibition of both NRAS itself

and ERP44, but only the sensitivity to inhibition of NRAS could be validated in a second dataset

(Figure 2B and C).

The 229 reproducible dependencies involved 31 driver genes and 204 selectively lethal genes. Of

the 229 reproducible genetic dependencies nine were ‘self vs. self’ associations, where the alteration

of a gene was associated with sensitivity to its own inhibition. The majority (7/9) of these ‘self vs.

self’ associations were oncogene addiction effects, such as the increased sensitivity of NRAS mutant

cell lines to NRAS inhibition (Figure 2B). Similarly, we identified robust oncogene addictions involv-

ing the CTNNB1 (b-Catenin), KRAS, EGFR, BRAF, ERBB2 and PIK3CA oncogenes (Figure 3A and B,

Figure 3—figure supplement 1B). For EGFR and CTNNB1, the only identified robust dependency

was an oncogene addiction effect. For all other oncogenes there were additional robust dependen-

cies identified, but in all cases the most significant reproducible dependency was an oncogene

addiction (Figure 3—figure supplement 1A). These observations suggest that for most oncogenes

the oncogene addiction effect might be more robust than any oncogene-related synthetic lethal

effects.

We also identified two (2/9) examples of ‘self vs. self’ dependencies involving tumour suppressors

-TP53 (aka p53) and CDKN2A (aka p16/p14arf) (Figure 3—figure supplement 1C). This type of rela-

tionship has previously been reported for TP53: TP53 inhibition appears to offer a growth advantage

to TP53 wild type cells but not to TP53 mutant cells (Giacomelli et al., 2018). Inhibiting TP53 in

TP53 mutant cells has a largely neutral effect, while on average inhibiting TP53 in TP53 wild type

cells actually increases fitness growth. Consequently, we observed an association between TP53 sta-

tus and sensitivity to TP53 inhibition. Similar effects were seen for CDKN2A, although the growth

increase resulting from inhibiting CDKN2A in wild-type cells is much lower than that seen for TP53

(Figure 3—figure supplement 1C). These ‘self vs. self’ dependencies, in particular the oncogene

addictions, serve as evidence that our approach could identify well characterised genetic associa-

tions. However, as our primary interest was in genetic interactions between different genes, we

excluded ‘self vs. self’ interactions from further analysis, leaving us with 220 robust genetic interac-

tions (Figure 3C).

Many robust genetic interactions reflect known pathway structure
Many of the robust genetic interactions we identified have been previously reported, including both

sensitivity relationships, such as increased sensitivity of PTEN mutant cell lines to inhibition of the

phosphoinositide 3-kinase-coding gene PIK3CB (Wee et al., 2008), and resistance relationships,

such as an increased resistance of TP53 mutant cell lines to MDM2 inhibition (Figure 3D).

Amongst the set of 220 robust genetic interactions, we identified two previously reported

‘paralog lethalities’ – synthetic lethal relationships between duplicate genes (paralogs)

(Helming et al., 2014; Hoffman et al., 2014; Oike et al., 2013; Figure 3E). We found a robust

association between mutation of the tumour suppressor ARID1A and sensitivity to inhibition of its

paralog ARID1B (Helming et al., 2014) and also an association between mutation of SMARCA4 and

sensitivity to inhibition of its paralog SMARCA2 (Hoffman et al., 2014; Oike et al., 2013). Both pairs
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Figure 2. Discovered and validated genetic dependencies. (A) Scatterplot showing the genetic dependencies

identified across all datasets. Each individual point represents a gene pair, the x-axis shows the common language

effect size, and the y-axis shows the -log10 p-value from the discovery dataset. Selected gene pairs are

highlighted – the driver gene is listed first, followed by the associated dependency. Each gene pair may have

been tested in multiple discovery studies, only the interaction with the most significant discovery p-value is shown.

Scatterplots for individual studies are presented in Figure 2—figure supplement 1. (B) Tukey boxplots showing

examples of robust genetic dependencies, including an increased resistance of TP53 mutant tumour cell lines to

MDM4 inhibition and increased sensitivity of NRAS mutant tumour cell lines to NRAS inhibition. In each box plot

the top and bottom of the box represents the third and first quartiles and the box band represents the median;

whiskers extend to 1.5 times the interquartile distance from the box. WT = wild type, ALT = altered. Throughout

blue is used to indicate increased sensitivity (synthetic lethality or oncogene addiction), yellow to indicate

Figure 2 continued on next page
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of genes (ARID1A/ARID1B and SMARCA4/SMARCA2) encode components of the larger SWI/SNF

complex (Wilson and Roberts, 2011).

Some of the robust genetic dependencies could be readily interpreted using known pathway

structures. For instance, many of the robust dependencies associated with the oncogene BRAF could

be interpreted in terms of BRAF’s role in the MAPK pathway. BRAF mutation was associated with

increased sensitivity to inhibition of its downstream effectors MEK (MAP2K1) and ERK (MAPK1), and

increased resistance to inhibition of the alternative RAF isoform gene CRAF (RAF1) and the MAPK

regulators PTPN11 and SHOC2 (Figure 4A and B; Hill et al., 2019). BRAF mutation was also associ-

ated with increased sensitivity to inhibition of PEA15, presumably a result of the requirement of

PEA15 for ERK dimerisation and signalling activity (Formstecher et al., 2001; Herrero et al., 2015).

Mutation or deletion of the tumour suppressor RB1 (Retinoblastoma 1, Rb) was associated with

increased sensitivity or resistance to inhibition of multiple Rb pathway members (Figure 4C and D).

We found that RB1 loss was reproducibly associated with resistance to inhibition of its negative reg-

ulators CDK4 and CDK6, consistent both with the known Rb pathway structure and with preclinical

data suggesting that RB1 mutation confers resistance to CDK4/6 inhibitors (Asghar et al., 2015;

O’Leary et al., 2018). Rb is a negative regulator of multiple E2F transcription factors, and we found

that RB1 loss was reproducibly associated with increased sensitivity to both E2F1 and E2F3 inhibition

(Figure 4C and D). RB1 loss was also associated with robust sensitivity to SKP2, a binding partner of

Rb (Ji et al., 2004) first identified as an RB1 synthetic lethal partner in retinoblastoma (Xu et al.,

2014) and more recently as a highly penetrant RB1 synthetic lethal partner in triple negative breast

cancer (Brough et al., 2018; Figure 4C and D). Finally, RB1 loss was reproducibly associated with

increased sensitivity to inhibition of Cyclin Dependent Kinase 2 (CDK2), suggesting that it may be a

useful biomarker for CDK2-specific inhibitors (Tadesse et al., 2019).

To test if this enrichment of pathway members among the robust dependencies associated with

specific driver genes was a common phenomenon, for each driver gene with at least three depen-

dencies we asked if these dependencies were enriched in specific signalling pathways (see

Materials and methods). Of the twelve driver genes tested, we found that five of these were

enriched in specific pathways and in all five cases found that the driver gene itself was also anno-

tated as a member of the most enriched pathway (Supplementary file 4). As expected RB1 (most

enriched pathway ‘G1 Phase’) and BRAF (most enriched pathway ‘Negative feedback regulation of

MAPK pathway’) were among the five driver genes, alongside PTEN (‘PI3K/AKT activation’),

CDKN2A (‘Cell cycle’), and NRAS (‘Ras signaling pathway’).

Robust genetic interactions are enriched in protein–protein interaction
pairs
In seeking to understand what particular characteristics robust genetic interactions might have, we

noted that many of the robust genetic interactions we identified involved gene pairs whose protein

products operate in the same pathway (e.g. the Rb pathway) or protein complex (e.g. SWI/SNF) sug-

gesting that genetic interactions between gene pairs whose protein products physically interact may

be more robust than other genetic interactions. To test this hypothesis, we compared the robust

genetic interactions we identified with protein–protein interactions from the STRING protein–protein

interaction database (Szklarczyk et al., 2015). We found that, when considering the set of all gene

pairs tested, gene pairs identified as significant genetic interactors in at least one dataset are more

likely to encode proteins that physically interact (Figure 5A) (Odds Ratio (OR) = 4.0, p<2�10�16,

Fisher’s Exact test). Furthermore, of the genetic interactions identified as significant in at least one

dataset, those that are supported by a protein–protein interaction were significantly more likely to

be reproduced in a second dataset (Figure 5A) (OR = 3.9, p<1�10�13). We therefore concluded

Figure 2 continued

resistance to inhibition of the target gene. (C) Boxplots showing examples of genetic dependencies discovered

but not validated, including an increased resistance of TP53 mutant cell lines to CENPF inhibition and increased

sensitivity of NRAS mutant cell lines to ERP44 inhibition.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Discovered and validated genetic dependencies for individual datasets.
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Figure 3. Identified robust genetic interactions. (A) Dot plot showing the robust genetic dependencies identified

for oncogenes. Each coloured circle indicates a robust genetic dependency, scaled according to the number of

dataset pairs it was validated in. The most significant genetic dependency (lowest FDR in a validation set) for each

driver gene is labelled. Oncogenes are sorted by the number of robust dependencies and the total number of

robust genetic dependencies for each driver gene is shown in parentheses. (B) Example of a validated oncogene

Figure 3 continued on next page
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that protein–protein interaction pairs are more likely to be significant hits in one dataset and even

more likely to be reproduced across multiple datasets, suggesting this might be a feature of robust

genetic interaction effects.

We noted that a large number (n = 132) of robust genetic interactions involved TP53, presumably

as a result of the high number of TP53 mutant tumour cell lines in the datasets (and its high mutation

frequency in human cancer) and the associated increased statistical power to detect TP53-related

genetic interactions. We therefore considered whether the significant number of TP53-related

genetic interactions in our dataset could confound our analyses, especially as TP53 is also associated

with a disproportionately high number of protein interactions (>1700 medium confidence interactors

in the STRING database alone, compared to a median of 37 medium confidence interactions across

all proteins). However, even after excluding genetic interactions involving TP53, the observation that

robust genetic interactions were enriched in protein–protein interaction pairs was still evident

(Figure 5B); known protein interaction pairs were more likely to be identified as significant genetic

interactions in one screen (OR = 3.8, p<2�10�16) and among the significant genetic interactions dis-

covered in one screen, those involving protein–protein interaction pairs were more likely to be

reproduced in a validation screen (OR = 9.3, p<2�10�16). The same effects were observed when

considering genetic interactions observed at different false-discovery rate (FDR) thresholds (Fig-

ure 5—figure supplement 1A,B) and using different sources of protein–protein interaction data

(Figure 5—figure supplement 1C,D,E, Supplementary file 5; Alanis-Lobato et al., 2017; Chatr-

Aryamontri et al., 2015; Huttlin et al., 2020).

Previous work has demonstrated that the protein–protein interaction networks aggregated in

databases are subject to significant ascertainment bias – some genes are more widely studied than

others and this can result in them having more reported protein–protein interaction partners than

other genes (Rolland et al., 2014). As cancer driver genes are studied more widely than most genes,

they may be especially subject to this bias. To ensure the observed enrichment of protein–protein

interactions among genetically interacting pairs was not simply due to this ascertainment bias, we

compared the results observed for the real STRING protein–protein interaction network with 100

degree-matched randomised networks and again found that there was a higher than expected over-

lap between protein–protein interactions and both discovered and validated genetic interactions

(Figure 5—figure supplement 2).

The increased reproducibility of genetic interactions associated with protein–protein interactions

across different genetic perturbation screen datasets could have two distinct causes - increased

reproducibility across distinct technologies or libraries (e.g. CRISPR/shRNA) or increased reproduc-

ibility/robustness of genetic interactions in cell line panels with distinct molecular backgrounds. To

test the former possibility, we repeated our discovery/validation approach but focused on the set of

cell lines that were common to different genetic perturbation screen datasets. Using this approach,

the molecular backgrounds (i.e. cell lines) tested were the same, but the screening approach or

library used differed. Upon doing this, we found that genetic interactions between gene pairs whose

Figure 3 continued

addiction – ERBB2 amplified cells are sensitive to ERBB2 inhibition. Left shows the discovery dataset (SCORE) and

right shows the validation dataset (AVANA). (C) Dot plot showing the robust genetic interactions identified for all

driver genes. Each coloured circle indicates a robust genetic interaction, scaled according to the number of

dataset pairs it was validated in. The most significant genetic interaction (lowest FDR in a validation set) for each

driver gene is labelled. Drivers are sorted by the number of robust interactions and the total number of robust

genetic interactions for each driver gene is shown in parentheses. TP53 (132 robust genetic interactions) has been

excluded for clarity, as have all self-self dependencies. (D) Examples of known genetic interactions identified from

the integrated analysis, including an increased sensitivity of PTEN mutant tumour cell lines to PIK3CB inhibition

and increased resistance of TP53 mutant tumour cell lines to MDM2 inhibition. Top row shows the data used to

discover the interactions (DEPMAP dataset) while the bottom row shows the data used to validate the interactions

(AVANA dataset with cell lines from DEPMAP excluded). (E) Synthetic lethal interactions involving paralog pairs.

Top row shows the data used to discover the interactions (DRIVE dataset) while the bottom row shows the data

used to validate the interactions (AVANA dataset with cell lines from DRIVE excluded).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Reproducible genetic dependencies include oncogene addictions.
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protein products physically interact were significantly more reproducible across studies (Figure 5C,

OR = 6.1 and p<2�10�10 when compared to discovered genetic interactions) (Supplementary file

5). To test reproducibility using the same screening approach across molecularly distinct cell lines,

we artificially split individual datasets into non-overlapping discovery and validation sets of cell lines.

Again, we found that genetic interactions between gene pairs whose protein products physically

interact were more reproducible across distinct cell line panels (Figure 5D, OR = 8.0 and

Figure 4. Robust genetic interactions involving RB1 and BRAF recapitulate pathway relationships. (A) Simplified

RAS/RAF/MEK/ERK pathway diagram. Protein names (e.g. MEK) are shown inside nodes, while associated gene

names are shown adjacent (e.g. MAP2K1). Nodes are coloured according to their association with BRAF mutation -

blue indicates increased sensitivity of BRAF mutant cell lines, yellow indicates increased resistance. (B) Boxplots

showing selected genetic interactions associated with BRAF mutation. (C) Simplified Rb pathway diagram,

highlighting robust genetic interactions involved in the Rb pathway. (D) Boxplots showing selected genetic

interactions associated with RB1 alteration.
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p<1�10�12 when compared to discovered genetic interactions) (Supplementary file 5). We there-

fore concluded that genetic interactions supported by protein–protein interactions were more repro-

ducible across different screening approaches and across distinct cell line contexts, suggesting that

these interactions are, overall, more robust.

Prioritising robust synthetic lethal interactions from chemogenetic
screens
As an alternative to genetic perturbation screening in large cell line panels, genetic interactions can

also be identified using chemogenetic screens, where loss-of-function screens are performed in the

presence and absence of specific small molecule inhibitors whose targets are relatively well defined.

Figure 5. Robust genetic interactions are enriched in protein–protein interaction pairs. (A) Barchart showing the

percentage of protein–protein interacting pairs observed among different groups of gene pairs. The groups

represent all gene pairs tested, gene pairs found to be significantly interacting in at least one screen (FDR < 20%),

and gene pairs found to reproducibly interact across multiple screens (i.e. a discovery and validation screen). Stars

(*) indicate significant differences between groups, all significant at p<0.001 using Fisher’s Exact Test. Odds ratios

and p-values are provided in Supplementary file 5. (B) As A but with interactions associated with TP53 removed.

(C) As B but here the discovery and validation sets contain the same cell lines screened in different studies (e.g.

‘AVANA
T

DEPMAP’ as discovery and ‘DEPMAP
T

AVANA’ as validation). Consequently, reproducibility here

means ‘technical reproducibility’ using different screening platforms. (D) Similar to B but here the discovery and

validation sets contain single datasets partitioned into non-overlapping cell line sets (e.g. ‘AVANA \ DEPMAP’ as

discovery and ‘AVANA
T

DEPMAP’ as validation). Consequently, reproducibility here means ‘genetic robustness’ -

the same association between gene pairs is observed across distinct genetic backgrounds.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Robust genetic interactions are enriched in protein–protein interaction pairs at different

thresholds and using different databases.

Figure supplement 2. Genetic interactions are more enriched in real protein–protein interaction networks than

randomised networks.
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Based on the observations made earlier, we hypothesised that genetic interactions identified in che-

mogenetic screens that involved genes whose protein products physically interact with the target of

the inhibitor should both be more likely to be identified as genetic interaction partners in one screen

and also more likely to be reproduced across multiple screens (i.e. to be more robust). To test this

hypothesis, we analysed the results of a recent chemogenetic screen performed to identify genes

whose loss is synthetic lethal with ATR inhibition (Wang et al., 2019). In this study, genome-wide

CRISPR-Cas9 screens in three cell lines from different histologies (breast, kidney, colon) were used

to identify genes whose inhibition is selectively essential in the presence of a small molecule ATR

kinase inhibitor (Vendetti et al., 2015; Wang et al., 2019; Figure 6A).

As predicted, we found that protein interaction partners of ATR are more likely than random

genes to be identified as a significant synthetic lethal interactor of ATR in at least one cell line

Figure 6. Reproducible ATR synthetic lethal interactions are enriched in ATR protein–protein interaction partners.

(A) Workflow - synthetic lethal interactions from CRISPR-Cas9 screens in three cell lines (Wang et al., 2019) were

compared to identify reproducible synthetic lethal partners. These genes were then compared with known ATR

protein–protein interaction partners from the STRING database. (B) Bar chart showing the percentage of ATR

protein interaction partners observed in different groups of genes. Genes are grouped according to whether they

were identified as an ATR synthetic lethal partner in 0, 1, 2, or 3 cell line screens. Comparisons between all pairs of

groups are significant at p<0.001 (Fisher’s exact test) except for the comparison between genes that were hits in 2

and 3 cell lines (p=0.06).
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(Figure 6B). Furthermore, we found that among the synthetic lethal interactions identified in at least

one cell line, those involving known ATR protein interaction partners were significantly more likely to

be reproduced in a second or even third cell line (Figure 6B). This suggests that, of the candidate

genes identified in one screen, those that encode protein–protein interaction partners of ATR are

significantly more likely to validate in additional contexts than genes with no known functional rela-

tionship to ATR.

Prioritising robust synthetic lethal interactions involving passenger
gene alterations
In addition to alterations of cancer driver genes, tumour cells typically harbour genetic alterations of

large numbers of ‘passenger’ genes. Although these genes may not facilitate tumourigenesis or pro-

mote cancer cell growth, their alteration may still impart genetic vulnerabilities upon tumour cells.

Indeed, multiple synthetic lethal interactions have been identified involving passenger genes that

exhibit recurrent copy number loss in cancer cells due to their chromosomal proximity to tumour

suppressor genes lost via loss-of-heterozygosity (Kryukov et al., 2016; Marjon et al., 2016;

Mavrakis et al., 2016; Muller et al., 2012; Muller et al., 2015). The space of genetic interactions to

test involving passenger gene alterations is much larger than that involving driver genes, as nearly

every gene in the genome is either mutated or deleted in some cancer context. In addition, passen-

ger genes are typically altered at frequencies lower than for driver genes and therefore the statistical

power to identify genetic interactions associated with their alteration is somewhat reduced. With

these issues in mind, we reasoned that protein–protein interaction maps might help narrow the

search space considerably and thus reduce the burden of multiple hypothesis testing. For all passen-

ger genes that were recurrently lost in at least ten tumour cell lines, either through homozygous

deletion or loss-of-function mutation, we searched for genetic interactions with their protein–protein

interaction partners using the same discovery and validation approach previously used for driver

genes. In total we tested 47,781 interactions involving 2,972 passenger genes and 2149 selectively

lethal genes. To perform an all-against-all test without filtering based on protein–protein interactions

would have required more than six million tests, significantly increasing the burden of multiple-

hypothesis testing. At an FDR of 20% we found 11 robust genetic interactions involving passenger

gene alterations (Supplementary file 7). To assess whether this is more than would be expected by

chance we randomly sampled 47,781 gene pairs from the same search space 100 times. The median

number of robust genetic interactions identified amongst these randomly sampled gene pairs was 1

(mean 1.27, min 0, max 6) suggesting that the 11 robust genetic interactions observed among pro-

tein–protein interacting pairs was more than would be expected by chance. Three of the robust

interactions involve genes frequently deleted with the tumour suppressor CDKN2A (CDKN2B and

MTAP) and recapitulate known associations with CDKN2A. A further two genetic interactions involve

a single chromosomal region (19p21.3) containing two interferon genes (IFNB1 and IFNW1) which

are frequently deleted together and consequently these two interactions really represent a single

association (an increased sensitivity to thrombopoietin receptor MPL). Of the six remaining genetic

interactions identified, four represent examples of paralog lethalities – loss of one member of a

paralog pair is associated with increased sensitivity to the inhibition of the other member. RPL22

loss was associated with increased sensitivity to its paralog RPL22L1, TIMM17B with its paralog

TIMM17A, DDX17 with its paralog DDX5, and VPS4B with its paralog VPS4A. We selected two of

these robust synthetic lethal interactions for further validation – VPS4B/VPS4A and DDX17/DDX5.

VPS4A and VPS4B are highly sequence similar whole genome duplicates with protein sequence

identity of 81%. Both proteins can form a complex with the Vacuolar protein sorting-associated pro-

tein VTA1 (Huttlin et al., 2017) and are involved in endosomal trafficking. VPS4B is located at

18q21 and is frequently deleted with the tumour suppressor SMAD4, explaining the relatively high

frequency of loss of VPS4B in cancer. Previous analysis of the DRIVE shRNA dataset identified an

association between VPS4B copy number loss and VPS4A sensitivity (McDonald et al., 2017). Here

we find evidence of this association in two additional datasets – AVANA and SCORE (Figure 7A).

Although this association is robust, it does not establish a causal link between VPS4B loss and

VPS4A sensitivity. Indeed, there are 39 protein-coding genes on chromosome 18 located between

SMAD4 and VPS4B, any one of which could cause sensitivity to VPS4A inhibition. To verify that

VPS4B is the cause of VPS4A sensitivity we transfected isogenic knockouts of either VPS4A and

VPS4B with siRNA smartpools targeting either VPS4A or VPS4B and found that, consistent with a

Lord et al. eLife 2020;9:e58925. DOI: https://doi.org/10.7554/eLife.58925 12 of 23

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.58925


negative genetic interaction between the two genes, compared to wildtype parental cells VPS4A

knockout cells were more sensitive to siRNA targeting VPS4B and VPS4B knockout cells were more

sensitive to siRNA targeting VPS4A (Figure 7B, Supplementary file 8).

Like VPS4A and VPS4B, DDX5 and DDX17 are widely conserved highly sequence similar whole

genome duplicates (protein sequence identity 69%). They are DEAD box family RNA helicases that

have multiple roles in both transcription and splicing; they act as coregulators for multiple transcrip-

tion factors and also function as components of the spliceosome (Dardenne et al., 2014; Fuller-

Pace, 2013). A direct protein–protein interaction between the two genes has also been reported

(Hegele et al., 2012; Huttlin et al., 2017). DDX17 is located at 22q12 in close proximity to the

tumour suppressor MYH9, potentially explaining its recurrent deletion in tumour cell lines. We identi-

fied an association between DDX17 loss and DDX5 sensitivity in the AVANA CRISPR dataset and val-

idated this association in the DRIVE shRNA dataset (Figure 7C). As with VPS4A/VPS4B, to verify that

DDX17 loss is the cause of DDX5 sensitivity we transfected isogenic knockouts of either DDX17 and

DDX5 with siRNA smartpools targeting either DDX5 or DDX17. We found that, consistent with a

negative genetic interaction between the two genes, compared to wildtype parental cells DDX17

knockout cells were more sensitive to siRNA targeting DDX5 and DDX5 knockout cells were more

sensitive to siRNA targeting DDX17 (Figure 7D, Supplementary file 8).

Discussion
While the reproducibility of pharmacogenomic screens in cancer cell lines has been much

discussed (Cancer Cell Line Encyclopedia Consortium and Genomics of Drug Sensitivity in Cancer

Consortium, 2015; Haibe-Kains et al., 2013; Niepel et al., 2019), relatively little attention has

been paid to the reproducibility of results from large-scale genetic screens in cell lines. Analyses of

Figure 7. Robust synthetic lethalities associated with passenger gene loss. (A) Boxplots showing the association

between VPS4B loss and VPS4A sensitivity in the discovery dataset (DRIVE) and two validation datasets (AVANA

and SCORE). (B) Mean viability of HAP1 cells treated with siRNA smartpools targeting VPS4A or VPS4B. Individual

data points are shown as black dots. Data are normalized within each cell line such that the mean viability of cells

treated with a negative control (non-targeting scrambled siRNA) is equal to one and the mean viability treated

with a positive control (siRNA smartpool targeting the broadly essential PLK1 gene) is equal to 0. P-values from

two-sided heteroscedastic T-tests. (C) Boxplots showing the association between DDX17 loss and DDX5 sensitivity

in the discovery dataset (AVANA) and the validation dataset (DRIVE). (D) Mean viability of HAP1 cells treated with

siRNA smartpools targeting DDX5 or DDX17, normalization and statistics as per B.

Lord et al. eLife 2020;9:e58925. DOI: https://doi.org/10.7554/eLife.58925 13 of 23

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.58925


the pharmacogenomic screen datasets have primarily focused on reproducibility in a very strict sense

- that is quantifying the extent to which the same drug elicits the same response in the same cell line

when assayed across different sites (Niepel et al., 2019). In some cases these analyses have been

extended to quantify the extent to which the same associations between biomarkers and drugs can

be observed across the same cell line panels assayed in different experiments (Cancer Cell Line

Encyclopedia Consortium and Genomics of Drug Sensitivity in Cancer Consortium, 2015). Here

we were interested in reproducibility in a much broader sense and sought to identify genetic interac-

tions that could be reproduced both across distinct experiments and across distinct cell line panels,

that is interactions that are robust to genetic and molecular heterogeneity. We developed an

approach to identify these robust genetic interactions and used it to identify a set of 220 robust

genetic interactions associated with cancer driver genes. We found that these robust genetic interac-

tions are enriched among gene pairs whose protein products physically interact, suggesting a means

by which we might prioritise the most promising candidates from screens for follow on studies.

We do not claim that our set of robust genetic interactions is comprehensive, as there are many

reasons why real robust genetic interactions may not be identified by our approach. There are many

driver genes that we have not included in our analysis because they are infrequently mutated in the

datasets studied. Consequently, we can report no interactions for these genes. We have also

focussed only on identifying interactions associated with mutation or copy number changes. There

are likely to be dependencies associated with altered gene/protein expression that will be missed by

this approach. Furthermore, for the genes that we do analyse, it is likely that some real interactions

are not detected due to a lack of statistical power. Finally, of the dependencies identified in a dis-

covery screen but absent in a validation screen, false negatives due to reagents with poor gene tar-

geting ability likely play a significant role (Kaelin, 2012).

We have exclusively focussed on identifying dependencies that are evident across panels of cell

lines from multiple cancer types (‘pan-cancer dependencies’). It is likely that there are robust depen-

dencies only evident within specific cancer types, but it is difficult to use our approach to identify

them due to the restricted number of cell lines available for each cancer type. Even with a relatively

common mutation (e.g. KRAS mutation in non-small cell lung cancer) it is challenging to partition the

available cell lines into distinct discovery and validation sets while maintaining statistical power to

identify potential dependencies. This issue may be alleviated by efforts to create large numbers of

new tumour cell lines (Boehm and Golub, 2015) or through using isogenic models for discovery and

cell line panels for validation (Ryan et al., 2018).

Many published synthetic lethal screens have focussed on identifying new drug targets for

‘undruggable’ oncogenes such as MYC and RAS (reviewed in Cermelli et al., 2014 and Down-

ward, 2015 respectively). The rationale for such studies is that the oncogene addiction itself cannot

be exploited directly and consequently a synthetic lethal approach is needed. However, here we

found that for all oncogenes studied the most significant reproducible dependency identified was an

oncogene addiction (Figure 3A). This suggests that any synthetic lethal interactions that are identi-

fied for oncogenes will likely be of a smaller effect size or operate in a more restricted context than

the oncogene addiction itself. Previous work has suggested this to be true of

KRAS (McDonald et al., 2017) but here we find that it appears to be a general property of all onco-

genes studied. This implies that wherever possible, direct targeting of oncogenes might be more

therapeutically effective than exploiting oncogene-related synthetic lethal effects.

Our approach to identify robust genetic dependencies involving cancer driver genes is unbiased

in the sense that we did not incorporate prior knowledge of functional relationships to identify candi-

date gene pairs to test. Nonetheless, many of the robust synthetic lethalities identified reflect known

biology. In particular, for each of the well-studied tumour suppressors ARID1A, SMARCA4 and

PTEN the most significant robust synthetic lethal interaction we identified has previously been

reported in the literature. For ARID1A, its known synthetic lethal partner ARID1B was the only robust

candidate interaction identified while for PTEN and SMARCA4 their established synthetic lethal part-

ners (PIK3CB and SMARCA2 respectively) are the most significant robust hits by a large margin

(Figure 3C). As with oncogenes, this suggests that if novel single gene vulnerabilities for these driv-

ers are to be discovered, they may have a smaller effect size or operate in a more restricted setting.

In budding and fission yeast, multiple studies have shown that genetic interactions are enriched

among protein–protein interaction pairs and vice-versa (Costanzo et al., 2010; Kelley and Ideker,

2005; Michaut et al., 2011; Roguev et al., 2008). Pairwise genetic interaction screens in individual
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mammalian cell lines have also revealed an enrichment of genetic interactions among protein–pro-

tein interaction pairs (Han et al., 2017; Roguev et al., 2013). Our observation that discovered

genetic interactions are enriched in protein–protein interaction pairs is consistent with these studies.

However, these studies have not revealed what factors influence the conservation of genetic interac-

tions across distinct genetic backgrounds, that is what predicts the robustness of a genetic interac-

tion. In yeast, the genetic interaction mapping approach relies on mating gene deletion mutants and

consequently the vast majority of reported genetic interactions are observed in a single genetic

background (Tong et al., 2001). In mammalian cells, pairwise genetic interaction screens across mul-

tiple cell lines have revealed differences across cell lines but not identified what factors influence the

conservation of genetic interactions across cell lines (Shen et al., 2017). While variation of genetic

interactions across different strains or different genetic backgrounds has been poorly studied, previ-

ous work has analysed the conservation of genetic interactions across species and shown that

genetic interactions between gene pairs whose protein products physically interact are more highly

conserved (Roguev et al., 2008; Ryan et al., 2012; Srivas et al., 2016). Our analysis here suggests

that the same principles may be used to identify genetic interactions conserved across genetically

heterogeneous tumour cell lines. Previous work has also shown that genetic interactions between

gene pairs involved in the same biological process, as indicated by annotation to the same gene

ontology term, are more highly conserved across species (Ryan et al., 2012; Srivas et al., 2016).

Similarly, genetic interactions that are stable across experimental conditions (e.g. in the presence

and absence of different DNA damaging agents) are more likely to be conserved across species

(Srivas et al., 2016). Although we have not tested them here, these additional features predictive of

between-species conservation may also be predictive of robustness to genetic heterogeneity. Our

set of robust genetic interactions may serve as the starting point for such analyses and may also

serve as a training set for computational approaches to predict synthetic lethality (Jerby-

Arnon et al., 2014).

Our finding that the robust genetic interactions associated with some driver genes can be inter-

preted in terms of the signalling pathway that the driver gene functions in suggests that pathway

structure may also provide information on robustness. For example, it seems reasonable to hypothe-

sise that synthetic lethal proteins that are in close vicinity in a pathway are more likely to exhibit a

robust synthetic lethal than those that are more distantly connected. However, to allow such a

hypothesis to be tested, we believe the annotation of molecular pathways should be somewhat

more reliable and the set of experimentally-validated robust genetic interactions much larger.

Our results suggest that knowledge of protein–protein interactions could be used to improve the

design and analysis of loss-of-function screens for synthetic lethal interactions. We have demon-

strated the utility of incorporating such prior knowledge for identifying robust synthetic lethal inter-

actions from genome-wide chemogenetic screens. We have also demonstrated that protein–protein

interactions can aid the identification of genetic interactions associated with passenger gene altera-

tions, where statistical power is limited due to relatively infrequent alterations and the number of

potential interactions to test is enormous. An alternative to these approaches, where knowledge of

protein–protein interactions is used after the screen has already been performed, would be to

screen target libraries for specific driver genes based on their known protein interaction partners.

Regardless of the approach used to identify candidate synthetic lethal interactions in a large-scale

screen, our results suggest that candidates supported by a protein–protein interaction should be pri-

oritised for follow on study as they are more likely to be robust to the genetic heterogeneity

observed in tumour cells.

Materials and methods
All data analysis was performed using Python 3.7 (RRID:SCR_008394), Pandas 0.24 (McKinney, 2011)

(RRID:SCR_018214) and StatsModels 0.9.0 (Seabold and Perktold, 2010) (RRID:SCR_016074).

Loss of function screens
Different scoring systems have been developed for calculating ‘gene level’ sensitivity scores from

loss-of-function screens performed with multiple gene targeting reagents per gene (i.e. shRNAs or

gRNAs). For the analysis of all loss-of-function screens we used the original authors’ own preferred

approaches. CERES sensitivity scores (Meyers et al., 2017) for AVANA (release 18Q4) were

Lord et al. eLife 2020;9:e58925. DOI: https://doi.org/10.7554/eLife.58925 15 of 23

Research article Cancer Biology Computational and Systems Biology

https://scicrunch.org/resolver/SCR_008394
https://scicrunch.org/resolver/SCR_018214
https://scicrunch.org/resolver/SCR_016074
https://doi.org/10.7554/eLife.58925


obtained from the DepMap portal (https://depmap.org/portal/download/) (RRID:SCR_017655),

while DEMETER v2 gene sensitivity scores for the DEPMAP shRNA screen (Tsherniak et al., 2017)

were obtained from the same resource. For the DEPMAP screen, some genes were only screened in

a subset of cell lines and these were excluded from all analyses. Quantile normalized

CRISPRcleaned (Iorio et al., 2018) depletion log fold changes for Project SCORE (Behan et al.,

2019) were obtained from the Project SCORE database (https://score.depmap.sanger.ac.uk/).

ATARIS (Shao et al., 2013) scores for the DRIVE dataset (McDonald et al., 2017) were obtained

from the authors. 28 of the 398 cell lines screened in DRIVE had missing gene scores for ~25% of

genes screened and these cell lines were excluded from further analysis. All screens were mapped

to a common cell line name format (that followed by the Cancer Cell Line

Encyclopaedia [Barretina et al., 2012]) using the Cell Model Passports resource where

appropriate (van der Meer et al., 2019).

Identifying selectively lethal genes
Similar to previous work (McDonald et al., 2017; Tsherniak et al., 2017), to reduce the burden of

multiple hypothesis testing we focused our analysis on genes whose inhibition appeared to cause

growth defects in subsets of the cancer cell lines screened. That is, rather than testing for associa-

tions with genes whose inhibition was always lethal or never lethal, we focused our analyses on

genes that could be associated with distinct sensitive and resistant cell line cohorts. We first identi-

fied a set of ‘selectively lethal’ genes using the AVANA dataset (Meyers et al., 2017) - those with a

gene sensitivity score <�0.6 in at least 10 cell lines but no more than 259 cell lines (half of the

screened cell lines). We augmented this with a list of 65 ‘outlier genes’ identified by the authors of

the DRIVE study as having a skewed distribution suggesting distinct sensitive and resistant

cohorts (McDonald et al., 2017). Finally from the combined list we removed genes known to be

commonly essential in cancer cell lines (Hart et al., 2017). This resulted in a set of 2470 selectively

lethal genes (Supplementary file 2) which were used for all association analyses.

Identifying gene alterations from copy number and exome profiling
For all cell lines we obtained sequencing data (CCLE_DepMap_18q3_maf_20180718.txt) and copy

number profiles (public_18Q3_gene_cn_v2.csv) from the DepMap portal. These datasets contain

integrated genotyping data from both the Cancer Cell Line Encyclopedia and GDSC

resources (Barretina et al., 2012; Cancer Cell Line Encyclopedia Consortium and Genomics of

Drug Sensitivity in Cancer Consortium, 2015; Iorio et al., 2016). We used this to identify likely

functional alterations in a panel of cancer driver genes (Vogelstein et al., 2013) restricting our analy-

sis to those genes that were subject to targeted sequencing as part of the Cancer Cell Line Encyclo-

pedia (Barretina et al., 2012).

For most oncogenes we considered the gene to be functionally altered if it contained a protein

altering mutation at a residue that is recurrently altered in either the COSMIC database or the Can-

cer Genome Atlas. For a small number of oncogenes (ERBB2, CCND1, MDM2, MDM4) we consid-

ered them to be functionally altered only if they were amplified. For all tumour suppressors we

considered all protein-coding mutations and homozygous deletions to be functional alterations. We

used a threshold of �1.28 to call homozygous deletions. The matrix of functional alterations to driver

genes is presented in Supplementary file 1.

To identify loss-of-function alterations to passenger genes, a similar pipeline was used. However

the driver genes from Vogelstein et al., 2013 were excluded from analysis and only clear loss-of-

function alterations were considered to be functional. The matrix of gene loss in passenger genes is

presented in Supplementary file 6.

Identifying genetic dependencies in individual datasets
We wished to identify associations between driver gene mutations and gene sensitivity scores that

were not confounded by tissue specific gene sensitivity effects (e.g. SOX10 sensitivity scores can be

naively associated with BRAF mutational status because SOX10 is essential in melanoma cell lines

and BRAF mutation is common in melanoma). Thus, we wished to model gene sensitivity after first

accounting for tissue type. To this end, associations between individual driver genes and gene sensi-

tivity scores were identified using an ANOVA model that incorporated both tissue type and
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mutational status as covariates, similar to the method previously developed for identifying pharma-

cogenomic interactions in cancer cell line panels (Cokelaer et al., 2018; Iorio et al., 2016). As

recent work (Behan et al., 2019) has highlighted that some dependencies (e.g. WRN) can be associ-

ated with microsatellite instability rather than individual driver genes, we also incorporated microsat-

ellite instability (Ghandi et al., 2019) as a covariate in our model. The model had the form

‘gene_X_sensitivity ~MSI_status + C(Tissue) + driver_gene_Y_status’ and was used to test the associ-

ation between each recurrently mutated driver gene Y and all gene sensitivity scores X assayed in a

given dataset. Driver genes were included in this analysis if they were functionally altered in at least

five cell lines in the dataset being analysed. Correction for multiple hypothesis testing was per-

formed using the Benjamini and Hochberg, 1995 false discovery rate.

Identifying genetic dependencies common to multiple datasets
When comparing a pair of datasets, we used one dataset as a discovery dataset and a second as a

validation set, as outlined in Figure 1C. The discovery analysis was limited to the set of interactions

that could be tested in both datasets, that is associations between the set of sensitivity scores for

genes screened in both studies and the set of driver genes recurrently altered in both studies. An ini-

tial set of genetic interactions was identified in the discovery dataset at a specific FDR threshold and

these associations were then tested in the validation set. We considered interactions to be repro-

duced in the validation dataset if: (1) the FDR was less than the threshold; (2) the uncorrected

p-value was <0.05 and; (3) the sign of the association (sensitivity/resistance) was the same in both

discovery and validation set. A FDR of 0.2 was used for all analysis presented in the main text but

additional FDR thresholds (0.1, 0.3) were tested to ensure that all findings were robust to the exact

choice of FDR (Figure 5—figure supplement 1).

Pathway enrichment of genetic dependencies
Pathway enrichment was assessed using gProfiler (Raudvere et al., 2019) with KEGG

(Kanehisa et al., 2017) and Reactome (Jassal et al., 2020) as annotation databases and the selec-

tively lethal genes as the background list.

Protein–protein interactions
Protein–protein interactions were obtained from STRING v10.5 (Szklarczyk et al., 2015) (RRID:SCR_

005223), BIOGRID 3.5.170 (Chatr-Aryamontri et al., 2015) (RRID:SCR_007393), HIPPIE v2.0 (Alanis-

Lobato et al., 2017)(RRID:SCR_014651) and BioPlex 3.0 (Huttlin et al., 2020) (RRID:SCR_016144).

Results in the main text make use of medium confidence STRING interactions (STRING integrated

score >0.4). However, to ensure robustness to the thresholds shown, all analyses were repeated for

the full set of HIPPIE, BioGRID and BioPlex interactions (Figure 3—figure supplement 1). NetworkX

version 2.2 (Hagberg et al., 2008)(RRID:SCR_016864) was used to create 100 randomised versions

of the medium confidence STRING interaction network analysed in Figure 5—figure supplement 2.

siRNA experiments
HAP1 cell lines were obtained from Horizon Discovery: HAP1_WT (C631), HAP1_VPS4A_ KO

(HZGHC004623c005), HAP1_VPS4B_KO (HZGHC006889c011), HAP1_DDX5_KO

(HZGHC006136c012) and HAP1_DDX17_KO (HZGHC007221c009). Cells were cultured in IMDM

(10–016-CV; Corning) supplemented with 10% FBS (10270–106; Thermo Fisher Scientific). ON-TAR-

GETplus siRNA SMARTpools targeting VPS4A (L-013092-00-0005), VPS4B (L-013119-00-0005),

DDX5 (L-003774-00-0005), DDX17 (L-013450-01-0005), PLK1 (L-003290-00-0005) and a non-target-

ing scramble control (D-001810-10-20) were obtained from Dharmacon. HAP1 cells were seeded to

a density of 5000 cells per well of a 96-well plate and 5 nM siRNA was transfected with Lipofect-

amine 3000 (L3000015; Thermo Fisher Scientific) in Opti-MEM I Reduced Serum Medium (31985070;

Thermo Fisher Scientific). Cell viability was measured 72 hr after siRNA transfection using CellTiter-

Glo Luminescent Cell Viability Assay (G7570; Promega). The 96 well plates were read using a Spec-

traMax M3 Microplate Reader (Molecular devices). Viability effects for each siRNA targeting each

gene X in each cell line y were normalised using the following formula:

NormalisedViability (siRNA_Xy)=1 - (siCTRLy - siRNA_Xy) / (siCTRLy - siPLK1y) where siCTRLy is the

average of 3 measurements of non-targeting scramble control in cell line y and siPLK1y is the
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average of 3 measurements of an siRNA smartpool targeting PLK1 in cell line y. Raw and normalised

viability data are in Supplementary file 8.
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