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Abstract

Motivation: Imaging demonstrates that preclinical and human tumors are heterogeneous, i.e. a sin-

gle tumor can exhibit multiple regions that behave differently during both development and also in

response to treatment. The large variations observed in control group, tumors can obscure detection

of significant therapeutic effects due to the ambiguity in attributing causes of change. This can hinder

development of effective therapies due to limitations in experimental design rather than due to thera-

peutic failure. An improved method to model biological variation and heterogeneity in imaging sig-

nals is described. Specifically, linear Poisson modeling (LPM) evaluates changes in apparent diffu-

sion co-efficient between baseline and 72 h after radiotherapy, in two xenograft models of colorectal

cancer. The statistical significance of measured changes is compared to those attainable using a con-

ventional t-test analysis on basic apparent diffusion co-efficient distribution parameters.

Results: When LPMs were applied to treated tumors, the LPMs detected highly significant changes.

The analyses were significant for all tumors, equating to a gain in power of 4-fold (i.e. equivalent to

having a sample size 16 times larger), compared with the conventional approach. In contrast,

highly significant changes are only detected at a cohort level using t-tests, restricting their potential

use within personalized medicine and increasing the number of animals required during testing.

Furthermore, LPM enabled the relative volumes of responding and non-responding tissue to be

estimated for each xenograft model. Leave-one-out analysis of the treated xenografts provided

quality control and identified potential outliers, raising confidence in LPM data at clinically relevant

sample sizes.

Availability and implementation: TINA Vision open source software is available from www.tina-vi

sion.net.

Contact: paul.tar@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Preclinical experiments and early clinical studies are essential for

understanding the fundamental mechanisms driving the growth of

malignant tumors and for assessing potential anti-cancer effects of

new therapies (Clohessy and Pandolfi, 2015; Conway et al., 2014;

Gibbs, 2000). In general, assessments are made by measuring tumor

growth curves, by evaluating cell or plasma based assays or tissue
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pathology at one or more time points and by non-invasive serial as-

sessment by imaging. In all of these approaches, significance testing

is performed typically on small numbers of subjects (Clohessy and

Pandolfi, 2015; Workman et al., 2006). This can result in low statis-

tical power. This is especially true in cases where data are complex

and variable. The limitations of small sample sizes motivate the

need for efficient use of data.

Differences between groups (i.e. control versus treatment, or one

thearapy versus another) are most commonly assessed using t-tests,

analysis of variance (ANOVA) or correlation analyses, which have

long been available within statistical packages (Kibby, 1986). These

statistical approaches are used as standard within clinical and pre-

clinical work because they facilitate estimation of confidence inter-

vals, Z-scores and P-values. These are essential outputs for the

assessment of treatment responses. However, these methods assume

Gaussian distributed data, which can be impossible to corroborate

using the small sample sizes often used within studies. More sophis-

ticated modern pattern recognition approaches are experimentally

applied to biomedical data for the purposes of prediction (e.g. Xia

et al., 2017), image segmentation (e.g. Zeng et al., 2017) and

data mining (e.g. Zong et al., 2017), for example. However, they

do not generally provide conventional confidence assessments

(e.g. P-values) and are therefore restricted to preliminary proof-

of-concept rather than clinical use.

Tumors are biologically heterogeneous, leading to numerous

modes of data variability that complicate analysis (Bedard et al.,

2013; Heppner, 1984). Research studies using genomics (Alizadeh

et al., 2015), tissue pathology (Gurcan et al., 2009) or clinical imag-

ing (O’Connor et al., 2015) identify and quantify spatial heterogen-

eity and have shown that heterogeneity metrics might provide

prognostic and predictive biomarkers of clinical outcome. Typically,

studies measure the degree of heterogeneity within individual

tumors or identify regions with certain cell populations that may

mediate response to therapy and resistance (Gerlinger et al., 2012).

However, tumor heterogeneity can also be a practical problem for

studying cancer biology. In small preclinical and clinical studies,

substantial spatial variation can occur in control and treatment

group tumors. This variation can obscure detection of significant

biological effects of therapy, such that therapies with potential clin-

ical benefit may be inadvertently halted in the developmental pipe-

line. To mitigate against this, information must be accumulated over

larger sample sizes to boost statistical power or unwanted sources of

variability must be modeled.

Imaging studies generally adopt one of two approaches: one ap-

proach attempts to identify the geographic sub-regions that drive re-

sponse to therapy, subsequent resistance and relapse during

treatment failure. This requires solutions to the significant chal-

lenges of both image segmentation (to identify voxels with common

structural or biological features) and voxel-to-voxel registration be-

tween time points. Pattern recognition techniques are often applied

to solve these problems. In the presence of heterogenous control

variability, it could be argued that an adversarial deep learning ap-

proach could be applied to classify treatment-affected voxels by

learning the invariant characteristics of treatment, while ignoring

the confounding changes of normal development. However, a seg-

mented image derived through such an approach is not necessarily

the best starting point for determining overall treated volumes and

P-values for the significance of changes. Additionally, training a

deep learning system typically requires far more data than is avail-

able in our problem domain.

In a second approach, imaging data can be regarded as a sample

from a distribution, providing histograms where the spatial structure

of a tumor is disregarded (Just, 2014). However, the complexities

(e.g. non-Gaussian nature) of imaging data make it difficult to use

simple histogram parameters to quantify therapy-induced changes in

tumor biology (O’connor, 2017). In this approach, basic distribu-

tion parameters, such as normalization (e.g. volume of tumor),

mean values or the location of percentiles are often used in conjunc-

tion with t-tests, ANOVA, and so on. This results in a large amount

of information being discarded regarding the exact shape and behav-

ior of individual histograms.

Given the properties of our target data (histograms of Poisson

samples), we sought to use linear Poisson modeling (hereafter, LPM)

(Deepaisarn et al., 2017; Tar and Thacker, 2014; Tar et al., 2015)

to quantify biological variation and to model uncertainties associ-

ated with data samples acquired in clinically relevant imaging meth-

ods. LPMs can be considered as an extension to Gaussian mixture

modeling, Dempster (1977), where the Gaussian sub-distributions

are replaced with arbitrary non-parametric probability functions.

The probability mass functions (PMFs) required to approximate the

data are determined using an independent component analysis

(Comon, 1994), designed for Poisson samples. LPM is a pattern rec-

ognition method specifically for quantitative work, facilitating the

estimation of confidence, Z-scores and P-values.

We hypothesized that LPM would provide a method for assess-

ing the volume of change within individual tumors, yielding a more

efficient and sensitive method of detecting response to therapy, com-

pared to conventional cohort-based analysis of imaging data. This

benefit was anticipated since LPM cannot only model volumetric

changes—allowing estimates of the proportion of tumor changing

after therapy—but can also model the effect of unwanted biological

variation due to tumor growth and heterogeneity found in control

data. We hypothesized that this benefit would transform the poten-

tial for image-based analyses to assess the preclinical development

of novel therapeutics.

2 Materials and methods

Imaging data were acquiredfor two murine xenograft models of

human colorectal cancer (LoVo and HCT116) treated with either a

single high-dose fraction of radiotherapy (RT) or sham (control).

About 8 and 13 controls were used for LoVo and HCT116, respect-

ively. A futher 10 LoVo and 15 HCT116 treated tumors were

imaged. These sample sizes are typical of those found within small

preclinical trials. The MRI biomarker apparent diffusion co-efficient

(ADC) (Padhani et al., 2009) was derived for images at baseline and

72 h after RT or sham. The tumor regions within each image were

manually segmented by a clinical expert (coauthor JPB O’Connor),

and the distribution of ADC values within each tumor was sampled

into 2 D histograms, with one axis being ADC and the other being

time (t¼0 h and t¼72 h), thus recording the ADC distributions

pre- and post-treatment. Figure 1 shows example spatial distribu-

tions of such tumor data before histogramming.

As a benchmark for comparison to our method, a conventional

analysis was performed. Tumors were paired between baseline and

t¼72 h, with changes in volume, in mean ADC value and in inter-

quartile ranges computed. The per-tumor changes measured within

the control groups were compared to those measured within the

treatment groups using t-tests. Additionally, LPM was used to con-

struct a linear model of variability in the control cohorts, which

were then extended to include additional variability found within

the treatment cohorts. The fully trained models were fitted to both

the control and treatment groups to estimate the relative volumes
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associated with normal untreated tumor development and volumes

associated with treatment effects. Per-tumor significances were com-

puted, as well as cohort level significances, for comparison to the

conventional t-test analyses.

Studies were performed in compliance with the NCRI Guidelines

for the welfare and use of animals in cancer research (Workman

et al., 2010) and with licenses issued under the UK Animals

(Scientific Procedures) Act 1986 (PPL 40/3212) following local

Ethical Committee review.

2.1 Tumor implantation and monitoring
LoVo and HCT116 colorectal carcinoma cells were cultured in

RPMI 1640 medium supplemented with 10% heat inactivated fetal

calf serum (FCS) at 37�C in a humidified 5% CO2 incubator. Cells

were passaged every 2–3 days using TEG solution (0.25% trypsin,

0.1% EDTA and 0.05% Hanks’ balanced salt solution in PBS).

Tumor xenografts were initiated from 5 � 106 cells per mouse (in

0.1 mL serum-free culture medium) injected subcutaneous in female

nu/nu CBA mice aged 10 weeks old.

Tumor size was monitored using callipers and the formula for el-

lipsoid volume, V ¼ ðp=6ÞLWD, where L, W and D are the largest or-

thogonal dimensions of the ellipsoid. When tumors reached 300–400

mm3 in size, mice were randomized to sham or given tumor-localized

RT (single 10 Gy fraction) using a metal-ceramic MXR-320/36 X-ray

machine (320 kV, Comet AG, Switzerland). The RT was administered

under ambient conditions to restrained, non-anesthetized mice. The re-

strained mice were held in a lead-shielded support perpendicular to the

source. Irradiation was delivered at a dose rate of 0.75 Gy/min. Mice

were turned around halfway through the procedure to ensure a uni-

form tumor dose. Imaging was performed at baseline immediately

prior to RT and 72 h post RT along with calliper measurement of

tumor volume. After the second MRI scan, animals were killed hu-

manely by cervical dislocation without recovery from anesthesia.

2.2 MRI acquisition and analysis
Mice were anesthetized with isoflurane delivered through a nose

cone apparatus at 2 ml/min, in 100% oxygen gas as a carrier.

Respiration rate was monitored throughout the experiment by use

of an electronic respiratory monitor apparatus. A heated water bed

was provided to maintain the animals at constant temperature of

36�C throughout each scan. MRI was performed on a 7 T Magnex

instrument (Magnex Scientific Ltd, Oxfordshire, UK) interfaced to a

Bruker Avance III console and gradient system (Bruker Corporation,

Ettlingen, Germany), using a volume transceiver coil. Whole scan

time was approximately 25 min per animal.

Diffusion-weighted imaging (TR/TE¼2250/20 ms; a ¼ 90�;

b values 150, 500 and 1000 s/mm2 along one diffusion direction;

matrix 128 � 128 and FOV 2.56 � 2.56 cm; 15 contiguous slices of

0.6 mm thickness) was performed after localization with a T2-

weighted anatomical sequence (TR/TE¼2410/50; a ¼ 136:8�; ma-

trix 256 � 256 and FOV 2.56 � 2.56 cm; 15 contiguous slices of

0.6 mm thickness). ADC maps were generated by selecting a region

of interest on the lowest b value image. Voxel-wise values of ADC

(Supplementary data file) were calculated using in-house software

across the tumor using a least squares fitting routine for the equation

S ¼ S0e�bD, where S0 represents the signal intensity in the absence

of a diffusion sensitizing gradient, S is the signal intensity for a par-

ticular b value, b is the numerical value in s/mm2 and D is the appar-

ent diffusion coefficient (mm2/s).

To validate the ADC measurement in this protocol, measure-

ments were verified using an ice water phantom, consisting of an

inner chamber of ice water surrounded by a larger chamber of ice to

maintain the inner chamber water at approximately 0�C (Doblas

et al., 2015).

Baseline and change in tumor volume and ADC (mean value and

IQR) parameters were compared between control and treated

tumors using Student’s t-test for independent samples in IBM SPSS

Statistics v.22 (Armonk, NY). All tests were two-tailed. These tests

were performed and combined to provide comparison with the stat-

istics derived from LPM (see below). In all tests, P<0.05 was con-

sidered to indicate statistical significance. Corrections for multiple

comparisons were applied where necessary.

2.3 LPM of ADC data
A linear Poisson model describes a set of histograms (i.e. ADC distri-

butions) using a linear combination of PMFs, where each PMF rep-

resents some sub-component (e.g. a mode of variability/behavior) of

the signal:

HðADC; tÞ �
XNC

C

PðADC; tjCÞQC þ
XNT

T

PðADC; tjTÞQT ; (1)

where HðADC; tÞ is the histogram bin recording the frequency of

observed ADC values within range ADC at time t; C is a label indi-

cating a component of control behavior; T is a label indicating a

component of treatment behavior, as determined by the additional

variability within the treatment group, i.e. the behavior in treated

cases that cannot be accounted for already by control behavior; PðA
DC; tjCÞ and PðADC; tjTÞ are the probabilities of observing an

ADC value in range at time t from control behavior or treatment

behavior; and QC and QT are the quantities of each component in

the data. There are NC control components and NT treatment com-

ponents. Each component can broadly be considered as a type of tis-

sue development in control or treatment, corresponding to a mode

of heterogeneous variability. The more complex a tumor and its

Fig. 1. Example spatial distributions of ADC values in selected tumors.

Visually, HCT116 tumors are more complex and variable than LoVo tumors
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response to treatment, the greater the number of components the

tumor needs in its model.

Given a set of control tumors, i 2 f1;2; . . . ; SCg (where SC is the

control cohort sample size) and treated tumors, j 2 f1;2; . . . ; STg
(where ST is the treatment cohort sample size), an LPM is used to

provide likelihood solutions to PMFs and quantities. Estimation of

quantities and probabilities are achieved using expectation

maximization to optimize the following extended maximum

likelihood for control cohorts:

lnL ¼
X

i;ADC;t

ln
XNC

C

PðADC; tjCÞQCi

" #
HiðADC; tÞ �

X
C

QCi (2)

and the following for treatment cohorts:

lnL ¼
X

j;ADC;t

ln
XNC

C

P ADC; tjCð ÞQCj þ
XNT

T

PðADC; tjTÞQTj

" #
(3)

�HjðADC; tÞ �
X

C

QCj �
X

T

QTj:

Thus, the model is trained in two parts. Initially, NC terms are esti-

mated using only the control cohort as training data [Equation (2)].

Once the PMFs for control behavior have been learnt, these compo-

nents are automatically included as modes of behavior within the

treatment cohort. The additional NT components that describe the

extra variability expected due to treatment are then learnt using

the treatment cohort, keeping the original NC components as part of

the model [Equation (3)]. In this way, parts of a treated tumor’s ADC

distribution can be partitioned into quantities of responding and non-

responding behavior.

A model selection process identifies the optimum number of

LPM components required to describe the ADC distributions.

Multiple models are constructed with increasing numbers of compo-

nents, with the best fitting models being selected for use in subse-

quent analysis. The number of components required to describe

each class of response, i.e. NC for control and NC þNT for treat-

ment, is determined by adding additional components until the v2

per degree of freedom between LPM and ADC histograms reaches a

minimum, ideally at unity:

v2
D ¼

1

D

X
ADC;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðADC; tÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðADC; tÞ

p� �2
r2

ADC;t

; (4)

where D is the number of degrees of freedom and r2 is the variance

predicted on the residual. The square-roots are present to transform

the Poisson distributed histogram frequencies into Gaussian-like

variables to improve this figure of merit’s approximation to ideal v2

statistics, as described in Anscombe (1948).

Assuming independent Poisson errors (r2
H � H), LPMs provide

estimates of uncertainties by summing the effects of individual

Poisson bins into quantity error covariances. This is achieved using

error propagation. The error covariance can be further scaled by v2
D

(goodness-of-fit) computed from LPM-data residuals to boost errors

to better match actual distributions of true residuals, i.e. scaling fac-

tor that can be caused by the up-sampling of MRI data. A covari-

ance matrix for quantities, Q, can be estimated using

Cij ¼ v2
D

X
m

@Qi

@HðADC; tÞ

� �
@Qj

@HðADC; tÞ

� �
r2

H

� �
; (5)

where C is the error covariance matrix for the estimated quantities.

The statistical significance of treatment response is computed by

dividing the sum of treatment quantities
P

T QT by the estimated

error on that total quantity. This provides a Z-score, indicating how

many standard deviations from zero the response is estimated to be.

2.4 Model validation
The null hypothesis from which P-values are computed is that

behavior is consistent with control, and that control behavior is pre-

dictable. This behavior must generalize to unseen control data. In

contrast, treatment behavior only needs to be different from control.

The validity of this null hypothesis relies upon there being no signifi-

cant changes in independent non-treatment groups. We used a com-

bination of control and leave-one-out testing to provide technical

validation.

Treatment models were fitted to control training data to ensure

the measured effects of treatment were consistent with zero (with

error bars). Additionally, if control LPM is representative of typical

non-treated tumors, then their application to independent data

should yield equivalent results to data from which the models were

original estimated. A leave-one-out analysis was therefore per-

formed in which multiple models were constructed, with each con-

trol tumor being excluded in turn, before being assessed as an

independent sample. This leave-one-out strategy in control data en-

ables stringent testing to be performed in numbers of datasets that

are typical of those used in preclinical cancer imaging experiments

(Bernsen et al., 2015). This approach also protects against false-

positive results through quality control (i.e. representativeness test-

ing) of training data.

3 Results

3.1 Cohort volumetrics and summary ADC detect

RT response
Volume and basic ADC distribution parameters demonstrated that

significant growth inhibition was induced by RT in both xenograft

models at 72 h, relative to control. In both LoVo and HCT116, RT

reduced volume, increased mean ADC value and increased IQR of

the ADC distribution, relative to control. Treatment effects were de-

tected at the cohort level, as summarized in Table 1, reaching high

levels of significance (P<0.000001). The Z-scores and P-values

were computed from t-tests on the three parameters individually

(changes in volume, mean and IQR). The combined Z-score and

P-value values show the significances attainable when the three param-

eters are considered jointly, assuming each provides independence evi-

dence of change. As t-tests are applied to the group, individual tumor

change assessments are not possible using this method.

Table 1. Conventional t-test analysis

Measurement Z score P-value

LoVo vol. change 3.3 0.001

LoVo mean ADC change 3.5 0.0004

LoVo IQR change 2.0 0.041

LoVo combined 5.2 <0.000001

HCT116 vol. change 4.6 0.0008

HCT116 mean ADC change 4.3 0.0009

HCT116 IQR change 2.1 0.047

HCT116 combined 8.1 <0.000001

Note: The cohort level significances are 5.2 SD change and 8.1 SD change

for LoVo and HCT116, respectively. These figures should be compared to the

cohort level significances of Tables 2 and 3.

2628 P.D.Tar et al.

Deleted Text: ,
Deleted Text: L
Deleted Text: E
Deleted Text: Maximisation 
Deleted Text: optimise 
Deleted Text: E
Deleted Text: M
Deleted Text: L
Deleted Text: (
Deleted Text: )
Deleted Text: u
Deleted Text: u
Deleted Text: (
Deleted Text: )
Deleted Text: u
Deleted Text: :
Deleted Text: u
Deleted Text: u
Deleted Text: u
Deleted Text: generalises 
Deleted Text: u
Deleted Text: are
Deleted Text:  
Deleted Text: )
Deleted Text: ours
Deleted Text: summarised 
Deleted Text: <italic>p</italic>


3.2 LPM identifies the varying complexity of different

xenograft models
For each xenograft model, an LPM was constructed independently

and the number of model components was selected on the basis of

leave-one-out cross validation. This yielded three components to de-

scribe ADC distributions in the LoVo control tumors, with an add-

itional two required for the variability caused by treatment. An

equivalent and independent process was performed for the HCT116

tumors. This yielded four components in control tumors and an add-

itional five for treatment response.

The plots in Figures 2 and 3 show these results in detail in terms

of goodness-of-fits (v2
D) for models with different numbers of com-

ponents. We seek the number of components that gives the min-

imum. The best solutions are indicated with arrows: LoVo NC¼3

and NT¼2 (NC þNT ¼ 5 in the plot); HCT116 NC¼4 and NT¼5

(NC þNT ¼ 9 in the plot).

The HCT116 tumors are expected to be more complex than

LoVo, as they show a greater inter-quartile range of ADC values

and can be seen to be more heterogeneous upon visual inspection.

A more complex tumor is expected to require a greater number of

LPM components to be modeled. The LPM data indicate that the

HCT116 xenografts were more spatially complex than the LoVo

xenografts and that LPM can detect this differing level of tumor

complexity, which is expected of these particular tumors. The

greater number of components required to describe HCT116 tumors

reflects the higher variability that can be seen visually in Figure 1.

The ADC distributions associated with the extracted compo-

nents can be seen in Figures 4 and 5. Each component is a probabil-

ity distribution, showing the statistical correlations between ADC

values between the two time points. These correspond to the PðAD

C; tjTÞ and PðADC; tjCÞ parts of the model. The weighted sum of

these distributions describes the variability observed within the data.

Biologically, each component can be interpreted as a sub-population

of ADC values found within the tumors. The higher ADC values at

t¼72 are more probable, indicating greater diffusion due to less re-

stricted fluid movement.

3.3 LPM validation identifies outliers in control groups
We used control testing and a leave-one-out approach to validate

the ability of the model to distinguish data with different ADC dis-

tributions to ensure control growth was corrected accounted for.

Fig. 2. Model selection curves indicating necessary number of components to

describe control and treatment groups. Left: v2
D as a function of NC for LoVo.

Right: v2
D as a function of NC þNT for LoVo

Fig. 3. Model selection curves indicating necessary number of components to

describe control and treatment groups. Left: v2
D as a function of NC for

HCT116. Right: v2
D as a function of NC þNT for HCT116

Fig. 4. Estimated components (PMFS: P ðADC ; t jCÞ and P ðADC ; t jT Þ), one

color per component. Left and right plots indicate baseline and 72 h. Top:

LoVo control components. Bottom: LoVo treatment components

Fig. 5. Estimated components (PMFS: P ðADC ; t jCÞ and P ðADC ; t jT Þ), one

color per component. Left and right plots indicate baseline and 72 h. Top:

HCT116 control components. Bottom: HCT116 treatment components
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To do this, we applied fully trained models (i.e. leave-all-in) to both

LoVo and HCT116 control data, followed by reduced models where

each tumor in turn is excluded before being used as an independent

test data point (i.e. leave-one-out). Responses were computed in

each case with leave-all-in results plotted in the right of Figures 6

and 7. Leave-all-in and leave-one-out results are directly compared

in Tables 4 and 5.

A Z score is given by dividing the size of a response by 1 SD error

on that response. In cohorts of around 10, all control tumors would

be expected to have Z scores of <2. This was found for all but two

tumors (LoVo 4 and HCT116 12), with average Z scores from full

models of 1.05 for LoVo and 0.94 for HCT116. Differences

between alternative models (leave-all-in and each of the various

leave-one-out possibilities) were statistically equivalent, implying

that estimated volumes were the same, within limits of estimated

errors. These data show that the model performs as expected, cor-

rectly accounting for each control tumor distribution as being con-

structed of components from untreated voxel values.

The leave-one-out approach not only validates the LPM method

but also identifies outlier data in the control cohort. During full ana-

lysis LoVo control tumor 4 showed a Z score of 2.9 for estimated

treatment volume and HCT116 control tumor 12 showed a Z score

of 2.0. These increased to 5.2 and 3.5, respectively, for leave-one-

out analysis, implying differences from other control data. This

could be explained by the data being an atypical, yet otherwise

valid, control sample, which could have been better modeled using

additional training data. For the current study, we elected to leave

these data in the control group, to impose a ‘worst case scenario’ on

our data, since we are describing a new methodology. More reason-

ably, this can be explained by these two control tumors being

outliers.

Therefore, LPM with leave-one-out validation enables statistic-

ally robust identification of outliers in control data, which can be a

critical step in avoiding equivocal results in small low-powered pre-

clinical studies.

3.4 LPM quantifies the percentage responding volume

in each tumor
Non-responding tumor was defined by the sum of the control model

component volumes (
P

C QC) and responding tumor was defined by

the sum of the treated model component volumes (
P

T QT ). The

proportion of tumor changing with therapy was calculated, along

with error bars (right of Figs 6 and 7). All LoVo and HCT116

tumors treated with RT showed statistically significant volumes of

responding tumor, i.e. the responding volume was above zero, be-

yond the level expected by noise alone. For LoVo, proportion of vol-

ume responding to RT varied between 27.6 and 68.6% (median

responding volume 40.4%). For HCT116, proportion of volume re-

sponding to RT varied between 22.7 and 84.4% (median responding

volume 61.4%). In comparison, all control tumors (except outlier

LoVo control tumor 4) had responding volumes consistent with

zero. These measurements are possible with the LPM method, but

not the t-test method.

3.5 LPM biomarkers of response are more powerful

than conventional analyses
In LPM, the error estimates on measured affected volumes incorpor-

ate systematic processes associated with learning the model param-

eters (i.e. determination of PMFs), as well as the statistical errors on

weighting factors used to describe each case. LPM can capture the

uncertainties on the distribution components and the weighting fac-

tors using the error estimates provided by the method. This enables

construction of hypothesis tests for individual datasets, by testing

the null hypothesis (i.e. zero response) on a case by case basis. The

probability of the treatment volume being consistent with zero on

the basis of estimated error was measured. Tables 2 and 3 show the

individual and cohort significances and Tables 4 and 5 show the

control cohort responses for comparison.

The LPM approach implicitly combines information from vol-

ume and ADC change. To ensure a fair comparison between LPM

and conventional measures, we combined the significance for con-

ventional volume and ADC (mean and IQR), giving a total Z score

of 5.2 SD for LoVo (Table 1). LPM results showed higher Z score

and more significant P-values for many of the individual treated

tumors compared to the conventional cohort-level statistics for

imaging biomarkers.

The combined Z score from the LPM was 21.8 SD for LoVo

tumors. Since a linear increase in Z score requires a quadratic in-

crease in data quantity, approximately 17–18 times more data

(square of 21.8/5.2) would be needed for LoVo tumors to demon-

strate the same treatment effect with equivalent power using volume

and mean ADC compared to LPM. This equates to an increase in

power of approximately 4-fold. An equivalent comparison of sum-

mary statistics and LPM statistics in HCT116 xenografts treated

with RT showed a similar gain in statistical power. These data re-

veal that mathematical modeling of imaging data through LPM en-

ables substantial increase in statistical power to detect response to

therapy.

4 Discussion

In this study, we describe how modeling the spatial heterogeneity

present in imaging data can increase statistical power of identifying

response to therapy. We investigated a technique called LPM in a

Fig. 6. Volume response to treatment (i.e.
P

T QT ) for LoVo tumors. Left:

Treatment cohort, with significant non-zero values. Right: Control cohort,

with values consistent with zero (i.e. within level of predicted error) with pos-

sible outlier at tumor 4. All error bars show 6 1 SD

Fig. 7. Volume response to treatment (i.e.
P

T QT ) for HCT116 tumors. Left:

Treatment cohort, with significant non-zero values. Right: control cohort, with

values consistent with zero (i.e. within level of predicted error). All error bars

show 6 1 SD
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well understood biological paradigm, namely ADC as a response

biomarker following high-dose RT.

Next, we demonstrated that LPM could appropriately describe

ADC distributions of varying complexity, across two untreated

xenograft models, with multiple model components being deter-

mined to account for modes of tumor heterogeneity. We then

showed three important advantages of applying LPM to analyze the

ADC data, all of which would not be possible using conventional

image analysis methods.

First, in providing method technical validation, through a leave-

one-out approach, we showed that it was possible to detect outliers

in control groups. It is common to have variation in control group

imaging biomarker values and this can substantially limit the ability

of any biomarker to detect biological differences between small co-

horts of control and treated animals (de Jong et al., 2014). In the era

of personalized medicine that employs tumor models of increasing

biological relevance and complexity (Sharpless and Depinho, 2006),

the ability to exclude atypical tumors from cohort-wise analysis is of

increasing importance. LPM enables outliers to be identified and

excluded based on robust statistical methods.

Second, any pair (pre- and post-) of ADC values can be assigned

a probability (p-value or Z-score) that they are associated with vari-

ation observed within the control group, or are statistically different

and thus can be considered belonging to a treatment group. By cal-

culating the volume of voxels in each category, LPM quantifies the

minimal amount of responding tissue (i.e. a lower bound) that can

be detected; more voxels may respond but cannot be distinguished

from non-responding voxels within the distribution overlapping

with control. Here all tumors showed some response, but the range

of the lower bound on responding volumes varied by approximately

2.5-fold in LoVo and approximately 4-fold in HCT116.

Third, this feature enables response detection on a sample by

sample basis, without the need for spatial mapping, e.g. image seg-

mentation and pre- post- treatment coregistration. This is possible

since LPM models variation within control data and then can ac-

count for this in the treatment group, identifying the number of vox-

els that are different within the frequency distribution of data, as

opposed to the spatial distribution. The key finding of this study

was that LPM is substantially more powerful than conventional

cohort-based statistical methods for analysing imaging data. Indeed,

approximately 16–18 times as much data from conventional ana-

lyses (size and mean ADC) would be required to detect changes with

equivalent power compared to an LPM analysis, equating to a 4-fold

increase in power.

The implications of these data are substantial. Once a control

model is established, the need for similar animal numbers in the

Table 4. LoVo control cohort result significances

Tumor Z (Z) P (P) Effect

(%)

(%) Error

(%)

(%)

1 0.5 (1.2) 0.58 (0.20) 3.51 (23.92) 6.48 (18.86)

2 1.1 (1.0) 0.26 (0.31) 7.47 (8.89) 6.69 (8.75)

3 0.6 (0.5) 0.49 (0.57) 4.17 (5.95) 6.18 (10.73)

4 2.9 (5.2) 0.00 (0.00) 23.05 (32.73) 7.84 (6.29)

5 0.2 (0.0) 0.84 (0.97) 0.98 (0.38) 5.07 (11.83)

6 0.8 (0.3) 0.40 (0.72) 4.95 (9.24) 5.89 (26.15)

7 1.2 (0.4) 0.24 (0.68) 9.28 (6.10) 7.96 (15.17)

8 0.9 (0.5) 0.37 (0.56) 4.78 (7.99) 5.34% (13.76)

Note: Main figures show results for leave-all-in analysis. Figures in brack-

ets show leave-one-out results, where the model was trained on all except the

current tumor before being applied to the current tumor.

Table 5. HCT116 control cohort result significances

Tumor Z (Z) P (P) Effect

(%)

(%) Error

(%)

(%)

1 0.5 (0.1) 0.59 (0.86) 8.18 (10.29) 15.53 (59.55)

2 0.6 (0.3) 0.55 (0.70) 6.43 (7.41) 11.00 (19.52)

3 0.8 (1.0) 0.42 (0.29) 11.57 (23.31) 14.48 (22.07)

4 0.9 (0.7) 0.39 (0.44) 9.14 (7.97) 10.70 (10.53)

5 0.2 (0.3) 0.80 (0.71) 6.84 (13.61) 27.93 (36.93)

6 1.4 (1.8) 0.15 (0.58) 12.55 (29.65) 8.74 (15.65)

7 0.8 (0.5) 0.41 (0.56) 15.10 (16.67) 18.36 (29.09)

8 1.4 (2.2) 0.14 (0.02) 18.18 (36.09) 12.62 (16.05)

9 1.7 (1.4) 0.08 (0.16) 17.09 (20.52) 9.89 (14.62)

10 0.6 (0.8) 0.54 (0.37) 9.45 (13.43) 15.84 (15.19)

11 1.0 (0.8) 0.30 (0.39) 7.04 (20.15) 6.89 (23.91)

12 2.0 (3.5) 0.04 (0.00) 24.50 (36.00) 12.01 (10.10)

13 0.3 (0.0) 0.78 (0.96) 3.34 (2.91) 12.14 (69.60)

Note: Main figures show results for leave-all-in analysis. Figures in brack-

ets show leave-one-out results, where the model was trained on all except the

current tumor before being applied to the current tumor.

Table 2. LoVo treatment cohort result significances

Tumor Z score P-value Effect (%) Error (%)

1 8.5 <0.000001 45.98 5.40

2 8.8 <0.000001 44.59 5.09

3 3.4 0.000667 35.64 10.47

4 5.9 <0.000001 31.37 5.24

5 5.3 <0.000001 40.41 7.57

6 6.1 <0.000001 35.77 5.87

7 6.1 <0.000001 65.75 10.80

8 8.6 <0.000001 68.64 7.94

9 8.5 <0.000001 55.51 6.50

10 5.4 <0.000001 27.57 5.10

Combined 21.8 <0.000001

Note: The cohort-level significance (bottom row) is approximately four

times that for LoVo in Table 1.

Table 3. HCT116 treatment cohort result significances

Tumor Z score P-value Effect (%) Error (%)

1 3.5 0.000453 66.66 19.01

2 3.1 0.002239 34.53 11.30

3 10.3 <0.000001 67.00 6.53

4 7.5 <0.000001 67.10 8.97

5 7.2 <0.000001 84.41 11.80

6 7.3 <0.000001 60.77 8.35

7 3.9 0.000072 49.04 12.36

8 8.3 <0.000001 49.71 6.01

9 7.3 <0.000001 70.58 9.67

10 20.1 <0.000001 83.89 4.18

11 4.9 <0.000001 40.94 8.32

12 9.9 <0.000001 75.82 7.61

13 3.7 0.000243 65.56 17.87

14 9.7 <0.000001 61.36 6.35

15 2.5 0.0111474 22.67 8.93

Combined 32.6 <0.000001

Note: The cohort-level significance (bottom row) is approximately four

times that for HCT116 in Table 1.
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treatment group is diminished considerably. Subsequent studies for

a known animal model would require a small number of new con-

trol animals (to establish equivalence with banked control data).

Then very small cohorts can be tested for a given therapy. In particu-

lar, LPM can identify response on a per tumor basis with greater sig-

nificance than seen in a conventional t-test analysis of control versus

treatment cohorts. This would allow reduction in animal numbers,

with welfare benefits (Workman et al., 2010), and the ability to

identify individual responders in small studies of therapies where

different tumors with varying biology are treated. This may be at-

tractive for avatar studies where patient derived samples are used to

generate PDx and CDx models (Malaney et al., 2014) and in co-

clinical trials where multiple therapies are tested against animal

models with different genetic knockdown/knockout features

(Clohessy and Pandolfi, 2015).

The automatic process of building an individual LPM model and

computing its errors takes <5 min on typical hardware. However,

the process must be performed multiple times during model selection

and validation. The model selection process for LoVo required 10

models to be constructed, whereas HCT116 required 11. Leave-one-

out validation required an additional eight models for LoVo and 13

for HCT116, representing each possible leave-one-out control com-

bination. Total run-time was <4 h, making it feasible to perform

multiple complete analyses per day.

The LPM method described here has some limitations. As the

volume of responding tissue is computed by excluding all variation

that cannot be interpreted as normal control development, this value

is strictly a lower bound. This bound however, is appropriate for use

as part of the null hypothesis test. Our method determines this esti-

mate without labeling individual voxels of data, but instead operates

by fitting the entire data ADC distributions, learning the correl-

ations between those from two time points. In so doing LPM can es-

timate the volume of treatment response without having to solve the

ill-posed problem of voxel to voxel registration—where investiga-

tors attempt to produce one-to-one mapping between voxels from

images at different time points in tumors that change in shape and

volume over time (O’connor, 2017). This does however prevent

LPM in its current form generating voxel level treatment response

maps, which might otherwise be assumed possible for a method

which estimates volume of treatment response.

If the control cohort is not sufficient to describe control variation

then treatment volume can be overestimated by inappropriately

attributing previously unseen control variation to treatment. This is

the same problem as missing high sources of control variation when

applying a conventional t-test, but with the problem multiplied for a

higher dimensional model. Translation of the technique requires fur-

ther technical and biological validation, though showing consistency

in results across multiple models and therapies, with data from dif-

ferent laboratories (Doblas et al., 2015). Clinical application may

also be possible, with collection of the necessary data in an appro-

priate control group.

The method is protected from model construction problems that

avoid over-interpretation of results. For instance, a highly atypical

example will have a correspondingly high v2
D, and since quantity

error covariances are scaled by this value, the statistical significance

of treatment estimates is penalized for poorly modeled data. Large

quantity errors can generally be attributed to poor models, for ex-

ample, with few control datasets, but this problem can be reduced

by adding additional (valid) training data. Equally, if contamination

in the form of outliers is included in control data, the additional

variability introduced in the control model reduces the ability to

measure treatment, again penalizing the statistical significance of

results. While this reduces the statistical power of the method, it in-

creases robustness by providing a working analysis which gives a

valid, yet more limited, lower bound on volume changes.

5 Conclusion

We have shown that LPM can remove unwanted biological vari-

ation in image data (from growth) for tumors of varying spatial

heterogeneity. This substantially increases sensitivity to treatment-

induced change, thus increasing statistical power. Once control

models are constructed, LPM enables significant changes to be de-

tected for single tumors. This has important implications for 3Rs

(specifically reduction in animals) and LPM may facilitate design of

complex preclinical avatar and co-clinical trial experiments by pro-

viding adequate power to small cohort sizes.
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