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ABSTRACT 

There is interest in identifying and quantifying tumor heterogeneity at the genomic, tissue 

pathology and clinical imaging scales, as this may help better understand tumor biology and 

may yield useful biomarkers for guiding therapy-based decision making. This review focuses 

on the role and value of using x-ray, CT, MRI and PET based imaging methods that identify, 

measure and map tumor heterogeneity. In particular we highlight the potential value of these 

techniques and the key challenges required to validate and qualify these biomarkers for 

clinical use.  

 

 

 

 

  



INTRODUCTION 

Tumors are biologically heterogeneous (1, 2). This fact has been the subject of much 

interest following recent high profile studies that have begun to map and track the presence 

of genetic variation in tumors. These findings have started to investigate the relevance that 

these findings may have for the treatment of patients with cancer (3). Spatial variation in cell 

genetic profiles leads to altered microenvironments. This regional variation is visible through 

analysis of tissue pathology images (4). The current understanding of cancer heterogeneity 

from the perspectives of genomics and tissue pathology are covered elsewhere in this 

special issue.  

In this article, we focus on the role and value of using imaging methods to identify, measure 

and map the tumor heterogeneity that arises from genetic and tissue pathology variation and 

can be identified using imaging techniques. Particular emphasis is placed on clinically 

available imaging techniques such as x-ray computed tomography (CT), magnetic 

resonance imaging (MRI) and positron emission tomography (PET) that are readily available 

and enable the non-invasive whole-lesion sampling of tumor structure and function (5, 6). 

 

TERMINOLOGY 

Different research studies describe different conceptual types of tumor spatial heterogeneity. 

The variation in structure and function found between different tumors in individual patients 

is termed intertumor heterogeneity. In distinction, the spatial variation seen within individual 

lesions is termed intratumor heterogeneity. Finally, some studies compare the differences in 

lesions between different patients, termed interpatient heterogeneity. Imaging methods can 

be used to study all three of these scenarios. In this article, we focus on intratumor 

heterogeneity, assessed by regarding tumors as 3D structures composed of individual 3D 

pixels known as voxels. 

While much of the terminology used in imaging studies of tumor heterogeneity are similar or 

identical to the terms used in genomic and tissue pathology research, it is important to 

appreciate that clinical imaging is performed on a different scale. This has important 

sequelae, and there is considerable need for investigators to determine how these different 

insights into tumor biology can be combined into models that describe disease optimally. 

Although several genomic studies of heterogeneity have achieved high profile status, it is 

important to remember that extensive genomic profiling of tumors is still only performed on a 

sub-set of patients’ tumors, whereas image-based whole tumor sampling is performed 



repeatedly during diagnosis, staging and response assessment in nearly all patients with 

solid tumors (7).  

 

CURRENT CLINICAL USE OF IMAGING DATA 

Clinical imaging has been recognized as one of the great advances in modern medicine (8). 

It has revolutionized how oncologists diagnose and stage solid tumors, by detecting the 

presence of a cancer and by mapping the locations of the primary lesion and its metastases 

(9). Imaging is also central to assessing response to therapy and in detecting disease 

recurrence, by measuring change in lesion size (10) and (sometimes) lesion function (11). 

Imaging is used to identify patients at risk of toxicity (for example, cardiotoxicity may 

preclude use of some chemotherapy agents) (12). Finally, imaging can detect complications 

from the cancer (for example urinary tract obstruction) and the treatments (for example, 

presence of lung consolidation due to pneumonia) (13).  

For the above applications, tumor heterogeneity is not generally considered a key 

consideration. However, for some indications, radiologists interpret spatial heterogeneity in 

clinical images on a daily basis. The fact that many breast lesions are spiculated has been 

recognised for many decades, and this feature forms part of the BI-RADS classification for 

evaluating risk of malignancy (14, 15), with spiculation indicating a very high risk of a mass 

being malignant (Figure 1a). In another example, tumors are composed often of different 

regions including highly vascular and avidly enhancing regions, enhancing soft tissue and 

relatively non-enhancing regions, which include areas of necrosis within the tumor as well as 

haemorrhage. Some tumours, for example high grade glioma, also have areas of 

surrounding edema. These features can be appreciated readily using sequences that identify 

tumor anatomy and morphology, along with some functional information (here, enhancement 

due to administration of intravenous contrast agents; Figure 1b). In addition, other imaging 

techniques, such as 18F FDG PET-CT provide functional information, such as metabolic 

activity, and these techniques can also be used to identify regional variation in tumor 

function in solid tumors (Figure 1c) (11). It is important to appreciate that in these examples, 

spatial heterogeneity tends to be reported using qualitative description (e.g. ‘enhancing rim 

versus non-enhancing core’, or ‘focal region of intense tracer avidity’).  

There has been considerable effort over the last decade to covert these qualitative 

observations of heterogeneity into quantitative biomarkers for clinical use. A biomarker is a 

“defined characteristic that is measured as an indicator of normal biological processes, 

pathogenic processes or responses to an exposure or intervention, including therapeutic 



interventions” (16, 17). An imaging biomarker is a measurement derived from one or more 

medical images (18). This idea represents an important paradigm shift, where images are 

regarded as being composed of arrays of data, arranged spatially in individual 3D voxels (7). 

Here, each individual voxel is a cube (or cuboid) of data which summarizes a particular 

morphologic, metabolic or physiologic signal over a volume of around (0.25 – 5)3 millimetres, 

depending on modality and subject (animal or human).  

 

CONSIDERATIONS FOR VOXEL–WISE ANALYSIS OF CLINICAL IMAGES 

Several important factors must be considered when analyzing images on a voxel-wise basis. 

Firstly, some voxels suffer partial volume averaging (typically at interface with non-tumor 

tissue), so may only partially represent tumor tissue. Secondly, there is inevitable 

compromise between having sufficient numbers of voxels to perform the analysis versus 

sufficiently large voxels to overcome noise and keep imaging times practical (19). Most 

analysis methods require hundreds to thousands of voxels for robust application.  

Thirdly, many clinical studies of tumor spatial heterogeneity have used imaging protocols 

determined by healthcare considerations, rather than optimizing research needs; for 

example, portions of tumor will be omitted when non-contiguous tumor sampling is used (20) 

which confounds 3D spatial analyses (21). Fourthly, some calculated voxel values, such as 

apparent diffusion coefficient (ADC), contrast transfer coefficient (Ktrans) and blood flow are 

derived from multiple images obtained over time. Optimal estimation of the errors associated 

with motion will vary for different parameters and for different voxels. This issue is seldom 

considered when assessing intratumor heterogeneity (22). 

 

STRATEGIES FOR IMAGING INTRATUMOR SPATIAL HETEROGENEITY 

Nearly all malignant tumors show intratumor heterogeneity on imaging, although the extent 

varies between pre-clinical cancer models and between patients (23). Spatial variation is 

dynamic, for example, variations in tumor pO2 can be mapped and have been shown to 

fluctuate over minutes to hours using a range of imaging techniques (24, 25). Furthermore, 

the degree of intratumor heterogeneity tends to increase as tumors grow (26, 27).  

There is considerable research interest in identifying and measuring both the overall degree 

of spatial tumor heterogeneity and also which sub-populations within tumors are responsible 

for mediating response to therapy and resistance (28). The clinical significance of 



established spatial heterogeneity is discussed in detail elsewhere in this special issue, but in 

general, greater heterogeneity tends to indicate a relatively poor clinical outcome (29). This 

is considered, in part to result from resistant subpopulations of cells driving resistance to 

therapy (5, 30). However, it is important to note also that the extent and visualised patterns 

of intratumor heterogeneity may either increase or decrease following efficacious anti-cancer 

therapy (31, 32), depending on lesion type, imaging modality and choice of therapy.  

There are three distinct families of approach used to derive quantitative biomarkers of 

intratumor heterogeneity. It is important to appreciate that the same image data can be used 

to measure conventional clinical parameters (e.g. size), functional parameters that describe 

pathophysiological correlates in the tumor (e.g. average blood flow and permeability) and 

also the various different heterogeneity based metric that are detailed below (Figure 2). All of 

these parameters can be considered biomarkers.   

Defining tumor sub-regions 

Perhaps the most obvious approach to quantify intratumor heterogeneity attempts to identify 

the geographic sub-regions that drive response to therapy, subsequent resistance and 

relapse during treatment failure (5). This idea reflects the fact the tumor tissue is composed 

of regional habitats with discrete tumor biology (7). In order to define sub-regions, decisions 

must be made to enable identification of individual voxels with common structural or 

biological features. In general, tumor images contain hundreds-thousands of voxels, so 

‘similar’ voxels must be grouped together (parcellation). This can be performed using various 

techniques with differing underlying assumptions and methodology. It is important to 

recognize that some imaging signals from neighboring voxels are not necessarily entirely 

independent, as seen in advanced MRI techniques where zero-filling techniques are 

employed to keep scan times as fast as allowable (33) and so this must be controlled for 

when defining sub-regions. 

Data-driven voxel classification methods 

One common approach is to use a data-driven clustering approach such as Gaussian 

mixed-models or k-means clustering and then applying a principal components analysis (34). 

Here, multiple imaging parameters (for example Ktrans and ADC derived from MRI) can be 

used to group voxels with similar signals (or ‘spectra’) into functionally coherent regions 

within a lesion (35). Most multi-spectral analyses use pattern recognition techniques that 

analyze images to identify voxel clusters in a multi-dimensional feature space. A classifier 

then groups individual voxels together based on their similarities and differences (36). 

 



Unfortunately, considerable statistical challenges are associated with generating regional 

voxel groupings in normal structures (e.g. brain) in a technically valid fashion. This challenge 

has added complexity in heterogeneous structures, such as tumors, where predictable voxel 

patterns are lacking (37). Further difficulties are encountered when attempts are made to 

use segmentation to track tumors in time, since lesions change shape and volume as tumors 

grow, respond to therapy and relapse (22). Investigators must either use non-rigid 

registration methods, to establish the best approximate voxel correspondence, accepting 

that this problem is inherently limited, or must simplify their understanding of tumor growth 

and shape change (38).  

 

Imposed voxel classification methods 

An alternative approach – with a similar aim to data-driven methods, of grouping together 

voxels with similar underlying biology – is to define voxels by binary features (e.g. presence 

or absence signal enhancement) or by applying a threshold to a continuous variable feature 

(e.g. magnitude value of (18F-FDG PET SUVmax or Ktrans) (22). Here, a decision is made, with 

underlying assumptions, as to the categorization having a meaningful relationship to biology 

and to clinical outcome.   

It is important to realize that these simple approaches have several caveats. Firstly ‘binary’ 

features such as enhancement are not absolute. Instead, they depend critically on how 

images are acquired and analyzed. In DCE-CT and DCE-MRI data, for example, 

enhancement could be defined as having an area under the contrast agent concentration-

time curve greater than zero (where > 0 defines positive enhancement) or could be defined 

by comparing pre- and post- enhancement time points using a statistical test (where p<0.05 

defines negative or positive enhancement on a two sided t-test) (39, 40). Alternatively 

enhancement-weighted analyses may be performed (41). Secondly, threshold values for 

continuous data based on ‘cut points’ selected to enhance statistical separation in studies 

are often arbitrary and may have biological basis (19). 

Imposed geographic methods 

Tumor regions may be defined geographically, for example by modeling tumors as spheres 

with concentric radial sub-regions (42) or by labelling voxels as ‘rim’ or ‘core’ based on 

relative voxel position in histogram distributions (43). In these approaches a priori 

assumptions are imposed on tumors concerning their macroscopic structure. This approach 

may have some use in reproducible preclinical models of tumors, but is generally seen as a 

non-realistic model for clinical tumours.  



Example application: imaging sub-region hypoxic signatures 

Most solid tumors contain hypoxic sub-regions and greater hypoxic fractions are considered 

a poor prognostic indicator (44). There are several reasons why imaging hypoxia may be 

useful for clinicians. Firstly, there is current interest in using imaging to ‘dose paint’ the 

radiotherapy dose administered to each individual tumor, based on the spatial characteristics 

detected. Initial interest here has been on using 18F FDG PET data (45). This concept is 

based on different sub-regions being relatively radio-resistant (46) and recurrent disease 

arising in areas with greatest metabolic abnormality (47). Since subsequent work has shown 

that the interplay between abnormal metabolic, vascular and hypoxic expression in tumors 

may vary in an unpredictable manner (48), there is a strong rationale to investigate whether 

hypoxic regions should be treated with differing doses to well-oxygenated tumor.   

Secondly, imaging is one strategy under investigation – along with gene based approaches 

(49) – to stratify patients for treatment, based on measuring pre-treatment hypoxic status 

(50). Several targeted therapies have been developed that purport to improve tumor 

oxygenation, to improve prognosis and response to therapies including radiotherapy. 

Unfortunately, results at phase III have been disappointing, with little survival benefit being 

reported in patients treated by the targeted therapy in combination with conventional 

radiation-based treatment (51). For example, the hypoxia activated prodrug evofosfamide 

(TH-302; Threshold Pharmaceuticals, Inc., CA) was reported recently to provide no overall 

survival benefit in two phase III studies in patients with advanced pancreatic cancer and 

advanced soft tissue sarcoma, despite promising pre-clinical data (52). No patient selection 

was performed for these studies despite preclinical data that TH-302 monotherapy or in 

combination with radiotherapy provided significant growth delay in sarcoma and lung models 

of cancer, mediated by reduction in hypoxic fraction (53). This suggests strongly that trial 

design with patient selection – identifying which patients had significant hypoxia that could 

be modified – may have been able to demonstrate clinical utility.   

Thirdly, while there is great interest in identifying pre-treatment hypoxic status, there is some 

preliminary evidence that early preservation of hypoxia predicts treatment failure. In a pilot 

study of patients with head and neck cancer treated with chemoradiotherapy, the degree of 

reduction in hypoxia at 1 or 2 weeks during treatment, detected by FMISO PET imaging, 

appeared to identify patients that might benefit from hypoxia modification or dose-escalated 

treatment (54). Imaging enables these changes to be identified, quantified and mapped.  

Both PET and MRI based techniques enable a non-invasive 3D sampling of the extent of 

tumor oxygenation levels to distinguish hypoxic and normoxic sub-regions from one another 

(55, 56). Several PET based methods have been used in preclinical and clinical 



investigations, but most current studies use 18F based techniques, including FMISO, FAZA 

and HX4 (57). These tracers have differences in their radiotracer properties such as onset 

and duration of tumor to background ratio, as well as factors such as spatial reproducibility 

and sensitivity to oxygen modulation (58). Further work is required to determine if one tracer 

is superior or if decisions can be made due to local preference. Initial clinical data suggest 

that these methods can provide spatially stable signals in patients, for example, for HX4 data 

showing 15-17% co-efficient of variation on two examinations prior to therapy in patients with 

head and neck or lung cancer (59), although discrepant findings have been observed in 

some patients in other studies (60). Initial clinical studies have provided preliminary evidence 

that FMISO detected early preservation of hypoxia predicts treatment failure from 

chemoradiotherapy in patients with head and neck cancer (54) and that tumor recurrence 

may occur within the hypoxic sub-regions identified by FMISO imaging (61).  

In MRI, methods such as blood oxygenation level dependent imaging (62) have failed to 

translate into widespread clinical use; DCE-MRI has been used in several studies (63) but at 

best the derived biomarkers (e.g. blood flow) have an indirect relationship to hypoxia (64). 

Recently, we and others have developed a novel method of using oxygen-inhalation to 

unmask which tumor sub regions are hypoxic, termed oxygen-enhanced MRI (65, 66). This 

method has potential to non-invasively map regional hypoxia with higher spatial resolution 

than PET techniques (56). Although this technique is less well established than PET based 

methods, it has already been shown feasible and tolerable in patients with a variety of solid 

tumors (67, 68). There is emerging evidence that oxygen-enhanced MRI can detect signal 

changes that correspond spatially and temporally with the evolution of hypoxia, as measured 

by pimonidazole adduct formation (65, 66) (Figure 3). As with data from PET based methods 

(53), the technique appears sensitive to dynamic flux in pO2 (66). Encouragingly, there is 

also initial evidence that oxygen-enhanced MRI may predict response to radiotherapy (69).  

Quantifying the overall spatial complexity of tumors 

Tumors can be regarded as objects of varying spatial complexity. This complexity – a feature 

dependent on the heterogeneity present in the object – can be quantified as used as a 

biomarker. Various forms of feature analysis have been used.  

Texture analysis 

There is a long standing history of using computer aided detection (CAD) systems to classify 

tumors by feature analysis, particularly in studying breast cancer risk (70). In texture 

analysis, several similar approaches can be used, for example the Haralick method (71) 

where a co-occurrence matrix element denoted Pd, θ (i, j) measures the probability of starting 



from any image voxel with designated value i, moving d voxels along the image in direction 

θ, and then arriving at another voxel with value j. The resultant co-occurrence matrix is a 2D 

histogram which describes a joint distribution of all the possible moves with step size d and 

direction θ on the image. Many features can be extracted from this matrix, including 

measurements of lesion contrast, shape and spatial complexity.  

Fractal analysis and Minkowski functionals 

Fractal dimensions estimate the complexity of geometrical patterns which result from 

abstract recursive procedures (72). The simplest fractal dimension is the box-counting 

dimension (d0). This is calculated by imposing regular grids of a range of scales on a binary 

object, such as a tumor, and then counting the number of grid elements (boxes) that are 

occupied by the object at each scale. The parameter d0 is the slope of the line of best fit 

when plotting the number of occupied boxes against the reciprocal of the scale on log–log 

axes (73) (Figure 4a). Increasingly complex variants can incorporate continuous scale 

values of parameters such as ADC magnitude value. Minkowski functionals analyse 

binarized images over a range of thresholds and also quantify space-filling properties of 

tumors. 

Example application: single parameters 

Traditionally, most feature analyses have derived the putative biomarkers using in-house 

software. This makes comparison of the data published by different groups difficult, since it 

is not always clear exactly how different feature-based biomarkers relate to one another. In 

some cases – such as with CAD in breast cancer – there are software tools approved for 

use by FDA and other regulators (74) and so these feature-based biomarkers have crossed 

the Cooksey translational gaps (75, 76) to be used in healthcare.  

The potential value for feature based analysis is reviewed in depth elsewhere (77). In 

general one feature or a small number of features is derived. Typical applications have 

distinguished malignant lesions from benign lesions, in various cancer types including early 

stage cancers of the colon (78) and the lung (79). Similar methods have distinguished low 

and high grade glioma tumors from one another (80). Texture based methods can also act 

as pharmacodynamic biomarkers of response, for example to patients with renal cancer 

lesions treated with tyrosine kinase inhibitors (81), and may have value as predictive 

biomarkers, for example in lung cancer (82).  

These data are interesting and as a result several companies have begun to commercialise 

software tools that enable characterisation of image texture (83). However, it is unclear at 



present how many derived texture, fractal, Minkowski functionals and other similar metrics 

relate to one another. Crucially, while these parameters show promise, they are complicated 

to derive, have uncertain relationship to underlying tumor biology and significant results are 

not necessarily of additional benefit compared to simple average value parameters derived 

from the same data (such as median blood flow or median SUVmax) (22).   

Example application: Using radiomics to mine image data 

Some studies have shown that extra prognostic or predictive information is contained in the 

feature-based parameter, above and beyond that contained in size or average value 

functional data. For example, in a small study of patients with colorectal cancer liver 

metastases, the fractal dimension d0 increased predictive power in a multivariate model 

describing volume reduction following treatment with bevacizumab and with cytotoxic 

chemotherapy (84) (Figure 4b). This and other data provides some justification for the 

concept that quantifying heterogeneity enables the maximum yield from data already 

required in routine clinical radiological practice.  

‘Radiomics’ is a relatively new term, which the conversion of images to higher dimensional 

data and the subsequent mining of these data for improved decision support. Radiomics is 

explicitly a process designed to extract a large number of quantitative features from digital 

images such as those acquired daily in cancer radiological practice. Steps are shown in 

Figure 4c and include image acquisition, identifying the tumor region of interest (both whole 

tumor and sub-regions), image segmentation, and feature extraction. Finally, these features 

must be entered into an appropriate searchable database and then the data is mined (7). 

Since radiomics is designed to develop decision support tools, mining of the feature-based 

image data may be combined with other patient meta-data (e.g. demographics and genomic 

data) to generate or test a hypothesis and to increase the power of the decision support 

models (85). The details and rationale for this process is described elsewhere (86).  

Many of the features defined in radiomics are familiar to clinicians. These include size, 

shape, vascularity, necrosis, spiculation and other features and have been termed ‘semantic’ 

since they are typically described by radiologists. However, in the radiomic setting, these 

features are extracted with CAD to achieve higher standardization, higher inter-observer 

agreement and faster throughput. However, many more features extracted are mathematical 

descriptors that are not typically described in radiological reports, and have been termed 

‘agnostic’ features. Examples include first order statistics (essentially histogram parameters 

such as median, centiles, skewness, kurtosis and entropy, that ignore spatial distribution of 

voxel values), second order statistics (essentially the features based on texture) and higher 

order statistics (essentially methods that impose filter grids on images to extract patterns, 



such as fractals, Laplacian transforms and other analyses of spatial arrangement of voxel 

values) (7). 

In a landmark study, a signature was developed in a training dataset from Maastricht of 422 

patients with NSCLC. Here, 440 quantitative image features that were based on image 

intensity, shape, texture and multiscale wavelet were reduced to four features and then 

applied to three further datasets: a further 225 patients with NSCLC at Radboud, Nijmegen, 

and also to two studies of head and neck cancer from Maastricht (n=136) and Amsterdam 

(n=89). A multivariate Cox proportional hazards regression model was used to predict 

survival and was highly significant in all the sub-studies, indicating that the radiomic 

approach has prognostic significance. Importantly, the radiomic approach also out performed 

size based assessment in two of the three sub-studies (87).  

This study demonstrates the potential power of heterogeneity analysis using imaging. A key 

strength of this ‘radiomic’ analysis is that substantial patient data is available when using 

clinical CT, MRI and PET data images. Thus, unlike the above section – where the 

identification and characterization of tumor sub-regions generally requires the use of 

bespoke multi-parametric imaging protocols that presently are firmly within the research 

domain – radiomic analysis can profile the spatial heterogeneity of tumors and may provide 

significant additional information over that obtained by current imaging methods.   

However, some notes of caution should be sounded. To date relatively few studies have 

applied this approach and there is urgent need for the radiomics method to be applied more 

widely in other cancer centers, to see if results are replicated. Despite the relatively small 

number of current studies, there is no one single ‘radiomic approach’. Studies have varied 

from employing tens of parameters, to around 200 features (88), over 400 features (87) or 

over 600 features (89). The data from each of these studies are related, but cannot be seen 

as describing one biomarker; rather in each case the radiomic signature should be regarded 

as a cousin of those described in other studies. Further, while some initial studies suggest 

that the radiomic signatures may have positive associations with histopathologic (90) and 

molecular profiles (91, 92), there is great need to better understand the relationships 

between feature-based biomarkers and pathology readouts.  

 

Summarising data distributions with histograms 

Voxel values can be plotted as histograms, from which many simple descriptors can be 

extracted as potential biomarkers (93). These include simple descriptors of image 



heterogeneity such as standard deviation, interquartile range, nth centile(s), skew and 

kurtosis, as well as mean and median values (94). In these approaches the inherent spatial 

relationship between voxels is discarded and data are treated as a list of continuous 

variables. 

Histograms can be generated using widely available software, so histogram analysis has 

proved popular method for characterizing intratumoral heterogeneity (95). Several important 

points should be considered. Histogram analyses have high dimensionality and generate 

many parameters, so require correction for multiple comparisons (96). The repeatability and 

reproducibility of many histogram-derived parameters are uncertain and have not yet been 

evaluated in multi-centre studies (19). Further, many parameters, such as 5th centile or 

kurtosis, have no clear biological correlate making biological validation difficult.   

 

VALIDATION OF HETEROGENEITY BIOMARKERS 

Despite their great potential, most biomarkers fail to alter clinical practice (97, 98). There is 

growing realization in the imaging science, radiology, cancer biology and oncology 

communities that imaging biomarkers must undergo more rigorous technical validation, 

biological/clinical validation, and qualification if they are to alter clinical decision making (18) 

(Figure 5). While this is an important point for imaging biomarkers in general, it is particularly 

apt for image-based heterogeneity biomarkers since very few of these biomarkers have 

undergone extensive validation or qualification.   

 

Biomarker repeatability and reproducibility are vital to establish measurement precision (99). 

Simulations and phantom experiments can help establish measurement technical accuracy 

(100). Attention to these steps is essential early on in development and also as promising 

biomarkers transition into multicenter settings. For feature-based and histogram parameters, 

simple conventional statistical analyses may be appropriate, such as parameter co-efficient 

of variation. However, for spatially congruent biomarkers that quantify tumor sub-regions, it 

may also be appropriate to use measurements such as DICE overlap fraction (101). Finally, 

for radiomic analyses that generate a very large number of parameters, the analysis model 

must be built on test data and then applied in validation cohorts to avoid excessive multiple 

comparisons and the ‘curse of dimensionality’ (96) associated with high dimension data.    

  

Biological validation is an important step for imaging biomarkers. However, for all imaging it 

should be remembered that image data is acquired on an entirely different scale from 

histopathology data. Typically voxel dimensions are 200-2000 µm for rodent models and 



750-5000 µm for clinical tumors, so pathological sections sample only a small subset of the 

tissue captured by a corresponding imaging slice. While it may be appropriate to use tissue 

pathology to validate imaging biomarkers that quantify tumor sub-regions (e.g. necrosis, 

hypoxia) with pathology methods that purport to measure the same processes (102, 103), it 

is important to appreciate that many imaging biomarkers do not have an equivalent tissue 

pathology correlate, particularly feature-based and histogram-derived biomarkers (18). Even 

where this method is appropriate there is no consensus as to how commercial (104) or in 

house segmentation algorithms should analyze either the radiology or pathology images. 

The limits of biological validation may be circumvented where large enough datasets exist, 

since imaging biomarkers can be compared directly with clinical endpoints such as quality-

adjusted life year, progression-free survival or overall survival (18).  

 

CONCLUSION 

Clinical imaging methods have great potential to identify, quantify and map intratumoral 

heterogeneity. An extensive literature exists on the theory and applications of various 

methods, some of which identify tumor sub-regions, whereas other methods quantify the 

overall spatial heterogeneity and complexity of individual lesions. However, there is need to 

identify clearly which unmet needs will be served by developing, validating and qualifying 

new imaging biomarkers of heterogeneity. Further, how these imaging biomarkers should be 

compared with or added to genomic, proteomic, metabolomic and tissue pathology based 

biomarkers of heterogeneity is at present unclear, but is an area for great potential 

multidisciplinary collaboration.    
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FIGURES 

 

Figure 1 

Examples of measuring heterogeneity in routine clinical practice: A, lesion spiculation is a 

feature of the BI-RADS categorization used in assessment of likelihood of breast lesions 

being malignant. Here a spiculated cancer is shown on x-ray mammography and on MRI 

scan (indicated by white arrows). B, spatial variation in haemorrhage (H), necrosis (N), peri-

lesion edema (E), vascular enhancement (V) and solid tumor (S) are frequently described in 

radiological reports such as for this high grade glioma and can influence how tumor volume 

is calculated in neuro-radiological practice. C, spatial variation underpins the notion of 

reporting a maximum value of standardized uptake value in 18F FDG-PET CT, such as is the 

left apical non-small cell lung cancer with central necrosis and peripheral highly metabolically 

active tumor.   



 

Figure 2 

Methods for quantifying intratumoral heterogeneity: A, an example 786-0 renal cancer 

xenograft tumor is shown on a T2-weighted anatomical image. B, tumor function is assessed 

by DCE-MRI (top) and the same data can be binarized to define enhancing tumor (middle) 

before combined with other MRI signals to produce a segmented image (bottom). C, the 

data can also be treated as a distribution for histogram analysis (top) or can be subject to a 

feature analysis, such as box counting.  



 

 

Figure 3 

Imaging hypoxia with oxygen-enhanced MRI (OE-MRI): A, longitudinal relaxation rate (R1) 

measured in preclinical xenografts models is stable when breathing air, but shows significant 

increase during oxygen inhalation. B, OE-MRI signal changes mirror the time course of 

change in tumor pO2 detected by Oxylite measurement in the same xenografts (maximum to 

the detection range was 100 mmHg). C, DCE-MRI is used to identify perfused tumor and 

then OE-MRI maps are analyzed for hypoxic tumor, defined by lack of positive change with 

oxygen challenge. Representative MRI maps are shown in SW620 colorectal cancer 

xenografts, along with a segmentation that defines non-perfused, normoxic and hypoxic 

tumor sub-regions. Companion data is from Immunofluoresence-based assay of 

pimonidazole adduct formation. D, the hypoxic fraction defined by MRI closely correlates 

with the equivalent measurement defined by pathology, providing biological validation of the 

technique. Adapted from reference 66.  

 





Figure 4 

Radiomic analysis of tumor data: A, quantitative imaging is performed and the tumor is 

delineated, here in an example of a patient with lung cancer. B, segmentation and radiomic 

profiling are performed to identify many tens to hundreds of features based on semantic 

characteristics, texture analysis and histogram analysis. C, radiomic data is integrated with 

genomic and proteomic data along with clinical information to provide a signature, which is 

effectively a biomarker. The radiomic signature must then be validated and qualified for 

clinical use. Adapted from reference 87. 

 

 

Figure 5 

Roadmap for validating and qualifying imaging biomarkers: all imaging biomarkers must 

cross a translational gap from initial testing to become robust medical research tools. A 

second translational gap must be crossed for the imaging biomarker to become integrated 

into routine patient care. This achieved through three parallel tracks of technical validation, 

biological and clinical validation, and cost effectiveness, followed by qualification. Adapted 

from reference 18.  


