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ABSTRACT 15 

Cancers accumulate mutations that lead to neoantigens, novel peptides that elicit an 16 

immune response, and consequently undergo evolutionary selection. Here we establish 17 

how negative selection shapes the clonality of neoantigens in a growing cancer, by 18 

constructing a mathematical model of neoantigen evolution.  The model predicts that, 19 

without immune escape, tumor neoantigens are either clonal or at low frequency, and 20 

hyper-mutated tumors can only establish following the evolution of immune escape. 21 

Moreover, the site frequency spectrum of somatic variants under negative selection 22 

appears more neutral as the strength of negative selection increases, consistent with 23 

classical neutral theory. These predictions are corroborated by the analysis of 24 

neoantigen frequencies and immune escape in exome and RNA sequencing data from 25 

879 colon, stomach and endometrial cancers.  26 

  27 
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INTRODUCTION 28 

Mutations accrue throughout tumor development and provide ‘fuel for the fire’ of cancer 29 

evolution. However, mutations can also hinder tumor evolution if they lead to an anti-tumor 30 

immune response, via the generation of neoantigens, novel peptides presented on the cell’s 31 

surface and recognized as ‘non-self’ by cells of the adaptive immune system1,2. The immune 32 

system is a major determinant of tumor evolution, most starkly demonstrated by the prognostic 33 

value of immune-infiltration3 and the success of immunotherapy4,5. 34 

The landscape of neoantigenic mutations is shaped by ecological and evolutionary interactions 35 

between a tumor and its microenvironment1,6,7. In the absence of an immune system, 36 

neoantigens accumulate as a ‘side-effect’ of mutation acquisition8, and are expected to follow 37 

neutral evolutionary dynamics9. Immuno-editing refers to immune-cell killing of antigenic cells1 38 

and so represents a negative selective pressure6. Tumor cells can also experience positive 39 

selection upon the evolution of mechanisms to inhibit the immune system’s ability to recognize 40 

or react to cancer-associated antigens. These are termed immune escape mechanisms7,8,10.  41 

Cancer evolution in response to immune control is a ‘hallmark of cancer’11 and it is well-42 

recognized that the tumor-specific immune microenvironment shapes the neoantigenic 43 

repertoire found in tumors12–14. 44 

 45 

Therapies that (re)activate the immune response following escape have achieved exceptional 46 

success (reviewed in ref15), especially in cancers of high mutational load16–18. Neoantigen-47 

profiling is predictive of treatment response19 and long-term survival20. However, a significant 48 

number of patients do not respond to immunotherapy regardless of a high mutational load and 49 

the presence of molecular markers of immune escape21, and there is a need to better predict 50 

the likelihood of treatment response. 51 

 52 
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The evolutionary dynamics of tumor development can be partially decoded from the pattern of 53 

intra-tumor genetic heterogeneity22. Positive and negative selection, respectively, cause the 54 

expansion and contraction of subclones. Consequently, the site frequency spectrum of 55 

mutations, as measured by variant allele frequencies (VAF)9,23 from genome sequencing data, 56 

and cohort-wide mutation frequencies (e.g. dN/dS analysis) can be used to infer the 57 

evolutionary dynamics that shaped the mutational landscape24–28. Population genetics has long 58 

been concerned with the dynamics of negative selection in constant population sizes29–33, which 59 

has been extended for expanding populations with rare mutations34,35. However, cancer 60 

evolution represents a distinct evolutionary regime because neoantigens are common, making 61 

negative selection pervasive, immune escape can diminish selection; and tumors are growing 62 

populations. Therefore, the dynamics resulting from negative selection acting on neoantigens in 63 

a growing tumor remain to be determined. 64 

Here we use stochastic modelling to study how the clonal structure and immunological 65 

phenotype of growing tumors is shaped by negative selection in response to neoantigenic 66 

mutations. We establish the dynamics expected under different selective environments and 67 

tumor mutator phenotypes. We characterize the emerging VAF distribution under pervasive 68 

negative selection, and determine the power to identify negative selection from genomics data. 69 

We compare our modelling predictions with whole-exome sequencing and RNA sequencing 70 

data from human cancers of the colon, stomach and endometrium.  71 
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RESULTS 72 

Modelling predicts antigen-hot and antigen-cold tumors  73 

We created a mathematical model of neoantigen evolution during tumor growth, based on a 74 

stochastic branching process (Fig. 1a and Methods). At each step, tumor cells of lineage i 75 

produced two surviving offspring at birth rate b=1 per unit time and offspring accumulated 76 

mutations at rate µ, which had antigenicity drawn from a pre-specified distribution. Cells died 77 

with death rate determined by the strength of negative selection, s, against the cumulative 78 

antigenicity of neoantigens in the lineage.  s can be interpreted as the effectiveness of immune 79 

predation against an antigen: s=0 indicates no selection pressure (neutral evolution), and s<<0 80 

strong negative selection (following ref34). Tumor growth was simulated until the tumor reached 81 

a predefined population size (approximating a clinically detectable size) or until a sufficiently 82 

long time elapsed without the tumor reaching detectable size.  83 

 84 

We first examined the temporal neoantigen burden in simulated tumors. We defined the ‘antigen 85 

score’ of a tumor as the proportion of tumor cells carrying cumulative antigenicity ≥ . Tumors 86 

simulated with identical parameters separated into two distinct groups due to the stochasticity of 87 

neoantigen accrual: ‘antigen-hot’ and ‘antigen-cold’. Antigen-hot tumors had an antigen score 88 

close to 1, corresponding to every tumor cell in the population being highly antigenic, whereas in 89 

antigen-cold tumors the majority of cells lacked immunogenic mutations (Fig. 1b-c). The 90 

proportion of antigen-hot tumors depended on the negative selection strength (Extended Data 91 

Fig. 1a): increased negative selection for neoantigens decreased the probability of observing 92 

antigen-hot tumors. In antigen-cold tumors, the proportion of neoantigen-carrying cells also 93 

decreased inversely with the strength of negative selection.  94 

 95 
In the simulations, the antigenicity of newly accrued neoantigens was sampled from a ‘prior’ pre-96 
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specified distribution. Regardless of the shape of the prior distribution, surviving lineages always 97 

showed enrichment for low-antigenicity alterations with an exponential-like distribution of final 98 

antigenicity values (Fig. 1d and Extended Data Fig. 1b). 99 

We next simulated hyper-mutated tumors that generated a high number of mutations per cell 100 

division, causing lineages to rapidly accrue antigenicity. Consequently, most lineages rapidly 101 

became neoantigen-hot and were eradicated by negative selection (Fig. 1e). In rare tumors that 102 

survived to detectable size, high-frequency neoantigens were absent (Extended Data Fig. 2a-b 103 

and Supplementary Note). 104 

Overall, we observed that negative selection prevented subclonal neoantigens rising to high 105 

frequency in a tumor, and this effect was exacerbated at higher mutation rates. 106 

We compared the dynamics observed in our model to the dynamics of neoantigen accrual in a 107 

constant population size (Supplementary Note). Models of negative selection with constant 108 

population size29–32 can lead to a broad range of evolutionary dynamics as the mutation rate and 109 

strength of negative selection are varied. In contrast, here we observed that allowing the 110 

population size to vary led to broadly consistent dynamics across the parameters space 111 

(Extended Data Fig. 2). We considered three scenarios: (i) High s, low µ. When negative 112 

selection was strong and mutations rare, selection operated efficiently in a constant population 113 

rendering it devoid of neoantigenic mutations, but was attenuated in a variable-sized population 114 

due to population expansion decreasing the efficiency of selection, as previously reported for 115 

positive selection23. (ii) Low s, high µ. Due to weak selection, only lineages with multiple 116 

mutations experienced non-negligible selection.  As in the previous case, population growth 117 

attenuated the influence of selection relative to the constant-sized population model. (iii) High s, 118 

high µ. In constant size populations, the population could not go extinct, and dynamics were 119 

determined by the relative strength of negative selection between lineages all accruing 120 
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neoantigenic mutations. The additive effect of any single mutation on fitness was proportionally 121 

diminished as mutation burden increased due to a Muller’s Ratchet-like effect33, leading to 122 

weakly selected dynamics. In a variable-sized population the dynamics were markedly different: 123 

populations where all lineages were strongly negatively selected went extinct, and surviving 124 

populations consisted of the ‘lucky’ lineages that had not accrued neoantigens (Extended Data 125 

Fig. 2a,d). These extinction-driven dynamics persisted in the growing population even in the 126 

special case of extremely high µ and low s, while the constant population became effectively 127 

neutral. 128 

Immune escape leads to antigen-hot and antigen-warm tumors 129 

We next simulated immune escape alterations acquired by one cell that renders descendants 130 

less susceptible to immune predation36,37. Specifically, we set the death rate of immune escaped 131 

cells to the baseline non-immunogenic death rate irrespective of the cell’s burden of antigenic 132 

mutations. 133 

If the founder cell of the tumor contained an escape mutation (clonal escape), tumors with a 134 

continuum of antigenicity scores emerged (Fig. 1f). We termed these tumors ‘antigen-warm’ as 135 

they contained strong high-frequency and/or several subclonal neoantigens. 136 

We then simulated tumors which could acquire immune escape at a random time (probabilistic 137 

escape) and evaluated the detectable neoantigen load in the emerging tumors (Methods). When 138 

the mutation rate was low, tumors that reached detectable size had rarely evolved immune 139 

escape, and the strength of negative selection imposed on growth was inversely correlated with 140 

the subclonal neoantigen burden observed in the final tumor (Fig. 1g). When the mutation rate 141 

was high, lineages rapidly accrued neoantigens and were driven to extinction by negative 142 

selection (Fig. 1e). Tumors only grew to detectable frequency if the founder lineage 143 
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stochastically acquired immune escape to ‘rescue’ them. Consequently, at high mutation rates, 144 

detectable tumors were exclusively immune escaped and had a high burden of high-frequency 145 

neoantigens (Fig. 1h). 146 

Taken together, these results suggest that there is a non-linear relationship between the levels 147 

of immune surveillance in the microenvironment and the magnitude of immuno-editing seen in 148 

tumors of detectable size. Moving from low to moderate negative selection, the dynamics 149 

increasingly depart from strictly neutral dynamics as expected, and correspondingly the clonal 150 

and subclonal neoantigen burden is progressively decreased. At strong negative selection, 151 

detectable tumors are those that have stochastically accrued immune escape, and 152 

consequently show a high proportion of neoantigen-warm and –hot cases and evolve effectively 153 

neutrally. We also note that the mutation rate is a determinant of the strength of negative 154 

selection experienced by a lineage: at high mutation rates a lineage is likely to accrue multiple 155 

negatively selected variants and so experience stronger negative selection.  156 

Immune-infiltrated cancers are antigen-hot and escaped 157 

To compare model predictions to experimentally measured neoantigen landscapes, we 158 

analyzed neoantigens in 363 colorectal, 146 stomach and 370 endometrial cancers (CRC, 159 

STAD and UCEC, respectively) from The Cancer Genome Atlas (TCGA) (Fig. 2a). We focused 160 

on these cancer types because of the prevalence of mutator phenotypes, namely cancers with: 161 

polymerase-ε mutation (POLE – very high mutation rate), mismatch repair deficiency (MMR – 162 

high mutation rate, often responding well to immunotherapy18,38), and microsatellite stable 163 

tumors (MSS – lower mutation rate). Therefore, they provide a good model to explore the effect 164 

of different tumor-immune dynamics. TCGA samples filtered for high sequencing depth and 165 

purity were first HLA-typed in silico39, and their neoantigens called and filtered19 using the 166 

NeoPredPipe pipeline40 (see Methods). We also evaluated T-cell infiltration from paired RNA-167 



 8

seq data41 as a measure analogous to negative selection strength s experienced by 168 

neoantigens. 169 

The vast majority of tumors (90%) had clonal neoantigens (Supplementary Table 1), and so 170 

were defined as ‘antigen-hot’. We observed that the mutation-antigenicity distribution of tumors 171 

(see Methods) was enriched for low binding neoantigens irrespective of the level of T-cell 172 

infiltrate, but still contained a tail of high-scoring neoantigens (Fig. 2b). Subclonal neoantigen 173 

burden varied significantly between cancers: cancers with low or medium T-cell infiltration 174 

(putative small or moderate s) had proportionally fewer subclonal neoantigens than high T-cell 175 

infiltrate tumors (high s) (Fig. 2c), suggesting a critical role of immune escape in early evolution. 176 

Interestingly, this trend was absent in STAD tumors, suggesting a more homogeneous evolution 177 

due to either widespread or rare immune escape.  178 

We therefore sought evidence of immune escape in the cancers: alterations in antigen 179 

presentation and over-expression of immune checkpoint genes (Methods). Overall, 57% of all 180 

cancers showed evidence of at least one escape mechanism, with increased prevalence of 181 

escape in MMR (71%) and POLE (98%) cases and significantly different patterns of immune 182 

escape (Fig. 2d and Extended Data Fig. 3a), in agreement with previous studies18,41,42. STAD 183 

cancers in particular had a high proportion of immune escaped cancers – potentially a result of 184 

strong early immune predation. Further work is needed to confirm that these differences 185 

between mutational subtypes arose from differential selective pressures on immune escape. 186 

Consistent with the predictions and previous studies43, tumors with immune escape had a 187 

higher neoantigen burden, and the majority of highly antigenic tumors (neoantigen burden >100) 188 

were immune-escaped (Fig. 2e). Increased immune infiltration level was strongly associated 189 

with immune escape, even in non-hyper-mutated (MSS) samples (Fig. 2f). We expected 190 

neoantigen-associated mutations to be most under-represented amongst high-cancer cell 191 
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fraction (CCF) subclonal mutations, as selection had the longest time to act on these mutations. 192 

Therefore, we compared the number of neoantigens at high CCF (present in 30%-60% of cells) 193 

between MMR cases with and without immune escape, and found greater depletion in non-194 

escaped cancers (Fig. 2g), consistent with immuno-editing shaping the clonal structure of hyper-195 

mutated tumors without immune escape. The above phenomena were also observed in a meta-196 

cohort that combined the three cancer types (Extended Data Fig. 3). 197 

Together, these data suggest that these cancer types usually evolve in the face of stringent 198 

immune-selective pressures (analogous to the moderate/high s regime in simulated tumors) and 199 

consequently immune-escape is frequently selected for at the onset of tumor growth, permitting 200 

the development of tumors with high and clonal neoantigen load.  201 

Subclonal immune escape shapes local neoantigen evolution 202 

Next, we explored the evidence for subclonal immune escape in a previously published multi-203 

region sequenced colorectal tumor dataset44. Overall, loss of heterozygosity (LOH) at HLA loci, 204 

called with the LOHHLA tool37, was found in 5/10 (50%) carcinomas and 1/6 (17%) adenomas, 205 

and some of these events were present subclonally, in spatially distinct region(s) of the tumor 206 

(Fig. 3a-b). 207 

Simulations of subclonal immune escape in our model predicted that subclones should become 208 

proportionally enriched for neoantigens following escape (Fig. 3c), consistent with previous 209 

observations37. In our primary tumor data, a significantly higher proportion of detected 210 

neoantigens were associated with the lost allele in escaped clones than in clones without LOH 211 

(Fig. 3d). These results confirm that locally different immune-mediated negative selection 212 

pressures shape individual subclones inside a tumor.  213 

To study how subclonal immune escape mechanisms can influence the efficiency of therapy, we 214 
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extended our simulations to model immunotherapy. We introduced two different types of escape 215 

stochastically during tumor growth, active and passive, that notionally represented reversible 216 

escape mechanisms affecting interactions with the microenvironment (e.g. expression of PDL1) 217 

and irreversible cell-intrinsic escape (e.g. genomic loss of an HLA allele) respectively (Methods). 218 

After the tumor population grew up to detectable size, we simulated immunotherapy by 219 

cancelling the effect of active immune escape, and also increasing the negative selection 220 

pressure s against neoantigens. The clonal population(s) with active escape rapidly shrank, but 221 

clones with passive-type escape continued growing (Fig. 3e). Neoantigens were progressively 222 

pruned from the expanding clone, leading eventually to an immune-cold tumor. Thus, the 223 

immune landscape of a tumor post-immunotherapy is predicted to be distinct from the original 224 

tumor (consistent with observations45,46), with potential implications for the choice of the next 225 

line of therapy. 226 

Negative selection leads to neutral VAF distribution 227 

We sought to explore how negative selection shapes the distribution of subclonal mutation 228 

frequencies within an individual cancer. We considered the VAF distribution in simulated tumors 229 

with moderate and high negative selection. Evidence for positive selection in the VAF 230 

distribution is provided by an over-abundance of passenger mutations at high-frequency that are 231 

within the expanding clone23, whereas under pervasive negative selection, antigenic clones are 232 

continually depleted and so rarely grow to a large size (rarely reach high VAF).  Thus, the vast 233 

majority of higher-VAF mutations are neutral passengers, that evolve according to neutral 234 

dynamics and so exhibit a characteristic 1/f2 dependence (leading to a 1/f dependence of the 235 

cumulative VAF distribution, Fig. 4a)9. As negative selection strength increases, the 236 

phenomenon is exacerbated: antigenic subclones are more rapidly depleted and so more 237 

neutral-like VAF distributions are observed (Fig. 4b).  We note that pervasive negative selection 238 
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was part of the original neutral theory47, and our observations are consistent with the classical 239 

theory. 240 

The VAF distribution computed of solely neoantigens shows depletion relative to the neutral 241 

expectation (red lines in Fig. 4a-b), consistent with population genetics theory of constant-sized 242 

models29,34 (Extended Data Fig. 2c,f). The magnitude of deviation from the neutral curve 243 

depends on the strength of negative selection, which means that, in theory, negative selection 244 

could be detected from neoantigen-VAF distributions (Extended Data Fig. 4). However, in 245 

practice, the few persisting neoantigens are at very low VAFs and so are problematic to 246 

measure accurately48, severely hindering the power to quantify negative selection strength 247 

directly from neoantigen VAF distributions.  248 

 249 

Negative selection is elusive in VAF distribution 250 

We performed in silico sequencing on simulated tumors, and explored the effect of read depth 251 

and false-positive neoantigen identification49 on the identifiability of negative selection in 252 

individual tumors (see Methods). The simulations predicted that very high depth sequencing 253 

was required to robustly call negative selection from VAF distributions, and the efficacy strongly 254 

depended on the strength of selection against neoantigens (Fig. 4c-d). Erroneously labelling 255 

neoantigens also had substantial impact on the power, but could be mitigated by very high-256 

depth sequencing. Detection was mostly limited by the tumors retaining too few neoantigens to 257 

reliably evaluate their VAF distribution, a phenomenon further exacerbated when concentrating 258 

on strongly immunogenic mutations alone (Extended Data Fig. 5a-d). 259 

In order to overcome the technical issues of limited sequence depth and low antigen numbers, 260 

we pooled mutations from groups of identically simulated and comparable TCGA tumors 261 
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(Methods) and considered their combined VAF distribution (Fig. 4e), in a similar manner to how 262 

cohort-wide positive selection by dN/dS analysis is evaluated24,25. In the pooled TCGA cohort, 263 

we investigated essential genes50 that are expected to be constitutively expressed and under 264 

selection25,51. In cancers with medium T-cell score and no evidence of immune escape, there 265 

was a depletion of all neoantigens and neoantigens in essential genes compared to the neutral 266 

expectation (Fig. 4f). In contrast, there was no neoantigen depletion in cancers with low T-cell 267 

score. Neoantigens in CRC and UCEC cancers individually, as well as frameshift and nonsense 268 

mutations in essential genes, showed similar trends (Extended Data Fig. 5e-f), suggesting a 269 

more stringent selection in moderately infiltrated tumors and on essential genes. 270 

Proportional burden can measure negative selection 271 

Depletion of neoantigens relative to the overall non-synonymous mutation is a well-established 272 

signature of immuno-editing52,53. We investigated the relationship between the degree of 273 

neoantigen depletion and strength of negative selection experienced by neoantigens. 274 

First, we simulated tumors with a known neoantigen production rate (pa=0.075 per non-275 

synonymous mutation, Supplementary Note) to evaluate how the proportion of immunogenic to 276 

non-synonymous mutations changed with negative selection strength. As expected, stronger 277 

negative selection led to proportionally fewer observed neoantigens in the final tumor (Fig. 5a). 278 

We also measured the effective mutation rate (the ratio of the per cell division mutation and 279 

survival rate), derived from the linear slope of the neutral VAF curve9, as a function of increasing 280 

negative selection for neoantigens (Supplementary Note). Stronger negative selection caused 281 

higher effective mutation rates in antigenic tumors (Fig. 5b), as a consequence of increased 282 

death rate. We suggest that the higher cell death rate inferred in hyper-mutated tumors54 is 283 

likely to be, at least in part, a direct consequence of immuno-editing. 284 
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Next, we examined the proportional neoantigen burden in TCGA cancers stratified by cancer 285 

type and predicted immune escape status. We observed no difference in overall proportional 286 

neoantigen burden according to cancer type (Extended Data Fig. 6a), and so combined all data 287 

into a single meta-cohort. We detected no significant difference in overall proportional burden 288 

between MSS and MMR, and immune escaped or non-escaped cancers (Extended Data Fig. 289 

6b-c). The observed uniformity in overall proportional burden across the cohort is consistent 290 

with the lack of neoantigen depletion signal reported in ref52. The majority of mutations 291 

considered in these analyses were clonal, and so were likely accrued prior to tumor expansion 292 

and acquisition of immune escape. To better delineate the decrease in negative selection 293 

expected following immune escape, we computed subclonal proportional neoantigen burden for 294 

mutations with CCF<0.6. Comparing total and subclonal proportional burden (considering all 295 

tumors with >30 subclonal mutations) showed a lower subclonal proportional burden in non-296 

escaped cancers, but no shift was detected in cancers with immune escape (Fig. 5c), consistent 297 

with stronger negative selection in non-escaped cancers. When cancer types were considered 298 

independently, UCEC and CRC cancers showed a similar pattern, but no subclonal depletion 299 

was evident in STAD cancers (Extended Data Fig. 6d). 300 

To examine the potential confounding effect of different mutational processes, we generated 301 

synthetic cohorts analogous to real tumors (Methods). Comparing the synthetic cohorts 302 

matching the overall mutation composition of CRCs showed no significant difference in 303 

proportional burden, suggesting that MMR-specific mutational processes (e.g. Signature 6 from 304 

ref55) are not strongly biased for neoantigen generation (Extended Data Fig. 6e). A synthetic 305 

matched cohort of Fig. 5c confirmed that the observed difference in subclonal proportional 306 

neoantigen burden was also independent of mutational processes (Extended Data Fig. 6f). 307 

Burden normalized to this synthetic cohort showed a trend for lower than random subclonal 308 

neoantigen burden (Extended Data Fig. 6g). These observations imply the presence of active 309 
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immune surveillance when escape has not occurred, and highlight the high inter-patient 310 

variability in evolutionary dynamics. 311 

  312 
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DISCUSSION 313 

Here we have investigated the evolutionary dynamics of neoantigens and immune escape in 314 

growing tumors using a mathematical model of tumor evolution. Our analysis shows how 315 

negative selection by the immune system (immuno-editing) sculpts the clonal architecture of the 316 

tumor: the hallmark of negative selection is the lack of neoantigens at intermediate subclonal 317 

frequency within a tumor, and conversely, the presence of numerous neoantigens at 318 

intermediate frequency is a hallmark of immune escape.  Moreover, strong negative selection 319 

for neoantigens inevitably provides a strong selective pressure for the evolution of immune 320 

escape. Consequently, the observation that many cancers are both (neo)antigenic and have 321 

immune escape points to a critical role for immune escape in the genesis of malignancy. Further 322 

work directly measuring the immune repertoire at the time invasion first occurs is required. 323 

 324 

Our simulations show that under negative selection, the overall VAF distribution of a tumor will 325 

be effectively-neutral, as it will be dominated by the neutral passenger mutations that are able to 326 

spread through the tumor unimpeded by immune predation. In constant size models, neutral 327 

mutations linked to disadvantageous alterations show a pattern of background selection30–33, but 328 

in growing populations selection can only be observed on the selected mutations directly. The 329 

VAF distribution observable in cancer genome sequencing data becomes more neutral-like as 330 

the strength of negative selection increases, as negatively selected clones are pushed to 331 

harder-to-detect frequencies leaving only neutrally evolving lineages at high VAF. Furthermore, 332 

our analysis suggests that the majority of tumors with high mutational burden – where in theory 333 

VAF distributions and so evolutionary dynamics should be easier to resolve – are most likely to 334 

be immune escaped and so only exhibit effectively neutral dynamics. Consequently, we suggest 335 

that the lack of immune-related selection signal (e.g. as identified by ref52) could be due to 336 

unclassified immune escape or false-positive neoantigen calls that together mean the mutations 337 
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studied are likely to be overall only very weakly negatively selected. Pooling data across 338 

cancers increases power to resolve clone size distributions and detect negative selection, and 339 

could be combined with dN/dS methods to evaluate selection of gene sets, such as natural 340 

HLA-binders52,56 and MHC-II presented peptides57. 341 

Our modelling offers insight into the challenges of predicting immunotherapy response using 342 

tumour mutation burden (TMB) alone. Strong negative selection (effective immune surveillance) 343 

leads to a high rate of cell death, a corresponding increase in the effective mutation rate of 344 

tumors, and the net result of high TMB with severe neoantigen depletion. Thus, despite having 345 

high TMB, such tumors would be unlikely to respond to immune checkpoint blockade. 346 

Assessment of neoantigens should be more predictive: tumors with clonal or numerous 347 

subclonal neoantigens are very likely to have evolved immune escape – particularly if the 348 

patient’s immune system is highly predatory – and to respond to therapies reactivating immune 349 

predation. This is consistent with previous studies suggesting that clonal antigens predict 350 

sensitivity to immune checkpoint blockade43. We illustrate that immune therapies targeted 351 

against a specific neoantigen or immune mechanism are vulnerable to intra-tumor 352 

heterogeneity, as subclones in which this target is altered or lost (e.g. neoantigen depleted or 353 

HLA haplotype mutated) will experience net positive selection when the therapy is applied58–60. 354 

Relatedly, a subclone that escapes immune blockade therapy and reforms the tumor is 355 

predicted to have a different immune landscape due to the action of immune predation during 356 

clone emergence, with potential implications for additional lines of therapy.  357 

In summary, our mathematical framework provides insights into the evolutionary dynamics of 358 

negatively selected neoantigens in growing tumors and the detectability of these dynamics in 359 

genomic data.  360 
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 508 
FIGURE LEGENDS 509 
 510 

Figure 1: Tumor growth model predicts two distinct types of immune phenotypes and the necessity 511 
of immune escape. (a) Schematic representation of the model. Left panel: tumor growth for four 512 
generations. Filled circles represent cells, colored by immunogenicity. Related cells are connected with lines. 513 
Middle panel: cell division/mutation process. Right panel: prior distribution of newly generated 514 
neoantigenicities. For details, see Methods. (b) Growth curve of six simulated tumors at s=-0.8. Line color 515 
shows the antigen score of the tumor population over time. (c) Cancer cell fraction (CCF) of the most 516 
common antigenic mutation of n=100 tumors at the final time-point. (d) Distribution of antigenicity values of 517 
all neoantigens generated (grey) and only neoantigens present in >10 surviving cells (blue). Thin lines: 518 
individual simulations; thick dashed line: ensemble mean. Inset: Mann-Whitney two-sided test. (e) 519 
Distribution of maximum tumor size reached by hyper-mutated tumors at s=-0.8. Inset: growth curve of a 520 
single tumor colored by antigenic score as in (b), blue line: number of non-immunogenic cells. (f) Neoantigen 521 
scores in n=100 tumors at s=-0.8, without (left) and with (right) clonal immune escape. (g-h) Number of 522 
detectable neoantigens (read depth ~50x) in n=50 simulated tumors as a function of negative selection 523 
strength. Middle panel: mean clonal neoantigen burden. Bottom panel: clonality of immune escape. Only 524 
non-hyper-mutated (g) and hyper-mutated (h) tumors that reached a detectable size are shown. Violin widths 525 
represent raw data density.  526 

 527 

Figure 2: Colorectal, stomach and endometrial tumors from TCGA are antigen-hot and enriched for 528 
immune escape. (a) Cancer type and mutator subtype of the TCGA cancers analyzed. The size and shade of 529 
each circle represent the number of tumors (also shown) in that sub-category. (b) Distribution of normalized 530 
binding strength of neoantigens in TCGA cancers with low, medium and high immune infiltration. The thick line 531 

shows the mean density of all distributions from tumors in each category, the shaded regions represent ±1 532 

standard deviation around this mean. (c) Distribution of the number of subclonally detected (in <60% of the 533 
tumor) neoantigen-associated mutations in cancers according to immune infiltration (T-cell average) score. Two-534 
sided Mann-Whitney tests are reported on each plot. (d) Prevalence of immune escape in MSS, MMR and 535 
POLE samples. Two-sided chi-squared test is indicated on top of each panel. (e) Distribution of the number of 536 
subclonal antigenic mutations in cancers with and without immune escape (magenta and grey, respectively) 537 
Two-sided Mann-Whitney test is reported on each panel. (f) Prevalence of immune escape in MSS cancers 538 
according to their immune infiltration level. Two-sided chi-squared test is indicated on top of each panel. (g) 539 
Number of antigenic mutations present in large subclones (>30% and <60% of cells) in MMR samples with and 540 
without immune escape. One-sided Mann-Whitney test is reported above each plot. Violin widths in (c), (e) & (g) 541 
represent raw data density with binned individual data points overlaid on top. 542 



 21

 543 

Figure 3: Subclonal immune escape shapes neoantigen landscape and tumor growth after therapy. (a) 544 
Immune escape through loss of heterozygosity (LOH) at an HLA locus in the multi-region sequenced colorectal 545 
cohort. LOH events are divided up according to whether the alteration is detected in all (clonal) or not all 546 
(subclonal) biopsies. (b) HLA LOH in individual biopsies in tumors with at least one subclonal or clonal loss 547 
event. Unfilled boxes represent homozygous HLA alleles. (c) The number of antigenic mutations detected in two 548 
distinct (with and without immune escape) subclones of n=25 simulated tumor. Antigenic mutations are detected 549 
at simulated read depth of 100x. Visual elements of the boxplot correspond to the following summary statistics: 550 
centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range. (d) The proportion 551 
of all neoantigens binding to the HLA allele lost in the LOH event in the colorectal tumors that show subclonal 552 
HLA LOH (n=6). One-sided Wilcoxon signed-rank tests are reported on (c) and (d). (e) Growth curve of 553 
simulated tumors following anti-PD-L1-type immunotherapy. The tumors have previously developed active 554 
immune escape, but also harbor a small subclone with different escape mechanism. Black dashed lines show 555 
the number of cells in this subclone over time. The inset shows growth around the point when the subclone 556 
takes over, on a logarithmic scale. 557 

 558 

Figure 4: Negative selection leads to characteristic depletion of neoantigens and effectively-neutral 559 
overall VAF distributions. (a-b) Cumulative number of mutations as a function of the inverse of the frequency 560 
for all mutations (grey, left axis) and neoantigen-associated mutations (red, right axis) harbored in at least 30 561 
cells in (a) a tumor with s=-0.8; (b) a tumor with s=-1.2. (c) Power to detect negative selection from the VAF 562 
distribution as a function of sequencing read depth (x axis) and false neoantigen rate (y axis). Power is the 563 
proportion of 100 simulated tumors with significant difference (two-sided Kolmogorov-Smirnov test, α=0.1) 564 
between the distribution of all mutations and neoantigen-associated mutations. (d) Power (in n=100 tumors) to 565 
identify negative selection as a function of selection strength (x axis) and the stringency of the two-sided 566 
Kolmogorov-Smirnov test used for detection (α=0.1, α=0.05, and α=0.01, shown in black, maroon and red, 567 
respectively). (e) Cumulative VAF distribution as a function of the inverse of the frequency for all (in grey) and 568 
neoantigen-associated mutations (in red) detected with a sequencing depth of 800x in antigen cold tumors from 569 
a simulated set of n=100. The y axis shows proportion of mutations. The mutation-antigenicity threshold 0.2 is 570 
used in all cases in (a)-(e). (f) Cumulative VAF distribution of mutations detected in any low- and medium-571 
immune infiltrated TCGA MSS cancers without immune escape. The distribution is shown for all mutations 572 
(grey), exonic mutations (blue), exonic mutations in essential genes (purple), antigenic mutations (pink) and 573 
neoantigen-associated mutations in essential genes (red). 574 

 575 

 576 
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Figure 5: Proportional neoantigen burden as a measure of selection. (a) The proportion of neoantigen-577 
associated mutations (the percentage of all mutations) as a function of negative selection pressure, computed 578 
from n=100 tumors each, with a simulated read depth of 200x. The expected value of antigens per mutation is 579 
indicated with a horizontal dashed line. The mutation-antigenicity threshold of 0.2 is used. (b) Effective mutation 580 
rate (per cell division mutation rate divided by per cell division death rate) computed from the VAF distribution of 581 
mutations in antigen-hot tumors as a function of negative selection pressure. Read depth = 200x. Colors in (a) & 582 
(b) indicate selection strength also shown on x axis (c) Proportional neoantigen burden of escaped and non-583 
escaped TCGA samples, computed from all mutations (red) and only subclonal mutations (CCF<0.6, colored 584 
salmon). Lines connect total and subclonal proportional burdens measured in the same sample. Paired two-585 
sided Wilcoxon test is reported above the violin plots. Violin widths represent raw data density with individual 586 
data points in (c) also indicated by end-points of connecting lines. 587 
 588 

 589 

  590 
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METHODS 591 

Mathematical model of tumor growth and mutation accumulation 592 

We created a minimal stochastic branching process model to represent tumor growth and 593 

accumulation of mutations under selection pressure from the environment61. The model 594 

described the proliferation, death and mutation accumulation of tumor cells, and environmental 595 

factors (e.g. the level of T-cell infiltration) were described implicitly through parameters that 596 

quantified the strength of selection against tumor cells.  597 

We made use of a rejection-kinetic Monte Carlo algorithm62 to permit efficient simulation of large 598 

populations of cells. Tumor evolution was initiated by a single transformed cell that produced 599 

two surviving offspring at birth rate b per unit time. Cells in clone i died at rate di per unit time, 600 

where the death rate increased with the neoantigen burden of the clone. Each time a cell 601 

divided, it acquired new unique mutations at overall rate µ (Poisson distribution), which were 602 

assigned as neoantigens at rate pa, or as passengers (evolutionary neutral) at rate 1-pa. Each 603 

antigenic mutation was assigned an antigenicity value (denoted Aj for the jth antigen in a given 604 

cell) sampled from an exponential distribution with the rate parameter set to 5 to produce a 605 

skewed distribution wherein >99% of antigenicity values fall between 0 and 1, and most 606 

neoantigens are only negligibly immunogenic (Fig. 1a). Neoantigens caused the death rate di of 607 

the lineage to increase from a basal rate of db=0.1 to a higher value determined by the strength 608 

of negative selection against each new neoantigen, controlled by the parameter s. The overall 609 

effect on the birth/death rate of cells was determined by the cumulative antigenicity of 610 

neoantigens harbored in the lineage, ∑ . The death rate of a subclone was computed as: 611 

      	 = (1 + ∗ ∑ )( − 1) + 	1. (1) 612 

And we defined the selective (dis)advantage of a subclone by its effective proliferation rate (the 613 

difference of its birth and death rate), as compared to a non-immunogenic clone: 614 
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  1 + ∗	∑ = = 	 , (2) 615 

where  denotes the jth neoantigen in lineage i; s=0 stands for neutral evolution with no 616 

neoantigen-associated selection and negative selection is represented by s<0.  617 

 618 

This antigenicity-dependent increase in the clone death rate represented an aggregate of the 619 

many stochastic factors that lead to the negative selection of neoantigens, including; (i) 620 

sufficient presentation of neoantigens on the cell surface; (ii) recognition of neoantigens by T-621 

cell; (iii) antigen-mediated recruitment of further T-cells; and (iv) T-cell killing efficiency. We 622 

chose to integrate all variability into a single probabilistic rate to be able to observe general 623 

qualities of the tumor-immune interaction without the need for precise parametrisation. For 624 

details on the steps of in silico simulations, see Supplementary Note and code at 625 

https://zenodo.org/record/3601322#.XvKCGJJKii4. 626 

We also modelled the acquisition of immune escape during tumor growth. Known immune 627 

escape mechanisms include mutations affecting the antigen presenting machinery and 628 

expression of immune checkpoint molecules36,37. Immune escape was modelled as a heritable 629 

property of a cell (representing e.g. copy number alteration of the PD-L1 or HLA gene). Immune 630 

escape occurred as a result of a mutation with probability pe per nonsynonymous mutation; or 631 

through manual introduction of the escape alteration at a pre-determined clone size to achieve 632 

clonal or subclonal immune escape. We considered two different types of escape mechanism: 633 

(i) active escape, which shields the clone from negative selection (decreasing the clone death 634 

probability to db) but does not decrease the neoantigen burden of the cell (corresponding to 635 

escape mechanisms such as PD-L1 overexpression); and (ii) passive escape, which renders a 636 

portion of neoantigenic mutations neutral (by rendering their antigenicity, Aj to 0; representing, 637 

for example, loss of a HLA allele that predicts a subset of neoantigenic peptides being 638 

presented).  639 
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We also incorporated therapeutic intervention in our model by time-dependently changing model 640 

parameters. The most commonly used agents in immunotherapy target and inhibit immune 641 

checkpoint pathways, helping the immune system to overcome immune escape achieved by 642 

checkpoint over-expression and re-activate immune predation of neoantigenic cancer cells. We 643 

simulated this effect by rendering active type immune escape ineffective (death rate of escaped 644 

cells is increased by antigenic load) and simultaneously increasing the negative selection 645 

strength s experienced by each neoantigen. 646 

We chose model parameters to represent a wide range of possible tumor-immune 647 

environments, and correspond to phenotypic properties of real cancers (Extended Data Fig. 6). 648 

The following parameters were used in all simulations: b = 1; db = 0.1; μ = 1 (not hyper-mutated) 649 

and μ = 10 (hyper-mutated); -2 ≤ s ≤ 0 (as indicated in figures or in caption); pa = 0.075 and pe = 650 

10-6 (where applicable). For analyses where cells and mutations were classified as antigenic or 651 

not, the cell- and mutation-antigenicity thresholds Tc = 0.5 and Tm = 0.2 were used, unless 652 

stated otherwise. For further discussion on the simplifications applied in the model, and the 653 

choices of simulation parameters and how they influence results, see the Supplementary Note 654 

and Extended Data Figs. 7-9. 655 

Simulation of VAF/CCF distributions and power calculation 656 

To evaluate the mutation spectrum of simulated tumors, mutations harbored in at least 10 cells 657 

out of 105 (0.01%) were collected at the end of each simulation and the number of carrier cells 658 

reported. Real sequencing data naturally introduces uncertainty about mutated allele frequency 659 

due to limited sequencing depth and several sources of sampling bias22. To account for 660 

imperfect measurements, CCF values were either computed by taking the raw frequency values 661 

or via a simulated sequencing step introducing noise to these frequencies with indicated read 662 

depth. For a given read depth, D, each frequency value, f, was substituted by a new frequency 663 
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sampled from a binomial distribution with parameters D and f: ~̅ ( , )/ . We filtered for 664 

mutations with  ̅above 0, to discard mutations that are not picked up due to limited detection 665 

power. 666 

In addition to sequencing limitations, neoantigen identification from DNA sequencing alone has 667 

a high rate of false-positive calls49, and therefore the VAF distribution of neoantigens is 668 

expected to be ‘contaminated’ with a large proportion of neutrally-evolving passenger mutations. 669 

To simulate this effect when evaluating the power of detecting selection, we randomly sampled 670 

non-antigenic mutations of simulated tumors (varied between 5% to 500% of the number of true 671 

neoantigens, Fig. 4c) that were falsely labelled as neoantigens and included in the neoantigen-672 

based VAF distribution. 673 

We computed the power to detect selection by comparing the distribution of all detected 674 

mutations to that of the neoantigen-labelled subset using a two-sample Kolmogorov-Smirnov 675 

test, and identified any samples as under selection in which the p-value of the test was below 676 

0.1 (Fig. 4c) or a pre-defined value (Fig. 4d). 677 

TCGA sample acquisition and processing 678 

All samples from the TCGA COAD and READ (merged together as CRC), STAD and UCEC 679 

domains were retrieved through the NCI Genomics Data Commons (GDC) portal63 between 680 

15/06/2018 and 13/11/2019. Only patients with matched germline (from blood samples) and 681 

primary tumor information available were considered. For each sample, purity (fraction of tumor 682 

cells in the sample) and overall ploidy were evaluated using ASCAT64 on Affymetrix SNP array 683 

data. Samples with purity below 0.4 and ploidy above 3.6 were excluded from the analysis, 684 

leaving 363 CRC, 146 STAD and 370 UCEC samples for which HLA typing and neoantigen 685 

calls were performed (Supplementary Table 1 and Fig. 2a). 686 
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For analyzing immune escape, the cohort was narrowed down to patients for whom gene 687 

expression data was available in GDC; and at least one pair of their HLA A/B/C alleles were 688 

heterozygous and distinct enough to allow for loss of heterozygosity calls  (n(CRC) = 341, 689 

n(STAD)=118, n(UCEC)=362). 690 

 691 

For each patient considered, the following information was downloaded: blood derived normal 692 

bam files; primary tumor bam files; unfiltered variant call (vcf) files processed with Mutect2; SNP 693 

array files; gene expression HTSeq counts (where available); and clinical information. We used 694 

the unfiltered controlled-access variant call format (vcf) files to avoid over-filtering and missing 695 

antigenic variants.  The variants were filtered to only include variants that passed all filters of the 696 

vcf files and not present (allelic depth of 0 or 1 for bases covered with over 30 reads) in normal 697 

samples. 698 

 699 

Samples were divided into MSS, MMR and POLE subtypes using data integrated from (i) 700 

clinical TCGA annotation65; (ii) calls retrieved from ref66 that used the computational tool 701 

MANTIS to analyze repetitions in tumor-normal sample pairs over microsatellite loci; (iii) and 702 

mutational signature activities computed using non-negative least squares regression26,55. 703 

Samples with a MANTIS score ≥ 0.5 and TCGA annotation of ’MSI-H’ (‘microsatellite instability’, 704 

where available) were considered MMR, and those with MANTIS < 0.5 and ‘MSI-L’/‘MSS’ were 705 

labelled MSS. In case the two sources of information contradicted each other, neither of the 706 

categories was assigned. Samples with at least 1,000 mutations inferred to originate from the 707 

characteristic POLE signature (signature 10 in ref55) were labelled as POLE tumors regardless 708 

of their MMR status.  709 

Multi-region sequenced dataset processing 710 

The multi-region sequenced colorectal dataset was accessed from Cross et al.44 (raw data 711 
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available from the European Genome-Phenome Archive (https://ega-archive.org/) at accession 712 

code: EGAS00001003066). Bam files with marked duplicates were used for HLA calling and 713 

HLA variant detection. As in the original work, variants were called using Platypus67, annotated 714 

by ANNOVAR68, and filtered to only contain somatic single nucleotide variations that were 715 

present in at least 1 tumor sample and in either 0 reads in the normal sample (for normal 716 

coverage <=30 reads) or in at most 1 read (for normal coverage above 30 reads).  717 

HLA haplotyping and calling immune escape  718 

HLA-A, -B and -C haplotyping was performed on blood derived normal bam files using 719 

POLYSOLVER39. As POLYSOLVER takes into account the individual’s race to compute the 720 

likelihood of each allele haplotype, we supplied ethnicity data, where available from clinical 721 

TCGA information, and ran haplotyping with race ’Unknown’ otherwise. 722 

Using exome and RNAseq data, we tested for the presence of three types of immune escape 723 

mechanisms: (i) somatic mutations in either one of the HLA alleles or in the B2M gene39,41; (ii) 724 

loss of an HLA haplotype through loss of heterozygosity (LOH) in the corresponding genomic 725 

locus37; and (iii) PD-L1 or CTLA-4 over-expression69. 726 

Mutations in HLA alleles were called using the previously called HLA haplotypes and the 727 

corresponding functionality of POLYSOLVER39. Variant calling was run using default settings 728 

and HLA was considered mutated if at least one allele had a nonsynonymous somatic mutation 729 

located in an exon or at a splice-site. Mutations in B2M were called if the sample contained a 730 

nonsynonymous somatic mutation located inside one of the exons of the B2M gene, as 731 

annotated by ANNOVAR68 and confirmed using Variant Effect Predictor70. Loss of 732 

heterozygosity at the HLA locus was assessed using the software LOHHLA37, using blood 733 

derived normal, and tumor bam files were used. Tumor purity and ploidy estimates were derived 734 

from ASCAT (for TCGA data) and from Sequenza71 (for the multi-region sequenced colorectal 735 
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tumors). A sample was considered to have Allelic Imbalance at an HLA locus if the 736 

corresponding p-value was below 0.01 and LOH if, in addition, the copy number prediction of 737 

that allele was below 0.5, with the confidence interval strictly below 0.7. Immune checkpoint 738 

over-expression was assessed using RNA-seq data. Normal expression values (in transcripts 739 

per million (TPM)) of PD-L1 and CTLA-4 were established for each cohort from TCGA based on 740 

RNA-seq counts of the two proteins in ‘solid tissue normal’ samples. Checkpoint over-741 

expression was called if either PD-L1 or CTLA-4 expression in the tumor was higher than the 742 

mean plus two standard deviations of normal expression. Immune checkpoint over-expression 743 

could not be inferred for the multi-region sequenced dataset as only genomic data were 744 

available. 745 

We note that the extent of the impact of these escape alterations is not always known – 746 

especially for mutations altering antigen presenting proteins – but we argued that nonetheless 747 

they represent a level of impairment in the tumor-immune interaction. 748 

Immune infiltration levels were computed from RNA-seq data based on the method of Grasso et 749 

al.41: a signature of 12 genes (CCL2, CCL3, CCL4, CXCL9, CXCL10, CD8A, HLA-DOB, HLA-750 

DMB, HLA-DOA, GZMK, ICOS, and IRF1) was extracted, and a continuous T-cell score derived 751 

as their log(TPM) average. The continuous score was then divided into three equal sized 752 

intervals (based on all cancers) to provide low, medium and high T-cell score levels. 753 

 754 

Neoantigen prediction  755 

Neoantigens were predicted from variant call tables and HLA types using NeoPredPipe40, a 756 

neoantigen prediction and evaluation pipeline designed for parallel analysis of single- and multi-757 

region samples. We only evaluated single nucleotide variants leading to a single amino acid 758 

change, and novel peptides of 9 and 10 amino acids were considered. The pipeline was run 759 
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with default analysis settings and preserving intermediate files (–p flag), using hg38 and hg19 760 

ANNOVAR68 reference files for annotation of the TCGA and multi-region CRC samples, 761 

respectively. The analysis outputted a table of novel peptides binding the patient’s MHC-I 762 

molecules (considering all six alleles independently) and their respective recognition potential 763 

calculated from their MHC-binding affinity and similarity to pathogenic peptides, as described in 764 

ref19. For evaluating the recognizability (R) part of the recognition potential, we used the 765 

parameter values derived in ref19. Unless stated otherwise, we labelled a peptide as neoantigen 766 

if its recognition potential was >= 10-1 (with respect to any of the patient’s HLA types) to focus 767 

on antigens with the highest predicted probability of eliciting an immune response: both similar 768 

to known pathogens and similar or stronger MHC-binders than their wild-type counterpart. A 769 

mutation was considered (neo)antigenic if there was at least a single peptide produced from the 770 

mutated base that got labelled as neoantigen. 771 

To evaluate the antigenicity distribution of tumors, we used the predicted percentile rank of 772 

neoantigens that ranks a putative antigen against a large set of random substrates to the same 773 

HLA molecule, and thus eliminates bias introduced by structural properties of HLA alleles72, that 774 

might be present in plain binding affinity values (considered in the recognition potential pipeline). 775 

We inverted this value to obtain a normalized binding score that correlates with the importance 776 

ranking of peptides, where values above ~1.3 represented strong putative antigens. 777 

Computation of VAF and CCF values 778 

For each mutation, we calculated the VAF as the number of mutant reads spanning the position, 779 

divided by the number of total reads of the position. The proportion of cancer cells carrying a 780 

particular mutation (CCF) was calculated from the VAF of the mutation, sample purity (tumor 781 

content), and copy number (CN) of the mutation’s genomic locus as: ( ∗ )⁄ . CCF 782 

values above 1 (arising from sequencing noise and copy-neutral loss-of-heterozygosity events) 783 
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were assumed to be 1. We only considered a mutation as subclonal if it had CCF<0.6, to 784 

account for the possibility of ‘bleeding’ of clonal mutations into the subclonal frequency range 785 

because of the limited sequence depth of TCGA samples. 786 

For pooling together VAF distributions of a cohort of samples (Fig. 4f), we first filtered the set of 787 

TCGA cancers: cancers with any evidence of immune escape (including allelic imbalance of 788 

HLA locus), MMR or POLE cancers and cancers with purity <50% were discarded. The 789 

remaining cancers were divided into low and medium immune infiltration groups (all highly T-cell 790 

score cancers were immune escaped and previously discarded). Total and neoantigen-791 

associated cumulative VAF distributions were computed from all mutations detected at 792 

subclonal frequencies in the two groups. In a similar manner, TCGA MSS cancers with purity 793 

>70% (to ensure more accurate VAF and ploidy calls) were combined into a cohort to study 794 

mutations in essential genes (Extended Data Fig. 5f). Essential genes, and antigenic mutations 795 

located in essential genes were identified using the list of shared genes in ref50. 796 

Synthetic cohorts 797 

In order to evaluate the antigen-producing capacity of different mutational processes, we 798 

generated synthetic tumor cohorts matching the mutation number and tri-nucleotide composition 799 

of real cancers. We measured the average composition (as measured by 96-channel-800 

composition55) of the real cohort (e.g. TCGA CRCs, Extended Data Fig. 6d), and randomly 801 

sampled a matching number of exonic mutations at probability specified by the respective 802 

channel intensities. Six HLA haplotypes were also randomly sampled from the complete list of 803 

alleles in the real cohort. Sampling was repeated independently 100 times to generate a 804 

synthetic cohort. 805 

Statistical analysis 806 
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Details of statistical analysis performed are summarized in the Life Science Reporting 807 

Summary. All data processing and statistical tests were performed in R (version 3.5.0) using 808 

built-in functions. The tests and functions used were as follows: Figs. 1d, 2c,e, Extended Data 809 

Figs. 3c, 6a,b,c,e: Mann-Whitney U-test/ Wilcoxon sum-rank test (wilcox.test, default settings). 810 

Figs. 2d,f and Extended Data Fig. 3a,b,d: Chi-squared test (chisq.test). Fig. 2g and Extended 811 

Data Fig. 3e: One-sided Mann-Whitney U-test (wilcox.test with option alternative=’greater’). Fig. 812 

3c-d: One-sided paired Wilcoxon signed-rank test (wilcox.test with options paired=TRUE and 813 

alternative=’greater’). Fig. 4c-d and S5b-c: Kolmogorov-Smirnov test (ks.test) between the raw 814 

VAF distribution of neoantigens and all mutations. The two distributions were deemed with 815 

significance level p<0.1 or as indicated in Fig. 4c-d and Extended Data Fig. 5b-c. Fig. 5c and 816 

Extended Data Fig. 6d,f: Paired Wilcoxon signed-rank test (wilcox.test, option paired=TRUE). 817 

Extended Data Fig. 6g: Students t-test against mean of 1 (t.test, mu=1). 818 

All violin plots were generated with automatic smoothing bandwidth value of geom_violin. 819 

Individual observations for TCGA samples are shown on top of violins, generated with 820 

geom_dotplot. 821 

DATA AVAILABILITY 822 

The datasets analyzed during the current study are available from the NCI Genomics Data 823 

Commons Portal (https://portal.gdc.cancer.gov) COAD, READ, STAD and UCEC domains, and 824 

from the European Genome-Phenome Archive (https://ega-archive.org/) at accession code: 825 

EGAS00001003066. 826 

CODE AVAILABILITY 827 

Julia (https://julialang.org/, version 0.5+) code implementing simulations of the tumor growth 828 

model is available from Zenodo (doi: 10.5281/zenodo.3601322)61. 829 

 830 
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