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Abstract

Background: Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) scans are increasingly reported as potential biomarkers of
non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have
been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of
derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various
segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters
derived from non-small cell lung cancer (NSCLC) 18F-FDG PET/CT images.
Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18F-FDG PET/CT
scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and
fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the
inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox
regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation
algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC).

Results: 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85–0.92) compared with
FLAB (median ICC 0.83; IQR 0.77–0.86) and FH (median ICC 0.77; IQR 0.7–0.85). On univariate cox regression analysis,
40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be
significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models
for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping
95% CIs.

Conclusions: Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility
of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility.
Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture
analysis of 18F-FDG PET in NSCLC.
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Background
Radiomics is the high-throughput extraction and analysis
of computationally derived features from medical images
[1]. Several studies have shown promising results in pre-
dicting tumour phenotype and prognosis with the help
of radiomics, particularly those using features derived
from texture analysis that describe intratumoural hetero-
geneity [2]. However, since it extracts information from
the entire tumour, accurate tumour delineation by an
appropriate segmentation algorithm is an important step
in measuring tumour specific image parameters. A key
property of a segmentation algorithm is that it should
delineate tumour volume to a degree of accuracy suffi-
cient to preserve the radiomic signature of the lesion.
Using an inaccurate segmentation algorithm can cause
incorrect tumour delineation by including adjacent non-
tumour structures or exclude significant tumour regions.
Both advanced and basic texture features alike are thus
incorrectly estimated, and this incorrect estimation can
potentially cause errors in prediction of tumour biology
and patient outcome.
Besides accuracy, reproducibility is also an essential

property for image segmentation algorithms and in-
cludes reproducibility across different acquisitions and
reconstructions [3–6], multiple observers [7], different
segmentation algorithms [8], and different bin ranges
[6]. Lack of reproducibility, even in a few parameters,
can impact the validity of serial measurements over time
(e.g. to determine response assessment) and measure-
ments performed on separate acquisitions (e.g. in multi-
centre trials).
Multiple segmentation algorithms exist, e.g. freehand al-

gorithms (FH), thresholding-based algorithms (e.g. fixed
thresholding at 40% of maximum intensity cut-off [40P]),
and algorithms based on probabilistic classification of
voxels into tumour or background (e.g. fuzzy locally
adaptive Bayesian [FLAB]) [9]. In measuring tumour
volumes, FLAB has been shown to be more accurate than
threshold-based segmentation, especially for small or
heterogeneous lesions (≤17 mm diameter) [8, 9]. The
better results are probably because FLAB incorporates
both the spatial context and intensity while classifying
voxels, unlike threshold-based segmentation, which classi-
fies voxels based purely on their intensities relative to the
intensity of the most intense voxel in the region.
Nevertheless, a study on oesophageal cancer has

shown no clear advantage in using either thresholding
or FLAB in predicting patient survival—a frequent end-
point of radiomics research [10]. Furthermore, there are
no data directly comparing FLAB, FH, and thresholding
in terms of inter-observer reproducibility of derived
parameters. We hypothesised that different segmenta-
tion algorithms (FH, 40P and FLAB), despite potentially
being discrepant in tumour volume delineation, are not

significantly different in the prognostic power of derived
texture features. If this hypothesis holds true, then the
segmentation algorithm of choice would be the one that is
most reproducible. The aim of our study was to test inter-
observer variation of texture features in 18F-fluorodeoxyglu-
cose (FDG) PET images across the three segmentation algo-
rithms in a cohort of patients with non-small cell lung
cancer (NSCLC) and to determine the effect of the different
segmentation algorithms on the derived texture features’
prognostic performance.

Methods
Patients
Fifty-three consecutive patients (mean age 65.8 years; 31
males) with NSCLC treated with chemoradiotherapy
(64 Gy with concurrent vincristine–cisplatin or vincristine–
carboplatin chemotherapy) between 2007 and 2009 were
included. All patients had single tumours. Most patients
had locally advanced (stage III) NSCLC and were inoper-
able. Overall survival (OS) was recorded from the date of the
18F-FDG PETscan and was defined as the time in months be-
tween the PET scan and the date of death. Patients who were
alive were censored at the time of the last clinical follow-up.
A waiver of institutional review board approval was obtained
for this retrospective analysis of anonymised data.

Image acquisition and post-processing
18F-FDG PET/CT scans were performed at a median of
45 days (range 0–174 days) before treatment and all
scans were acquired to the same protocol in the same
institution on one of two scanners (Discovery VCT or
DST, GE Healthcare, Chicago, USA) which are cross-
calibrated to within 3% [11]. Patients fasted for at least
6 h before being injected with 350–400 MBq 18F-FDG
intravenously. Ninety minutes (range 82–104 min) after
tracer injection, PET images were acquired from the
base of the skull to the upper thighs. Volumetric images
were reconstructed using the ordered subset expectation
maximisation algorithm with a slice thickness of
3.27 mm and pixel size of 4.7 mm. Low dose CT was
acquired for attenuation correction at 120 kVp and
65 mAs without administration of oral or intravenous
contrast agent. The reconstructed 18F-FDG PET datasets
were imported into in-house texture analysis software
implemented in MATLAB (Release 2013b, The Math-
Works, Inc., Natick, Massachusetts, USA). Three readers,
a radiation oncologist (GA), a radiologist (UB), and a
nuclear medicine physician (GC), with 1, 8, and 25 years of
18F-FDG PET imaging experience, independently drew
freehand regions of interest around the metabolically
active primary lung tumours on each axial slice on
the 18F-FDG PET scans to generate a volume-of-
interest (VOI). Care was taken to exclude adjacent
metabolically active structures, e.g. the heart and
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lymph nodes. Each FH VOI served as the template
for automatic segmentation algorithms, i.e. 40P and
FLAB. Before applying the respective algorithms, the
FH VOIs were expanded by 5 pixels in three-
dimensions to cover the entire tumour and some
background non-tumour surrounding regions. The ex-
panded VOIs were inspected again to ensure that no
adjacent metabolically active non-tumour tissue had
inadvertently been included as a result of expansion.

Forty percent of maximum threshold
The 40P VOIs were derived from the expanded VOIs by
retaining only voxels showing activity equal to or greater
than 40% of the maximum activity voxel inside the
VOI [12].

Fuzzy locally adaptive Bayesian
Using the FLAB algorithm [9], the expanded VOI voxels
were categorised into three classes representing tumour
core, region of partial volume averaging around tumour
core, and background. Voxels assigned to the back-
ground class were discarded, and the remaining volume,
i.e. tumour core and region of partial volume averaging,
was kept as the final FLAB VOI in accordance with a
previous description of this algorithm [9].

Texture parameters
The voxels of each VOI were resampled into 64 discrete
bins of grey-scale values based on previous reports on
optimum quantization schemes [6, 10]. The VOIs were
then processed as three-dimensional matrices from
which 83 texture parameters were derived: 6 model-
based parameters (fractal) and 77 statistical parameters
(20 first-order, 22 second-order and 35 higher-order).

Statistical analysis
Statistical analysis was conducted using R 3.1 [13]. For
inter-observer variability, all three readers’ datasets were
used. The remaining analyses were performed on a sin-
gle dataset of the most experienced observer (GC). Q-Q
plots were examined to detect skewed distributions.
Twenty - seven out of the 83 derived texture parameters
showed highly positively skewed distributions; these pa-
rameters were log-transformed (base 10).
Before comparing derived texture parameters between

segmentation algorithms, we compared measured tumour
volumes by the different algorithms, since volume provides
the foundation for all subsequent analyses. However, com-
parison of scalar volumes is inadequate because two tech-
niques can give identical volumes yet have measured
different regions and thus be discordant. Therefore, we
used the Jaccard similarity index (JSI) to obtain a voxel-by-
voxel comparison between VOIs drawn with different seg-
mentation algorithms. JSI computes agreement between

two VOIs drawn with different segmentation algorithms on
a voxel-by-voxel basis. When both VOIs are identical, the
JSI is equal to one, and when they are discordant, the JSI is
equal to zero. The JSI was multiplied by 100 to obtain per-
cent -agreement.
We used FLAB as the reference set, based on results

from phantom studies [9], and FH and 40P were used to
derive 2 sets of JSI for all 53 cases—1 set for FH/FLAB
and 1 for 40P/FLAB. The JSI of FH/FLAB set was
compared with the JSI of the 40P/FLAB set using the
Mann-Whitney U test. The effect of tumour size on
percent-agreement was assessed visually using scatterplots.
The ICC was used to measure the agreement between

the three readers for each derived texture parameter.
This yielded three sets of 83 ICC values—1 set per seg-
mentation algorithm. To rate reproducibility of a seg-
mentation algorithm, arbitrary cut-offs were used to
denote high (ICC >0.85), moderate (0.7–0.85) and low
(<0.7) reproducibility. To compare ICC values derived
from different segmentation algorithms, 95% confidence
intervals (CI) of pair-wise differences in ICC values were
calculated from the same data resampled 100 times,
using a bootstrapping approach [14]. A difference in
ICC between two segmentation algorithms was consid-
ered non-significant if the CI included zero.
To determine if a given segmentation algorithm pre-

served sufficient relevant tumour information, we chose a
subgroup of 12 texture parameters for univariate Cox re-
gression analysis: metabolically active tumour volume
(MATV), total lesion glycolysis (TLG), SUVmean, SUVmax,
SUV standard deviation, first-order entropy, grey-level co-
occurrence matrix (GLCM) entropy, GLCM homogeneity,
GLCM dissimilarity, grey-level size zone matrix (GLSZM)
intensity variability, neighbourhood grey-tone difference
matrix (NGTDM) coarseness and NGTDM contrast. We
selected these variables after carefully reviewing relevant
publications for their reported associations with patient sur-
vival [7, 10, 15–17]. The quality of each univariate cox
regression model was assessed using two statistics: the
Wald statistic was used to determine the statistical sig-
nificance of the derived coefficient (cut-off p value:
0.05), whereas the Akaike information criterion (AIC)
was used to determine goodness of fit of the model
[18]. Our purpose was not to validate any of these tex-
ture parameters; we accepted them as valid biomarkers
based on our literature review and merely used them to
measure the performance of each segmentation algo-
rithm. Thus, detailed survival analysis, i.e. analysis
employing Kaplan-Meier curves and multivariate Cox
regression, was not performed.

Results
Patient demographic and clinical characteristics are
listed in Table 1.
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Effect of segmentation algorithm on tumour-volume
estimation
Overall, 40P yielded the smallest volumes and FH the
largest (Fig. 1).
Taking FLAB as the reference standard, mean JSI

between FH and FLAB was 71.6% (range 48–87%; SD
9.4%) and between 40P and FLAB was 70.7% (range
10.5–98.1%; SD 21.1%). The difference between the two
means was not statistically significant (p = 0.24). Fur-
thermore, the percent-agreement of JSI did not appear
to be related to tumour size (Fig. 2).

Effect of segmentation algorithm on inter-observer repro-
ducibility of derived texture parameters
Summary ICC statistics are as follows: FH (median ICC
0.77; IQR 0.7–0.85), FLAB (median ICC 0.83; IQR
0.77–0.86) and 40P (median ICC 0.9; IQR 0.85–0.92).
Ranked on the basis of defined cut-offs, FH, FLAB and
40P showed high ICC (>0.85) in 20, 27 and 62 parame-
ters, moderately high ICC (0.7–.85) in 40, 42 and 19,
parameters and low ICC (<0.7) in 23, 13 and 2 parame-
ters, respectively.

When ICC values of the segmentation algorithms were
compared for individual texture parameters, the follow-
ing observations were made: compared with FLAB, 40P
showed greater ICC values for 77 of 83 parameters
(statistically significant in 10 parameters); FLAB had
higher ICC than 40P in the remaining 6 cases, 1 reach-
ing statistical significance. Both FLAB and 40P had
higher ICC than FH in 58 and 73 parameters, respect-
ively, reaching statistical significance in 5 and 30 param-
eters, respectively. For SUV-range, FH had significantly
greater ICC value than FLAB; compared with 40P, FH
had significantly greater ICC in none. Group-wise com-
parison among texture parameters showed that the first-
order histogram measures were the most reproducible
for all segmentation algorithms (Fig. 3).
ICC values of commonly reported texture parameters

are given in Table 2.

Effect of segmentation algorithm on survival
prognostication
Patients were followed up for a median 21.2 months
(range 2.1–51.1 months). Median OS was 25.6 months.
On univariate Cox regression analysis, 40P found 2 out of
12 variables, i.e. first-order entropy and GLCM entropy, to
be significantly associated with OS; FH and FLAB found
1, i.e. first-order entropy (Table 3). For each tested
variable, survival models for all three segmentation
algorithms had comparable AIC values with overlapping
95% CIs showing equivalent fit to the data (Table 3).

Table 1 Patient demographics and clinical characteristics

Patient characteristic Value

Male:female 31:22

Tumour subtype

Adenocarcinoma 21 (40%)

Squamous cell carcinoma 24 (45%)

Not specified 8 (15%)

T status

T1 6 (11%)

T2 14 (27%)

T3 15 (28%)

T4 17 (32%)

Tx 1 (2%)

N status

N0 11 (21%)

N1 4 (8%)

N2 33 (62%)

N3 5 (9%)

Tumour stage

IB 3 (6%)

IIB 5 (9%)

IIIA 24 (45%)

IIIB 21 (40%)

Median interval between 18F-FDG PET and
start of treatment (days)

45 (range 0–174)

Median radiotherapy dose (Gy) 64 (range 55–64)

Median chemotherapy cycles 4 (range 1–6)

Fig. 1 Boxplots comparing the three segmentation algorithms in
volume measurement. The boxes represent the interquartile range
(IQR). Horizontal lines through the boxes show median values. The
whiskers represent values within 1.5*IQR. 40P = 40% of maximum
intensity threshold. FH freehand, FLAB fuzzy locally adaptive Bayesian
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Discussion
Our study found moderate to high reproducibility be-
tween observers, with 40P (median ICC 0.9) ranking
highest, followed by FLAB (median ICC 0.83) and then
FH (median ICC 0.77). Despite yielding smaller median
volumes than FLAB and FH, and theoretically losing
some texture information, 40P compared favourably
with FLAB and FH by detecting a significant association
between first-order entropy and survival. It found a
second significant survival predictor (GLCM entropy)
for which the other two segmentation algorithms
were inconclusive.
For tumour volume measurements, we chose FLAB as

proxy ground-truth in the absence of true measurements
of resected specimens [10]. Although there is no consen-
sus on segmentation algorithm suited for MATV delin-
eation, a study has shown FLAB to be more accurate
than a fixed threshold in tumour delineation over a
range of phantoms (n = 6; sizes 10–37 mm) and simu-
lated tumours (n = 3) [9]. There are no large studies
comparing both techniques with resected specimen
measurements. We found good voxel-by-voxel match
(mean FLAB/FH and FLAB/40P match of 72 and 71%,
respectively, p = 0.7)), uncorrelated with lesion size in
our cohort of relatively large tumours. This means that
in tumour sizes typically encountered, 40P- and FH-
delineated volumes match FLAB-delineated volumes
reasonably well and the degree of mismatch is stable
over a range of tumour sizes. Segmentation with 40P
generally estimated smaller tumour volumes. This is likely
due to indiscriminate exclusion of voxel intensities below
the fixed 40% threshold, such as those arising from low-
activity tumour regions or tumour boundaries (subject to
partial volume averaging with neighbouring tissue). FH, on
the other hand, estimated larger tumour volumes. This is

Fig. 2 Lesion volumes computed with FLAB are plotted against JSI
between FLAB and FH (a) and JSI between FLAB and 40P (b). Slope
lines are shown along with 95% standard error of slope (dashed lines).
r2 values are displayed on the figures. The nearly straight slope lines
and small r2 imply that there is no particular trend to the degree of
mismatch between FH and FLAB derived volumes over the range of
tumour sizes. JSI Jaccard similarity index

Fig. 3 Boxplots comparing ICC values for the three segmentation algorithms over the four groups of texture parameters, i.e. first-order, second-order,
and higher-order statistics, and model-based parameters. 40P 40% of maximum intensity threshold. FH freehand, FLAB fuzzy locally adaptive Bayesian,
ICC intraclass correlation coefficient
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likely due to inclusion of some partial volume-averaged re-
gions and some background region in physician - drawn
contours.
In terms of inter-observer agreement, 40P ranked

highest. We found FH to be inferior to other methods in
inter-observer reproducibility, despite having a moder-
ately good overall reproducibility (median ICC 0.86).
The lower overall reproducibility of FH is due to its op-
erator dependence, as opposed to the 40P and FLAB,
which are semi-automatic. Other studies have also found
FH to have moderate to good inter-observer variability
[1, 19]. However, given that it is time-consuming and
less reproducible than 40P and FLAB, we do not con-
sider it the segmentation algorithm of choice.
We found a median ICC of 0.9 for 40P, which is simi-

lar to that reported in the literature [19]. 40P showed
highest group-wise median ICC for all four groups of
texture parameters, as illustrated in Fig. 3. Segmentation
with 40P was especially robust in first-order statistical
measures, for which it showed a median ICC of 0.94
compared with 0.86 for FH and 0.87 for FLAB. The rea-
son for the higher reproducibility of 40P in first-order
statistical measures is probably partly due to the inher-
ent robustness of first-order statistical measures, as
noted by others in CT [20] and PET studies [4, 7].
Furthermore, since 40P depends mainly on inclusion of
the most active voxel in the region, and the calculation
of the remaining volume is done automatically, it will
not differ significantly between operators.
Comparing groups of texture parameters in terms of

inter-observer reproducibility we found that all statistical
measures were moderately to highly reproducible using
any of the three segmentation algorithms, with first-
order features ranking highest (median ICC for FH,
FLAB and 40P: 0.86, 0.87 and 0.94, respectively). On the
other hand, fractal dimension-related measures were

least reproducible using FH (median ICC 0.64; IQR
0.47–0.74), FLAB (median ICC 0.74; IQR 0.73–0.85), or
40P (median ICC 0.77; IQR 0.75–0.88). While fractal
dimension-related measures may have a role in lesion
classification using CT [21], we did not find any reports
supporting their role as prognostic biomarkers. Hence,
these texture measures may not be useful in predicting
prognosis.
Several texture analysis studies on patient survival

have used freehand, threshold (40–50%) and FLAB
algorithms [3, 7, 15, 22–24], highlighting different pa-
rameters in terms of their usefulness. However, these
contending algorithms have not been compared in terms
of effect on prognostic ability of derived texture parame-
ters. In this regard, we found that 40P performed com-
parably to FH and FLAB in predicting overall survival
when using first-order entropy. The fact that 40P discov-
ered first-order entropy and an additional significant
association between OS and a texture parameter (GLCM
entropy), despite measuring generally smaller volumes,
suggests that it preserves lesions’ radiomic signatures.
Both first-order entropy and GLCM entropy have been
shown in previous studies to have a potential role in
predicting OS [7, 15, 16].
Our study has several potential limitations. First, the

sample size is moderate but a larger sample may have
revealed further prognostic associations. Nevertheless, as
the main objective was to compare segmentation algo-
rithms, the results remain informative. Second, we did not
perform respiratory gating while performing 18F-FDG
PET examinations of the lungs. Respiratory motion has
been shown to add variability to measured texture param-
eters [25]. Third, we did not have histological ground-
truth as a reference standard to compare the accuracy of
volume delineation with the different algorithms. A few
small studies using resected specimen measurements have

Table 2 Comparison of ICC values of 11 commonly reported texture parameters derived with 3 contending segmentation algorithms

Texture parameter ICC FH (95% CI) ICC FLAB (95% CI) ICC 40P (95% CI)

TLG* 0.948(0.919–0.967) 0.939(0.906–0.962) 0.968(0.95–0.98)

SUVmean 0.9 (0.84–0.93) 0.91 (0.86–0.94) 0.94 (0.91–0.96)

SUVmax 0.951 (0.925–0.97) 0.927 (0.887–0.954) 0.943 (0.911–0.964)

SUV Standard deviation 0.911 (0.865–0.945) 0.907 (0.859–0.942) 0.937 (0.903–0.961)

First-order entropy 0.745 (0.634–0.834) 0.775 (0.673–0.854) 0.87 (0.805–0.918)

GLCM entropy 0.767 (0.663–0.849) 0.779 (0.679–0.857) 0.868 (0.801–0.916)

GLCM homogeneity 0.782 (0.682–0.859) 0.833 (0.752–0.893) 0.912 (0.866–0.945)

GLCM dissimilarity 0.753 (0.644–0.839) 0.82 (0.734–0.885) 0.898 (0.845–0.936)

GLSZM intensity variability* 0.917 (0.874–0.949) 0.908 (0.86–0.943) 0.931 (0.894–0.957)

NGTDM coarseness 0.613 (0.469–0.738) 0.657 (0.522–0.77) 0.876 (0.814–0.922)

NGTDM contrast* 0.704 (0.581–0.805) 0.72 (0.601–0.816) 0.852 (0.779–0.906)

Note that ICC of MATV was not calculated as it was substituted for by JSI
*Variable was log-transformed
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found FLAB to be more accurate than fixed threshold [8].
Fourth, although our routine clinical protocol is to scan at
90 min post injection, many other departments scan at
60 min. It is possible that slightly different scan times may
impact on segmentation volumes as there continues to be
differential redistribution of FDG between benign and ma-
lignant tissue over time. Finally, we only tested the seg-
mentation algorithms in an inter-observer reproducibility
setting. Studies assessing test-retest reproducibility from
different scanning sessions of various algorithms are ne-
cessary to validate best algorithms for multicentre trials
and serial response-assessment examinations. It is possible
that due to variation in maximum pixel intensity due to
noise and reconstruction parameters in separate PET ex-
aminations, fixed thresholding may not be as reproducible
as its contenders. While first-order statistical measures
may not suffer significant differences in the test-retest set-
ting [19], this potential shortcoming should be considered
in radiomics research employing large numbers of higher-
order variables.

Conclusions
Compared to FH and FLAB, 40P is a robust segmenta-
tion algorithm for 18F-FDG PET texture analysis in
NSCLC in terms of inter-observer variability, and it also
produces the highest number of texture parameters as-
sociated with patient survival. It is therefore considered
a clinically acceptable segmentation algorithm for tex-
ture analysis in NSCLC.
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