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Aurora A kinase (AURKA) is a major regulator of mitosis and an important

driver of cancer progression. The roles of AURKA outside of mitosis, and

how these might contribute to cancer progression, are not well understood.

Here, we show that a fraction of cytoplasmic AURKA is associated with

mitochondria, co-fractionating in cell extracts and interacting with mitochon-

drial proteins by reciprocal co-immunoprecipitation. We have also found

that the dynamics of the mitochondrial network are sensitive to AURKA

inhibition, depletion or overexpression. This can account for the different

mitochondrial morphologies observed in RPE-1 and U2OS cell lines,

which show very different levels of expression of AURKA. We identify

the mitochondrial fraction of AURKA as influencing mitochondrial

morphology, because an N-terminally truncated version of the kinase that

does not localize to mitochondria does not affect the mitochondrial network.

We identify a cryptic mitochondrial targeting sequence in the AURKA

N-terminus and discuss how alternative conformations of the protein may

influence its cytoplasmic fate.
1. Introduction
Aurora A kinase (AURKA) was discovered as a mitotic kinase with a key role in

bipolar spindle formation [1]. Its prominent localization to the microtubule

spindle in mitosis is mediated through interaction of its kinase domain with

the microtubule-associated protein TPX2 [2], an interaction that also activates

the kinase activity of AURKA through stabilization of the active conformation

of the T-loop [3]. Further studies have revealed the existence of alternative path-

ways to activation of AURKA [4–6] and an extensive array of cellular functions

regulated by AURKA, in interphase as well as mitosis (reviewed in [7]). One

such novel function that has been described for AURKA is the promotion of

mitochondrial fission in preparation for mitosis [8].

Mitochondria form a highly dynamic network of interconnected tubules

that undergo constant cycles of fission and fusion. These cycles are an essential

feature of cellular homeostasis, thought to maintain a healthy mitochon-

drial population by allowing segregation of damaged mitochondria into the

mitophagy pathway [9,10]. It is also proposed that fission/fusion cycles

regulate the metabolic output of the cell, because a more interconnected

network provides more efficient oxidative metabolism, and that mitochon-

drial morphology responds to metabolic cues. Mitochondrial morphology

depends on the activity of GTPases dynamin-related protein 1 (Drp1) for
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fission and mitofusins (MFN1, MFN2) for fusion of the outer

mitochondrial membrane (OMM) [11,12].

Mitochondrial fission also occurs prior to cell division in

mammalian cells. Fragmentation of organelle networks

(mitochondria, Golgi, ER) is a common feature of cell

division, thought to improve the probability that organelles

segregate equally between daughter cells [13,14] and to

enable regulated segregation of aged mitochondria during

stem cell-like divisions [15]. Mitochondrial fragmentation

in mitosis may also be required for efficient microtubule-

dependent transport of mitochondria towards the cell peri-

phery and away from the cell division plane [16]. Indeed,

blocking mitochondrial fission or transport gives rise to

cytokinesis failure and aneuploidy [11,17,18], an effect that

can be rescued by disrupting mitochondrial fusion [19].

Previous studies have described a pathway leading to increased

mitochondrial fission at mitotic entry via Cdk1-dependent acti-

vation of Drp1 at the OMM [13]. The mitotic kinase AURKA

has been proposed to regulate these events through phosphoryl-

ation of RalA to promote RalA-dependent OMM recruitment of

both Drp1 and RalBP1–cyclinB–Cdk1 complex [8].

Fragmented mitochondrial networks are a characteristic

of cancer cells thought to contribute to the metabolic changes

that accompany tumorigenesis, and have been shown to

contribute to tumour progression and metastasis [20–22].

Overexpressed AURKA (located on the 20q amplicon) is

also strongly associated with cancer [23,24]. Given a large

number of mitochondrial hits we identified in a search for

AURKA interactors, we decided to investigate further the

role of AURKA in influencing the fragmentation state of

the mitochondrial network in human cell lines. We report

here that the mitochondrial network is sensitive to AURKA

activity at all phases of the cell cycle, and that this sensitivity

contributes to divergent mitochondrial morphology between

two cell lines (one transformed and the other non-

transformed) expressing different levels of AURKA. Further-

more, we identify an interphase subpopulation of AURKA

associated with mitochondria, both by immunofluorescence

and fractionation assays. This association depends on the

AURKA N-terminal region, which contains a cryptic

mitochondrial targeting sequence.
2. Results and discussion
In using proteomic approaches to identify co-purifying

proteins in AURKA-GFP pulldowns from human U2OS

cells, we identified large numbers of mitochondrial proteins

(electronic supplementary material, figure S1A). We con-

firmed these potential interactions by reciprocal pulldowns

of several GFP-tagged mitochondrial markers, including the

OMM translocase complex components TOMM20 and

TOMM70 and the inner mitochondrial membrane component

Prohibitin (PHB), which identified endogenous AURKA as a

partner protein in cell extracts (electronic supplementary

material, figure S1B). Repeated experiments suggested that

the quantity of AURKA in pulldowns of mitochondrial pro-

teins was at least 10-fold less than that found in pulldowns

of TPX2, a major interactor of AURKA in mitotic cells [2].

Given the previous study suggesting that mitochondrial

fission was controlled by a cytoplasmic pool of AURKA [8],

we investigated the relevance of our own finding—of the

association of AURKA with mitochondrial proteins—to
mitochondrial morphology. First, we tested whether

depletion of endogenous AURKA, using siRNA-mediated

knockdown (AURKA-i), would affect mitochondrial mor-

phology in the immortalized retinal pigment epithelial line

hTERT-RPE-1 (RPE-1). We found that AURKA-i resulted in

markedly reduced fragmentation of the mitochondrial net-

work, observable as a more interconnected network and

quantifiable as a change in length distribution of individual

mitochondria (figure 1a; electronic supplementary material,

figure S2A, B). To confirm the specificity of this effect, we

treated RPE-1 cells, expressing an endogenous mRuby-

PCNA marker to distinguish cell cycle phases [25], with the

small-molecule-specific inhibitor of AURKA, MLN8237. We

found that the length of mitochondria varied with cell cycle

phase as expected [13,26], being shortest in G1 phase

(figure 1b), but that AURKA inhibition led to elongation of

mitochondria in all cell cycle phases (figure 1c). Therefore,

we conclude that AURKA can regulate mitochondrial organ-

ization throughout the cell cycle. To determine whether this

response of mitochondria to AURKA is a conserved role

of the kinase, we treated cultured Drosophila melanogaster
D.mel-2 cells with MLN8237 (figure 1d ). The increase in

mitochondrial connections and length following treatment

suggest that this role for AURKA is conserved in metazoans.

We noticed that cancer cell lines used in our laboratory

(e.g. U2OS) had mitochondrial networks in a more fragmen-

ted state than non-transformed RPE-1 cells (figure 2a; see also

electronic supplementary material, figure S2). Given our find-

ing that AURKA influences mitochondrial morphology, and

the well-documented overexpression of AURKA in cancer

cells, we tested whether AURKA expression levels might con-

tribute to differences in mitochondrial morphology observed

between RPE-1 and U2OS cells. We determined relative

expression levels in extracts prepared from known numbers

of cells in asynchronous populations, normalized against a

panel of cellular proteins (figure 2b). This revealed that

U2OS cells contain twofold higher levels of AURKA protein

normalized against cell number, and fourfold to sixfold more

when normalized against the levels of tubulin, actin or

ATP5A1. Therefore, higher AURKA levels correlate with a

more fragmented mitochondrial network. Next, we tested

whether manipulating AURKA levels would reproduce

observed patterns of mitochondrial organization. We used

partial siRNA-mediated knockdown to achieve sixfold

reduction of AURKA levels in U2OS cells, and found a

corresponding lengthening of mitochondria under these

conditions (figure 2c,d). Connectivity of the network was

also greater when AURKA levels were reduced. Conversely,

we found that tetracycline-induced overexpression of a

stable AURKA-Venus transgene in RPE-1 cells resulted in

a small but significant decrease in the length of mitochondria

(figure 2e,f ). In further experiments, we found that transient

overexpression of AURKA-Venus in another untransformed

line, breast epithelial MCF10A cells, also led to increased

fragmentation of the mitochondrial network in cells over-

expressing AURKA (electronic supplementary material,

figure S2C). Finally, MLN8237 treatment of HCC1143 cells,

a breast cancer line characterized by a highly fragmented

mitochondrial network, caused an increase in mitochondria

length (electronic supplementary material, figure S2D).

Therefore we conclude that the different fragmentation

state of the mitochondrial network in different cell lines is

influenced by AURKA expression.
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Figure 1. AURKA is a constitutive regulator of the mitochondrial network. (a) RPE-1 cells were treated with control (GL2-i) or AURKA siRNA (AURKA-i) for 48 h and
mitochondria imaged in live cells using MitoTrackerTM. Areas of cytoplasm marked by white squares are shown enlarged twofold in panels to the side of each image.
Mitochondria were analysed for tubular fragment length as described in Material and methods, with raw measurements shown as probability density plots. p , 0.001 for
the maximum deviation D ¼ 0.40 (K-S test). (b,c) RPE-1-mRuby-PCNA cells were stained with Mito-IDw green and imaged after treatment with 100 nM MLN8237 (MLN)
or vehicle control (DMSO) for 3 h. (b) Tubular mitochondrial lengths are plotted as probability density curves (left-hand panel) for cells assigned to G1, S or G2 phase
according to localization of mRuby-PCNA (middle panel), with cell cycle distribution summarized in the plot shown in the right-hand panel. (c) Probability density plots
showing increased mitochondria length in all phases of the cell cycle after MLN treatment. G1: p , 0.001, D ¼ 0.39; S: p , 0.001, D ¼ 0.23; G2: p , 0.001, D ¼ 0.13
(K-S test). (d ) Drosophila D.mel-2 cells were treated with MLN for 3 h and processed as in (a). p , 0.001, D ¼ 0.53 (K-S test). For panels (b – d): raw measurements are
pooled from three statistically reproducible experimental repeats. For panels (a – d): scale bars, 10 mm in main panels, 1 mm in magnification panels.
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Figure 2. AURKA levels influence mitochondrial morphology in RPE-1 and U2OS cells. (a) RPE-1 and U2OS cells were treated with MitoTrackerTM and imaged under
identical conditions. Mitochondrial lengths were measured and plotted as in figure 1. p , 0.001 for the maximum deviation D ¼ 0.37 (K-S test) from two repeats.
(b) Equal numbers of U2OS and RPE-1 cells were harvested for cell extracts and calculated quantities loaded onto gels to be examined by quantitative immunoblot.
Bar charts show AURKA levels quantified and normalized against number of cells, or against different loading markers. Statistical confidence is indicated as *p ,

0.01; **p , 0.001 (Student’s t-test), n ¼ 3 repeats. (c,d) U2OS cells were treated with control (GL2-i) or AURKA siRNA (AURK-i) for 48 h and then either processed
for quantitative immunoblotting of AURKA levels (c) or stained with MitoTrackerTM (d ). Example images show insets indicated by white boxes magnified twofold.
Mitochondrial tubular length measurements are plotted as probability density curves. p , 0.001, D ¼ 0.73 (K-S test). (e,f ) RPE-1-AURKA-Venus cells were induced
for AURKA-Venus expression (AURKA OE) or not (control) with addition of tet for 18 h. Cells were either processed for quantitative immunoblotting of AURKA levels
(e) or stained with MitoTrackerTM for mitochondrial tubular length measurements ( f ), p , 0.01, D ¼ 0.08 (K-S test). tet, tetracycline; endog, endogenous;
OE, overexpression. For panels (a,d,f ): scale bars, 10 mm in main panels, 1 mm in magnification panels.
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Given the prevalence of mitochondrial hits in our AURKA

interactome, and the functional relationship between AURKA

and mitochondrial organization, we hypothesized that part of

the cytoplasmic pool of AURKA might be associated with the

mitochondrial network. In support of this, we found that both

endogenous and exogenous AURKA co-purify with mitochon-

dria in extracts fractionated by centrifugation (figure 3a). We

also examined fixed cells for co-localization of endogenous

AURKA with a mitochondrial marker, TOMM20. Immuno-

staining with two different antibodies against AURKA

revealed punctate cytoplasmic staining in which the AURKA

‘dots’ were frequently apposed to mitochondria, often close

to points of mitochondrial constriction (figure 3b). We then

sought to confirm that these dots were AURKA-specific

using siRNA to deplete endogenous AURKA. This led to the

reduction of the punctate staining associated with mitochon-

dria in accord with the downregulation of AURKA by
AURKA-i treatment (electronic supplementary material,

figure S3A, B). We sought to confirm our finding in live

cells, by examining the cytoplasmic localization of AURKA-

Venus without fixation. When AURKA-Venus was expressed

exogenously from a transgene (as in figure 2e, also electronic

supplementary material, figures S2C, S4A), levels of cyto-

plasmic AURKA were too high to distinguish co-localization

patterns in the high cytoplasmic background. To circumvent

this issue, we targeted one allele of endogenous AURKA

at the C-terminus with mVenus, taking advantage of rAAV-

mediated homologous recombination (electronic supple-

mentary material, figure S3C). Endogenous mVenus-tagged

AURKA was expressed to the same level as untagged endogen-

ous AURKA, was comparably enriched in cells arrested in

mitosis (electronic supplementary material, figure S3D, E) and

faithfully recapitulated the known localization of untagged

AURKA in the cell cycle (electronic supplementary material,
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figure S3F). When we examined endogenous AURKA-

mVenus, we could detect a similar pattern of co-localization

of cytoplasmic dots of Venus fluorescence with constrictions

in mitochondria in the living cells as we had seen when

staining fixed cells for endogenous AURKA (figure 3c).

Finally, we carried out super-resolution microscopy on an

OMX system and used three-dimensional reconstruction of

Z-stacks to confirm that punctate GFP-labelled structures in

fixed RPE-1-AURKA-Venus cells frequently coincided with

constrictions in the mitochondrial network (figure 3d ). There-

fore, we concluded that a small fraction of cytoplasmic

AURKA resides at mitochondria.

The interaction we identified between translocase of the

outer membrane (TOM) complex components and AURKA

raised the possibility that AURKA might be targeted to mito-

chondria through a mitochondrial targeting sequence (MTS)

[27,28]. These are characterized by an amphipathic helix at

the N-terminus. The known structure of AURKA [29] excludes

the N-terminal region, which is generally considered to be

unstructured. We tested if AURKA lacking its N-terminal 31

amino acids (AURKAD31) would still localize in the mitochon-

drial fraction in cell fractionation experiments, and we found

that it did not (figure 4a,b). Moreover, AURKAD31 overexpres-

sion did not cause fragmentation of mitochondria (figure 4c).

We concluded that the N-terminal region of AURKA contains

sequences necessary for its localization with mitochondria

and that this localization is required for mitochondria to frag-

ment in response to the kinase’s activity. To further test this

idea, we fused an MTS onto the N-terminus of AURKAD31.

As predicted, expression of this gene fusion restored fragmen-

tation of mitochondria (electronic supplementary material,

figure S4A, B).

These findings led us to ask whether the natural

N-terminal domain of AURKA had any of the characteristics

of MTSs. We found that AURKA’s N-terminal region is

indeed polybasic and has the periodic hydrophobicity consist-

ent with that of an amphipathic helix (figure 4d). This

predicted amphipathic helix is a phylogenetically conserved

secondary feature, even where the primary amino acid (AA)

sequence diverges (electronic supplementary material, figure

S4C). When we analysed the AURKA sequence using the

bioinformatic algorithms, TargetP and MitoProt [31,32], we

identified a ‘cryptic’ targeting sequence from AA 7–55. That

is, whereas the full-length AURKA sequence was not predicted

to localize to mitochondria, in silico removal of the first 6 AAs

from its N-terminus generated a predicted mitochondrial local-

ization signal (probability in MitoProt, p . 0.95; figure 4e).
Therefore, we tested the prediction that N-terminally clipped

versions of AURKA, AURKAD6 and AURKAD8, should

localize more strongly to the mitochondrial network than the

full-length protein. Comparing the localization of AURKA-

Venus with AURKAD6/D8-Venus in fixed cells, we found

that in both RPE-1 and U2OS cells, the clipped versions

showed a more prominent co-localization with mitochondria,

consistent with the presence of cryptic mitochondrial

targeting information in the AURKA N-terminus (figure 4g;

electronic supplementary material, figure S5). Moreover,

mitochondrial fragmentation was also enhanced in the pres-

ence of AURKAD6/D8-Venus, supporting the idea that

mitochondrial targeting of AURKA promotes mitochondrial

fission (figure 4f).
A large number of proteins are described to interact with

AURKA [33]. Some of these interactions may depend upon
alternative conformations of the N-terminus. Thus, for

example, the so-called A-box region can mediate interactions

with either the APC/C cofactor Cdh1 or with Calmodulin, in

a manner that may be regulated by phosphorylation on

Ser51 [5,34]. We suggest that factors affecting the folding of

the N-terminal region of AURKA could determine the localiz-

ation and fate of the kinase by directing alternative interactions.

One form of AURKA in this conformational space would dis-

play a functional MTS to mediate its mitochondrial targeting.

This conformation would be favoured by AURKAD6.

Is AURKA on the surface of mitochondria, as predicted

by its known role in promoting Drp1-mediated fission, or

on the inside, as predicted by its MTS? Studies of mitochon-

drial regulation by mitotic cyclin-dependent kinase (Cdk)

activity point to roles for cyclinB1–Cdk1 both at the mito-

chondrial surface, in regulating Drp1 activity [8], and—in a

different study—inside the mitochondrial matrix, in regulat-

ing the respiratory chain via Complex I phosphorylation

[35]. The targeting sequence on AURKA suggests that it

would be translocated into the mitochondria via the TOM

complex. Indeed, we have found direct interaction with the

TOMM20 and TOMM70 members of this complex and also

identified ATP5A subunits and other matrix components in

our proteomic survey of AURKA interactors (electronic

supplementary material, figure S1A).

The ‘MAGIC’ pathway, recently described by the Rong Li

laboratory, diverts aggregation-prone proteins into mitochon-

dria by an unknown mechanism that results in their ubiquitin-

independent clearance by mitochondrial proteases [36]. It

is possible that AURKA is an aggregation-prone protein,

given the unstructured nature of its extended N-terminus.

Exogenously expressed protein would be more likely to be pro-

cessed via this pathway than endogenous proteins, because it

would be more likely to be expressed in the absence of the cor-

rect binding partners, and we certainly cannot exclude that this

pathway is responsible for co-localization of AURKAwith mito-

chondria. However, both endogenous and exogenous AURKA

localize in the same way, presumably sharing the pathway that

contributes to the dynamics of the mitochondrial network.

Mitochondrial fragmentation is accompanied by increased

glycolysis and decreased oxidative phosphorylation, metabolic

changes that are thought to play a critical role in cell fate

decisions (discussed in [37]). A switch to high glycolytic flux

and low oxidative metabolism is a condition for reprogram-

ming of iPS cells, with the state of high pluripotency being

characterized by a fragmented mitochondrial network. It has

been reported that AURKA is upregulated in reprogramming

of iPS cells, although—curiously—inhibition of AURKA

appears to enhance the process [38]. Our finding that the mito-

chondrial network is sensitive to AURKA levels in different

cell types highlights the importance of elucidating the

non-mitotic roles of AURKA in order to fully understand its

contributions to cell proliferation and to cancer.
3. Material and methods
3.1. Plasmids
pVenus-N1-AURKA has been previously described [39]. Del-

etion mutants were made via PCR using 50 oligos as follows:

D31: GAGGTACCATGCCTTGTCAGAATCCATTACC

D6: ATGGTACCACCATGAACTGCATTTCAGGAC
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Figure 4. A cryptic mitochondrial targeting sequence resides in the AURKA N-terminus. (a,b) U2OS cells transiently transfected with AURKA-Venus (AURKA),
N-terminally truncated AURKA (AURKAD31) or Venus alone were fractionated and probed by immunoblot (a) for the presence of Venus (anti-GFP) or with various
markers for cytosolic (MEK1, PI31) and mitochondrial (ATP5A1, TOMM20) fractions. SUG1 was used to control for whole-cell lysate (WCL). Venus levels in the
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t-test). (c) N-terminally truncated AURKA (D31) does not cause fragmentation of the mitochondrial network. RPE-1 cells transfected with Venus-tagged AURKA, full-
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of AURKA. ( f,g) RPE-1 cells were transfected with wild-type or N-terminally truncated versions of AURKA-Venus (D6, D8) and imaged 24 h later after staining with
MitoTrackerTM for measurements of mitochondrial tubular length ( f ). By two-sample K-S tests, WT versus D6: p , 0.001, D ¼ 0.13; WT versus D8: p , 0.001,
D ¼ 0.25. Cells were then fixed and processed for IF with GFP and TOMM20 antibodies (g, see also electronic supplementary material, figure S5). For panel (g):
scale bars, 10 mm in main panels, 1 mm in magnification panels.
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D8: TAGGTACCACCATGATTTCAGGACCTGTTAAGG

with 30 oligo CAGTAGGATCCGACTGTTTGCTAGCTG,

and insertion via Kpn1 and BamH1 sites into pVenus-N1.

An MTS from yeast TOMM70 was generated by PCR of the

pMito-mCherry-FRB template [40] with oligos 50: GCCCTC-

GAGATGAAGAGCTTCATTAC, 30: CGAGGTACCCTGTT-

GCAATTGGTTG, and inserted between Xho1 and Kpn1

sites of AURKA-D31-Venus to make MTS-AURKA-D31-

Venus. pcDNA5-FRT/TO-AURKA-Venus was made

from pcDNA5TM/FRT/TO (Thermo Fisher Scientific) with

HygromycinR sequences replaced by NeomycinR.

3.2. Cell culture and treatments
hTERT-RPE-1 (RPE-1) cells, RPE-1 FRT/TO-derived lines

[25,41] and MCF10A cells were cultured in a 50 : 50 mix of

Ham’s F12 : DMEM medium, U2OS cells were cultured in

high-glucose DMEM and HCC1143 in RPMI-1640 (all from

Thermo Fisher Scientific). Cell culture media were sup-

plemented with fetal bovine serum (FBS) at 10% (RPE-1,

U2OS, HCC1143) or 5% (MCF10A), and with penicillin–

streptomycin and amphotericin B. MCF10A cell culture was

additionally supplemented with 10 mg ml21 insulin,

0.5 mg ml21 hydrocortisone and 20 ng ml21 recombinant

EGF. All cells were grown in a humidified atmosphere

containing 5% CO2 at 378C.

RPE-1-mRuby-PCNA cells were previously described

[25]. RPE-1-AURKA-Venus (Flp-In) lines were derived as

polyclonal populations by pooling cells transfected with

pcDNA5-FRT/TO-AURKA-Venus and Flp-recombinase

(pOG44) after 12 days of selection in 500 mg ml21 geneticin.

Expression of AURKA-Venus is achieved by supplementing

cell culture medium with 1 mg ml21 tetracycline (tet; Calbio-

chem, San Diego, CA, USA). U2OS-AURKA-Venus cells

were obtained by clonal selection with 170 mg ml21 hygromy-

cin B (Calbiochem) after transfection of U2OS tet-OFF cells

with pTRE-AURKA-Venus : pCMVhygro in a ratio of 10 : 1.

Expression of AURKA-Venus in these cells is achieved with

extensive washing in PBS and switching to tet-free cell culture

medium. To generate the AURKA-mVenus knock-in, RPE-1

FRT/TO cells were infected with recombinant adeno-associ-

ated virus particles harbouring mVenus cDNA flanked by

approximately 1500 bp homologous to the AURKA locus as

previously described [42]. To identify positive integrands,

cells were treated with 10 mM DMA 12 h before single-cell

sorting by flow cytometry. mVenus-positive cells were verified

by fluorescence microscopy and immunoblot analysis (elec-

tronic supplementary material, figure S3C-F). D.mel-2 cells

were cultured at 258C in Express Fivew serum-free medium

supplemented with antibiotics and 2 mM L-glutamine.

siRNA duplex targeting human AURKA and control

siRNA duplex against GL2 have been previously described

[43] (Sigma-Aldrich).

Transfections were carried out using the Invitrogen

Neonw system to electroporate cells with siRNA or plasmids,

according to the manufacturer’s instructions.

For mitochondrial imaging in living cells, cells were incu-

bated in 100 nM MitoTrackerTM Red CMXRos (Thermo Fisher

Scientific) or Mito-IDw Green (Enzo) diluted in filming

medium (see below) for 15 min. MitoTrackerTM/Mito-IDw

were replaced with fresh filming medium prior to time lapse.

Cells were treated with 100 nM MLN8237 during time-

lapse experiments, by addition of drug in a volume not less
than 1/100 of the existing dish volume and gentle mixing

of the medium on the dish.

3.3. Cell extracts, fractionation and immunoblotting
Whole-cell extracts were prepared by scraping cells directly

into 2� SDS Sample Buffer with 10 mM DTT. Samples

were syringed to shear DNA or sonicated and boiled at

958C for 5 min prior to SDS-PAGE on 4–12% precast gradient

gels (Invitrogen). Transfer onto Immobilon-P or Immobilon-

FL membranes was carried out using the XCell IITM Blot

Module according to the manufacturer’s instructions. Mem-

branes were blocked in PBS, 0.1% Tween-20, 5% dried milk,

and processed for immunoblotting with the primary anti-

bodies indicated in the figures. Secondary antibodies used

were HRP-conjugated, or IRDyew 680RD- or 800CW-conju-

gated for quantitative fluorescence measurements on an

Odysseyw Fc Dual-Mode Imaging System (LI-COR Bio-

sciences). For cell fractionation experiments, cells were

harvested and treated at 48C with 40 mg ml21 digitonin in

10 mM Tris–HCl (pH 7.4), 100 mM NaCl, 25 mM MgCl2,

1 mM Na3VO4, 1 mM NaF and EDTA-free protease inhibitor

cocktail (Roche). Cells were disrupted by 10 passages through

a 25-gauge needle (whole-cell extract). Cell nuclei were pelleted

by centrifugation at 3000 r.p.m. for 10 min in a microfuge at

48C. The resulting supernatant was re-centrifuged at 13

000 r.p.m. for 15 min to yield mitochondrial (pellet) and

cytoplasmic (supernatant) fractions.

3.4. Immunofluorescence analysis
Cells were grown on 13 mm glass coverslips, synchronized

and fixed using either 100% MeOH at –208C or 4% PFA treat-

ment at ambient temperature. Mitochondria were detected

using anti-TOMM20 (Santa Cruz), AURKA using anti-

AURKA (rabbit antibody Abcam ab1287 or mouse antibody

BD Transduction Laboratories 610 939) and AURKA-Venus

using anti-GFP (Abcam ab290). Secondary antibodies

used were AlexawFluor 488-anti-rabbit and AlexawFluor

568-anti-mouse (Thermo Fisher Scientific). Cells were stained

according to standard protocols in PBS buffer containing

0.1% Triton X100 and 3% BSA and mounted in ProLongw

Gold antifade (Thermo Fisher Scientific). Images were

captured using an Axiovert 200 M fluorescence microscope

(Carl Zeiss Inc.) with a 100� NA 1.4 oil objective and Cool-

snap HQ2 camera (Photometrics) controlled by the

METAMORPH
w software. Images were deconvolved using 10

iterations of the AUTOQuant X2 (Media Cybernetics) blind

deconvolution algorithm and presented as maximum-

intensity projections of 10 � 0.1 mm stacks using IMAGEJ

(Molecular Devices LLC). Super-resolution images were

acquired on a Deltavision Optical Microscope eXperimental

(OMX) 3D-SIM System V3 and analysed using SOFTWORX

(Applied Precision) and IMAGEJ Volume Viewer plugin. Inten-

sity level, contrast and brightness of images were adjusted

using Adobe PHOTOSHOP where indicated.

3.5. Live cell microscopy
Cells were seeded onto 8-well plastic-bottom slides (Ibidi

GmbH, Martinsried, Germany) at a density of 8 � 104 cm22.

The imaging medium was Leibowitz L-15 (Thermo Fisher

Scientific) supplemented with FBS and antibiotics as
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described above. Expression of AURKA-Venus was induced

24 h prior to imaging, which was carried out on an Olympus

CellR widefield imaging platform comprising an Olympus

IX81 motorized inverted microscope, Orca CCD camera

(Hamamatsu Photonics, Japan), motorized stage (Prior Scien-

tific, Cambridge, UK) and 378C incubation chamber (Solent

Scientific, Segensworth, UK) fitted with appropriate filter sets

and a 60� NA 1.42 oil objective. Images were acquired using

the Olympus CELLR software as 1 mm stacks and exported as

12 bit TIFF stacks for display as maximum-intensity projections

in IMAGEJ.

3.6. Mitochondrial morphology analysis
MitoTrackerTM images were analysed using the MICROP soft-

ware [44] to derive measurements of mitochondrial length.

All analyses and statistical significance tests were verified

through a separate manual analysis of the same images using

the lengths of 30 mitochondria per cell, selected by beginning

at the 12 o’clock position and moving clockwise around the

nucleus. MICROP results were plotted in R as kernel density

estimations to derive the presented probability density curves

(see electronic supplementary material, figure S2A). Statistical

significance of probability density distributions were tested

using a two-sample Kolmogorov–Smirnov (K-S) test on the

raw measurements as indicated in figure legends and illus-

trated in the electronic supplementary material, figure S2B.

All results reported in this study were also significant

according to the Mann–Whitney U-test, p , 0.01.
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