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Abbreviations 

CI, confidence interval 

eQTL, expression quantitative trait locus 

GERA, Genetic Epidemiology Research on Adult Health and Aging cohort 

GWAS, genome-wide association study 

KIRC, kidney renal cell carcinoma 

OR, odds ratio 

MSigDB, Molecular Signatures Database 

RCC, renal cell carcinoma 

SNP, single-nucleotide polymorphism 

sARTP, summary statistics-based adaptive rank truncated product 

TCGA, the Cancer Genome Atlas 
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ABSTRACT 

Background: Much of the heritable risk of renal cell carcinoma (RCC) associated with common 

genetic variation is unexplained. New analytic approaches have been developed to increase the 

discovery of risk variants in genome-wide association studies (GWAS), including multi-locus 

testing through pathway analysis.  

Methods: We conducted a pathway analysis using GWAS summary data from six previous scans 

(10,784 cases and 20,406 controls) and evaluated 3,678 pathways and gene sets drawn from the 

Molecular Signatures Database. To replicate findings, we analyzed GWAS summary data from 

the UK Biobank (903 cases and 451,361 controls) and the Genetic Epidemiology Research on 

Adult Health and Aging cohort (317 cases and 50,511 controls).  

Results: We identified 14 pathways / gene sets associated with RCC in both the discovery (P < 

1.36 x 10
-5

, the Bonferroni correction threshold) and replication (P < 0.05) sets, 10 of which 

include components of the PI3K/AKT pathway. In tests across 2,035 genes in these pathways, 

associations (Bonferroni-corrected P < 2.46 x 10
-5

 in discovery and replication sets combined) 

were observed for CASP9, TIPIN and CDKN2C. The strongest SNP signal was for rs12124078 

(PDiscovery = 2.6 x 10
-5

, PReplication = 1.5 x 10
-4

, PCombined = 6.9 x 10
-8

), a CASP9 expression 

quantitative trait locus.  

Conclusions: Our pathway analysis implicates genetic variation within the PI3K/AKT pathway 

as a source of RCC heritability and identifies several promising novel susceptibility genes, 

including CASP9, which warrant further investigation. 

Impact: Our findings illustrate the value of pathway analysis as a complementary approach to 

analyzing GWAS data. 
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INTRODUCTION  

Kidney cancer is one of the ten most common cancers in the United States, with around 

74,000 new cases and 14,000 related deaths in 2019 (1).  Renal cell carcinoma (RCC) is the most 

common type of kidney cancer, accounting for over 90% of kidney cancer diagnoses. RCC has a 

heritable basis, with relatives of patients having a two-fold increased risk (2, 3).  While a number 

of rare familial RCC syndromes caused by inheritance of high-impact mutations have been 

identified, even collectively, they only account for less than 5% of RCC (4). Evidence for the 

role of common low-impact genetic variants influencing RCC risk has been established in 

genome-wide association studies (GWAS), which have so far identified 13 susceptibility loci (5).   

Since GWAS risk variants typically have a small effect size, they are difficult to identify in 

individual SNP-based GWAS after accounting for multiple testing, even with large sample 

numbers.  Pathway-based analyses, involving joint testing of SNPs within gene sets defined by 

biological pathways, have the potential to empower the identification of new associations not 

captured by testing individual genetic variants (6, 7).  

To gain further insight into the heritability of RCC, we evaluated 3,678 canonical pathways 

and gene sets using summary-level data from a GWAS meta-analysis. To validate our findings, 

we analyzed GWAS summary data from the UK Biobank and Kaiser Permanente Genetic 

Epidemiology Research on Adult Health and Aging (GERA) cohorts.  

 

MATERIALS AND METHODS 

Study Populations 

The RCC GWAS meta-analysis, described previously (5), combined summary results from 

six independent GWAS totaling 10,784 RCC cases and 20,406 controls of European ancestry. 
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Briefly, genotypes had been assayed across the scans using a combination of Illumina SNP 

arrays (Illumina Inc, San Diego, CA, USA). After performing imputation on all scans using 

1,094 subjects from the 1000 Genomes Project (phase 1 release 3) as the reference panel, 

7,437,091 SNPs were included in the meta-analysis. To facilitate the identification of novel 

genetic signals, we excluded from our pathway analysis 36,616 SNPs within 500kb of genetic 

variants previously reported to be associated with RCC at genome-wide significance (P < 5 x 10
-

8
). All tests of statistical significance used in this analysis were two sided. 

To replicate study findings we made use of summary-level association statistics for 

30,798,054 SNPs from a GWAS of RCC conducted among UK Biobank participants (903 cases, 

451,361 controls) downloaded from GeneATLAS (http://geneatlas.roslin.ed.ac.uk/) (8). The SNP 

beta coefficients and standard errors in GeneATLAS were computed using mixed linear models; 

we transformed these summary statistics to odds ratios (ORs) using LMOR (9). Standard errors 

were calculated from the reported P-value and estimated OR.   

For replication of SNP-level analyses, we used summary results from UK Biobank and, for 

selected SNPs (n=10), a GWAS of kidney cancer conducted among persons of European 

ancestry in the GERA cohort (317 cases and 50,511 controls). Details of the GERA GWAS have 

been previously described (10). 

 

Pathway analysis 

We downloaded definitions for 3,762 human-derived pathways and gene sets (C2 gene set 

collection) from the Broad Institute Molecular Signatures Database (MSigDB) v6.1 

(http://software.broadinstitute.org/gsea/msigdb/collections.jsp) for the pathway-level analysis. 
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Genomic definitions for genes were downloaded from human genes NCBI36 and reference 

genome GRCh37.p13 using the Ensemble BioMart tool.  

We conducted gene- and pathway-level meta-analyses using the summary statistics-based 

adaptive rank truncated product (sARTP) method 

(https://www.rdocumentation.org/packages/ARTP2/versions/0.9.45/topics/sARTP). sARTP 

combines SNP associations across variants 20kb upstream and downstream of a given gene with 

adjustment for the size of genes and pathways through a resampling procedure to evaluate the 

global testing P-value, with proper adjustment of multiple comparisons (11). A web-based 

sARTP application tool is available allowing users to submit pathway analysis jobs online and 

receive results computed using NCI computing resources 

(https://analysistools.nci.nih.gov/pathway/). Significance of gene- and pathway-level 

associations were estimated from the null distribution generated from 10 million resampling 

steps. A panel of 503 European subjects (population codes: CEU, TSI, FIN, GBR, IBS) in the 

1000 Genomes Project (phase 3, v5) was used in sARTP to estimate the linkage disequilibrium 

between SNPs. To mitigate the impact of population stratification, we applied genomic control 

inflation factors to rescale the standard errors of the log odds ratios for SNPs in each GWAS 

(lambda values 1.009 – 1.058) and in the meta-analysis (lambda = 1.037).  

We successfully analyzed 3,678 of the 3,762 pathways and gene sets downloaded from 

MSigDB; tests of 84 pathways failed because of a lack of SNP coverage. To control the family-

wise error rate in our discovery pathway analysis, we considered a Bonferroni-corrected P-value 

of 1.36 x 10
-5

 as being statistically significant (i.e., 0.05/3,678). For our analysis of promising 

pathway-level results in replication datasets, we considered an alpha of 0.05 as being significant. 

2020 American Association for Cancer Research. 
 at INST OF CANCER RESEARCH on August 26, 2020. Copyrighthttps://bloodcancerdiscov.aacrjournals.orgDownloaded from 

https://www.rdocumentation.org/packages/ARTP2/versions/0.9.45/topics/sARTP
https://analysistools.nci.nih.gov/pathway/
https://bloodcancerdiscov.aacrjournals.org


8 
 

A schematic summarizing our pathway analysis approach is provided in Supplementary Figure 

1. 

 

Gene-level and SNP-level analyses within selected pathways 

We evaluated gene-level and SNP-level test results among all constituent genes of pathways 

found to be associated with RCC in the discovery and replication sets, and combined association 

statistics through meta-analysis using fixed-effects models.  

 

Functional annotation of SNP associations 

We queried public databases to explore the possible biologic effects of selected SNPs. We 

searched RegulomeDB (http://www.regulomedb.org) and HaploReg 

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) to assess the likelihood that 

SNPs map to regulatory elements, and the NHGRI-EBI GWAS Catalog 

(https://www.ebi.ac.uk/gwas/) to search for previously reported GWAS associations with other 

traits. We assessed potential SNP associations with gene expression in 527 TCGA (The Cancer 

Genome Atlas) renal cancer tumor cases (KIRC) using the PancanQTL database 

(http://bioinfo.life.hust.edu.cn/PancanQTL/) (12). We also explored eQTL kidney cortex 

expression data (n=73) using GTEx (https://gtexportal.org/home/) (13) 

 

RESULTS 

We identified 14 pathways and gene sets significantly associated with RCC in the discovery 

and replication sets, ranging in size from 12 to 732 genes and 402 to 31,986 SNPs (Table 1). 

Notably, 10 of the 14 pathways / gene sets include components of the Phosphatidylinositol-3-

kinase (PI3K) /Akt signaling pathway, with AKT1 and CASP9 among the most significant gene-
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level signals for all 10 pathways. The four other gene sets were “Benporath cycling genes” 

(genes related to embryonic stem cell identity showing cell-cycle stage-specific expression), 

“Fortschegger PHF8 targets up” (genes upregulated in HeLa cells upon knockdown of PHF8 by 

RNAi), “West adrenocortical tumor dn” (down-regulated genes in pediatric adrenocortical 

tumors compared to the normal tissue) and “Pujana CHEK2 PCC network” (genes positively co-

expressed with CHEK2).  

 

We also explored gene- and SNP-level signals within the 14 significant pathways and gene 

sets (Supplementary Table 1). In testing across the 2,035 constituent genes, associations with 

RCC (Bonferroni-corrected P < 2.46 x 10
-5

 in discovery and replication sets combined) were 

observed for CASP9 (P = 3.7 x 10
-7

), TIPIN (P = 8.2 x 10
-6

) and CDKN2C (P = 1.7 x 10
-5

). 

Promising gene signals in both the discovery and replication sets were also observed for AKT1, 

ARID1A, EP300, FANCD2, HIST1H4, KCNK3, MAP2K1, RBPMS and RPL4. We identified 4 

highly promising SNPs with associations in both the discovery and replication sets at P < 0.0001 

and P < 0.05, respectively (Table 2): rs12124078 (within the CASP9 region; PCombined = 6.9 x 10
-

8
), rs41324853 (CDKN2C; PCombined =  2.4 x 10

-7
), rs61758464 (AKT1; PCombined = 3.5 x 10

-7
) and 

rs2979488 (RBPMS; PCombined = 4.4 x 10
-7

).  

We explored the potential functional impact of these SNPs by integration of publicly 

accessible resources (Table 3). The variant rs12124078 has a RegulomeDB score of 1f, being 

associated with CASP9 expression across several non-kidney tissues. We confirmed that this 

eQTL relationship extends to kidney tissue, with the higher-risk A allele associated with reduced 

CASP9 expression in both TCGA  (P = 3.6 x 10
-7

) and GTEx (P = 0.0075) datasets, as well as 

the majority of other tissue sets in GTEx (Supplementary Figure 2).  While the three other 
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SNPs had weaker predicted functional relevance, rs2979488 and rs61758464 were associated 

with expression of RBPMS and ZBTB42 respectively in TCGA.  In a search of the NHGRI-EBI 

GWAS Catalog for associations with other traits, rs12124078 and rs2979488 have previously 

been significantly associated with glomerular filtration rate and leukocyte count, respectively. 

 

DISCUSSION 

In this pathway-based meta-analysis of RCC GWAS summary results, we identified 14 

pathways and gene sets associated with risk. In targeted SNP investigations across the 14 

pathways in the discovery and replication sets, we observed an association approaching genome-

wide significance overall for the variant rs12124078, which we found to be consistently 

associated with CASP9 expression in kidney tissue. We also observed promising associations 

with genetic variation in close proximity to AKT1, CDKN2C, TIPIN and RBPMS. 

The majority of the pathway findings appear to be driven by nucleotide variation in 

components of the PI3K/AKT signaling network, an important regulator of cell growth, 

proliferation, metabolism, survival, and apoptosis (14). This is one of the most frequently 

dysregulated signal transduction pathways in human cancers, including kidney cancer, with 

genetic alterations in constituent genes present in 15% of RCC (15). PI3K/AKT signaling is 

particularly important in the pathogenesis of clear cell RCC; aberrant pathway activation leads to 

upregulation of mammalian target of rapamycin (mTOR) signaling, which in turn upregulates 

hypoxia-inducible factor-mediated expression of angiogenic factors (16). PI3K-inhibiting 

therapeutic agents are used in treating metastatic RCC.  

We also observed replicable pathway-level signals for four gene sets that are related to  

cancer; two involve cell cycle regulation (“Benporath cycling genes” and “Pujana CHEK2 PCC 
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network”) (17, 18) , a third captures genes downregulated in pediatric aderenocortical tumors 

compared to normal tissue (“West adrenocortical tumor dn”) (19), and the fourth lists genes up-

regulated upon knockdown of PHF8, a histone lysine demethylase and suspected transcription 

activator overexpressed in several types of cancer (“Fortschegger PHF8 targets up”) (20, 21). As 

all four gene sets are comparatively large, involving between 247 and 732 genes, it is possible 

that the observed RCC associations are reflective of signals from a subset of genes, such as 

CDKN2C and RBPMS. 

When we conducted gene- and SNP-level investigations within the 14 significant pathways, 

the strongest evidence of an association with RCC was with CASP9 and the nearby variant 

rs12124078, with the A allele associated with increased risk. CASP9 encodes caspase-9, a critical 

initiator of cell apoptosis that is regulated by PI3K/AKT signaling; Akt phosphorylation at 

serine-196 inhibits caspase-9 protease activity, decreasing apoptosis (22, 23).  Interestingly, the 

rs12124078 A allele has also been associated with lower glomerular filtration rate and decreased 

CASP9 expression in peripheral blood monocytes (24). We have confirmed this eQTL, with the 

A allele being associated with reduced CASP9 expression in TCGA and GTEx kidney tissue and 

the majority of other GTEx tissue sets. Collectively, these findings are consistent with  a 

reduction in caspase-9-mediated apoptotic activity potentially underlying the association 

between rs12124078 and RCC.  

Genetic variation within the AKT1, RBPMS, TIPIN and CDKN2C gene regions also showed 

promising evidence of association with RCC. AKT1 is a key member of the PI3K/AKT pathway, 

encoding a serine/threonine kinase regulating numerous mechanisms affecting cell growth, 

metabolism and angiogenesis (25). We found the nearby variant rs61758464 to be associated 

with RCC and while rs61758464 was not related to AKT1 expression in renal tissue, it is notable 
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that the risk allele was associated with reduced AKT1 expression (P = 2.2 x10
-8

; FDR = 2.5 x 10
-

4
) in blood eQTL data (26).  We also observed in TCGA, but not GTEx, an association between 

this variant and expression of ZBTB42, which encodes a poorly characterized member of the 

C2H2 zinc finger protein family suspected to play a role in skeletal muscle development (27). 

RBPMS encodes a member of the RNA recognition motif family of RNA-binding proteins. 

The function of RBPMS is poorly understood, although recent evidence suggests a role in 

mRNA transport and localization (28). The biologic basis for a role of RBPMS in RCC 

development remains to be established, although it has been shown to interact with VHL in 

cultured 786-O renal cancer cells (29). Intriguingly, RBPMS expression has been reported to be 

significantly elevated in tumor tissue of obese vs. non-obese clear cell RCC patients suggesting a 

possible link between BMI and renal cancer (30).   

TIPIN, which was associated with RCC in gene-level testing, encodes a replisome-associated 

protein that contributes to genome maintenance by mediating Chk1 and Chk2 activation in 

response to DNA damage (31). TIPIN expression has been reported to be down-regulated in 

kidney tumor vs. matched normal tissue, possibly reflecting dysregulation of cell-cycle 

checkpoints (32).  

Our findings for CDKN2C, involved in cell cycle regulation, and the nearby SNP rs41324853 

likely reflects a previously reported GWAS risk locus. Although we filtered out GWAS results 

for SNPs within 500kb of previously identified GWAS hits prior to our analysis to prioritize the 

discovery of new loci, rs41324853 is 542kb from and moderately correlated with (r
2 
= 0.33, D’ = 

0.93) the known RCC GWAS risk marker rs4381241 (5). When we ran a logistic model 

including both SNPs within the discovery set, rs41324853 was no longer associated with RCC 
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risk (P = 0.39). Our eQTL analyses do not offer any further insight into the causal pathway 

underlying this locus. 

Strengths of our pathway-based GWAS meta-analysis, to our knowledge the first of its kind 

for RCC, include the large sample size and the use of an independent GWAS replication set for 

confirmation of pathway-, gene- and SNP-level findings. An additional strength is our use of the 

sARTP method for pathway analysis, which possesses many useful properties. Pathway analysis 

generally targets two types of null hypotheses: the competitive null hypothesis (33) (i.e., that 

genes in a candidate pathway are no more associated with the outcome than any other genes 

outside this pathway) and the self-contained null hypothesis (34) (i.e., that none of the genes in a 

pathway of interest is associated with the outcome). The sARTP procedure focuses on the self-

contained null hypothesis, as the main goal of this project is to identify outcome-associated 

genes or loci. As pointed out by Goeman et al. (35), tests for the competitive null hypothesis 

often assume that genotype measured at different genes are independent when evaluating the 

association significance level. This assumption, which is generally invalid in practice, is not 

required by sARTP when testing the self-contained null hypothesis. Other strengths of sARTP 

are its use of summary data and that it can handle large pathways, which might consist of 

thousands of genes and tens of thousands of SNPs. Other advantages of sARTP include its use of 

summary data and its capability handling large pathways, which might consist of thousands of 

genes and tens of thousands of SNPs (11). 

A limitation of the sARTP approach involves the inherent assumption of mapping SNPs 20 

kb upstream and downstream of each gene to identify candidate SNPs that may play a regulatory 

role in gene expression. This distance has been used for annotating SNPs/genes in previous 

pathway analyses (11, 36), as studies have shown functional variants are located approximately 
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16-20kb within transcription start sites (37-39). However, it does not capture cis regulatory 

effects outside this window, nor trans mechanisms.  

In summary, our pathway-based analysis of the RCC GWAS meta-analysis has provided new 

promising genetic susceptibility regions that merit further investigation and functional follow-up.  
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Table 1. Pathways and gene sets significantly associated with renal cell carcinoma in the GWAS meta-analysis (P < 1.36 x 10-5)a and UK Biobank (P<0.05)  

   

Discovery Set 

(GWAS Meta-Analysis;  

10,784 cases and 20,406 controls 

)  

 Replication Set 

(UK Biobank;  

903 cases and 451,361 controls) 

MSigDB Pathway / Gene Set NGenes NSNPs P Most Significant Genesb  P Most Significant Genesb 

Benporath cycling genes 612 26858 2.00 x 10-7  TIPIN, CDKN2C, CENPQ  0.016 FANCD2,RAN,ZC3HC1 

Reactome AKT phosphorylates targets in the cytosol 12 402 6.50 x 19-7 AKT1, CASP9, CDKN1B  0.00018 CASP9,AKT1S1,AKT2 

BioCarta RAS pathway 21 957 7.50 x 10-7 AKT1, CASP9, MAP2K1  0.0034 CASP9 

Reactome PI3K/AKT activation 34 1557 8.50 x 10-7 AKT1, CASP9, IRS2  0.0060 CASP9 

Fortschegger PHF8 targets up 247 14870 1.30 x 10-6 TIPIN, INSR, GRB10   0.013 IGF1R,ATF4,CTSC 

Reactome PIP3 activates AKT signaling 25 1095 1.45 x 10-6 AKT1, CASP9, CDKN1B  0.0045 CASP9 

West adrenocortical tumor dn 491 31986 2.25 x 10-6  RBPMS, IRF5, ZFP36L2  0.042 CASP9,RPL38,KCNK3 

Reactome signaling by SCF-KIT 72 3976 5.10 x 10-6 AKT1, CASP9, MAP2K1  0.0074 CASP9,CDK1,SOCS1 

Reactome GAB1 signalosome 34 1832 6.15 x 10-6 AKT1, CASP9, CDKN1B  0.0060 CASP9 

KEGG prostate cancer 82 5107 6.25 x 10-6 AKT1, CASP9, MAP2K1  0.00046 CASP9,IGF1R,ATF4 

BioCarta HDAC pathway 29 2284 6.45 x 10-6 AKT1, INSR, MEF2D  0.034 IGF1R 

Reactome PI3K events in ERBB4 signaling 34 2757 7.05 x 10-6 AKT1, CASP9, CDKN1B  0.0060 CASP9 

PID PI3KCI AKT pathway 33 1451 9.00 x 10-6 AKT1, CASP9, CDKN1B  0.00058 CASP9 

Pujana CHEK2 PCC network 732 26725 9.50 x 10-6 POT1, CDKN2C, TFDP2  0.016 RAN,MIEF1,CENPA 

aPathways/gene sets statistically significant at Bonferroni-adjusted α-level of 1.36 x 10-5 (0.05/3678). 
bTop 3 gene-level test results with a P-value <0.001 

  

2020 American Association for Cancer Research. 
 at INST OF CANCER RESEARCH on August 26, 2020. Copyrighthttps://bloodcancerdiscov.aacrjournals.orgDownloaded from 

https://bloodcancerdiscov.aacrjournals.org


21 
 

Table 2.  Summary of SNPs within significant pathways with RCC associations observed in the discovery (P < 1.0 x 10-4) and replication (P<0.05) sets. 

                                         

     Discovery  Replication
b
  Combined

c
 

SNP (Gene) Chr Position
a
 A/a OR (95% CI) P  OR (95% CI) P  OR (95% CI) P 

rs12124078 (CASP9)  1 15869899 A/G 0.92 (0.88 to 0.96) 2.6 x 10-5  0.84 (0.77 to 0.92) 1.5 x 10-4  0.91 (0.87 to 0.94) 6.9 x 10-8 

rs41324853  (CDKN2C) 1 51449575 T/C 1.10 (1.05 to 1.14) 2.0 x 10-5  1.15 (1.05 to 1.25) 2.3 x 10-3  1.11 (1.06 to 1.15) 2.4 x 10-7 

rs2979488 (RBPMS)  8 30280630 A/G 1.10 (1.05 to 1.14) 1.3 x 10-5   1.13 (1.03 to 1.25)

  

8.8 x 10-3   1.11 (1.06 to 1.15)  4.4 x 10-7 

rs61758464 (AKT1)  14 10525780 G /A 0.87 (0.82 to 0.93)

  

5.2 x 10-6  0.86 (0.76 to 0.98) 0.022  0.87 (0.83 to 0.92) 3.5 x 10-7 

 
aGRCh37.p13 
bReplication includes results from UK Biobank (903 cases, 451 361 controls) and GERA Cohort (317 cases, 50 511 controls) combined by meta-analysis using fixed effects model. 
cSummary results from meta-analysis using fixed effects model. 
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Table 3.  Exploration of SNP functional relevance: RegulomeDB score, expression quantitative trait locus (eQTL) analyses for 

selected SNP-gene pairs in tumor (TCGA-KIRC) and normal (GTEx) kidney tissue samples and previous genome-wide 

significant findings for other traits. 

    eQTL Analyses   

  

RegulomeDB 

Score 

 TCGA, KIRC 

(N=527) 

 GTEx, Kidney 

Cortex (N=73) 

 

In NHGRI-EBI GWAS 

Catalog (Trait) SNP A/a Gene Β 
a
 P  β  P   

rs12124078  A/G 1f CASP9  0.26 3.6 x 10-7  0.39 0.0075  Glomerular filtration rate 

rs41324853 T/C  4 - b       - c 

rs2979488 A/G 4 RBPMS -0.27 2.6 x 10-6  0.02 0.89  Leukocyte count 

rs61758464  G/A 5 ZBTB42 -0.28 1.2 x 10-4  -0.12 0.51  - 

a SNP-gene association at false discovery rate < 0.05 in database of TCGA eQTLs (12). β represents directional expression effect 

for rare allele. 
b No eQTL identified.  
c No entry in GWAS Catalog. 

 

 

 

2020 American Association for Cancer Research. 
 at INST OF CANCER RESEARCH on August 26, 2020. Copyrighthttps://bloodcancerdiscov.aacrjournals.orgDownloaded from 

https://bloodcancerdiscov.aacrjournals.org

