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ABSTRACT 
 

Receptor tyrosine kinases (RTKs) are often overexpressed or mutated in cancers and drive 

tumor growth and metastasis. In the current model of RTK signaling, including that of the 

RTK MET, downstream phosphoinositide 3-kinase (PI3K) mediates both cell proliferation 

and cell migration, whereas the small guanosine triphosphatase (GTPase) Rac1 mediates 

cell migration. Here, however, in cultured NIH3T3 and glioblastoma cells, we found that 

class I PI3K mediated oncogenic MET-induced cell migration but, unexpectedly, not 

anchorage-independent growth. In contrast, Rac1 regulated both in distinct ways: 

Downstream of PI3K, Rac1 mediated cell migration through its GTPase activity; whereas, 

independently of PI3K, Rac1 mediated anchorage-independent growth in a GTPase-

independent manner through an adaptor function. Through its RKR motif, Rac1 formed a 

complex with the kinase mTOR to promote its translocation to the plasma membrane, where 

its activity promoted anchorage-independent growth of the cell cultures. Inhibiting mTOR 

with rapamycin suppressed the growth of subcutaneous MET-mutant cell grafts in mice, 

including that of MET inhibitor-resistant cells. These findings reveal a GTPase-independent 

role for Rac1 in mediating a PI3K-independent MET-to-mTOR pathway and suggest 

alternative or combined strategies that might overcome resistance to RTK inhibitors in 

cancer patients. 

  



	

INTRODUCTION  

 

 Metastasis is the major cause of death in cancer patients. During this process, 

cancer cells detach from the primary tumour, acquire the property to overcome anoikis 

(apoptosis induced by the cell’s detachment from the extracellular matrix), migrate, and at 

least transiently survive and proliferate in anchorage-independent conditions, enabling them 

to colonize a new niche (1). Metastatic disease is notoriously challenging to treat and there 

is currently no cure. Thus, identifying the pathways that promote cell migration and 

anchorage-independent growth would facilitate the development of novel therapeutic 

strategies. 

Receptor tyrosine kinases (RTKs) mediate various normal cellular functions as well 

as stimulate tumor growth and metastasis (2, 3); oncogenic forms of RTKs promote 

anchorage-independent proliferation (hereafter, growth) and migration (2, 4). The RTK c-

MET (or, herein, MET) is activated by the hepatocyte growth factor (HGF) and is frequently 

overexpressed or mutated in cancers, and the extent of its overexpression correlates with 

poor prognosis in patients (2, 5). MET inhibitors are being evaluated in the clinic; however, 

experience with other RTK inhibitors suggest that the chances of drug resistance developing 

are high (6). Therefore, alternative or complementary therapies—such as those targeting 

signaling pathways downstream of RTK activation—may be required to efficiently target 

MET- and, more generally, oncogenic RTK-driven cancers (7-9).  

Activation of the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway has 

been described as critical for migration (10) and anchorage-independent growth (1, 11).  

Mammals have eight PI3K catalytic subunits, divided into 3 classes: I, II, and III. The class I 

PI3K isoforms are often overexpressed or mutated in cancer and can have oncogenic 

activity (12-16). Amongst the PI3K isoforms, the class IA sub-type of PI3Ks has been linked 



	

to RTK signalling. The class IA catalytic subunits (p110α, β or δ) occur in complex with a 

regulatory subunit of the p85 family. Whereas p110α and p110β are widely expressed, 

p110δ is mainly found in leukocytes (17, 18). As a major signal transducer of RTKs (2, 19, 

20), including MET (21), PI3K promotes cell survival and (as we understand it currently) cell 

migration. Therefore, the investigation of the roles of the different PI3K isoforms is a highly 

active area of research and drug development.  

PI3K signaling crosstalks with members of the Rho-guanosine triphosphatase 

(GTPase) family, which include RhoA, Rac1 and Cdc42. They are active when bound to 

GTP and in active when bound to GDP. Switching between these states is regulated by 

guanine nucleotide exchange factors (GEFs)—which mediate the exchange of bound GDP 

for GTP, essentially activating the GTPase—and  GTPase-activating proteins (GAPs)—

which induce the GTPase to hydrolize the GTP into GDP, essentially switching it off—as 

well as guanine nucleotide dissociation inhibitors (GDIs) (23). Rac1 has been widely 

described as a key regulator in promoting actin reorganization, changes in cell shape, and 

cell migration (24)  downstream of various receptors, including RTKs (4, 25-28). 

We have previously reported that the oncogenic, constitutively active MET mutants 

M1268T and D1246N (METM1268T and METD1246N), originally identified in human papillary 

renal carcinomas (29), signal on endosomes to promote both cell migration and anchorage-

independent growth (4). The activation of the Rho-GTPase Rac1 on endosomes was shown 

to mediate cell migration stimulated by mutant MET (4) and also by ligand (HGF)-activated 

wild-type MET (26, 27). Here, using isogenic wild-type and mutant MET-expressing mouse 

fibroblast NIH3T3 cell lines, as well as a glioblastoma cell line that reportedly exhibits 

autocrine loop-induced oncogenic MET activity (30), we delineated the PI3K- and Rac1-

associated pathways responsible for each of these metastasis-associated behaviors 

downstream of oncogenic MET.  



	

 

RESULTS  

 

Class I PI3K inhibition reduces MET-dependent cell migration but not anchorage-

independent growth  

Cell migration and anchorage-independent growth assays were performed in mouse 

NIH3T3 cells expressing murine wild-type or M1268T-mutant MET and cultured with the 

pan-PI3K [and mammalian target of rapamycin (mTOR)] inhibitor LY294002, which was 

previously shown to reduce MET signaling (21, 31-33). A pharmacological inhibitor of MET, 

PHA-665752, was also used to modulate the pathway at the receptor level. METM1268T was 

constitutively phosphorylated, as reported previously (34), and PHA-665752, but not 

LY294002, reduced its phosphorylation (fig. S1, A and B), whereas levels of wild-type and 

M1268T-mutant MET were comparable (fig. S1C). Both inhibitors reduced METM1268T-

dependent cell migration through Transwell chambers  (Fig. 1A) and anchorage-

independent growth in soft agar (Fig. 1, B and C, and fig. S1D), with no detectable impact 

on cells expressing wild-type MET (Fig. 1, A to C, and fig. S1D).  

The kinase AKT, a substrate of PI3K, was notably phosphorylated in the METM1268T-

expressing cells compared to the wild-type MET-expressing cells; its activation was lost 

upon pharmacological inhibition of PI3K/mTOR or of MET (Fig. 1D). Moreover, inhibiting 

endocytosis with dynasore, a pharmacological inhibitor of the GTPase dynamin and which 

we previously showed reduces the endocytosis of METM1268T (4), significantly reduced the 

phosphorylation of AKT in METM1268T-expressing cells (Fig. 1E). These results suggest that 

the MET mutant activates AKT on intracellular compartments, consistent with our previous 

description of constitutive endocytosis of METM1268T and its signaling on endosomes (4) as 

well as with the reported activation of AKT on endosomes (35).  



	

Because the compound LY294002 has multiple targets other than PI3K (36, 37), and 

AKT is one of the major effectors of class I PI3Ks, the influence of the selective pan-class I 

PI3K inhibitor GDC0941 (38) was assessed. GDC0941 reportedly inhibits downstream 

effectors of class I PI3K with half-maximal response (EC50) values ranging from 15 to 709 

nM (39). A concentration response analysis established that 100 nM of GDC0941 robustly 

reduced the phosphorylation of AKT in METM1268T cells (fig. S1E). In the presence of 

GDC0941, the level of cell migration seen in METM1268T cells was reduced to a level similar 

to that seen in wild-type cells; whereas the inhibitor had no discernible effect on the wild-

type cells (Fig. 1F). In contrast, treatment with 100 nM of GDC0941 did not significantly alter 

anchorage-independent growth of wild-type, or METM1268T cells. A 100-fold higher 

concentration (10 μM) also had no significant effect on anchorage-independent growth (Fig. 

1G, fig. S1F). Similarly, GDC0941 did not reduce the anchorage-independent growth of 

METD1246N cells (Fig. 1H, fig. S1G).  We saw similar results in U87MG glioblastoma cells. In 

these cells, MET was phosphorylated (Fig. 1I), as expected and consistent with the 

previously reported presence of an autocrine loop (30). The phosphorylation of both MET 

and AKT was significantly decreased in these cells in presence of the pharmacological MET 

inhibitor PF-02341066 (Fig. 1I), and AKT phosphorylation was reduced in the presence of 

GDC0941 (fig. S1H). Whereas PF-02341066 signifcantly reduced the anchorage-

independent growth of these cells (by ~40%), the effect of GDC0941 was not significant 

(Fig. 1J and fig. S1I). Although generally class I PI3K has been considered to be a growth 

promotor (12, 19, 20), these results indicate a role for class I PI3K in cell migration, but not 

in anchorage-independent growth, downstream of oncogenic MET. 

 

 

Class I PI3K promotes MET-dependent cell migration through activation of Rac1 



	

To explore the PI3K pathway that mediated cell migration, we inhibited the class I 

PI3K isoforms p110α and/or p110β in our wild-type and METM1268T cells, in which both p110α 

and p110β was detected at similar abundances (fig. S2A). We treated cells with isoform-

selective inhibitors: A66 to inhibit p110α, and/or TGX221 to inhibit p110β, and assessed cell 

migration through Transwell chambers. When applied alone, neither compound had an 

effect; however, their combination significantly reduced the migration of METM1268T cells to 

the level observed in wild-type cells (Fig. 2A). The combination had no effect on wild-type 

cells (Fig. 2A). These results were reproduced by knocking down p110α and p110β with 

siRNA . Their combined knockdown (fig. S2B) reduced the migration of METM1268T cells to 

the same level seen in wild-type cells (Fig. 2A). The knockdown of either isoform did not 

modify the expression of the other (fig. S2C), and the inhibition of p110α and p110β 

combined did not interfere with the cell adhesion (fig. S2D). Similarly to results obtained in 

METM1268T NIH3T3 cells, PF-02341066 (a MET inhibitor) or  a combination of A66 and 

TGX221 (the p110α and p110β inhibitors) significantly reduced cell migration in U87MG 

cultures; whereas inhibiting either p110α or p110β alone had no significant effect (Fig. 2B). 

Thus, our pharmacological inhibition and knockdown data show that both class I PI3Ks 

p110α and p110β mediate oncogenic MET-dependent cell migration. 

We previously reported that METM1268T-dependent Rac1 activation correlates with an 

increased localization of Rac1 at the plasma membrane (4, 26), resulting in cytoskeleton 

rearrangements inferred from a reduction in the number of  stress fibres (4). The PI3K/mTOR 

inhibitor LY294002 and the MET inhibitor PHA-665752 reduced both Rac1 localization at 

the plasma membrane and the number of METM1268T cells that lacked stress fibres, whereas 

no significant change occurred in wild-type cells (fig. S2, E to H). Similar results were 

achieved in METM1268T cells by the combined knockdown of p110α and p110β (Fig. 2, C and 

D). These results are consistent with the reported role of PI3K upstream of Rac1 activation 



	

(10). To further confirm that this also occurs downstream of mutant MET, we used a 

glutathione S-transferase–fused Cdc42-binding domain CRIB (GST-CRIB) pull-down assay 

to assess Rac1 activation. The combined knockdown of p110α and p110β reduced the 

amount of GTP-bound Rac1 in METM1268T cells (fig. S2I), suggesting that mutant MET-

dependent Rac1 activation and subsequent cytoskeleton remodelling and cell migration are 

mediated by the class I PI3K isoforms p110α and p110β. 

 

mTORC1 promotes oncogenic MET-dependent anchorage-independent growth 

 We then turned to investigate the pathway mediating oncogenic MET-regulated 

anchorage-independent growth, which—asdescribed above—we had found was sensitive to 

the pan-PI3K/mTOR inhibitor LY294002 but not to selective class I PI3K inhibitors. We first 

tested the pan-PI3K inhibitor wortmannin (40, 41). In contrast to LY294002, wortmannin had 

no significant effect on the area and number of colonies in MET-mutant cells (Fig. 3A  and 

fig S3A), despite markedly reducing AKT phosphorylation (fig. S3H). LY294002 (at the 

concentration used, 10 μM) reportedly also directly inhibits mTOR (37), whereas wortmannin 

(used at 100 nM) does not (42, 43). Therefore, we investigated whether mTOR is responsible 

for oncogenic MET-induced anchorage-independent growth using rapamycin, which inhibits 

mTOR complex1 (mTORC1) (44). Indeed, rapamycin significantly decreased the anchorage-

independent growth (as colony area and number) exhibited by both METM1268T and METD1246N 

cells as well as U87MG cells, with no significant effect detected in wild-type cells (Fig. 3B 

and fig. S3B).  

Consistent with these results, the phosphorylation of mTOR (at Ser2481) and of the 

mTOR effector p70-S6K (at Thr389 and Thr421/Ser424) were higher in METM1268T and METD1246N 

NIH3T3 cells and U87MG cells than in wild-type MET-expressing NIH3T3 cells (Fig. 3, C 

and D; and fig. S3, C, D, and F). Thus, we decided to use p70-S6K phosphorylation as a 



	

readout of oncogenic MET-dependent mTOR activity and verified that the phosphorylation 

of p70-S6K and of mTOR was substantially inhibited by the MET inhibitors PHA-665752 in 

MET-mutant cells (Fig. 3, C and D; and fig. S3, C and D) and PF-02341066 in U87MG cells 

(fig. S3F).Consistent with a previously published study that METD1246N is resistant to PHA-

665752 (4), PHA-665752 did not modify p70-S6K and mTOR phosphorylation in these cells 

(Fig. 3C, and fig. S3D). We further confirmed that rapamycin significantly reduced p70-S6K 

phosphorylation in all cells with oncogenic MET (fig. S3, E and F).  

 

PI3K is a upstream regulator of mTOR pathway (45-47). Therefore, all PI3K inhibitors 

(LY294002, wortmannin, GDC0941, A66+TGX221) expectedly and significantly reduced the 

phosphorylation of mTOR and p70-S6K (Fig. 3, C and D; and fig. S3, C, D, G, and H). 

However, because only rapamycin or LY294002 (but not the other PI3K inhibitors) reduced 

anchorage-independent growth, we concluded that oncogenic MET triggers anchorage-

independent growth through an mTORC1 pathway that is stimulated independently from 

class I PI3K activity. These findings were consistent with a previous study that showed that 

the mTOR pathway was activated by serum in a PI3K-independent manner (43). 

 

mTORC1 promotes oncogenic MET-induced tumorigenesis 

The role of mTORC1 in tumorigenesis driven by METM1268T or METD1246N was further 

assessed in vivo. In nude mice, METM1268T- or METD1246N-expressing cells rapidly formed 

subcutaneous tumors, whereas cells expressing wild-type MET formed tumors at a later time 

(fig. S3I). We have also previously shown that subcutaneous tumors formed by METM1268T-

expressing cells are sensitive to topical application of the MET inhibitor PHA-665752 [diluted 

in dimethylsulfoxide (DMSO)] to the skin above the tumors, whereas tumors formed by wild-

type or METD1246N-expressing cells are resistant (4). Rapamycin or the control diluent 



	

(DMSO) were similarly applied topically to the skin over tumors that had reached 50 mm3 

size (4). The volume of tumors formed by METM1268T- or METD1246N-expressing cells were 

reduced significantly by rapamycin treatment, whereas no substantial effect was observed 

on tumors formed by wild-type cells (Fig. 3, E and F). Thus, mTORC1 activity appears to be 

required for mutant-MET–driven tumorigenesis. Moreover, targeting mTORC1 signaling may 

represent an alternative strategy to treat patients with MET-driven tumors that are resistant 

to MET inhibitors.  

 

Oncogenic MET promotes anchorage-independent growth through a Rac1-mTOR 

pathway 

 We next aimed to understand how oncogenic MET stimulates the mTORC1 pathway 

to promote anchorage-independent growth. We previously reported that METM1268T signaling 

is dependent on endocytosis (4). Indeed, inhibiting endocytosis using the dynamin inhibitor 

dynasore significantly reduced METM1268T-dependent phosphorylation of p70-S6K (Fig. 4A). 

This suggested that the constitutive endocytosis of the mutant MET mediates the 

subsequent activation of mTORC1. HGF-induced activation of MET has been described to 

lead to the phosphorylation of the mTORC1’ effector p70-S6K through class I PI3K/AKT 

activity to induce cell survival (48). However, our results described thus far suggest that, in 

these cells, MET signals to mTORC1 independently from class I PI3K activity in the induction 

of anchorage-independent growth. mTORC1 can also be regulated by the Ras–mitogen-

activated protein kinase (MAPK) pathway (49), and we have reported that 

METM1268Tactivates the downstream MAPK-pathway kinase ERK1/2 (50). However, we 

excluded the involvement of this pathway here because the inhibition of another, upstream 

MAPK-pathway kinase MEK by the compound U0126 had no significant effect on the 



	

phosphorylation of p70-S6K induced by METM1268T expression although it did suppress that 

of ERK1/2 (Fig. 4B). 

Rac1 and Rho-GTPases family proteins mostly are known to have a role in 

cytoskeleton dynamics and cell motility; however, roles for Rho-GTPases and the Rho-

associated kinase ROCK1/2 in cell growth, cell cycling and tumorigenesis have been 

reported (23, 43, 51-53). Moreover, Saci et al. have shown that, in serum-stimulated cells, 

Rac1 can act upstream of mTORC1 (as assessed by p70-S6K phosphorylation) 

independently of the PI3K-AKT pathway (43). Therefore, we analyzed the influence of Rac1 

knockdown on p70-S6K phosphorylation as a readout of mTORC1 activity. Notably, the 

depletion of Rac1 led to a strong and significant inhibition of p70-S6K phosphorylation in 

METM1268T--expressing cells (Fig. 4C). Moreover, Rac1 knockdown also significantly reduced 

the anchorage-independent growth of these cells  while having no effect on wild-type MET-

expressing cells (Fig. 4D, fig. S4A). Rac1 knockdown also significantly reduced anchorage-

independent growth of U87MG cells to a similar level seen in MET-knockdown cells (Fig. 4E 

and fig. S4, B and C). Together, these results identified Rac1 as a positive regulator of the 

mTOR pathway to mediate oncogenic MET-driven anchorage-independent growth. 

 

Rac1 mediates anchorage-independent growth of MET-mutant cells independently of 

its GTPase activity  

Depletion of Rac1 did not lead to a reduction of mTOR phosphorylation (Fig. 5A), 

suggesting that Rac1 regualtes the mTOR pathway in a manner other than phosphorylation-

dependent activation of mTOR per se. We therefore investigated whether Rac1’s classical 

mode of function—its GTPase activity, which is activated by GEFs—mediates this 

oncogenic MET-induced anchorage-independent growth.  



	

We and others have reported that silencing the GEF Tiam1 reduces MET-dependent 

activation of Rac1 (26, 27) and that treatment with the pharmacological inhibitor NSC23766, 

which prevents binding between Tiam1 and Rac1 (54), reduces METM1268T-dependent cell 

migration (4). We have also shown that silencing the GEF Vav2 reduces MET-driven Rac 

activation and cell migration (4, 26). We show here that the pharmacological inhibitor Ehop-

016, which prevents binding between Vav2 and Rac1 (55), reduced METM1268T-dependent 

Rac1 activation and subsequent cell migration (fig. S5, A and B). Treatment with Ehop-016 

or NSC23766 had no significant effect on M1268T or wild-type MET-dependent anchorage-

independent growth (Fig. 5B, and fig. S5, C and D). Similar results were obtained by 

knocking down Vav2 and Tiam1 (Fig. 5C, and fig. S5, E to G). These results indicate that 

these two GEFs are not part of the MET-Rac1-mTOR pathway regulating anchorage-

independent growth, and further suggest that Rac1’s GTPase activity may not be required 

for oncogenic MET-dependent anchorage-independent growth.  

Indeed the expression of a GFP-tagged dominant-negative mutant Rac1 (GFP-

Rac1-T17N) (fig. S5H) did not modify anchorage-independent growth in METM1268T- 

expressing cells, and the cells remained sensitive to MET inhibition with PHA-665752 (Fig. 

5D and fig. S5I). However, as expected, GFP-Rac1-T17N expression reduced the cells’ 

migration (fig. S5J), consistent with our data here (fig. S5B) and previously (4) that the GEFs 

are required for this function. Altogether these results indicate that the GTPase activity of 

Rac1 is dispensible for oncogenic MET-dependent anchorage-independent growth. 

 

Rac1 mediates mutant MET-dependent localization of mTOR at the plasma membrane 

To further investigate how Rac1 controls mTOR pathway downstream of oncogenic 

Met in the stimulation of anchorage-independent growth, we analysed their cellular 

localization in wild-type and M1268T MET-expressing cells. We have previously 



	

demonstrated that METM1268T activity triggers a significant increase in the amount of Rac1 

localized at the plasma membrane (4). Notably, compared with wild-type MET-expressing 

cells, a significantly higher percentage of METM1268T-expressing cells displayed mTOR at the 

plasma membrane (Fig. 6, A and B), similarly to Rac1 (Fig. 2C, and fig. S2, E and F). In 

METM1268T– but not wild-type–expressing cells, the localization of mTOR, as well as Rac1, at 

the plasma membrane was significantly reduced in response to the pharmacological MET 

inhibitor PHA-665752 (Fig. 6B, and fig. S2, E and F), indicating that, METM1268T activity 

induces mTOR localization to the plasma membrane. This was significantly prevented by  

RNAi-mediated knockdown of Rac1 (Fig. 6C). These results indicate that, rather than 

promoting mTOR activation per se, Rac1 mediates a change in mTOR’s localization.  

 

Through its C-terminal RKR motif, Rac1 promotes mTOR localization at the plasma 

membrane and anchorage-independent growth of MET-mutant cells 

 Rac1 and mTOR colocalization were observed at the plasma membrane as well as 

in the perinuclear area of METM1268TNIH3T3 cells (Fig. 6A), suggesting that the two 

molecules form a complex and that Rac1 may co-traffic with mTOR from perinuclear 

endosomes to the plasma membrane. We therefore investigated whether Rac1, regardless 

of its state of activation, forms a complex with mTOR downstream of mutant MET. mTOR 

co-immunoprecipitated with GFP-Rac1-T17N in METM1268T-but not wild-type MET-

expressing cells (Fig. 7A). This result indicates that, indeed, Rac1 and mTOR form a complex 

independently from Rac1’s GTPase activity, and it is driven by METM1268T activity. It is also 

consistent with a previous study in cells stimulated by serum and which also reported that 

Rac1’s protein binding motif, RKR, in its C-terminal region interacts directly with mTOR (43). 

We therefore introduced the mutation AAA in place of the RKR motif in the construct GFP-

Rac1-T17N. The resulting construct, GFP-Rac1-T17N-AAA, did not co-immunoprecipitate 



	

with mTOR in METM1268T-expressing cells (Fig. 7A). However, GFP-Rac1-T17N or GFP-

Rac1-T17N-AAA were able to complex similarly with other proteins, such as the GEF Tiam1 

(Fig. 7A), as expected (56). Thus, oncogenic mutant MET promotes mTOR association to 

the RKR motif of Rac1.  

The expression of GFP-Rac1-T17N-AAA, while not of GFP-Rac1-T17N, led to a 

significant reduction of the percentage of GFP-positive METM1268T-expressing cells that 

displayed mTOR at the plasma membrane (Fig. 7B, fig. S6A). These results suggest that 

the association of Rac1 with mTOR is required for mTOR translocation to the plasma 

membrane. Moreover, the expression of GFP-Rac1-T17N-AAA (Fig. 7C and fig. S6, A and 

B), unlike the expression of GFP-Rac1-T17N (Fig. 5D, figs. S5I and S6A), prevented MET-

mutant-dependent anchorage-independent growth, with no further effect of MET inhibition 

with PHA-665752 (Fig. 7C, fig. S6B). 

Altogether these results suggest an oncogeric MET pathway wherein Rac1 acts as 

an adaptor, through its protein binding motif RKR, to promote mTOR translocation to the 

plasma membrane and, consequently, its signaling there that stimulates anchorage-

independent growth.  

 

 
DISCUSSION 

 
PI3K and Akt have been described to mediate RTK driven growth, survival and 

migration, whereas Rac1 has been broadly recognized as a regulator of cell migration. Here, 

we report that Rac1 is a master regulator of oncogenic MET-dependent cell migration and 

anchorage-independent growth, while PI3K promotes oncogenic MET-dependent cell 

migration only. The classical class I PI3K-GEF-Rac1-GTP pathway promotes oncogenic 

mutant MET-dependent cell migration. However, by opposition to the classical RTK-PI3K-



	

AKT-mTORC1 pathway (2, 3, 11, 19, 49), an unexpected Rac1-mTORC1 pathway, in which 

Rac1 plays an adaptor role triggering mTOR translocation to the plasma membrane, 

independent of Rac1 GTPase activity, promotes MET mutant-induced anchorage-

independent growth.  

Each pathway required intact endocytosis machinery, which is  consistent with our 

previous findings suggesting that the shuttling of oncogenic MET mutants between the 

plasma membrane and endosomes is necessary to activate Rac1 signalling (4) (Fig. 7D).  

Our findings also reveal that oncogenic MET-dependent cell migration required the 

class I PI3K isoforms, p110α and p110β, to activate Rac1 and induce actin reorganization 

and cell migration (Fig. 7D). It is now generally accepted that class I PI3K mediates RTK 

signaling, including that downstream of EGFR (57) or IGFR (16). However, the precise role 

and contribution of each isoform is not yet well understood, especially with regard to MET 

signaling. Class I-selective PI3K inhibitors, including isoform-specific,  have been 

developed, many are being tested in clinical trials, some were approved (22, 58, 59). 

Targeting specific isoforms may improve the therapeutic response of cancer patients while 

reducing toxicity. 

 Conclusions from in vitro (cell culture) work implying the involvement of PI3K activity 

have often been drawn based on the use of LY294002 at high doses, from 10 to 50 μM. 

Although 10 μM is the minimal concentration necessary for its pan-PI3K inhibitory activity 

[except in the case of resistant class II PI3K (37)], mTOR is also directly inactivated (37). 

Here, using a set of specific mTOR and pan/class I PI3K inhibitors in addition to LY294002 

at 10 μM, we demonstrate that, although PI3K is able to mediate oncogenic Met dependent 

mTOR signalling, MET dependent anchorage independent growth is mediated by mTOR, 

but not PI3K. One possibility is that the activation of mTOR promoted by PI3K does not occur 

at the right location in the cell to trigger oncogenic MET-dependent anchorage-independent 



	

growth. This hypothesis fits with our findings that, oncogenic MET activity leads to the 

formation of a complex between the Rac1 RKR motif (within its C-terminal polybasic region 

(63, 64)) and mTOR, leading to an increased localization of mTOR and Rac1 at the plasma 

membrane and, consequently, anchorage independent growth. Our results are consistent 

with those of Saci et al. (43) which demonstrate a PI3K-independent, but Rac1-dependent, 

mTOR pathway activation in the control of cellular size. Furthermore, our finding that mTOR 

inhibition reduced tumor growth in vivo, including that of MET inhibitor-resistant tumors (4), 

may have clinical relevance.  

Rac1-GTPase activity was not required for anchorage-independent growth driven by 

METM1268T. This is consistent with the role of Rac1 as an adaptor molecule and with the non 

involvement of Vav2 and Tiam1, two GEFs which promoted MET-dependent Rac1 activation 

and subsequent cell migration (4, 26). The GEF p-REX-1 was previously shown to establish 

a link between mTOR and Rac leading to cell migration (62). However, given that its role is 

to promote mTOR-dependent Rac activation, it is unlikely to be involved in oncogenic MET-

dependent anchorage-independent growth, which (in the cells used) did not require Rac1 

activation. The revealed role of GTPase-independent Rac1 is consistent with the lack of 

requirement for class I PI3K in METM1268T-driven anchorage-independent growth, because 

PI3K classically promotes Rac1-GTPase activity through promoting the activation of GEFs 

that contain a PH-domain.  

Although the perinuclear late endosome or lysosome is the classical site for 

mTORC1 localization and activation	(65, 66), mTOR localization at the plasma membrane 

has been reported in a few studies (43, 67, 68). This mTOR location may enable the 

activation of specific mTOR substrates that are also localized at the plasma membrane. In 

addition to a plasma membrane localization, a punctate localization of Rac1 and mTOR were 

observed in the perinuclear area of the cells (Fig. 6A), suggesting perhaps co-trafficking of 



	

the two molecules to the plasma membrane from perinuclear endomembranes. Thus, mTOR 

may translocate to the plasma membrane within the lysosome to get activated locally (69) 

or from the perinuclear lysosome, post-activation, possibility trafficking with other members 

of the complex mTORC1. Consistent with the second hypothesis, Rac1 depletion reduced 

the phosphorylation of p70-S6K, a major mTORC1 effector, but had no effect on mTOR 

autophosphorylation site Ser2481, which we found was activated by oncogenic MET (Fig. 3D). 

Although there is not a consensus for the use of mTOR phospho-sites as a clear read-out 

of mTORC1 in an active state (70, 71), Ser2481 has been used to monitor intrinsic mTORC 

catalytic activity (72). 

Our findings may have important implication in the clinic. We speculate that targeting 

mTORC1 may reduce tumor growth, whereas targeting class I PI3K may benefit patients by 

inhibiting tumor invasion or metastasis. Therefore, the strategy of targeting both class I PI3K 

and mTOR with dual inhibitors could be therapeutically beneficial in cancer patients with 

MET-mutant tumors. 

  



	

MATERIALS AND METHODS 

 

Antibodies 

The following antibodies were used for western blotting: Rabbit polyclonal antibodies 

targeting phosphorylated MET (Tyr1234-Tyr1235; #3126), phosphorylated AKT (Ser473, #9271), 

AKT (#9272), phosphorylated p70-S6K (Thr389, #9205), phosphorylated p70-S6K 

(Thr421/Ser424, #9204), p70-S6K (#9202), phosphorylated ERK1/2 (#9101), ERK1/2 

(#9102S), phosphorylated mTOR (Ser2481, #2974), and rabbit monoclonal antibodies 

targeting mTOR (#2983), and p110α (#4249) were obtained from Cell Signaling Technology 

(all used at 1:1000). Mouse monoclonal antibodies against murine MET (B-2; 1:500, #sc-

8057), HSC70 (1:5000, #sc7298), rabbit polyclonal antibodies against p110β (1:500, #sc-

602) and Vav2 (1:1000, #sc-H200) were purchased from Santa Cruz Biotechnology. The 

antibodies targeting tubulin (mouse monoclonal, 1:5000, #62204) and human MET (CVD13; 

rabbit polyclonal, 1:1000, #182257) were purchased from Invitrogen Life Technologies. The 

antibodies targeting Tiam1 (rabbit polyclonal, 1:1000, #ABN1488) and Rac1 (mouse 

monoclonal, 1:500, #ARC03) were purchased from Merck and Cytoskeleton, respectively. 

Horseradish peroxidase (HRP)-linked secondary antibodies, sheep anti-mouse and donkey 

anti-rabbit, were purchased from GE Healthcare Life Sciences (VWR International; used at 

1:5000). For immunofluorescence, the antibody targeting Rac1 (mouse monoclonal, 1:100, 

#05-389) was purchased from Merck Millipore and mTOR (rabbit monoclonal, 1:50, #2983) 

from Cell Signaling Technology. F-actin was stained using Alexa Fluor®-546 phalloidin 

(Molecular probes, Life Technologies; used at 1:500). Cy3-coupled donkey anti-mouse IgG 

(Jackson Immunoresearch) was used as secondary antibody (1:500). 

 



	

Pharmacological inhibitors 

MET inhibitors PF-02341066 (100 nM, used in U87MG cells) and PHA-665752 (100 nM, 

used in NIH3T3 cells), dynasore (80 µM), and Ehop-016 (4 µM) were purchased from Sigma 

Aldrich. LY294002 (10 µM) was purchased from Calbiochem. UO126 (10 µM) was 

purchased from Cell signalling. Wortmannin (100 nM), A66 (500 nM), TGX221 (40 nM), 

GDC0941 (100 nM to 10 µM), rapamycin (2 nM), and NSC23766 (100 µM) were purchased 

from Selleckchem. Stock dilutions of each were prepared in DMSO. 

 

Constructs 

The plasmid pEGFP-Rac1-T17N-AAA was generated from the plasmid pEGFP-Rac1-T17N, 

a Rac1 dominant-negative mutant, gift from Prof. Maddy Parsons (King’s College London), 

as follows: Rac1-T17N-AAA sequence (table S1), with NotI and EcoRI restriction enzyme 

sites at 5’ and 3’ ends respectively, was generated and subcloned into a pMA vector by 

GeneArt gene synthesis (Thermo Scientific). The Rac1-T17N-AAA sequence was then 

amplified using M13-20 primer pair (M13-20 Forward: TTGTAAAACGACGGCCAG; M13-20 

Reverse: GGAAACAGCTATGACCATG), and the resultant fragment was inserted into 

pEGFP-Rac1-T17N using NotI and EcoRI digestion followed by ligation, thereby replacing 

the Rac1-T17N sequence. Sanger sequencing was performed on single colony to confirm 

the insertion of correct sequence.  

 

Cell lines and cell culture 

The mouse fibroblast NIH3T3 cell lines expressing either murine wild-type, M1268T, or 

D1246N MET (4), were a gift from Prof. G. Vande Woude (Van Andel Institute) (73). The 

cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5 g/L of 

glucose and L-glutamine, supplemented with 10% donor calf serum (DCS, from Gibco, Life 



	

Technologies). NIH3T3 cells were starved in DMEM supplemented with 1% DCS for 24 

hours prior to migration assays, and serum-starved with 0% DCS in DMEM for 1 hour for 

Western blot analysis unless otherwise stated. The gliomablastoma cells U87MG were 

purchased from ATCC and cultured in α-Minimum Essential Modified Eagle’s medium (α-

MEM) containing 1 g/L of D-glucose and 292 mg/L L-glutamine, supplemented with 10% 

FBS. U87MG cells were starved for 24 hours in FBS-free α-MEM for migration assays and 

Wstern blots. Cell lines were maintained in humidified incubators at 37°C and 5-8% CO2 and 

were passaged every three days. Cells were not used beyond passage 10 to ensure 

experimental consistency. 

 

Cell transfection 

NIH3T3 cells were transfected with siRNA (Qiagen and Dharmacon; targets and sequences 

of the oligonucleotides are listed in table S1) using Lipofectamine RNAiMAX (ThermoFisher) 

or Amaxa® Nucleofector® technology following the manufacturer’s instructions (Lonza). The 

kit “R” and the program of nucleofection “U-030” were used for NIH3T3 cells. U87MG cells 

were transfected using Lipofectamine RNAiMAX (ThermoFisher). Cells were harvested 48 

hours after RNAi transfection.  

The vectors pEGFP-Rac1-T17N or pEGFP-Rac1-T17N-AAA were transfected using 

Lipofectamine 3000. After 24 hours, the GFP positive cells were separated from the GFP 

negative cells on a high speed MoFlo Astrios cell sorter (Beckman Coulter). Both type of 

cells collected (GFP negative and GFP positive cells) were used and compared to each 

other in Transwell chemotactic migration assay, soft agar assay, and immunofluorescence 

assay. For the GFP immunoprecipitation assay, the cells were lysed 24 hours after 

transfection and did not required GFP cell sorting.   



	

 

Western Blotting 

To prepare total cellular proteins, 100,000 cells/well were seeded in 6-well plates and 

allowed to attach for 24 hours in complete medium. Cells were treated with pharmalogical 

inhibitors for 1 hour unless otherwise stated. When required, NIH3T3 cells were treated with 

dynasore for 30 min. Cells were harvested in radio-immunoprecipitation buffer (RIPA) or in 

2X Sample buffer (Invitrogen, Life Technologies) containing 200 mM DTT, and boiled for 5 

min. To perform the SDS-page, equal quantities of total cellular proteins from each sample 

were loaded either onto 4-12% gradient polyacrylamide gels (Invitrogen) or 10% acrylamide 

gels containing sodium dodecyl sulphate (SDS-PAGE). Protein sizes were determined by 

comparison to a set of standards, Molecular Weight Marker Full Range Rainbow™ 

(RPN800E Recombinant Protein, from GE Healthcare Life Sciences) and Novex® Sharp 

Pre-stained Protein Standard (Invitrogen, Life Technologies). To perform the protein 

immunoblot, proteins were transferred to a nitrocellulose membrane (GE healthcare). 

Primary antibodies, were diluted in 5% BSA, 0.1% Tween-20 Tris Buffer (TBS-T), and 

incubated overnight at 4°C. Specific binding of antibodies was detected with appropriate 

HRP-coupled secondary antibodies and visualized using ECL reagent (GE Healthcare Life 

Sciences). Protein expression levels were analysed and compared by densitometry. To 

quantify the protein bands, we performed densitometry on non-saturated bands using 

ImageJ software to evaluate and compare the intensities of protein expression. Relative 

protein phosphorylation levels were obtained by normalizing the amount of phosphorylated 

protein to that of total protein, while the expression of total proteins were normalized to 

tubulin or HSC70 levels from the same membrane. 

  

Transwell chemotactic migration assays 



	

Cells were serum-deprived for 24 hours prior to the experiment. Transwell filters (Corning, 

8 µm pore size) were coated with fibronectin (Sigma Aldrich) for 30 min and dried. Harvested 

cells were suspended in 0.1% BSA/serum free media at 45,000 cells/mL with the appropriate 

drug where indicated. 200 µL of the cell suspension (9x103 cells) was added to the upper 

chamber of each Transwell insert, while complete medium was added to the lower chamber 

to create a chemoattractant gradient. Cells were allowed to migrate at 37°C for 90 min. After 

this time, cells on the top of the filters, which had not migrated, were removed with a wet 

cotton bud. The remaining migrated cells (on lower side of the membrane) were fixed with 

4% paraformaldehyde (PFA). Cell nuclei were stained with haematoxylin (Sigma Aldrich). 

Filters were mounted onto a glass slide with Aqueous medium (Aquatex, VWR). Migrated 

cells were counted by microscopy at x20 with a Zeiss Axiophot microscope. Ten fields were 

counted per membrane, and each condition was performed in triplicate in each experiment. 

 

Immunofluorescence and confocal microscopy 

13 mm coverslips were placed into the wells of 24-well plates. 20,000 NIH3T3 cells were 

seeded on poly-L-Lysine pre-coated coverslips (BD BioCoat™, BD Biosciences) and 

allowed to attach for 24 hours. Cells were then treated with appropriate drugs for 1 hour. 

Cells were fixed with 4% PFA. Excess PFA was quenched by incubation with 50 mM of 

ammonium chloride (NH4Cl). PBS containing 3% BSA, 0.1% Triton X-100 (Sigma Aldrich) 

was used for membrane permeabilization and blocking non-specific sites. Primary 

antibodies were diluted at 1:100 in 3% BSA/PBS and, incubated for 40 min. To visualize the 

actin cytoskeleton, cells were incubated with Alexa Fluor®-546 phalloidin (Molecular probes, 

Life Technologies) at 1:500 for 20 min during secondary incubation. Secondary antibodies, 

diluted at 1:500 in 3% BSA/PBS were incubated for 20 min, followed by sequential washing 

in PBS, then distilled water prior to mounting with the Prolong® Gold Antifade Mountant with 



	

DAPI (Life Technologies). Immunofluorescence was detected and captured using a Zeiss 

LSM710 confocal microscope, fitted with a Plan-Apochromat oil immersion objective lens 

(63x/1.4). Cy3 and Alexa Fluor® 546 fluorochrome were excited at 543 nm wavelength by 

HeNe laser and emitted at 568 nm (red). Each image represents a single section of 0.7 μm 

thickness of the basal section of cells for phalloidin staining or the middle section of cells for 

Rac1 staining. The counting of cells in which Rac1 was present at the plasma membrane 

and those that lacked actin stress fibres were performed as previsouly described (4), directly 

at the microscope by the investigator. For each condition within each independent biological 

replicate, multiple fields spread across the coverslip were counted, avoiding fields on the 

edge of the coverslip due to the cells being damaged at this location. Picture fields were 

chosen randomly based on DAPI staining and all cells comprised in a field were counted. In 

total at least 100 cells per conditions and per experiments were counted. Cells were counted 

as positive for the presence of Rac1 at the plasma membrane or for the absence of actin 

stress fibres. 

 

Adhesion assay 

96-well plates (Perkin Elmer) were precoated with fibronectin (Sigma Aldrich) for 30 min and 

air-dried. 4,500 cells were seeded per well in complete medium supplemented with DMSO 

or pharmalogical inhibitors. The cells were allowed to attach for 50 min at 37°C and 5% CO2 

in humidified incubators. The wells were then washed in PBS and fixed with 4% PFA. The 

nucleus of each adherent cell was then stained by Hoechst 33342 (ThermoFisher). Hoechst 

33342 signal was imaged by Celigo (Nexcelom Bioscience). Each condition was performed 

in triplicate. The total number of cells per well was counted by ImageJ software. 

 

Rac1 activation assay 



	

Rac1-GTP was precipitated using the GST-CRIB domain of PAK1 with the Rac1 Activation 

Assay Biochem Kit (Cytoskeleton), according to the manufacturer’s instructions. Bound 

Rac1-GTP was detected by Western blot with antibody to Rac1. 

 

GFP immunoprecipitation 

GFP immunoprecipitation was carried out using GFP-Trap magnetic agarose beads 

(Chromotek) according to the manufacturer’s instructions, with the exception of the coIP 

lysis buffer that was replaced by RIPA-CHAPS buffer [10 mM Tris pH 7.5; 150 mM NaCl; 

0,5 mM EDTA; 0.5% v/v CHAPS; 1 mM PMSF; 2.5 mM sodium pyrophosphate; 1 mM β-

glycerophosphate; 1 mM Na3 VO4; proteinase inhibitor cocktails (Sigma-Aldrich); 250U/ml 

benzonase (Sigma-Aldrich)]. Binding control magnetic agarose beads (Chromotek) were 

used for pull-down specificity control. Proteins precipitated with GFP-tagged bait proteins 

were detected by Western blotting. 

 

Soft agar assay 

500 NIH3T3 cells or 10,000 U87MG cells in single cell suspensions were mixed with 5 mL 

0.3% agarose (type IX-A, Sigma Aldrich)/medium per condition and placed on ice to solidify. 

After 18 min, 1 mL of complete medium was added to the top of the agar and cells were 

cultured for 5 days. Then, treatment was started and the medium was changed daily for 4 

days. 1000 NIH3T3 cells or 10,000 U87MG cells transfected with RNAis were either 

immediately placed into agarose following transfection with Amaxa or after 18 hours 

following transfection with Lipofectamine RNAiMAX, for 9 days. Pictures were taken of the 



	

whole wells using a Zeiss, Stemi SV11 microscope or Celigo (Nexcelom Bioscience). The 

total area and number of the colonies were measured with ImageJ software. 

 

Tumorigenesis assay 

Tumorigenesis assays were performed as previously (4). Briefly, female athymic nude mice 

(CD1 Nu/Nu, Charles River UK) at 4 to 6 weeks old were used in accordance with the United 

Kingdom Coordination Committee on Cancer Research guidelines and Home Office 

regulations. A cell suspension of 5 x 10 wild-type or METM1268T-NIH3T3 expressing 6 cells/mL 

was prepared is PBS and 100 µL was injected subcutaneously into the right flank of each 

mouse. Tumor volumes were measured daily using callipers and the volumes were 

calculated as follows: 

Tumor	volume = length	x	width	x	width	x	
π
6 

Once the tumors reached the volume of 50 mm3, they were tr.eated with 100 µL of the 

indicated treatment. DMSO was used as the vehicle/negative control. Reagents were 

applied topically on the skin over the tumor and surrounding area. Once tumors then reached 

500 mm3, mice were euthanized by neck dislocation Each treatment group consisted of 5 

mice. 

 

Statistical analysis 

Quantitative data of the indicated number of independent biological replicates (“N=” in figure 

legends) are expressed as means ± S.E.M. A Student’s t-test two-tailed distribution and two-

sample equal variance was used to test the significance of most results obtained.  

 

  



	

SUPPLEMENTARY MATERIALS 

Figure S1: Class I PI3K inhibition reduces MET-dependent cell migration but not anchorage-

independent growth.  

Figure S2: Class I PI3K promotes MET-dependent cell migration through Rac1 activation.  

Figure S3: Oncogenic MET-induced anchorage-independent cell and tumor growth is 

mediated by mTORC1.  

Figure S4: Oncogenic MET promotes anchorage-independent growth through a Rac1-

mTOR pathway. 

Figure S5: Rac1 promotes anchorage-independent growth in MET-mutant cells 

independently of its GTPase activity. 

Figure S6: Through its C-terminal RKR motif, Rac1 promotes the plasma membrane 

localization of mTOR and the anchorage-independent growth of MET-mutant cells.  

Table S1: RNAi oligonucleotides and the Rac1-T17N-AAA plasmid. 
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FIGURE LEGENDS 

 

Fig. 1. Class I PI3K inhibition reduces MET-dependent cell migration but not 

anchorage-independent growth. (A) Transwell migration assay performed with wild-type 

or M1268T MET-expressing NIH3T3 cells treated with DMSO, LY294002 (LY, 10 µM) or 



	

PHA-665752 (PHA, 100 nM). Data are mean ± SEM from N = 5 (DMSO), 4 (LY), or 3 (PHA) 

independent biological replicates. Student’s t test: NS, non-significant; ***P<0.005. (B and 

C) Colony formation assays in the cells described and treated as in (A) and grown in soft 

agar. Representative images are shown (B; scale bar: 5 mm), and the colony area was 

calculated by ImageJ (C). Data are mean ± SEM from N=3 independent biological replicates. 

Student’s t test: NS, non-significant; ***P<0.005. (D and E) Western blotting for 

phosphorylated (“P-AKT”, Ser473) and total AKT, with tubulin as loading control, in lysates 

from cells described and treated as in (A) or with dynasore (E; 80 µM). Below, mean 

densitometry of phosphorylated AKT relative to total ± SEM from N=3 independent biological 

replicates. Student’s t test (unless indicated, compared to control): NS, non-significant; 

***P<0.005. (F and G) As in (A) and (C), respectively, in cells treated with DMSO or 

GDC0941 (F, 100 nM; G, as indicated). Data are mean ± SEM from at least 3 independent 

biological replicates. Student’s t test: NS, non-significant; ***P<0.005. (H) Relative colony 

formation by wild-type or D1246N MET-expressing cells grown in soft agar and treated with 

DMSO, GDC0941 (100 nM) or PHA-665752 (PHA, 100 nM). Data are mean ± SEM from 

N=3 independent biological replicates. One-way ANOVA test followed by Tukey’s multiple 

comparisons test: NS, non-significant; ***P<0.005. (I) Western blotting for phosphorylated 

(Tyr1234/1235) and total MET and AKT in lysates from U87MG cells treated with DMSO or PF-

02341066 (100 nM). p170 and p145: the precursor and the mature forms of the beta chain 

of MET. Blots were analyzed as in (D and E). (J) Relative colony area of U87MG cells grown 

in soft agar and treated with DMSO, PF-02341066 (100 nM) or GDC0941 (100 nM). Data 

are means ± SEM from at least 3 independent biological replicates. Student’s t test 

(compared to control): NS, non-significant; *P<0.05. 

 



	

Fig. 2. Class I PI3K promotes MET-dependent cell migration through Rac1 activation. 

(A) Transwell migration assays performed with wild-type or M1268T MET-expressing cells 

transfected with a negative control or siRNA targeting p110α, p110β, or both, and treated 

with DMSO (control), A66 (500 nM) or TGX221 (TGX, 40 nM) either alone or combined. 

Data are means ± SEM, N=3 or 4 independent biological replicates. Student’s t test 

(compared to control, or as indicated): NS, non-significant; **P<0.01, ***P<0.005. (B) 

Transwell migration by U87MG cells treated with DMSO (N=8), PF-02341066 (100 nM, 

N=3), A66 (500 nM, N=3), TGX221 (40 nM, N=3) or A66 and TGX221 combined (A66+TGX, 

N=4). Data are means ± SEM from independent biological replicates. Student’s t test 

(compared to control, or as indicated): NS, non-significant; *P<0.05, **P<0.01, 

***P<0.005.One-way ANOVA test followed by Tukey’s multiple comparisons test (compared 

to control): NS, non-significant; *P<0.05, ***P<0.005. (C and D) Wild-type and M1268T 

MET-expressing cells were transfected with negative control (RNAi control) or p110α and 

p110β combined (RNAI p110 α+ β) siRNAs. The percentage of cells with Rac1 at the plasma 

membrane (C) or lacking stress fibres (D) was counted, following immunostaining with an 

antibody against Rac1 or rhodamine-phalloidin, respectively. Data are means ± SEM from 

N=3 independent biological replicates. Student’s t test: NS, non-significant; *P<0.05, 

**P<0.01, ***P<0.005. 

 

Fig. 3. mTORC1 promotes oncogenic Met-dependent anchorage-independent and 

tumor growth. (A) Relative colony area of wild-type, M1268T (N=6 independent biological 

replicates) and D1246N MET-expressing cells (N=3 independent biological replicates) 

grown in soft agar and treated with DMSO or wortmannin (100 nM). (B) Relative colony area 

of wild-type, M1268T and D1246N MET-expressing cells (N=3 independent biological 

replicates) and U87MG cells (N=4 independent biological replicates) grown in soft agar and 



	

treated with DMSO or rapamycin (2 nM). (C and D) Western blots for phosphorylated p70-

S6K and mTOR (Ser2481) in lysates from wild-type, M1268T and D1246N MET-expressing 

cells treated with DMSO, LY294002 (LY, 10 µM) or PHA-665752 (PHA, 100 nM). N= 3 or 4 

independent biological replicates. (E and F) Tumour volume of graft of 5x105 cells 

expressing wild-type, M1268T or D1246N MET injected subcutaneously into nude mice. 

Tumors were measured daily and, at 30-50 mm3, treated topically with DMSO or rapamycin 

(2 nM), then assessed at days 4 (E) and 6 (F) thereafter. N=5 mice per group. Data (A to F) 

are mean values ± SEM. Student’s t test (compared to control or as indicated):  NS, non-

significant; *P<0.05, **P<0.01, ***P<0.005. 

 

Fig. 4. Oncogenic Met promotes anchorage-independent growth via a Rac1-mTOR 

pathway. (A and B) Western blots for phosphorylated p70-S6K (P-p70-S6K), p70-S6K (A 

and B), phosphorylated ERK1/2 (P-ERK1/2), ERK1/2 and HSC70 (B) were performed on 

M1268T MET-expressing cells treated with DMSO, dynasore (80 µM) or UO126 (10 µM), as 

indicated. Data below blots are mean ± SEM, phospho:total ratio, obtained by densitometry 

of N=3 independent biological replicates. (C) Western blots for phosphorylated p70-S6K (P-

p70-S6K), p70-S6K, HSC70 and Rac1 were performed on M1268T MET-expressing cells 

transfected with negative control or Rac1 siRNA (“RNAi”). Below are mean levels of 

indicated phosphorylated protein over total protein ± SEM, obtained by densitometry of 

Western blots. N=3 independent biological replicates. (D and E) Relative colony area of (D) 

wild-type and M1268T MET-expressing cells and (E) U87MG cells transfected with negative 

control or Rac1 RNAi and grown in soft agar. N=3 independent biological replicates. Data 

(A to E) are mean values ± SEM. P values were obtained with the Student’s t test. NS: non-

significant, *P<0.05, ***P<0.005. 

 



	

Fig. 5. Rac1 promotes anchorage-independent growth of MET-mutant cells 

independently of its GTPase activity. (A) Western blots for phosphorylated mTOR on 

Ser2481 (P-mTOR), mTOR, HSC70 and Rac1 of M1268T Met-expressing cells transfected 

with negative control (RNAi control) or Rac1 (RNAi Rac1) siRNAs. Below, the mean levels 

of indicated phosphorylated protein over total protein ± SEM obtained by densitometry of 

Western blots. N=3 independent biological replicates. (B) Colony area of M1268T Met-

expressing cells grown in soft agar and treated with DMSO, Ehop-016 (4 µM) or NSC23766 

(NSC) (100 µM). N=3 independent biological replicates. (C) Colony area of M1268T MET-

expressing cells transfected with control, Vav2 or Tiam1 siRNAs grown in soft agar. N=4 

independent biological replicates. (D) Colony area of M1268T-MET-expressing cells 

transiently transfected with GFP-Rac1-T17N dominant-negative construct. After flow 

cytometry separation, the cells expressing GFP-Rac1-T17N or the GFP negative cells (no 

GFP) were grown in soft agar and were treated with DMSO or PHA-665752 (PHA) (100 nM), 

N=4 independent biological replicates. Data (A to E) are mean values +/- SEM. P values 

were obtained with the Student’s t test. NS: non-significant, **P<0.01, ***P<0.005. 

 

Fig. 6. Rac1 is required for mutant MET-dependent localization of Rac1 and mTOR at 

the plasma membrane. (A) Confocal sections of wild-type and M1268T MET-expressing 

cells. Scale bar: 10μm. Cells were fixed and stained with DAPI (blue) and immunostained 

for Rac1 (green) and mTOR (red). (B and C) Percentage of cells with mTOR at the plasma 

membrane when cells were (B) treated with DMSO or PHA-665752 (PHA, 100 nM) or (C) 

transfected with negative control or Rac1 siRNA. N=3 independent biological replicates. 

Data (B and C)  are mean values ± SEM. P values were obtained with the Student’s t test. 

NS: non-significant, *P<0.05. 

 



	

Fig. 7. Rac1 associates with and promotes plasma membrane localization of mTOR 

and anchorage-independent growth of MET-mutant cells through its C-terminal RKR 

motif. (A) Wild-type and M1268T MET-expressing cells were transiently transfected with 

GFP-Rac1-T17N or GFP-Rac1-T17N-AAA constructs. GFP-Rac1 was immunoprecipipated 

(IP) with GFP-Trap beads (GFP). Pull-down with control beads (Ctl) was performed. 

Western blots were performed to detect the GFP  immunoprecipitates (IP) and the co-

immunoprecipitated (co-IP) proteins mTOR and Tiam1. Lysates for each condition were also 

blotted and are indicated with “+”. Numbers below were obtained following densitometry of 

the blots. Thy represent the level of mTOR co-immunoprecipitated with GFP in M1268T 

MET-expressing cells. Thus, for each construct, mTOR level was normalised to GFP level. 

The obtained value was normalised to mTOR levels in lysate. The value was set as 1 for 

GFP-Rac1-T17N construct. Data are mean +/- SEM, N=3 independent biological replicates. 

(B and C) M1268T MET-expressing cells were transiently transfected with GFP-Rac1-T17N 

(B) or GFP-Rac1-T17N-AAA (B and C) constructs. After flow cytometry separation, the cells 

expressing GFP or the GFP negative cells (No GFP) were (B) immunostained for mTOR 

and the percentage of cells with mTOR at the plasma membrane was evaluated, and (C) 

grown in soft agar and treated with DMSO or PHA-665752 (PHA, 100 nM). Data are mean 

+/- SEM, N=3 independent biological replicates. P values were obtained with the Student’s 

t test. NS: non-significant, **P<0.01, ***P<0.005. (D) Model suggested for the role of Rac1 

downstream of oncogenic MET to induce cell migration, and anchorage-independent 

growth. 
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Figure S1: Class I PI3K inhibition reduces MET-dependent cell migration but not 
anchorage-independent growth. (A to C) Western blotting analysis for MET (p170 and 
p145, the precursor and mature forms, respectively, of the beta chain), phosphorylated MET 
[Tyr1234/1235; “P-MET”], and tubulin were performed on lysates from wild-type and 
METM1268T-expressing cells treated with DMSO, LY294002 (LY, 10 µM) or PHA-665752 
(PHA, 100 nM). Densitometry for the abundance of phosphorylated MET (Tyr1234/5; B) and 
the mature form of MET (C) was each normalized to tubulin. Data are means ± SEM from 
N=3	independent biological replicates. a.u.: arbitrary units. (D) Relative colony number of 



wild-type or METM1268T-expressing cells grown in soft agar and treated with DMSO, 
LY294002 (LY, 10 µM) or PHA-665752 (PHA, 100 nM). Data are means ± SEM from N= 
3 independent biological replicates. (E) Western blotting for phosphorylated AKT (Thr308 
and Ser473; “P-AKT”) and tubulin were performed on unstarved METM1268T-expressing cells 
treated with DMSO, LY294002 (LY, 10 µM) or GDC0941 (30 nM to 10 µM). Blots are 
representative of at least N=2 experiments. (F and G) Relative colony number of wild-type 
or METM1268T-expressing cells grown in soft agar and treated with DMSO, GDC0941 (100 
nM or 10 µM; F) or PHA-665752 (PHA, 100 nM; G) as indicated, shown as means ± SEM 
from N=3	 independent biological replicates. One-way ANOVA test followed by Tukey’s 
multiple comparisons test: NS: non-significant, ***P<0.005. (H) Western blots for 
phosphorylated AKT (Ser473; “P-AKT”), total AKT, and tubulin were performed on U87MG 
cells treated with DMSO or GDC0941 (100 nM). Below, mean densitometry of 
phosphorylated AKT relative to total in N=2	independent biological replicates. (I) Relative 
colony number of U87MG cells grown in soft agar and treated with DMSO, PF-02341066 
(100 nM, N=3) or GDC0941 (100 nM, N=4). Results are means ± SEM of independent 
biological replicates. Student’s t test comparing to DMSO: NS, non-significant; *P<0.05, 
**P<0.01, ***P<0.005. The figure is related to Figure 1. 
  



 
 
Figure S2: Class I PI3K promotes MET-dependent cell migration through Rac1 
activation. (A) Western blots for class I PI3K isoforms p110α and p110β and for tubulin, in 
unstarved wild-type or METM1268T-expressing cells. The graph displays the average 
abundance of each PI3K isoform normalized to tubulin, with the values for wild-type cells 
set as 1. Data (below) mean ± SEM densitometry from 3 independent blots from N=3 
independent biological replicates. (B and C) Western blots for p110α, p110β and tubulin in 
wild-type and METM1268T-expressing cells transfected with either a negative control siRNA 
(B; “Control”) or siRNA targeting p110α and p110β, either simultaneously (B; “p110α+β”) 
or separately (C). Blots are representative of N=3 (B) or 4 (C) independent biological 
replicates. (D) Number of adherent METM1268T-expressing cells cultured in the presence of 
DMSO or A66 (500 nM) and TGX221 (TGX, 40 nM) combined. Data are means ± SEM 
from N=4 independent biological replicates. (E and F) Wild-type and METM1268T-expressing 
cells were grown on coverslips and treated with DMSO, LY294002 (LY, 10 µM) or PHA-
665752 (PHA, 100 nM) for 1 hour then stained for Rac1 (red) and counterstained with DAPI 



(blue). Confocal microscopy images (E) are representative and data (F) are mean (± SEM) 
percentage of cells with Rac1 at the plasma membrane, quatified from N=11, 7 and 8 
independent biological replicates for DMSO, LYand PHA respectively. Scale bar: 10µm.  (G 
and H) Cells described and treated as in (E and F) were stained with DAPI (blue) and 
rhodamin-phalloidin (red). Scale bar: 10µm. Data are mean (± SEM) percentage of cells 
lacking stress fibres, quantified from N=11 (DMSO) and 6 (LY and PHA) independent 
biological replicates. (I) GST-CRIB assay to detect Rac1-GTP in METM1268T-expressing 
cells transfected with negative control siRNA (“RNAi control”) or combined siRNAs 
targeting p110α and p110β (“RNAi p110α+β”). Negative and positive controls Rac1-GTP 
detection were also included (see Methods).  Data are mean ± SEM. Student’s t test: NS: 
non-significant, **P<0.01, ***P<0.005. The figure is related to Figure 2. 
  



 
Figure S3:  Oncogenic MET-induced anchorage-independent cell and tumor growth is 
mediated by mTORC1. (A) Relative colony number of wild-type MET-, METM1268T- 
(N=6), and METD1246N-expressing NIH3T3 cells (N=3 independent biological replicates) 



grown in soft agar and treated with DMSO or wortmannin (100 nM; A). Data are means ± 
SEM of independent biological replicates. (B) Relative colony number of the cells described 
in (A) (N=3) and U87MG cells (N=4) grown in soft agar and treated with DMSO or 
rapamycin (2 nM). Data are means ± SEM of independent biological replicates. (C to H) 
Western blotting for total and phosphorylated (“P-”) forms of the indicated proteins in lysates 
from the indicated cells (wild-type MET-, METM1268T- or METD1246N-expressing NIH3T3 
cells or U87MG glioblastoma cells) and treated with DMSO or the indicated inhibitor: 
LY294002 (LY, 10 µM), PHA-665752 (PHA, 100 nM), rapamycin (2 nM), PF-02341066 
(100 nM), GDC0941 (100 nM), A66 (500 nM) and TGX221 (40 nM), or wortmannin (100 
nM). Densitometries of phosphorylated protein indicated relative to total were quantified 
from at least 3 independent biological replicates and shown as means ± SEM. Student’s t test 
(unless indicated, compared to DMSO condition): NS, non-significant; *P<0.05, **P<0.01, 
***P<0.005. (I) Tumor growth curves in nude mice, measured daily after subcutaneous 
injection of 5x105 wild-type MET-, METM1268T- or METD1246N-expressing NIH3T3 cells. 
Data are means ± SEM of 5 mice per group. The figure is related to Figure 3. 
 
 
 
 
 
  



 
Figure S4: Oncogenic MET promotes anchorage-independent growth through a Rac1-
mTOR pathway. (A) Relative colony number of wild-type MET- and METM1268T-
expressing NIH3T3 cells transfected with negative control (RNAi control) or Rac1 siRNAs 
(RNAi Rac1) and grown in soft agar. Data are means ± SEM of 3 independent biological 
replicates. Student’s t test: NS, non-significant; *P<0.05, ***P<0.005.	(B) Western blotting 
for MET (p170 indicates the precursor form and p145indicates the mature form of the beta 
chain), Rac1 and HSC70 were performed on U87MG cells transfected with negative control 
(Control), Rac1 or MET siRNAs. Blots are representative of N=3 independent biological 
replicates. (C) Relative colony number of U87MG cells transfected with negative control 
(RNAi control), Rac1 (RNAi Rac1) or MET (RNAi Met) siRNAs and grown in soft agar. 
Data are means ± SEM of 3 independent biological replicates. Student’s t test, compared to 
DMSO: ***P<0.005.	The	figure	is	related to Figure 4. 
  



 
Figure S5: Rac1 promotes anchorage-independent growth in MET-mutant cells 
independently of its GTPase activity. (A and B) GST-CRIB assay to detect Rac1-GTP (A) 
and Transwell migration assay (B) performed on M1268T MET-expressing cells treated with 
DMSO or Ehop-016 (4 µM). N=3 (B) independent biological replicates. (C, D) Relative 
colony area and colony number of wild-type and M1268T MET-expressing cells grown in 
soft agar and treated with DMSO, Ehop-016 (4 µM) or NSC23766 (NSC, 100 µM). N=3 
independent biological replicates. (E to G) Western blotting (E) and relative colony area (F) 
and colony number (G) formed in soft agar by wild-type and M1268T MET-expressing 
NIH3T3 cells transfected with control, Vav2-targeted or Tiam1-targeted siRNAs. N= 2 (E) 
or 4 (F and G) independent biological replicates. (H to J) M1268T MET-expressing cells 



were transiently transfected with the construct GFP-Rac1-T17N and separated by FACS 
(GFP negative (No GFP cells) and GFP positive cells (GFP-Rac1-T17N cells) were collected 
separately), then imaged by IncuCyte (Sartorius) in phase contrast and in the green 
fluorescence channel (H; scale bar, 150 µm). Relative colony number formed by the cells in 
soft agar (I) and cell migration through Transwells (J) was assessed after the cells were 
treated with DMSO or PHA-665752 (PHA, 100 nM). In (I), data are means ± SEM of 3 
independent biological replicates. In (J), data are the results of 2 independent biological 
replicates. Student’s t test, compared to DMSO: NS: non-significant, *P<0.05, ***P<0.005.	
In (J), results of two independent biological replicates is shown. The figure is related to 
Figure 5. 
  



 
 
Figure S6: In mutant METexpressing cells, Rac1 associates with mTOR and promotes 
mTOR plasma membrane localization and anchorage-independent cell growth through 
its RKR C-terminal motif. 
(A) Representative FACS plot illustrating GFP expression in M1268T MET-expressing cells 
transiently transfected with the indicated construct. Below, the GFP mean in R2-gated cells. 
(B) Relative colony number formed by M1268T MET-expressing cells transiently 
transfected with the construct GFP-Rac1-T17N-AAA and not (“No GFP”), grown in soft 
agar, and treated with DMSO or PHA-665752 (PHA, 100 nM). N=3 independent biological 
replicates. Results are mean ± SEM. Student’s t test: NS, non-significant; *P<0.05, 
**P<0.01, ***P<0.005. The figure is related to Figure 7. 
 
 
  



 

siRNAs from Qiagen:  

Negative control: AllStars Neg (no sequence provided) 

Mouse Tiam1, pool of two oligos; sequences: 
CACGATGACTTTATATTTATA (oligo 2) 
TAGGTGTAACTCAGTCTGAAA (oligo 4) 

Mouse Vav2, pool of two oligos. Target sequences: 
CTGCTGCTTGTTAGAGATTCA (oligo 8) 
CCAGATGTACACATTCGACAA (oligo 9) 

siRNAs from Dharmacon: 

Mouse PI3K - p110 alpha, ON-TARGET, sequence: 
GGAGAACCCUUAUGUGACA (oligo 8) 

Mouse PI3K - p110 beta, ON-TARGET, sequence: 
GAACGAAAUGGACCUUAUU (oligo 7) 

Mouse Rac1, siGENOME, pool of four oligos; sequences: 
GGACGAAGCTTGATCTTAG (oligo 1) 
AGACGGAGCTGTTGGTAAA (oligo 2) 
GATCGGTGCTGTCAAATAC (oligo 3) 
GCAAAGTGGTATCCTGAAG (oligo 4) 

Human MET: siGENOME: D-003156-10  

Human RAC1, pool of two oligos: siGENOME: D-003560-08 and D-003560-09 

 
Rac1-T17N-AAA sequence (GeneArt, Thermo Scientific):  

AAGGGCGGCCGCGGCGGCATGCAGGCCATCAAGTGTGTGGTGGTGGGAGACGGA
GCTGTAGGTAAAAATTGCCTACTGATCAGTTACACAACCAATGCATTTCCTGGAGAA
TATATCCCTACTGTCTTTGACAATTATTCTGCCAATGTTATGGTAGATGGAAAACCG
GTGAATCTGGGCTTATGGGATACAGCTGGACAAGAAGATTATGACAGATTACGCCC
CCTATCCTATCCGCAAACAGATGTGTTCTTAATTTGCTTTTCCCTTGTGAGTCCTGC
ATCATTTGAAAATGTCCGTGCAAAGTGGTATCCTGAGGTGCGGCACCACTGTCCCA
ACACTCCCATCATCCTAGTGGGAACTAAACTTGATCTTAGGGATGATAAAGACACG
ATCGAGAAACTGAAGGAGAAGAAGCTGACTCCCATCACCTATCCGCAGGGTCTAG
CCATGGCTAAGGAGATTGGTGCCGTAAAATACCTGGAGTGCTCGGCGCTCACACA
GCGAGGCCTCAAGACAGTGTTTGACGAAGCGATCCGAGCAGTCCTCTGCCCGCCT
CCCGTGAAGAAGGCCGCAGCTAAATGCCTGCTGTTGTAATGAATTCCTG 
 



 

Table S1: RNAi oligonucleotides and Rac1-T17N-AAA plasmid. Listed in the table are 
the sources and sequences of siRNA oligonucleotides and the dominant-negative, RKR 
motif-mutant Rac1 expression plasmid that were used in this study.  
  



Rac1-T17N-AAA sequence: 

 

AAGGGCGGCCGCGGCGGCATGCAGGCCATCAAGTGTGTGGTGGTGGGAGACGGAG

CTGTAGGTAAAAATTGCCTACTGATCAGTTACACAACCAATGCATTTCCTGGAGAATAT

ATCCCTACTGTCTTTGACAATTATTCTGCCAATGTTATGGTAGATGGAAAACCGGTGA

ATCTGGGCTTATGGGATACAGCTGGACAAGAAGATTATGACAGATTACGCCCCCTATC

CTATCCGCAAACAGATGTGTTCTTAATTTGCTTTTCCCTTGTGAGTCCTGCATCATTTG

AAAATGTCCGTGCAAAGTGGTATCCTGAGGTGCGGCACCACTGTCCCAACACTCCCA

TCATCCTAGTGGGAACTAAACTTGATCTTAGGGATGATAAAGACACGATCGAGAAACT

GAAGGAGAAGAAGCTGACTCCCATCACCTATCCGCAGGGTCTAGCCATGGCTAAGGA

GATTGGTGCCGTAAAATACCTGGAGTGCTCGGCGCTCACACAGCGAGGCCTCAAGA

CAGTGTTTGACGAAGCGATCCGAGCAGTCCTCTGCCCGCCTCCCGTGAAGAAGGCC

GCAGCTAAATGCCTGCTGTTGTAATGAATTCCTG. 

Rac1-T17N-AAA sequence:  

AAGGGCGGCCGCGGCGGCATGCAGGCCATCAAGTGTGTGGTGGTGGGAGACGGA
GCTGTAGGTAAAAATTGCCTACTGATCAGTTACACAACCAATGCATTTCCTGGAGAA
TATATCCCTACTGTCTTTGACAATTATTCTGCCAATGTTATGGTAGATGGAAAACCG
GTGAATCTGGGCTTATGGGATACAGCTGGACAAGAAGATTATGACAGATTACGCCC
CCTATCCTATCCGCAAACAGATGTGTTCTTAATTTGCTTTTCCCTTGTGAGTCCTGC
ATCATTTGAAAATGTCCGTGCAAAGTGGTATCCTGAGGTGCGGCACCACTGTCCCA
ACACTCCCATCATCCTAGTGGGAACTAAACTTGATCTTAGGGATGATAAAGACACG
ATCGAGAAACTGAAGGAGAAGAAGCTGACTCCCATCACCTATCCGCAGGGTCTAG
CCATGGCTAAGGAGATTGGTGCCGTAAAATACCTGGAGTGCTCGGCGCTCACACA
GCGAGGCCTCAAGACAGTGTTTGACGAAGCGATCCGAGCAGTCCTCTGCCCGCCT
CCCGTGAAGAAGGCCGCAGCTAAATGCCTGCTGTTGTAATGAATTCCTG 
 

 




