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SUMMARY

Proper immune system function hinders cancer development, but little is known
about whether genetic variants linked to cancer risk alter immune cells. Here, we
report 57 cancer risk loci associated with differences in immune and/or stromal
cell contents in the corresponding tissue. Predicted target genes show expres-
sion and regulatory associations with immune features. Polygenic risk scores
also reveal associations with immune and/or stromal cell contents, and breast
cancer scores show consistent results in normal and tumor tissue. SH2B3 links pe-
ripheral alterations of several immune cell types to the risk of this malignancy.
Pleiotropic SH2B3 variants are associated with breast cancer risk in BRCA1/2mu-
tation carriers. A retrospective case-cohort study indicates a positive association
between blood counts of basophils, leukocytes, andmonocytes and age at breast
cancer diagnosis. These findings broaden our knowledge of the role of the im-
mune system in cancer and highlight promising prevention strategies for individ-
uals at high risk.

INTRODUCTION

The immune system maintains organismal integrity and function by continuously protecting itself from

exogenous and endogenous assaults. The concept of ‘‘immunological surveillance of cancer’’ was first pro-

posed by Burnet in 1970 (Burnet, 1970) and developed by Thomas about a decade later (Thomas, 1982). In

this theory, the immune system inactivates or eliminates cancer-prone cells that are detected early in

normal tissue (Ribatti, 2017). Although this idea remains a matter of debate, it is clear that some immune

factors decisively influence cancer development and progression. Immunosuppression due to primary im-

munodeficiency or due to therapies administered to prevent organ transplant rejection and certain virus

infections are associated with an increased risk of some cancers (Mortaz et al., 2016). In parallel, studies

of mouse models with defined genetic alterations have demonstrated the relevance of immunosurveil-

lance; for example, loss of Nkg2d, which encodes the activating receptor of natural killer (NK) and

T cells, increases the risk of spontaneous neoplasms (Guerra et al., 2008).

Results from genome-wide association studies (GWASs) have identified risk-associated variants in loci cod-

ing for immune regulatory factors, such as NKG2D for cervical cancer risk (Chen et al., 2013). Indeed,

pathway-based analyses of GWAS results have highlighted the involvement of immune-related processes

in susceptibility to certain cancer types (Michailidou et al., 2017). In parallel, many germline genetic variants

can influence immune cell infiltration in tumors (Lim et al., 2018). Therefore, immune-centered investiga-

tions of normal or precancerous tissue could yield fundamental evidence for improving cancer risk estima-

tion and prevention (Spira et al., 2017). However, whether common genetic variants linked to cancer risk

alter immune cell contents in the corresponding cancer target tissue, and/or at the systemic level, remains

largely undetermined.

The balance between immunological surveillance and tolerance is determined from a complex interplay

between different types of immune cells and other classes of stromal cells (Vinay et al., 2015; Gonzalez

et al., 2018). Here, we describe an integrative analysis of genetic and transcriptome data from tissue
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defined as normal and located adjacent to surgically removed tumors, and from primary tumors analyzed

by The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network et al., 2013). This enables

us to identify immune and stromal (hereafter ‘‘immune/stromal’’) cell tissue content associations with the

risk of several human cancer types. Beyond single variants, polygenic risk scores (PRSs) also show associ-

ations with differences in inferred immune/stromal cell tissue contents. Consistent associations among im-

mune cell signatures, PRSs, and age at diagnosis suggest that higher immune cell infiltration reduces the

risk of breast cancer. We identify the lymphocyte SH2B adaptor 3 (LNK/SH2B3) locus as linking immune cell

counts and breast cancer risk, including that from BRCA1/2 mutation carriers. To evaluate this connection

further, we assess associations between breast cancer age at diagnosis and immune cell counts measured

at diagnosis in routine clinical blood tests; the results further suggest that peripheral immune cell status

influences breast cancer risk. Collectively, these findings may broaden our current knowledge of the bio-

logical basis of cancer risk and thereby suggest strategies for cancer prevention.

RESULTS

Strategy to Evaluate Immune/Stromal Cell Tissue Contents that Influence Cancer Risk

TCGA has greatly increased our knowledge of human cancer through multilayer biological analyses, which

include genetic and gene expression profiling of tissue considered to be normal and situated adjacent to

the cancer (hereafter referred to as ‘‘normal’’) and primary tumors (Liu et al., 2018). In parallel, many suc-

cessful GWASs have identified hundreds of germline genetic variants associated with the risk of common

cancer types (Torkamani et al., 2018). By compiling GWAS results, we assigned cancer risk variants to 17

TCGA projects based on tissue of origin correspondences (Figure 1A lists the cancer study acronyms,

and Table S1 lists the cancer risk variants). As deconvolution analyses of bulk gene expression enable

robust inference of cell type content in heterogeneous samples (Avila Cobos et al., 2018), deduced cell

content in normal tissue and tumors can be assessed for associations with cancer risk variants in multivar-

iate analyses (Figure 1B). Moreover, as differences in cancer risk are more accurately defined by combina-

tions of key variants in PRSs (Torkamani et al., 2018), it might be possible to better define the relevance of

the immune/stromal cells by analyzing associations between PRSs and their corresponding signatures (Fig-

ure 1C; Table S2 summarizes the number of normal tissue and primary tumor samples available for each

subsequent analysis).
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Figure 1. Strategy for Assessing the Effect of Immune/Stromal Cell Tissue Content on Cancer Risk

(A) TCGA cancer projects analyzed in this study and data analysis workflow.

(B) Association between gene expression-inferred immune/stromal cell tissue content and GWAS-identified risk variant.

(C) Association between gene expression-inferred immune/stromal cell tissue content and cancer PRS.
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To infer immune/stromal cell contents in normal and primary tumor samples using bulk tissue RNA

sequencing (RNA-seq) data from TCGA, we applied a consensus-signature approach benchmarked

against other methods (ConsensusTME; Jiménez-Sánchez et al., 2019). Using this approach, the computed

immune/stromal estimations in the 17 identified TCGA datasets were typically found to be positively

correlated with two other methods (Figure S1), as well as with estimates of leukocyte content measured

by a different method (Taylor et al., 2018) (Figure S2). In turn, the estimates were generally found to be

negatively correlated with aneuploidy (Figure S3), as expected (Taylor et al., 2018). In addition, the im-

mune/stromal cell TCGA estimates showed significant differences between primary tumors with low or

high levels of CD274/PDL1 and CD279/PDCD1 expression (Figures S4 and S5). Applying the method

to RNA-seq data from whole blood samples of healthy adults also revealed positive correlations with im-

mune cell enumerations using fluorescence-activated cell sorting (Newman et al., 2019) (Figure S6).

Moreover, the estimates from this method were found to be highly correlated (Spearman’s r > 0.75)

with the numbers of immune/stromal cells used to generate 100 pseudo-bulk breast tumors (Figure S7

and Methods).

To further assess the validity of the inferred immune cell contents in TCGA, the deduced scores for each

setting were assessed for associations with defined immune benchmark genes (Methods). In most set-

tings, each inferred immune cell type content was found to be positively correlated with the expression

of the assigned benchmark; the average Pearson’s correlation coefficient values for all signature-bench-

mark pairs were 0.52 and 0.60 in the normal tissue and primary tumor sets, respectively (Figure S8 and

Table S3). To assess further the coherence of the inferred immune cell contents, the corresponding

scores were tested for association with the activity status of immune-related signaling pathways (Cubuk

et al., 2018). This analysis revealed coherent clustering of immune and stromal cell types in normal tissue

(Figure S9).

Identification of Cancer Risk Variants Linked to Differences in Immune/Stromal Cell Tissue

Content

A total of 1,453 cancer risk variants were compiled from various sources; 214 of these were directly genotyped in

TCGA, and the rest were imputed. After applying quality controls and filtering criteria (Methods), 627 and 966

variants were analyzed as potential immune/stromal quantitative trait loci (isQTLs). The isQTLs were identified

usingmultivariate regressions including covariates of gender (when informative), age at diagnosis, tumor stage,

and histology. The significance of the associations in each setting was concluded from 1,000 permutations

(Methods). Tumor data were also analyzed because germline risk alleles are frequently associated with defined

cancer histopathological and biomarker features (Michailidou et al., 2017). To avoid redundant tests, only cell

signatures with eigenvalues >1 were examined in each setting (Table S4). Through this methodology, 22 signif-

icant isQTLs were identified. These comprised normal tissue corresponding to esophageal carcinoma (ESCA),

lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carci-

noma (UCEC), and primary tumors of breast cancer (BRCA), head and neck squamous cell carcinoma

(HNSC), LUSC, and ovarian serous cystadenocarcinoma (OV) (Figure 2A and Table S5).

Several of the identified isQTLs involved differences in endothelial and fibroblast cell content (Table S5), and

these signals may also indicate links with immune cell differences: for instance, rs4072037 is associated with

endothelial cell content in normal esophageal tissue, and this variant corresponds to a cis-expression (cis-e)

QTL in several normal tissue types (GTEx Consortium, 2013) of genes whose products are functionally relevant

in the immune system and biology of endothelial cells (Stenina-Adognravi, 2014), includingGBA,GBAP1, TSP3/

THSB3, andMUC1, which are locus-mapped genes. In addition, the cancer pleiotropy rs11168936 variant (Feh-

ringer et al., 2016) is associated with differences in fibroblast content in normal lung tissue corresponding to

LUSC, and this variant is a cis-eQTL for C1QL4 in several normal tissue types (GTEx Consortium, 2013). Intrigu-

ingly, C1q is a regulator of dendritic cell maturation (van Kooten et al., 2008), andwe found this variant also to be

associated with dendritic cell content (Figure 2B). In normal lung tissue corresponding to LUAD, rs17078110 is

associated with B cells, and this locus codes for SASH1, a regulator of TLR4 signaling and cytokine production

(Dauphinee et al., 2013). Among the isQTLs identified in tumors, rs3764419 is associatedwith cytotoxic cell con-

tent in OV. This variant is a cis-eQTL for ATAD5 (GTEx Consortium, 2013), whose product is essential for proper

B cell biology and immunoglobulin production (Zanotti et al., 2015). Overall, these data suggest that some can-

cer risk variants are associated with immune/stromal cell tissue content, and that this link is mediated by alter-

ations in genes of functional importance to the immune system.
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Identification of Cancer Risk Variants Associated with Immune System Functions in Target

Tissue and Primary Tumors

The TCGA consortium examined 160 immune system-related gene expression signatures across hundreds

of tumors and identified five of them as being informative for cancer classification: IFN-g response, lympho-

cyte infiltration score, macrophage regulation, TGF-b response, and wound healing (Thorsson et al., 2018).

Therefore, we sought to expand on the aforementioned cell-type-based associations by analyzing these

five additional signatures using the same method as introduced earlier: multivariate regression with signif-

icance determined from 1,000 permutations. This study identified 75 isQTLs, of which 11 variants had been

identified in the previous isQTL analyses, which represents a significant concordance (Fisher’s exact test,

p < 0.0001; Figure 2C and Table S6). Taking both analyses into account suggests that the risk of 13 cancer

types may be influenced by immune/stromal cell tissue content.

Of the 57 unique variants identified from all isQTLs, five were linked to tumor suppressor genes with recog-

nized roles in the immune system: CDKN2A/B, DCC, MUC1, and SASH1. In addition, genomic enhancers

identified in T helper, regulatory, effector, memory, and mononuclear cells were significantly over-repre-

sented in this unique variant set relative to all human variants: > 2-fold enrichments, binomial test p values

<0.05 (Ward and Kellis, 2012). Consistent with this observation, 8 (14%) variants corresponded to expres-

sion (e) QTLs from 18 immune-related genes in normal human tissue (GTEx Consortium, 2013) and 13

(25%) corresponded to eQTLs identified in CD4+ and/or CD8+ T cells (Kasela et al., 2017) (Tables S5

and S6). To evaluate the relevance of these observed percentages, we examined the expected proportions

when considering all cancer risk variants studied; lower percentages were identified in both analyses, with

expected proportions of 11% (115/1,079) for eQTLs of immune-related genes in normal human tissue (GTEx

Consortium, 2013) and 14% (151/1,079) for eQTLs in CD4/8+ T cells (Kasela et al., 2017). We then examined

whether the eQTL gene targets documented within the isQTLs were functionally coherent by determining

the proportion of significant gene expression-immune/stromal cell signature correlations and comparing

the results with those from equivalent 1,000 random gene sets. Both isQTL sets (Tables S5 and S6) included
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a higher proportion of eQTL gene targets that were positively correlated with immune/stromal cell signa-

tures than expected by chance (Figure S10). Finally, variants correlated (r2 > 0.8) with each isQTL were in-

tersected with various functional genomic data from B cells, monocytes, and CD4+ and CD8+ T cells, and

for potential effects on protein coding sequences (Methods). These analyses identified two additional

candidate genes (LIF and OSM) with established functions in the immune system, being involved in cyto-

kine signaling (Table S7). Together, these data indicate that a substantial proportion of the isQTLs identi-

fied influence genes whose expression is associated with immune system functions.

PRS Associations with Immune/Stromal Cell Tissue Content Highlight Breast Cancer Risk

The effects of individual cancer risk variants are generally small, but their combinations within PRSs can

potentially identify individuals who are at substantially higher risk than average for the population (Torka-

mani et al., 2018). Therefore, reported PRSs were computed in the corresponding normal tissue and pri-

mary tumor TCGA settings and evaluated for associations with immune/stromal cell contents using multi-

variate analyses as described earlier. The study of normal tissue was limited to breast. Despite the valuable

TCGA resource, the available sample size sets limited the detection of nominal significant associations to

those with correlation coefficients of r > 0.3 in normal breast and of r > 0.12 in BRCA; higher correlations

would be required for all other normal or tumor settings (Figure S11).

In normal breast, most immune/stromal cell contents tended to be negatively correlated with the corre-

sponding PRSs; the PRS cell signature correlation coefficients for overall and estrogen receptor (ER)-pos-

itive breast cancer were significantly less than zero (p values <0.001; Figure 3A). The ER-negative PRS could

not be computed because of the relatively low number of normal samples of this subtype and with com-

plete data. Analogous limitations were encountered when attempting to analyze triple-negative breast

cancer (TNBC) and human epidermal growth factor receptor 2 (HER2)-positive breast cancers, and there

were no HER2-specific PRSs to analyze whatsoever. Potentially protective cell types (i.e., those exhibiting

a nominally significant negative correlation between cell content and PRS) in the aforementioned two

breast cancer settings included dendritic cells, eosinophils, macrophage M2, monocytes, neutrophils,

and T cell terminal differentiation (Figure 3A).

In addition to the breast cancer PRSs, eight other scores (Fritsche et al., 2018) were examined in their cor-

responding primary tumor TCGA settings. The distribution of the correlation coefficients between im-

mune/stromal cell tissue content and the PRS was again found to be less than zero not only in BRCA but

also in in glioblastoma multiforme (GBM; with a major contribution for fibroblast content) and thyroid car-

cinoma (THCA; Figure 3B). Conversely, positive correlations were detected in bladder urothelial carcinoma

(BLCA), OV, prostate adenocarcinoma (PRAD), skin cutaneousmelanoma (SKCM), and, principally, in LUAD

and LUSC (Figure 3B). Conversely, positive correlations were detected in BLCA, serous OV, PRAD, SKCM,

and, principally, in LUAD and LUSC (Figure 3B). Therefore, risk stratification based on PRSs may also be

linked to differences in immune/stromal cell content in normal and/or tumor tissue. LUAD and LUSC

PRSs shared positive correlations (p < 0.05) with cytotoxic and NK cell tissue contents; however, these as-

sociations may be influenced by smoking status, because LUAD current smokers showed an opposite trend

(Figure S12).

Combined analyses of normal tissue and primary tumor data further suggested common protective effects

for high immune cell content in breast and colorectal tissue, and also potentially in brain and a few other

settings (Figure 3C). In contrast, high immune cell content might principally increase the risk of lung,

bladder, and pancreatic cancer (Figure 3C), although, as already noted, smoking may influence these as-

sociations. Then, analyses of COAD subtypes (Methods) suggested protective effects for high immune

cell content in genomic stable tumors (Figure 3D, left panel), but this association might be biased due

to PRS development in overall incident cases. When analyzing the COAD molecular subtypes, lower risk

of CSM3 might also be associated with higher immune cell content (Figure 3D, right panel). The sample

sets of these subtype analyses were relatively small to obtain robust conclusions, but, when compared

with normal colorectal tissue, an opposite trend was observed (Figure 3D, left panel), which suggests

that immune cell infiltration has different roles between normal tissue and tumors.

As described earlier, the normal breast and BRCA settings both showed PRS-cell signature negative cor-

relations. To assess these observations further, the correlation estimates were compared with

those from similar analyses using age at diagnosis instead of the PRSs. In normal breast tissue, the
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Figure 3. Associations between Immune/Stromal Cell Signatures and PRSs

(A) Unsupervised clustering of the results of the regression analysis between cell signatures and PRSs in normal breast

tissue. The y axis depicts the cell type signatures, and the x axis shows the PRSs. Sources #1 and #2 of the PRSs are detailed

in Methods. ER+ and ER� indicate estrogen receptor-positive and estrogen receptor-negative subsets, respectively. The

maximum sample size used in each analysis is shown. The color scale (t-score) is calculated as the b estimate divided by

the standard error. Nominally significant associations are indicated by black-outlined rectangles.

(B) Unsupervised clustering of the coefficients of the regression of cell signature values in primary tumor TCGA studies

and the corresponding PRSs. The gray-filled rectangles indicate ‘‘not tested’’ correlations because the corresponding cell

signatures were only defined for breast cancer.

(C) Unsupervised clustering of the coefficients of the regression of cell signature values in combined normal tissue and

primary tumor datasets, and the corresponding PRSs. The regression p values <0.01 are also indicated as depicted in the

inset.

ll
OPEN ACCESS

6 iScience July 24, 101296, 23, 2020

iScience
Article



immune/stromal cell contents tended to show positive correlations with age at diagnosis (p < 0.001; Fig-

ure 3E). Consequently, negative correlations were detected between the estimates from the two parallel

analyses, considering all cases or solely ER-positive cases (Figure 3F). Therefore, relatively higher im-

mune/stromal cell content in normal breast might be a factor protecting against development of

malignancy.

SH2B3 Connects Immune Cell Tissue Content with Breast Cancer Risk

The identified cancer risk isQTLs could be explained by peripheral alterations in immune cells. Examination

of GWAS results for blood cell traits revealed that the tumor COAD isQTL rs12412391 in chromosome 10

(Table S6) is in linkage disequilibrium (r2 = 0.93) with rs11190133, which is associated with differences in

platelets in the UK Biobank study (Astle et al., 2016). These variants constitute an eQTL of NKX2-3 (GTEx

Consortium, 2013), and, remarkably, loss of the mouse ortholog causes developmental alterations in the

spleen, colonic crypts, and lymphocyte tissue homing (Pabst et al., 1999). In addition to this locus, the tumor

BRCA isQTL rs11065979 in chromosome 12 (Table S5) was associated with blood count differences in ba-

sophils, erythrocytes, eosinophils, leukocytes, monocytes, and neutrophils in the UK Biobank study (Astle

et al., 2016) (Table S8). The same study also indicated an association with breast cancer risk (p = 0.0003;

Table S8). This variant has also been linked to cancer pleiotropy (Fehringer et al., 2016) and psoriasis

(Tsoi et al., 2017), among other traits (GWAS Catalog). A variant in linkage disequilibrium, rs3184504

(r2 = 0.89), had also been associated with breast cancer risk (Fehringer et al., 2016), serum IgA levels (Jons-

son et al., 2017), and various autoimmune diseases (Webb andHirschfield, 2016), among other traits (GWAS

Catalog).

To investigate further the role of the isQTL identified in chromosome 12 and linked to breast cancer risk, we

analyzed association results from BRCA1/2 mutation carriers. Both depicted variants showed nominal as-

sociations with breast cancer risk in women carriers of germline BRCA1 or BRCA2 mutations: BRCA1 mu-

tation carriers, rs11065979 hazard ratio (HR) = 0.96, 95% confidence interval (CI) 0.92–0.99, p = 0.018;

rs3184504 HR = 0.95, 95% CI 0.92–0.99, p = 0.006; BRCA2 mutation carriers, rs11065979 HR = 0.94, 95%

CI 0.90–0.99, p = 0.019; and rs3184504 HR = 0.93, 95% CI 0.89–0.98, p = 0.003. Then, wider examination

of this region in chromosome 12 identified several genetic associations (p < 0.01) with breast and/or ovarian

cancer risk in these women (Figure 4A and Table S9).

The chromosome 12 locus identified here includes many eQTL signals for SH2B3 in EBV-transformed lym-

phocytes and normal tissue (Figure 4A, bottom panel). Next, to evaluate potential causality linked to

SH2B3, complementary gene expression analyses were performed using the normal breast tissue TCGA

data. First, the expression of SH2B3 was found to be positively correlated with most of the immune cell/

stromal cell signatures (Figure 4B); second, SH2B3 expression was also found to be positively correlated

with age at diagnosis, adjusted for tumor stage and regardless of cancer subtype (Figure 4C); third, an

84-gene signature corresponding to gene and protein functional relationships with mouse Sh2b3 and/or

human SH2B3 (Huan et al., 2015) was also positively correlated with age at diagnosis (Figure 4D); and

last, SH2B3 expression was positively correlated with the protein measures of CD26, cell surface glycopro-

tein receptor important for T cell activation (Klemann et al., 2016), and TFCR, transferrin receptor required

for erythropoiesis and immune system development (Jabara et al., 2016) (Figure 4E). In addition, the asso-

ciation between SH2B3 expression in normal breast and age at diagnosis was replicated in an independent

dataset (Terunuma et al., 2014): n = 47, r = 0.30, p = 0.039. Therefore, an identified isQTL may influence

breast cancer risk through perturbation of SH2B3 expression, which is expected to be fundamental for ac-

curate systemic development and function of immune cell populations (Li et al., 2000; Velazquez et al.,

2002; Jabara et al., 2016).

Figure 3. Continued

(D) Unsupervised clustering of the coefficients of the regression analysis between PRSs and cell signatures in combined

normal tissue and primary tumors of the COAD study, divided by cancer subtypes.

(E) Unsupervised clustering of the results of the regression analysis of cell signatures in normal tissue and age at diagnosis

across TCGA studies. Associations significant at a false discovery rate (FDR) < 5% are indicated by black-outlined

rectangles.

(F) Negative correlations between the coefficients of regressions of immune/stromal cell contents and age at diagnosis or

PRSs in normal breast tissue, for all cases and only ER-positive cases. The correlation coefficients are shown.
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Peripheral Immune Cell Counts Are Associated with Breast Cancer Risk

To assess the proposed link between breast cancer risk and peripheral immune cell counts, which in turn

might be influenced by specific genetic variants and gene candidates, a retrospective case-cohort study

was performed. Data on age at diagnosis, tumor stage and subtype, and blood test results from 259 breast

cancer cases were compiled in a tertiary referral hospital (Methods). The cases were randomly selected

from clinical health records and showed an average age at diagnosis of 55.6 years, 95% CI 54.0–57.1 years.

The blood test data were those collected on the date closest to diagnosis: 6 patients had the blood test on

the same date as their diagnosis, 40 were earlier (on average 40 days before), and 182 were later (on

average 45 days later): the average time between the blood test and disease diagnosis was 23.9 days,

95% CI 16.3–31.5 days. Amultivariate regression analysis including tumor stage and subtype revealed three
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Figure 4. The SH2B3 Locus Shows Associations with Breast Cancer Risk and Immune Cell Features

(A) Graph showing the chromosome 12 association results (-log10 p value, y axis) with breast and ovarian cancer risk (as

depicted in the inset) in women carriers of BRCA1/2 mutations. The rs3184504 and rs11065979 variants are indicated.

(B) Rank of expression correlations (Pearson’s correlation coefficients [PCCs]) between SH2B3 and immune/cell signatures

in normal breast. All PCCs were >0, but three of them did not reach nominal significance (marked gray).

(C) Positive correlation between SH2B3 expression in normal breast and age of diagnosis of breast cancer. The trend lines

for all cases and subtypes (luminal, HER2-positive, and triple-negative breast cancer [TNBC]) are shown. The correlation p

value from the multivariate regression analysis is shown.

(D) Positive correlation between SH2B3 functionally related gene set in normal breast and age of diagnosis of breast

cancer.

(E) Positive correlation between SH2B3 expression and CD26 and TFRC protein expression as measured by TCGA

reverse-phase protein array (RPPA) assays. The correlation p value from the multivariate regression analysis is shown.
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immune cell types to be significantly (p < 0.05) positively correlated with age at diagnosis: basophils, leu-

kocytes, and monocytes (Figure 5). The trends were consistent for different tumor stages (0–2 and 3–4) and

the major cancer subtype (i.e., luminal); the smaller patient sets of HER2-postive breast cancer (n = 18) and

TNBC (n = 17) showed greater variability (Figure 5). The neutrophil to lymphocyte ratio, which is an estab-

lished rate associated with breast cancer prognosis (Ethier et al., 2017), was not found to be associated with

age at diagnosis in this study (p = 0.65).

DISCUSSION

The results of this study support the idea that the risk of certain cancers is influenced by the content of im-

mune/stromal cells in the target tissue and/or by differences in peripheral immune cell counts. Of the 17

cancer settings analyzed, 57 risk loci comprising 13 cancer types were associated with differences in im-

mune/stromal cell content with respect to the corresponding normal tissue and/or primary tumors. The

gene candidates linked to these associations include several with key functions in the immune system,

and they show significant enrichments in immune-related regulatory features and expression profiles.

Detection of associations between immune/stromal cell signatures and PRSs provide further evidence

that differences in these cell contents influence cancer risk. Nevertheless, the role of some cell types is

multifaceted; for example, endothelial cells can regulate trafficking and activation of immune cells in a

given tissue, but, critically, also determine angiogenesis (Hendry et al., 2016). Similarly, a given genetic

variant may influence the expression of more than one gene target and/or indirectly alter the immune sys-

tem by different mechanisms, such as by provoking oncogenic-induced signals.

Unexpectedly, there appear to be opposing cancer risk effects for immune cell contents across cancer

types. These might be due to differences in tissue microenvironment conditions, such as inflammation

caused by smoking or other factors (Shalapour and Karin, 2015). However, the study was limited by the rela-

tively low numbers of normal tissue samples available for analysis, and, potentially, by gene expression al-

terations in normal tissue adjacent to neoplasms. This study had more power to detect significant results in

normal breast tissue and BRCA and, consequently, the results prove to be more relevant and coherent in
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Figure 5. Positive Correlation between Peripheral Immune Cell Counts around Time of Diagnosis and Breast

Cancer Age at Diagnosis

Positive correlations between basophil, leukocyte, and monocyte blood counts and age of diagnosis of breast cancer in a

retrospective case-cohort hospital-based study. The value of p shown here is that associated with the coefficient

calculated as part of the multivariate regression analysis. The trends for tumor subgroups are shown as depicted in the

inset.
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these settings. Carrying out similar analyses in other normal and cancer tissue contexts would appear to be

worthwhile. Such additional studies would benefit from complementary molecular marker and signaling

analyses, which would definitively establish the functional consequences of inferred cell alterations.

At the same time as providing insight into the biological basis of cancer initiation, this study yields data that

could be useful for analyses of cancer risk and prevention. Associations of PRSs with immune cell signatures

could inform preventive strategies by modulating specific cell functions and/or their signaling molecules in

individuals at high risk (Spira et al., 2017). This idea is particularly relevant in breast cancer. Our study shows

consistent associations between immune/stromal cell signatures andbreast cancer PRSs or age at diagnosis

in normal tissue. A recognized risk locus connects differences inmost peripheral immune cell types to breast

cancer risk. This locus harbors the SH2B3 gene, which is altered in hematological neoplasms and autoim-

mune diseases (Maslah et al., 2017, p. 3). Common genetic variation at this locus has been linked to cancer

pleiotropy, including breast cancer susceptibility (Hung et al., 2015; Fehringer et al., 2016).We extend these

observations by identifying potential associations with breast and ovarian cancer risk in BRCA1/2mutation

carriers. Our study shows consistent expression correlations of SH2B3 or SH2B3 functionally related genes

with age at diagnosis using normal breast tissue data. Thus, pharmacological enhancement of SH2B3 func-

tion might reduce cancer risk in individuals with high PRSs and/or carriers of BRCA1/2mutations. However,

the functional impact on SH2B3 remains to be established, and, therefore, prospective studies determining

the expression and/or functional differences of SH2B3 among individuals with specific alleles in the corre-

sponding locus, and their associations with peripheral immune cell counts and cancer risk, are needed.

The effect of systemic differences of immune cell counts on breast cancer risk is further supported by un-

expected associations between basophil, leukocyte, and monocyte blood counts and age at diagnosis

from a retrospective case-cohort study. Relatively low monocyte counts collected over a 1-year period of

disease diagnosis have recently been associated with increased breast cancer risk (Kresovich et al.,

2020). However, high baseline leukocyte counts in a prospective study of postmenopausal women were

found to be associated with increased breast cancer incidence (Margolis et al., 2007). In our study, we

aimed to assess whether individuals’ status of having relatively low peripheral immune cell counts was asso-

ciated with initial cancer development, hypothetically due to reduced immunosurveillance. Our results are

consistent with this explanation, and among other factors, altered SH2B3 function might give rise to these

observations. As a whole, the results of this study may be useful for improving cancer risk estimation, and

for identifying preventive approaches.

Limitations of the Study

The present report identifies cancer-associated genetic variants and polygenic risk scores linked to the

alteration of immune and/or stromal cell systemic and/or tissue contents. These links could explain the

greater cancer risk. However, the study has several limitations that should be borne in mind. The cell con-

tent inferences were based on gene expression profiles, and therefore, molecular and cellular analyses are

required to corroborate them and accurately assess their functional consequences. The observed associ-

ations could also be indirect in some instances. The study was also limited by the original sample sets, and

observed associations could be confounded by other factors, such as the level of tissue inflammation, in-

dividual hormonal status, and lifestyle aspects. The genetic basis of the proposed associations between

blood cell count and age at breast cancer diagnosis in the studied cohort remains unknown, and it is un-

clear whether similar associations exist in BRCA1/2 mutation carriers.

Resource Availability
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specific approval: dbGaP Data Access Committee project #11689. The R software algorithms developed by

others and applied in this study are detailed in the Transparent Methods supplemental file. A complete

pipeline was implemented and is available at https://github.com/pujana-lab/systematicQTL/.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Dorsey, T.H., Yi, M., Wallace, T.A., Issaq, H.J.,
Zhou, M., Killian, J.K., et al. (2014). MYC-driven
accumulation of 2-hydroxyglutarate is associated
with breast cancer prognosis. J. Clin. Invest. 124,
398–412.

Thomas, L. (1982). On immunosurveillance in
human cancer. Yale J. Biol. Med. 55, 329–333.

Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D.,
Bortone, D.S., Ou Yang, T.-H., Porta-Pardo, E.,
Gao, G.F., Plaisier, C.L., Eddy, J.A., et al. (2018).
The immune landscape of cancer. Immunity 48,
812–830.e14.

Torkamani, A., Wineinger, N.E., and Topol, E.J.
(2018). The personal and clinical utility of
polygenic risk scores. Nat. Rev. Genet. 19,
581–590.

Tsoi, L.C., Stuart, P.E., Tian, C., Gudjonsson, J.E.,
Das, S., Zawistowski, M., Ellinghaus, E., Barker,
J.N., Chandran, V., Dand, N., et al. (2017). Large
scale meta-analysis characterizes genetic
architecture for common psoriasis associated
variants. Nat. Commun. 8, 15382.

Velazquez, L., Cheng, A.M., Fleming, H.E.,
Furlonger, C., Vesely, S., Bernstein, A., Paige,
C.J., and Pawson, T. (2002). Cytokine signaling
and hematopoietic homeostasis are disrupted in
Lnk-deficient mice. J. Exp. Med. 195, 1599–1611.

Vinay, D.S., Ryan, E.P., Pawelec, G., Talib, W.H.,
Stagg, J., Elkord, E., Lichtor, T., Decker, W.K.,
Whelan, R.L., Kumara, H.M.C.S., et al. (2015).
Immune evasion in cancer: mechanistic basis and
therapeutic strategies. Semin. Cancer Biol. 35
Suppl, S185–S198.

Ward, L.D., and Kellis, M. (2012). HaploReg: a
resource for exploring chromatin states,
conservation, and regulatory motif alterations
within sets of genetically linked variants. Nucleic
Acids Res. 40, D930–D934.

Webb, G.J., and Hirschfield, G.M. (2016). Using
GWAS to identify genetic predisposition in
hepatic autoimmunity. J. Autoimmun. 66, 25–39.

Zanotti, K.J., Maul, R.W., Castiblanco, D.P., Yang,
W., Choi, Y.J., Fox, J.T., Myung, K., Saribasak, H.,
and Gearhart, P.J. (2015). ATAD5 deficiency
decreases B cell division and Igh recombination.
J. Immunol. 194, 35–42.

ll
OPEN ACCESS

12 iScience July 24, 101296, 23, 2020

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30483-1/sref10
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref10
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref10
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref10
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref10
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref10
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref11
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref11
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref11
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref11
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref12
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref12
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref12
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref13
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref13
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref13
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref13
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref13
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref13
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref14
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref14
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref14
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref14
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref14
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref14
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref15
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref15
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref15
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref15
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref15
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref15
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref16
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref17
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref17
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref17
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref17
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref17
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref17
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref18
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref18
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref18
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref18
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref19
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref19
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref19
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref19
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref19
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref19
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref20
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref20
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref20
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref20
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref20
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref20
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref21
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref21
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref21
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref21
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref21
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref22
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref22
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref22
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref22
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref22
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref22
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref23
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref23
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref23
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref23
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref24
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref24
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref24
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref24
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref24
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref24
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref25
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref26
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref26
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref26
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref26
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref26
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref26
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref27
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref28
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref28
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref28
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref28
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref28
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref29
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref29
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref29
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref29
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref29
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref30
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref30
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref30
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref30
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref31
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref31
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref31
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref31
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref31
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref31
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref32
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref32
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref32
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref32
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref32
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref32
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref33
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref33
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref33
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref34
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref34
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref34
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref34
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref35
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref35
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref35
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref35
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref35
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref36
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref36
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref36
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref36
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref37
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref37
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref37
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref37
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref37
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref38
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref38
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref38
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref38
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref38
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref38
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref39
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref39
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref40
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref40
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref40
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref40
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref40
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref41
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref41
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref41
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref41
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref42
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref42
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref42
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref42
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref42
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref42
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref43
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref43
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref43
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref43
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref43
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref44
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref44
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref44
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref44
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref44
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref44
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref45
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref45
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref45
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref45
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref45
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref46
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref46
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref46
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref47
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref47
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref47
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref47
http://refhub.elsevier.com/S2589-0042(20)30483-1/sref47


iScience, Volume July 24

Supplemental Information

Immune Cell Associations with Cancer Risk

Luis Palomero, Ivan Galván-Femenía, Rafael de Cid, Roderic Espín, Daniel R.
Barnes, CIMBA, Eline Blommaert, Miguel Gil-Gil, Catalina Falo, Agostina
Stradella, Dan Ouchi, Albert Roso-Llorach, Concepció Violan, María Peña-
Chilet, Joaquín Dopazo, Ana Isabel Extremera, Mar García-Valero, Carmen
Herranz, Francesca Mateo, Elisabetta Mereu, Jonathan Beesley, Georgia Chenevix-
Trench, Cecilia Roux, Tak Mak, Joan Brunet, Razq Hakem, Chiara Gorrini, Antonis C.
Antoniou, Conxi Lázaro, and Miquel Angel Pujana



Supplementary figures legends 

Fig. S1. Evaluation of immune/stromal cell tissue content estimates in 

relation to two other methods. Related to Figure 1. 

(A) Heatmap showing the correlations (Spearman’s ρ) between ConsensusTME-

based values and analogous TIMER cell type estimates. 

(B) Heatmap showing the correlations (Spearman’s ρ) between ConsensusTME-

based values and analogous MCP-counter cell type estimates. 

 

Fig. S2. Evaluation of immune/stromal cell tissue content estimates in 

relation to independent leukocyte estimates. Related to Figure 1. Heatmap 

showing the correlations (Spearman’s ρ) between ConsensusTME-based values 

and independent leukocyte estimates using the approach of Taylor et al. (2018). 

 

Fig. S3. Evaluation of immune/stromal cell tissue content estimates in 

relation to aneuploidy scores. Related to Figure 1. 

(A) Heatmap showing the correlations (Spearman’s ρ) between ConsensusTME-

based values and aneuploidy scores (Taylor et al., 2018) across major cancer 

types. 

(B) Heatmap showing the correlations (Spearman’s ρ) between ConsensusTME-

based values and aneuploidy scores (Taylor et al., 2018) across in BRCA 

subtypes, which show positive correlations in claudin-low. 

 

Fig. S4. Differences of inferred immune/stromal cell content between 

primary tumors with low and high levels of CD274/PDL1 expression. 



Related to Figure 1. The graphs show the median cell content value in each 

group and the significance of the difference (Wilcoxon test P value). 

 

Fig. S5. Differences of inferred immune/stromal cell content between 

primary tumors with low and high levels of CD279/PDCD1 expression. 

Related to Figure 1. The graphs show the median cell content value in each 

group and the significance of the difference (Wilcoxon test P value). 

 

Fig. S6. Correlations between inferred blood immune cell contents and 

measures from fluorescence-activated cell sorting in blood samples. 

Related to Figure 1. Forest plot showing correlation estimates and 95% CIs of 

each inferred cell type (data from whole blood samples of healthy adults; n = 12, 

GEO GSE127813).  

 

Fig. S7. Correlations between inferred immune/stromal cell tissue 

contents and single cells used to generate pseudo-bulk breast tumors. 

Related to Figure 1. Each panel shows the correlation between immune cell 

signature scores (Y-axis) and the number of cells (X-axis) used to generate 100 

pseudo-bulk breast tumors (data from Gene Expression Omnibus reference 

GSE75688). The trend lines, Spearman’s correlations and P values are shown. 

 

Fig. S8. Correlations between immune/stromal cell tissue contents and 

expression of immune benchmark genes. Related to Figure 1. Top panel, 

distribution of PCCs using data from normal TCGA tissue. Bottom panel, 



distribution of PCCs using data from primary tumors of TCGA. Mean PCCs and 

95% CIs are shown. 

 

Fig. S9. Correlations between immune cell signatures and pathway 

signaling-inferred activities. Related to Figure 1. Unsupervised clustering of 

the correlation coefficients between inferred cell contents (Y-axis) and KEGG 

pathway activities (X-axis). Differentiated clusters in normal tissue are marked 

by red-outlined rectangles. 

 

Fig. S10. Gene targets of eQTL recognized in isQTLs are frequently 

correlated with the corresponding immune/stromal cell signatures. 

Related to Figure 2. Distributions of random gene sets (same gene set size 

and equivalent comparisons for each signature and TCGA setting) relative to 

the number of significant correlations between eQTL-target and immune/stromal 

signatures. Left- and right-hand panels show results for the first and second 

isQTL sets presented in the main text, respectively. Empirical test probabilities 

are shown. 

 

Fig. S11. Minimal correlation estimates to detect significant signature-

PRS associations. Related to Figure 3. Left and right panels show the lowest 

correlations required in each normal and primary tumor setting, respectively, to 

detect nominal (P < 0.05) associations given the TCGA sample sizes. 

 



Fig. S12. LUAD and LUSC PRS correlations with NK cell content. Related 

to Figure 3. Top panels, positive correlations between NK cell content in 

primary tumors of LUAD and LUSC, and the corresponding PRSs. The 

adjusted-R2 and P values of the linear regression model are shown. Bottom 

panels, correlation trends of patients stratified by smoking status, as depicted in 

the insets. The estimate for LUAD cases classified as current smokers was 

found to be significantly less than zero (r = -0.12, P = 0.012). 



Neutrophils

Dendritic cells

CD8+ T cells

CD4+ T cells

B cells

Macrophages

TC
GA

−T
GC

T
TC

GA
−B

RC
A

TC
GA

−U
CE

C
TC

GA
−E

SC
A

TC
GA

−G
BM

TC
GA

−P
RA

D
TC

GA
−L

IH
C

TC
GA

−L
US

C
TC

GA
−T

HC
A

TC
GA

−H
NS

C
TC

GA
−K

IR
C

TC
GA

−P
AA

D
TC

GA
−L

UA
D

TC
GA

−C
OA

D
TC

GA
−S

KC
M

TC
GA

−O
V

TC
GA

−B
LC

A Spearman’s ρ

-1
-0.5
0
0.5
1

Monocytic lineage   Monocytes

Fibroblasts     Fibroblasts

CD8+ T cells    CD8+ T cells

Cytotoxic lymphocytes Cytotoxic cells

B lineage     B cells

NK cells     NK cells

Endothelial     Endothelial

Myeloid dendritic cells  Dendritic cells

Neutrophils    Neutrophils

TC
GA

−L
US

C
TC

GA
−C

OA
D

TC
GA

−P
AA

D
TC

GA
−L

IH
C

TC
GA

−P
RA

D
TC

GA
−B

RC
A

TC
GA

−B
LC

A
TC

GA
−H

NS
C

TC
GA

−S
KC

M
TC

GA
−O

V
TC

GA
−L

UA
D

TC
GA

−K
IR

C
TC

GA
−G

BM
TC

GA
−T

HC
A

Figure S1

A

B

Spearman’s ρ

-1
-0.5
0
0.5
1

MCP-counter    ConsensusTME

TIMER    ConsensusTME

Neutrophils

Dendritic cells

CD8+ T cells

CD4+ T cells

B cells

Macrophages



Figure S2

Spearman’s ρ

-1
-0.5
0
0.5
1

Neutrophils

B cells

CD8+ T cells

CD4+ T cells

Dendritic cells

Macrophages

TC
GA

−P
AA

D
TC

GA
−S

KC
M

TC
GA

−U
CE

C
TC

GA
−E

SC
A

TC
GA

−H
NS

C
TC

GA
−L

IH
C

TC
GA

−G
BM

TC
GA

−B
LC

A
TC

GA
−P

RA
D

TC
GA

−T
HC

A
TC

GA
−L

UA
D

TC
GA

−O
V

TC
GA

−C
OA

D
TC

GA
−T

GC
T

TC
GA

−B
RC

A
TC

GA
−L

US
C

TC
GA

−K
IR

C

Leukocyte correlations



Figure S3

Spearman’s ρ

-1
-0.5
0
0.5
1

B cells

Neutrophils

CD8+ T cells

CD4+ T cells

Dendritic cells

Macrophages

TC
GA

−T
GC

T
TC

GA
−L

IH
C

TC
GA

−C
OA

D
TC

GA
−G

BM
TC

GA
−U

CE
C

TC
GA

−B
LC

A
TC

GA
−K

IR
C

TC
GA

−P
AA

D
TC

GA
−H

NS
C

TC
GA

−L
UA

D
TC

GA
−P

RA
D

TC
GA

−T
HC

A
TC

GA
−S

KC
M

TC
GA

−E
SC

A
TC

GA
−O

V
TC

GA
−L

US
C

TC
GA

−B
RC

A

B cells

CD8+ T cells

Dendritic cells

Neutrophils

CD4+ T cells

Macrophages

HE
R2

TN
BC

Lu
m

in
al

 A

Lu
m

in
al

 B

Cl
au

di
n-

lo
w

A

B

Aneuploidy correlations

Aneuploidy correlations

Spearman’s ρ

-1
-0.5
0
0.5
1



�

�

�
�
��

�

�
��
�

�

�
�

�

�
�

����
�
�
�
��

��
�

�

�

�

�

�

�
�

�

�

�

���

�

�
�

�

��
�
�

�

��

�
�

�

�

�
�

�
�
�

−0.249

−0.122

-0.50

-0.25

0.00

0.25

Sc
or

e 
ce

lls

B cells

�
�
�

�
���
��
�
�

�

�

�

�

�
�

�
�
�

�

�
�
�
��

�

��
��
��
���
�
�
���
�
�
��
�

�

�
�
�
�

�

�

�

�
�
�

�

�
�
�

P < 2.2E-16

−0.287

−0.092

-0.6

-0.4

-0.2

0.0

0.2

0.4

Sc
or

e 
ce

lls

Cytotoxic cells

�

�

�
�

��
��

�

−0.152

0.024

-0.25

0.0

0.25

Sc
or

e 
ce

lls

Dendritic cells

�
��

�
�

�����
�

�

��

�

�

��

�
�

�

−0.176

−0.008

-0.50

-0.25

0.0

0.25

Sc
or

e 
ce

lls

Eosinophils

�
�

�����
�

�

−0.085

0.079

-0.25

0.00

0.25

0.50

Sc
or

e 
ce

lls

Macrophages

�
�
���

�

���

�

�
��

�

−0.248

−0.072

-0.6

-0.3

0.0

0.3

Sc
or

e 
ce

lls

Mast cells

�

�

���

�

�
��

�

�

�

��

�

�

�

��

��
�

�

�
�

�

��
�
�
�

�
�
�

���

�

�

�
�

�
�
��

�

�
���

�
�

�

��

��

�

�

�

�

�
�
�
����

−0.309

−0.126

-0.6

-0.4

-0.2

0.0

0.2

Sc
or

e 
ce

lls

NK cells

�

�

��

�

�
�

�

��
��

−0.255

−0.116

-0.6

-0.4

-0.2

0.0

0.2

0.4

Sc
or

e 
ce

lls

Neutrophils

�
�
�
�

�

�
�
�

��
��
�

�

��
���
�
�
�
�

�

�
�
��
�
���
�
��
�

�

�

�

�
�

�

�

�

�

�

���

�
�

−0.216

−0.053

-0.50

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

CD4+ T cells

�
�

��
�
�

�

����
��

�

���
�
�
����
�

�

�

�

�
�
�
�
�
�
�

��

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

−0.213

−0.042

-0.50

-0.25

0.0

0.25

Sc
or

e 
ce

lls

CD8+ T cells

�
�
�
�
��
�
�

�

����
�
�

��

�

�

�

��
��
�
�
�

�
�

�

��
�

���
��

−0.283

−0.093

-0.6

-0.4

-0.2

0.0

0.2

Sc
or

e 
ce

lls

T cells gamma-delta

�
���
�

�

�
�
�
��

�

���
�
�

�

�
�

��
�

��
��

�

�
�
�

�
�
�
�

�

��

−0.243

−0.045

-0.6

-0.3

0.0

0.3

Sc
or

e 
ce

lls

T-Reg cells

��
��

�

�

−0.135

0.057

-0.50

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

Macrophages M1

���

−0.099

0.081

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

Macrophages M2

�

�

�

���

�

�
�
����
�

�
�
�
�
��
�
��
�
�
��
�
��

�

�

�

�

��

−0.167

−0.016

-0.50

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

Monocytes

−0.182

−0.053

-0.25

0.0

0.25

Sc
or

e 
ce

lls

Plasma cells

�
�

�
�
���
�
��
�
�������
��
�
�

���
�

�
������
�
�
���

�
��
�����
�

��
��
��
���

�
����
��

���
��
����
�
���
�
����
�
�
�����
��
�
���
�
�
�
�
�
�
���

−0.088 −0.037

-0.6

-0.3

0.0

0.3

0.6

Sc
or

e 
ce

lls

Endothelial

���

�

��
�����

������

−0.068
−0.028

-0.6

-0.3

0.0

0.3

Sc
or

e 
ce

lls

Fibroblasts

Figure S4

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

Low High
PDL1 expression

P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P < 2.2E-16P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P < 2.2E-16P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P < 2.2E-16P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P = 6E-14 P = 3E-12



-0.50

-0.25

0.00

0.25

Sc
or

e 
ce

lls

B cells
P < 2.2E-16

-0.6

-0.4

-0.2

0.0

0.2

0.4

Sc
or

e 
ce

lls

Cytotoxic cells

�

-0.25

0.0

0.25

Sc
or

e 
ce

lls

Dendritic cells

-0.50

-0.25

0.0

0.25

Sc
or

e 
ce

lls

Eosinophils

-0.25

0.00

0.25

0.50

Sc
or

e 
ce

lls

Macrophages

-0.6

-0.3

0.0

0.3

Sc
or

e 
ce

lls

Mast cells

-0.6

-0.4

-0.2

0.0

0.2

Sc
or

e 
ce

lls

NK cells

-0.6

-0.4

-0.2

0.0

0.2

0.4

Sc
or

e 
ce

lls

Neutrophils

��-0.50

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

CD4+ T cells

-0.50

-0.25

0.0

0.25

Sc
or

e 
ce

lls

CD8+ T cells

-0.6

-0.4

-0.2

0.0

0.2

Sc
or

e 
ce

lls

T cells gamma-delta
��

-0.6

-0.3

0.0

0.3

Sc
or

e 
ce

lls

T-Reg cells

-0.50

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

Macrophages M1

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

Macrophages M2

-0.50

-0.25

0.0

0.25

0.50

Sc
or

e 
ce

lls

Monocytes

-0.25

0.0

0.25

Sc
or

e 
ce

lls

Plasma cells

������

-0.6

-0.3

0.0

0.3

0.6

Sc
or

e 
ce

lls

Endothelial

-0.6

-0.3

0.0

0.3

Sc
or

e 
ce

lls

Fibroblasts

Figure S5

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

Low High
PDCD1 expression

P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P < 2.2E-16P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P < 2.2E-16P < 2.2E-16 P < 2.2E-16P < 2.2E-16

P < 2.2E-16P < 2.2E-16 P < 2.2E-16

��

���

�

�

�
�

�
�
��

�

�

�
�����

�

�
��
�
�

����

�
�
����

�

�

��

�

��

������

��

�

�

��
�
�

�

�

��

�
�

�

�

�
�

�
�
�

�

�

�

−0.262

−0.091

�

�

�

�

�
���

�

�
�
�
�

�

�
�

�

�
�

�

�
�
�

�

�

�
�
��

�

�

�
�

�
�
�

�

�

�
��

�

���

�

�

�

��
�
�
��
�

���

�

−0.32

−0.044

���
�

��

�
�
�����

−0.158

0.045
�

�

��

�

��
�
��

�

��

�

�

�

�

�
�

�
�

�
��

−0.179

0.01

����

�

��

−0.088

0.095
�
���

�

����
��

�

�

��

�

−0.247

−0.057

�

��

�

��
�
�
�

�

��

�

�

�

�
�

�

���

�

�
��
�

�

�
�
�

�

��

�
��
��
�
��

�
�

�

�
�

���

�

��� �

−0.336

−0.085
��

�

�
�

�

�

�

��

�
�
�

−0.25

−0.109

��
��

�

�
����

�
�
��

�
���

�

�

��

�

�
�

�
�

�
�

�
�

−0.239

−0.011
��
��
��
�

�
�

��

��

�

���
��

���
�
�
�
�

�

�

−0.239

0.001

���
�
�
�
�

�
����

�

���
�
�����

���

−0.307

−0.054

�

�
��

��
�

�
����

�

�

������

�
��

�

�

�

�
�

��

−0.277

0.011

��

�

���
�
��
�
��

−0.14

0.077

�

�
�
�
�

�

�

−0.104

0.103

�
�

����
�
�

�
��
�

�

���
�
��
�
�
�
�

�

�
�

�

��

�

−0.172

0.003

�
�
����

�

�
�

��

−0.199

−0.015

�
�

�

��
�

��
�
���
�������
��

���
��

�

�������
��
�
������
�
��
��
�������
��
��
������
��

��
�
��
����
�
���
�����
��
�
��
�
�
��

�
��
�������

�

−0.094
−0.02

�
�����
�

�
�
�
��
�
���
�
���
���
�
�
�
�
�
����
���
��
���
�
��
���������
�

−0.076
−0.008

P < 2.2E-16

P < 2.2E-16P < 2.2E-16



0.25
 

0.64*

0.91***

0.87***

0.80**

0.40 

B cells

NK cells

Neutrophils

CD4+ T cells

CD8+ T cells

Monocytes

Correlation (r)

Figure S6

0.50.0-0.5-1.0 1.0



●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.7

0.8

0.9

1.0

1.1

0 10 20 30

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.6

0.8

1.0

0 10 20 30
T cells (single cells)

C
D

8+
 T

 c
el

ls
 (s

ig
na

tu
re

 s
co

re
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

R = 0.9 , p < 2.2e−16

0.6

0.8

1.0

0 10 20
Myeloid (single cells)

M
ac

ro
ph

ag
es

 (s
ig

na
tu

re
 s

co
re

)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20
Stromal (single cells)

Fi
br

ob
la

st
s 

(s
ig

na
tu

re
 s

co
re

)

ρ = 0.76
P < 2.2E-16

Fibloblasts vs Stromal

ρ = 0.81
P < 2.2E-16

ρ = 0.90
P < 2.2E-16

CD8+ T cells vs T cells Macrophages vs Myeloid

B cells (single cells) T cells (single cells)

CD4+ T cells vs T cells B cells vs B cells 

ρ = 0.88
P < 2.2E-16

ρ = 0.84
P < 2.2E-16

C
D

4+
 T

 c
el

ls
 (s

ig
na

tu
re

 s
co

re
)

B
 c

el
ls

 (s
ig

na
tu

re
 s

co
re

)

Figure S7



Normal tissue

100

150

200

250

300

Primary tumors

Fr
eq

ue
nc

y

PCC
−1.0 −0.5 0.0 0.5 1.0

0

100

150

50

0

50Fr
eq

ue
nc

y

PCC
−1.0 −0.5 0.0 0.5 1.0

Mean = 0.60
95% CI: 0.58-0.62

Mean = 0.52
95% CI: 0.49-0.54

Immune cell tissue content correlations
with defined immune gene benchmarks

Figure S8



Figure S9

N
or

m
al

 ti
ss

ue
Pr

im
ar

y 
tu

m
or

s



0.00

0.05

0.10

0.15

0.20

D
en

si
ty

0.000

0.025

0.050

0.075

0.100

0.125

eQTL-gene target correlations with immune/stromal cell signatures

isQTL (1st set) isQTL (2nd set)

Figure S10

Observed
P = 0.017Random

Observed
P = 0.013

Random

D
en

si
ty

5 10
Significant correlations

25 35
Significant correlations

30



TCGA−BLCA.Effect_overall min(r):0.219

TCGA−BRCA.Effect−ER- min(r):0.311

TCGA−BRCA.Effect−ER+ min(r):0.138

TCGA−BRCA.Effect_overall min(r):0.122

TCGA−COAD.Effect_overall min(r):0.206

TCGA−GBM.Effect_overall min(r):0.295

TCGA−KIRC.Effect_overall min(r):0.219

TCGA−LUAD.Effect_overall min(r):0.167

TCGA−LUSC.Effect_overall min(r):0.192

TCGA−OV.Effect_OV−overall min(r):0.228

TCGA−OV.Effect_OV−serous min(r):0.228

TCGA−PRAD.Effect_overall min(r):0.229

TCGA−SKCM.Effect_overall min(r):0.367

TCGA−THCA.Effect_overall min(r):0.1950.2

0.3

100 200 300 400 500
Number of samples

C
or

re
la

tio
n 

(r
)

Primary tumors

TCGA−BLCA.Effect_overall min(r):0.743

TCGA−BRCA.Effect−ER- min(r):0.743

TCGA−BRCA.Effect−ER+ min(r):0.337

TCGA−BRCA.Effect_overall min(r):0.302

TCGA−KIRC.Effect_overall min(r):0.381

TCGA−LUAD.Effect_overall min(r):0.427

TCGA−LUSC.Effect_overall min(r):0.432

TCGA−PRAD.Effect_overall min(r):0.951

TCGA−THCA.Effect_overall min(r):0.454

0.4

0.6

0.8

20 40 60 80
Number of samples

C
or

re
la

tio
n 

(r
)

Normal tissue

Minimal correlation value to detect a significant 
PRS-cell signature associations (P < 0.05)

Figure S11



Tumor LUAD
PRS - NK cells

Tumor LUSC
PRS - NK cells

-0.4

-0.2

0.2

N
K

 c
el

ls
(n

or
m

al
iz

ed
 s

co
re

)

-0.4

-0.2

0

N
K

 c
el

ls
(n

or
m

al
iz

ed
 s

co
re

)

-2.0 -1.0
PRS

-2.0 -1.0
PRS

0

Smoking status LUAD (n)
Current smoker (63)
Lifelong non−smoker (42)
Current reformed smoker for >15 years (67)
Current reformed smoker for ≤ 15 years (102)

0

Smoking status LUSC (n)
Current smoker (56)
Lifelong non−smoker (4)
Current reformed smoker for >15 years (41)
Current reformed smoker for ≤ 15 years (105)

Tumor LUAD
PRS - NK cells

Tumor LUSC
PRS - NK cells

-0.4

-0.2

0

0.2

N
K

 c
el

ls
(n

or
m

al
iz

ed
 s

co
re

)

-0.4

-0.2

0

N
K

 c
el

ls
(n

or
m

al
iz

ed
 s

co
re

)

-2.0 -1.0
PRS

-2.0 -1.0
PRS

0

Tumor stage
I/II
III/IV

P = 0.027
Adjusted-R2 = 0.04

P = 0.045
Adjusted-R2 = 0.02

Figure S12



	 1	

Transparent Methods 

TCGA data 

Clinical and gene expression (RNA-seq fragments per kilobase of transcript per million 

mapped reads (FPKM) upper quartile normalized (UQ)) data from The Cancer Genome 

Atlas (TCGA) projects were obtained from the Genomic Data Commons Data Portal 

(https://portal.gdc.cancer.gov) and from the corresponding publications. Genetic data at 

the individual level were obtained following approval by the dbGaP Data Access 

Committee (project #11689). Metastases and recurrent tumors were excluded from this 

study, making normal tissue (blood or solid tissue) and primary tumor samples the focus 

of the analyses. The cancer types are named using the corresponding TCGA study 

abbreviations (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-

abbreviations). For normal tissue, according to the TCGA protocols, these samples were 

collected > 2  cm from the tumor margin and/or did not contain tumor identified by 

histopathological review. The protein expression measures of CD26 and TFCR 

corresponded to those obtained by TCGA using reverse-phase protein arrays (RPPAs; 

level 4 data, https://tcpaportal.org/tcpa/). The COAD subtypes were defined based 

genomic/genetic alterations (chromosomal instability (CIN), genomic stable (GS), and 

microsatellite instability (MSI) tumors) and on molecular features (consensus molecular 

subtypes, CMS1-4) (Guinney et al., 2015).  
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Cancer risk variants 

The variants were compiled from the GWAS Central (Beck et al., 2014) and GWAS 

Catalog (Buniello et al., 2019) databases, and by literature searches using the PubMed 

MeSH terms “GWAS”, “association”, “cancer”, and “risk”. The variants are listed in Table 

S1. The UK Biobank GWAS results were taken from the public repository at 

http://www.nealelab.is/uk-biobank. 

 

Benchmark immune genes 

These genes were compiled from The Immunological Genome Project (ImmGen) (Shay 

and Kang, 2013) and CellMarker (Zhang et al., 2019) databases, and by a literature 

search using the MeSH terms corresponding to the specific immune cell types 

represented by the gene expression signatures. The benchmarks and their cell type 

assignments are included in Table S3. 

 

Genotype data and imputation 

Bulk genotyping data corresponding to the Affymetrix Genome-Wide Human SNP 6.0 

Array were downloaded from the TCGA legacy archive (https://gdc-

portal.nci.nih.gov/legacy-archive/). Of the initial normal tissue and primary tumor 

samples (n = 16,599), those corresponding to individuals of self-reported non-white 

origin (n = 4,770), and those of non-European origin based on principal component 

analysis using variants intersected in the 1000 Genome Project phase III (n = 2,598) 

were excluded from subsequent analyses; these filters were applied because summary 
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statistics of the GWASs used in this study are strongly biased towards populations of 

European origin. Normal and tumor samples were then examined separately for 

duplicates and up to third-degree relatives (kinship cutoff = 0.05), which resulted in the 

exclusion of an additional 672 samples. In the joint dataset, 765 samples were also 

excluded because they showed a gender mismatch in an analysis of pseudoautosomal 

genomic regions. Considering genetic variants, 108 samples that deviated by four or 

more standard deviations from the mean heterozygosity rate were also excluded. For 

imputation, variants were excluded if they fulfilled any of the following criteria: they 

mapped to chromosome Y, pseudoautosomal regions or the mitochondrial genome; they 

had a call rate < 100%; their minor allele frequency was < 0.01; they departed from 

Hardy–Weinberg equilibrium (P < 5x10-6); or they mapped to AT-CG sites. Finally, 7,686 

samples (4,154 normal, comprising 3,287 blood-derived and 867 solid-tissue samples; 

and 3,532 primary tumors, of which 94.4% were paired) and 589,101 variants were 

retained for subsequent analyses. Imputation was performed using the Shape-IT V2 

(Delaneau et al., 2008) and IMPUTE2 (Howie et al., 2009) algorithms, and the 1000 

Genome Project Phase III panel as reference. Poorly imputed variants (accuracy score < 

0.7) were excluded from subsequent analyses. A standard cutoff dose was applied to 

calculate genotypes using a hard-call threshold of 0.1 (i.e., 0 – 0.1, 0.9 – 1.1, 1.9 – 2.0 

for reference homozygote, heterozygous and alternative homozygous genotypes, 

respectively). 
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Immune/stromal cell signatures 

Immune/stromal cell gene expression signatures for each TCGA cancer setting were 

computed using the ConsensusTME method (Jiménez-Sánchez et al., 2019), which was 

provided available as an R package (https://github.com/cansysbio/ConsensusTME). Ten 

single-cell breast cancer signatures (Azizi et al., 2018) were included in the TCGA BRCA 

analyses. Therefore, 18 signatures were examined in each normal tissue and primary 

tumor setting, except for normal breast and breast cancer tissue, for which a total of 28 

signatures were analyzed. The signature scores were computed using the single-sample 

Gene Set Expression Analysis (ssGSEA) algorithm calculated within the Gene Set 

Variation Analysis (GSVA) software (Hänzelmann et al., 2013). These scores were 

calculated for normal tissue and primary tumors, but not for blood samples, since data 

from blood are limited to germline genotypes. Genes whose expression was 

uninformative in more than half the samples in a given setting were excluded from the 

signature calculations; otherwise, missing data were assigned the average value of the 

informative samples. Evaluation of signature scores computed by two different methods 

—ssGSEA and summing normalized gene expression Z-scores— revealed global 

coherence, whereby Pearson correlation coefficients (PCCs) were > 0.80 in 99% 

(571/578) of the score comparisons. To select independent signatures in each normal 

and cancer setting, we performed a principal component analysis using the prcomp 

function in R. Components with eigenvalues > 1 were retained to study quantitative trait 

loci (subsequent sections). Estimates of immune-related pathway activities were 

calculated using directed graphs from the Kyoto Encyclopedia of Genes and Genomes 
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(KEGG, https://www.genome.jp/kegg/). Briefly, gene expression profiles were converted 

into pathway module activity scores by taking into account the chain of reactions from a 

defined molecular input to a specific molecular output (Cubuk et al., 2018). The 84-gene 

signature linked to SH2B3 included the genes differentially expressed in Sh2b3-null cells 

and that participate in genetic and/or protein interactions to this gene/protein (Huan et 

al., 2015); SH2B3 was excluded from this signature for subsequent analyses. 

 

Pseudo-bulk breast tumors 

To generate 100 pseudo-bulk breast tumors, we used the single-cell RNA-seq data from 

the Gene Expression Omnibus (GEO) reference GSE75688 (Chung et al., 2017) and 

aggregated read counts using the aggregateData function in R 

(https://github.com/HelenaLC/muscat). Each simulated sample of 100 cells was forced 

to include >50% tumor cells (average 75.3%, 95% CI 72.53 – 77.93%). For non-tumoral 

cells, 10% of them were fixed as stromal (bulk average 7.22%, 95% CI 6.22 – 8.36%), 

while the other 90% were a random combination of B cells (average 5.16%, 95% CI 4.28 

– 6.28%), T cells (average 6.21%, 95% CI 5.05 – 7.48%), and myeloid cells (average 

6.11%, 95% CI 5.05 – 7.39%). Most of the myeloid cells were originally assigned to 

macrophages (Chung et al., 2017). 

 

Quantitative trait loci of immune/stromal cell tissue content 

The germline genetic calls corresponded to genotype data obtained from blood or 

normal tissue samples. For cases with both types of sample, the variants with discordant 
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calls were excluded from subsequent analyses. As specified above, the somatic genetic 

calls corresponded to primary tumors only. The immune/stromal cell-content quantitative 

trait loci (isQTL) were analyzed using the R/qtl2 package in R (Broman et al., 2019). 

These analyses included the covariates of gender (when informative), age at diagnosis, 

tumor stage and histology. The Haley–Knott regression method was used to compute 

the log odds (LOD) of the associations between genetic variants and immune/stromal 

cell scores. One thousand permutations were performed in each setting to obtain 

significance thresholds (Manichaikul et al., 2007) and the variant-signature associations 

with empirical values of P < 0.05 were considered significant isQTL. The gene targets 

were defined according to the genomic location of the identified variants. Additional 

targets were identified by analyzing all variants correlated (r2 > 0.8, 1000 Genomes 

phase 3, version 5) with each isQTL and intersect them with various functional genomic 

data, including promoter capture Hi-C (Javierre et al., 2016), annotated enhancers 

(Hnisz et al., 2013, p.), and eQTL (Schmiedel et al., 2018) from B cells, monocytes, and 

CD4+ and CD8+ T cells. In addition, correlated variants were queried using the Ensembl 

Variant Effect Predictor (McLaren et al., 2016) for potential effects on protein coding 

sequences. 

 

Computation of PRSs 

The PRSs were compiled from the literature and computed by summing the products of 

the per-allele LOD ratio assigned to each risk variant, and the corresponding allele 

dosage, for the total number of variants initially defined for each PRS. There was no 
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previous evidence of significant interactions or deviations from a log-additive model in 

BRCA PRSs (Mavaddat et al., 2019), but it is not known for other cancers. In the 

analyses of BRCA, OV (no normal tissue data available), and PRAD PRSs, two sets 

were analyzed, both based on GWAS-identified variants: set #1 (hereafter PRSs-1), 

which corresponded to scores derived from large collections of GWAS cohorts and 

validated in independent studies (Mavaddat et al., 2019); and set #2 (hereafter PRSs-2), 

which corresponded to scores derived from a phenome-wide longitudinal study using 

electronic health records collected by the Michigan Genomics Initiative (Fritsche et al., 

2018). In both sets, PRSs were developed for all BRCA patients, and separately for the 

estrogen receptor (ER)-positive and ER-negative subtypes. The number of initial 

variants in these BRCA PRSs and those included in our study, based on available 

genotypes and obtained imputations were 307 and 185 for PRSs-1, and 3,820 and 

3,629 for PRSs-2. As expected, the PRSs from the two sets were found to be positively 

correlated using germline or primary tumor data: BRCA PRSs PCCs = 0.60 – 0.66, P < 

10-5; OV tumors PRSs PCC = 0.72, P < 10-25 (serous PCC = 0.72); and PRAD PRSs 

PCCs = 0.23 – 0.99, P < 0.01. The Michigan Genomics Initiative also provided PRSs for 

seven other cancer types, and the number of variants originally included and analyzed in 

this study were, respectively: 103 and 21 for PRAD; 42 and 41 for COAD; 16 and 16 for 

BLCA and SKCM; 15 and 15 for OV; 9 and 9 for GBM, LUAD and LUSC; 8 and 7 for 

THCA; and 7 and 6 for KIRC. 
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Cell signature associations with PRSs 

The bestNormalize package in R (https://github.com/petersonR/bestNormalize) was 

used to normalize the cell signature values. The transformation that produced the lowest 

value from the Pearson’s statistic divided by the degrees of freedom was taken to 

indicate the best function. The error distributions of the models and Q-Q plots were 

examined individually. The parameters of each signature transformation are provided in 

Table S10. Outliers were identified using the interquartile range rule and excluded from 

subsequent analyses; these were < 5% in all settings. Normalized signature values were 

used as dependent variables in a linear regression analysis relative to the PRSs. 

Stepwise analyses including covariates of gender, tumor stage and histology were 

performed, and the best model was selected based on the Akaike information criterion 

(AIC). For normal tissue, only those studies with at least 50 informative samples were 

analyzed. The small number of samples in each setting meant that these analyses could 

only detect significant (nominal P < 0.05) correlation estimates > 0.27 and > 0.09 in 

normal breast tissue and BRCA, and stronger correlations would be required in all other 

settings if nominal significance were to be reached (Fig. S11). The significance of the 

associations was corrected for multiple testing using the false-discovery rate (FDR) 

method. 

 

Cell signature associations with age at diagnosis 

The associations between the cell signature scores (dependent variables) and age at 

diagnosis were evaluated by multiple linear regression, including gender and tumor 
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stage as covariates, the best model being determined from an AIC-based stepwise 

selection algorithm. The statistical significances of the associations were corrected for 

multiple testing separately in normal tissue and primary tumor analyses (since the 

expected effects were the opposite of what they proved to be) using the FDR method. 

 

Breast cancer risk in BRCA1/2-mutation carriers  

Analyses were performed using data from the OncoArray and Collaborative Oncological 

Gene-environment Study (iCOGS) consortiums with the participation of the Consortium 

of Investigators of BRCA1/2 Modifiers (CIMBA). The OncoArray and iCOGS designs, 

quality controls, and statistical analyses have been described previously (Milne et al., 

2017). Summary statistics from the retrospective likelihood method are reported. 

 

Analysis of blood cell parameters and age at diagnosis of breast cancer 

Clinical and histopathological data from breast cancer patients were compiled through 

manual curation of hospital records of the Catalan Institute of Oncology, L’Hospitalet del 

Llobregat (Barcelona, Catalonia, Spain). Patients were randomly selected from health 

records collected between 2009 and 2014. The compiled data included date of birth, 

age, gender (only women selected), date at diagnosis, tumor stage, subtype and/or ER 

status, and date at initial-diagnostic blood test. The blood test parameters analyzed were 

the normalized numbers (x109/L) of basophils, eosinophils, leucocytes, lymphocytes, 

monocytes, neutrophils, and platelets. Linear regressions of each of these parameters 



	 10	

on age at diagnosis, including tumor stage and subtype as covariates, were performed. 

The IDIBELL’s Research Ethics Committee approved this study (reference PR066/20). 
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