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SUMMARY

Genes whose function is selectively essential in the
presence of cancer-associated genetic aberrations
represent promising targets for the development of
precision therapeutics. Here, we present CancerGD,
a resource that integrates genotypic profiling with
large-scale loss-of-function genetic screens in tu-
mor cell lines to identify such genetic depen-
dencies. CancerGD provides tools for searching,
visualizing, and interpreting these genetic depen-
dencies through the integration of functional interac-
tion networks. CancerGD includes different screen
types (siRNA, shRNA, CRISPR), and we describe a
simple format for submitting new datasets.

The ability to inhibit tumors in molecularly defined cohorts of pa-
tients is a cornerstone of precision cancer treatment. A success-

ful approach has been the development of drugs that inhibit

proteins specifically required in tumors harboring aberrations

in recurrently altered cancer driver genes (Luo et al., 2009). For

example, oncogene addiction effects, such as the increased

sensitivity of ERBB2 (HER2)-amplified breast tumors to ERBB2

inhibitors (Hynes and Lane, 2005), can be clinically exploited,

as can non-oncogene addiction effects, such as the synthetic le-

thal relationship between BRCA1/BRCA2 mutations and PARP

inhibitors (Lord et al., 2015). To identify additional cancer genetic

dependencies (CGDs) that may ultimately be exploited thera-

peutically, multiple groups have performed large-scale loss-of-

function genetic screens in panels of tumor cell lines (Brough

et al., 2011b; Campbell et al., 2016; Cheung et al., 2011; Cowley

et al., 2014; Marcotte et al., 2012, 2016; Wang et al., 2017). Inte-

grating the results of these screens with molecular profiling data

creates hypothesis-generating resources where the hypotheses

are of the form ‘‘tumor cells with a mutation in gene X are sensi-

tive to inhibition of gene Y.’’ These hypotheses are typically

tested in subsequent experiments—for example, in larger panels

of cell lines, using orthogonal mechanisms of gene inhibition,

and/or in mouse models—to ensure they are not statistical

or experimental artifacts. Recent examples of novel CGDs

discovered through genetic screening approaches include an

increased sensitivity of ARID1A mutant cell lines to inhibition of

the ARID1A paralog ARID1B (Helming et al., 2014), of PTEN

mutant breast tumor cell lines to inhibition of the mitotic check-

point kinase TTK (Brough et al., 2011b), and of MYC-amplified
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breast tumor cell lines to inhibition of multiple distinct splicing

components (Hsu et al., 2015).

Although the results of loss-of-function screens are typically

made publically available, their integration with genotypic data

remains challenging for those without bioinformatics skills.

Sequencing and copy-number data must be processed to iden-

tify likely functional alterations, cell line namesmatched between

different data sources, and statistical analysis performed to

identify associations between the alteration of driver genes and

an increased sensitivity to inhibition of target genes. To address

these challenges, we have developed CancerGD (www.

cancergd.org), a resource that integrates multiple loss-of-func-

tion screens (Campbell et al., 2016; Cowley et al., 2014;Marcotte

et al., 2012, 2016; Wang et al., 2017) with genotype data (Forbes

et al., 2015; Iorio et al., 2016; Yang et al., 2013) to identify CGDs

associated with a panel of cancer driver genes (Figure 1).

CancerGD currently facilitates the searching, visualization,

and interpretation of CGDs (Figure 1) associated with 53 driver

genes (Table S1). These genes were selected based on their

identification as driver genes in multiple independent analyses

(Campbell et al., 2016; Forbes et al., 2015; Vogelstein et al.,

2013) and due to their alteration in at least three tumor cell lines

featured in one or more of the included loss-of-function screens.

Driver-gene-associated CGDs are identified both across cell

lines from multiple histologies (Pan cancer) and within tumor

cell lines arising from specific primary sites (e.g., Breast). With

an intuitive search interface, it is thus possible to retrieve

CGDs associated with ERBB2 amplification across cell lines

from all tissue types or specifically associated with ERBB2

amplification in breast tumor models (Figure 2A). The data sup-

porting every CGD can be visualized in an interactive boxplot

(Figure 2B) and downloaded for reference.

Aside fromoncogene addiction effects (Luo et al., 2009), which

represent a tiny minority of the dependencies stored in

CancerGD, themechanistic interpretation of CGDs remains chal-

lenging. Why would mutation of one gene result in an increased

dependency upon another? In yeast, the interpretation of such

relationships has been greatly aided by the integration of pro-

tein-protein interaction networks with genetic screens (Kelley

and Ideker, 2005). Following a similar model, to aid the interpre-

tation of CGDs in CancerGD, we integrate functional interactions

from the STRING database (Szklarczyk et al., 2015). This facili-

tates the rapid identification of CGDs involving gene pairs with

known functional relationships. For instance, in the Campbell

et al. (2016) dataset ERBB2 amplification is associated with

an increased dependency upon the ERBB2 protein interaction
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Figure 1. CancerGD Overview

Loss-of-function screens from multiple sources

are integrated with exome and copy-number

profiles from the GDSC resource. Cell lines are

annotated according to the mutational status of a

panel of driver genes (see Table S1). Statistical

analysis is then performed to identify associations

between the presence of driver gene alterations

and sensitivity to reagents targeting specific

genes. These CGDs are filtered such that only

those with nominal significance (p < 0.05) and

moderate common language effect sizes (R65%)

are retained. Finally, all CGDs are annotated ac-

cording to whether they occur between driver-

target pairs with known functional relationships

(STRING) and whether there is an inhibitor avail-

able for the target gene (DGIdb).
partners JAK2 and ERBB3, as well as the ERBB2 downstream

effector PIK3CA (Figure 2A). Similarly in the Cowley et al. (2014)

dataset loss or mutation of the BAF complex subunit ARID1A is

associated with an increased dependency upon the ARID1A pa-

ralog and BAF complex member ARID1B (Helming et al., 2014).

Such dependencies may make more promising candidates for

follow-on experiments as they are supported by existing func-

tional relationships in addition to the genetic association.

In addition to identifying known functional interactions be-

tween the driver gene and associated dependency, it can be

helpful to understand the relationships between all of the

CGDs associated with a given driver gene. For instance, we pre-

viously found that cell lines with a deletion or mutation of the

tumor suppressor SMAD4 display a strong dependency upon
the mitotic checkpoint kinase CHEK1

(Campbell et al., 2016). Considered in

isolation, it is not clear whether this

CGD relates to a specific function of

CHEK1 or amore general sensitivity to in-

hibition of themitotic checkpoint. Howev-

er, by analyzing all of the dependencies

associated with SMAD4, we found that

they were densely connected on the pro-

tein interaction network and primarily

involved in themitotic checkpoint (Camp-

bell et al., 2016), suggesting a more gen-

eral sensitivity to perturbation of this

pathway. To facilitate the identification

of such pathway-level dependencies,

CancerGD provides network visualiza-

tions of the functional interactions be-

tween CGDs associated with each driver

gene (Figure S1).

In contrast to the results of drug-

screening efforts in panels of tumor cell

lines (Barretina et al., 2012; Basu et al.,

2013; Daemen et al., 2013; Garnett

et al., 2012; Iorio et al., 2016; Yang

et al., 2013), the CGDs identified in loss-

of-function screens include targets that

have no inhibitors available and conse-
quently may serve as the rationale for the development of new

small-molecule inhibitors. To facilitate the identification of

CGDs that may be more readily exploited with available inhibi-

tors, CancerGD integrates drug-gene interaction relationships

from DGIdb (Griffith et al., 2013).

It has previously been highlighted that many CGDs identified in

one loss-of-function screen are not evident in additional data-

sets (Brough et al., 2011a; Downward, 2015). This could indicate

that these CGDs are context specific (Ashworth et al., 2011)

but can also be explained by a variety of technical factors.

Different screens feature different coverage of gene libraries

(e.g., kinome versus genome-wide), different coverage of cancer

types (e.g., only melanoma in one versus only breast in another),

and different coverage of driver genes (e.g., many BRAF mutant
Cell Systems 5, 82–86, July 26, 2017 83



Figure 2. Genetic Dependency Exploration and Visualization

(A) The principle view of the database. Each row represents a gene identified as a dependency associated with ERBB2 amplification in Campbell et al. (2016)

across all tumor types (Pan cancer). Columns display experimental details along with the p value, common language effect size, and difference in median

sensitivity score for each dependency. Genes identified as dependencies in multiple datasets are indicated in the Multiple Hit column. Genes with a known

functional relationship to the driver gene (e.g., PIK3CA) are indicated in the String Interaction column, and drugs known to inhibit the target gene are indicated in

the Inhibitors column. Toggles/search boxes permit easy filtering of interactions, e.g., to select only those genes with an associated inhibitor available. See also

Figure S1 and the tutorial in Methods S1.

(B) Example boxplot showing an increased sensitivity of ERBB2-amplified cell lines to inhibition of MAP2K3. Each data point represents the sensitivity of a

particular cell line to RNAi reagents targeting MAP2K3. Cell lines are grouped according to ERBB2 amplification status with the wild-type group on the left

and amplified group on the right. Cell lines are colored according to site of origin and toggles on the right permit the hiding/showing of cell lines from specific

sites. Hovering over a given data point provides the cell line’s name, the primary site, and the score associated with the RNAi reagent in that cell line. An

overlapped box-whisker plot displays the interquartile range and the median for each group. High-resolution PNG images for each boxplot can be

downloaded along with a CSV file containing all of the data presented in the boxplot. Links to the target gene (MAP2K3) on external websites are provided at

the bottom of the plot.
cell lines in one screen versus none in another). These technical

factors can result in the identification of CGDs in one screen that

cannot be observed in a second screen. Furthermore, in any

given screen there may be false positives resulting from the

off-target effects of gene-targeting reagents (Jackson and Lins-

ley, 2010) and false negatives resulting from variation in the
84 Cell Systems 5, 82–86, July 26, 2017
knockdown efficiencies of different gene-targeting reagents

(Kaelin, 2012). There are thus a number of explanations for why

a CGD observed in one dataset may not be evident in another.

Nonetheless, the CGDs that are observed in multiple datasets

may be of particular interest as they are perhaps less likely to

result from the off-target effects of gene-targeting reagents



and also less likely to be highly context specific. In CancerGD,

we provide functionality to identify and filter those CGDs

observed independently in multiple datasets.

CancerGD can incorporate datasets generated using different

experimental and computational pipelines and is not restricted to

loss-of-function screens generated using any specific method

(shRNA/siRNA/CRISPR). The main requirement for inclusion is

that a dataset must contain the results of screens in a panel of

cell lines (a minimum of ten cell lines) and provide some quanti-

tative measurement of the sensitivity of each cell line to the inhi-

bition of each gene screened. Currently, the resource includes

three genome-scale shRNA screens (Cowley et al., 2014; Mar-

cotte et al., 2012, 2016), one kinome-wide siRNA screen (Camp-

bell et al., 2016), and one genome-wide CRISPR screen (Wang

et al., 2017). As additional screens become available, we will

incorporate their results into the resource (see STAR Methods

for instructions on how to format screens for easy inclusion in

CancerGD).

A tutorial demonstrating the full functionality of CancerGD

is provided in Supplemental Information. We believe that

CancerGD will be a useful resource to aid a wider group of can-

cer researchers to benefit from the information generated in

large-scale loss-of-function screens.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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B Cell Line Naming

B Gene Identification
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Cell Line Copy Number Data Iorio et al., 2016 ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/

releases/release-6.0/Gene_level_CN.xlsx

Cell Line Exome Data Iorio et al., 2016 http://www.cancerrxgene.org/gdsc1000/

GDSC1000_WebResources//Data/suppData/

TableS2C.xlsx

Achilles v2 shRNA data Cowley et al., 2014 https://ndownloader.figshare.com/files/3178886

COLT shRNA data Marcotte et al., 2012 http://dpsc.ccbr.utoronto.ca/cancer/datasets.html;

RRID: SCR_006485

Wang et al., CRISPR data Wang et al., 2017 Table S3 in Wang et al.

Marcotte et al., 2016 Breast Cancer shRNA data Marcotte et al., 2016 https://github.com/neellab/bfg/blob/gh-pages/

data/shrna/breast_zgarp.txt.zip?raw=true

Kinome siRNA data Campbell et al., 2016 Table S1B

STRING interactions Szklarczyk et al., 2015 http://string-db.org/download/protein.links.v10/

9606.protein.links.v10.txt.gz; RRID: SCR_005223

Drug Target Information Wagner et al., 2016 http://dgidb.genome.wustl.edu/; RRID: SCR_006608

Gene names and synonyms Gray et al., 2015 ftp://ftp.ebi.ac.uk/pub/databases/genenames/

new/tsv/hgnc_complete_set.txt; RRID: SCR_002827

Software and Algorithms

Django Django Software Foundation https://www.djangoproject.com/; RRID: SCR_012855

JQuery jQuery Foundation https://jquery.com/

Python version 3.4 Python Software Foundation https://www.python.org/; RRID: SCR_008394

R version 3.3.1 R Foundation for Statistical

Computing

https://www.r-project.org/; RRID: SCR_001905

Intercell Analysis Scripts Campbell et al., 2016 https://github.com/GeneFunctionTeam/

kinase-dependency-profiling

CancerGD Python / Javascript / R / HTML code This study https://github.com/cancergenetics/cancergd
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Colm J.

Ryan (colm.ryan@ucd.ie)

METHOD DETAILS

Genotype Data
Exome data for�1,000 cell lines are obtained from the GDSC resource (Iorio et al., 2016; Yang et al., 2013). We use this data to anno-

tate �500 driver genes (Campbell et al., 2016) according to whether they feature likely functional alterations. For oncogenes we

consider recurrent missense or recurrent in frame deletions/insertions to be likely functional alterations, where recurrence is defined

as at least 3 previous mutations of a particular site in the COSMIC database (Forbes et al., 2015). In addition to recurrent missense or

indel events, for tumor suppressors we consider that all nonsense, frameshift and splice-site mutations are likely functional alter-

ations. For copy number analysis we use the gene level copy number scores from COSMIC for the same set of cell lines (which

are derived from PICNIC analysis of Affymetrix SNP6.0 array data) (Forbes et al., 2015; Garnett et al., 2012; Iorio et al., 2016;

Yang et al., 2013). An oncogene is considered amplified if the entire coding sequence has 8 or more copies while a tumor suppressor

is considered deleted if any part of the coding sequence has a copy number of 0 as per Garnett et al (Garnett et al., 2012). For the

majority of driver genes we integrate the two sources together. For all tumor suppressors we consider a functional alteration to be

either a deletion (derived from copy number profiles) or a presumed loss-of-function mutation (as identified in the exome data). For

most oncogenes we consider a functional alteration to be either an amplification or a recurrent mutation/indel. For a small number of

oncogenes (ERBB2, MYC, MYCN) we consider only amplifications as functional events, while for another group (KRAS, BRAF,

NRAS, HRAS) we only consider recurrent mutations/indels.
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Loss of Function Screens
Four large-scale RNAi datasets and one CRISPR dataset are currently included in CancerGD (Campbell et al., 2016; Cowley et al.,

2014;Marcotte et al., 2012, 2016;Wang et al., 2017). These include a kinome focussed siRNA screen covering a panel of 117 cell lines

from diverse histologies (Campbell et al., 2016), a genome-scale shRNA screen focussed on 77 breast tumor cell lines (Marcotte

et al., 2016), a genome-scale shRNA screen focussed on 72 breast, ovarian and pancreatic cell lines(Marcotte et al., 2012), a

large-scale shRNA screen covering 216 cell lines from diverse histologies (Cowley et al., 2014), and a genome-scale CRISPR screen

covering 14 AML cell lines(Wang et al., 2017). Cowley et al (Cowley et al., 2014) is largely a superset of a previous screen from the

same lab (Cheung et al., 2011) and hence the two resources are not included separately. Similarly the kinome siRNA screen from

Cambell et al (Campbell et al., 2016) contains the majority of the breast tumor cell lines screened in a previous breast cancer kinome

siRNA screen from the same lab (Brough et al., 2011b) and hence they are not included separately. The breast cell lines in (Marcotte

et al., 2016) are a superset of those included in (Marcotte et al., 2012) and consequently we do not store breast specific dependencies

from (Marcotte et al., 2012).

Cell Line Naming
Internally we follow the naming convention established by the Cancer Cell Line Encyclopedia (Barretina et al., 2012). The CCLE

naming convention is the cell line name (containing only numbers and upper case letters) followed by an underscore, followed by

the tissue/primary site in upper case. The cell line names are taken from (Iorio et al., 2016), converted to uppercase and punctuation

removed. Where possible we use the same tissue types as the CCLE, in a small number of cases where a tissue was absent from the

CCLE (e.g. CERVIX) we have created a new tissue type. Having the tissue type in the cell line name facilitates filtering the boxplots

(e.g. to show the gene inhibition sensitivities for cell lines from a specific tissue) in the browser without having to perform additional

database queries. Furthermore two of the published loss-of-function screens already follow this naming convention (Campbell et al.,

2016; Cowley et al., 2014) while a third features only breast cell lines and was trivially converted (Marcotte et al., 2016). In instances

where the same cell line is featured in two datasets but there is a naming disagreement (e.g. H1299_LUNG in Campbell et al (Camp-

bell et al., 2016) is NCIH1299_LUNG in our genotype set) we manually rename the screen dataset to match the genotype data.

Gene Identification
CancerGD provides links tomultiple external sources that use a variety of different gene identifiers. Consequently for each gene in the

database we storemultiple identifiers (Entrez Gene ID, Ensembl Gene identifiers, HUGOGene Names, Ensembl Protein IDs). We also

store synonyms for each gene to facilitate easy gene look up (e.g. ERBB2 can be identified by searching for HER2). These synonyms

are obtained from the HGNC resource (Gray et al., 2015).

Drug Target Annotations
Drug-gene relationships are obtained from the Drug-Gene Interaction Database (DGIdb), which integrates drug-gene relationships

from multiple sources (Wagner et al., 2016). Only inhibitor relationships are retrieved, as we are interested in drugs that inhibit the

products of specific genes, rather than drugs whose efficacy is associated with the mutation of specific genes. Results from DGIdb

sourced from MyCancerGenome and MyCancerGenomeClinicalTrial are excluded for the same reason.

Functional Interactions
Functional interactions are obtained from STRING. We store all interactions that are medium confidence (STRING score > 0.4) or

higher. Cut-offs to identify interactions as ‘Medium’, ‘High’ and ‘Highest’ confidence are those defined by STRING. For displaying

the functional interactions between the dependencies associated with each driver gene we use the STRING API (Szklarczyk

et al., 2015).

Implementation
CancerGD is implemented in Python using theDjango framework and follows amodel/view/controller architecture. JQuery is used for

Javascript processing in the browser interface. MySQL is used by default for data storage but SQLite can be used for development /

testing purposes with minimal documented changes. The application is currently hosted on the PythonAnywhere system, a generic

Python web services host, suggesting that the application is portable.

Formatting Screens for CancerGD
To enable easy inclusion of future screens in CancerGD we request that data be provided as a tab-delimited table with each row

representing a particular cell line and each column representing reagents targeting a specific gene. Cell line names should preferably

follow the Cancer Cell Line Encyclopaedia naming convention described above, but COSMIC IDs are also acceptable. Genes should

preferably be identified using ENTREZ IDs but other unique IDs (ENSEMBL Gene IDs) are acceptable. Due to regular changing and

updating, gene symbols alone should not be used as unique gene identifiers. We favour SYMBOL_ENTREZID (e.g KRAS_3846) for

ease of use but this is not required. In cases where multiple distinct scores are provided for a specific gene, as happens with scores

from the ATARIS algorithm, we request that they be identified using distinct suffixes (e.g. KRAS_3846_1, KRAS_3846_2).

Individual entries in the table should be quantitative scores indicating how sensitive a specific cell line is to perturbation of a

particular gene. As different scoring procedures are used to quantify the results of screens using different experimental approaches
e2 Cell Systems 5, 82–86.e1–e3, July 26, 2017



(e.g. ATARIS (Shao et al., 2013) and zGARP (Marcotte et al., 2012) for shRNA screens, Z score for siRNA screens (Campbell et al.,

2016)) we do not require the scores to be in any standard format or range. However, we follow the convention in the field and suggest

that increasingly negative scores should indicate greater inhibition of cell growth. A sample screen from Campbell et al (Campbell

et al., 2016) is provided in the appropriate format here: http://www.cancergd.org/static/gendep/Campbell_cancergd.txt

QUANTIFICATION AND STATISTICAL ANALYSIS

Weuse R for all statistical analysis. For each driver gene / target gene combination we compare cell lines harbouring a likely functional

alteration in the driver gene to cell lines with no alteration in that gene and test if the cell lines with the functional alteration are more

sensitive to RNAi reagents that inhibit that gene. This is tested using a one-sided Mann-Whitney U test. A variety of alternative two-

sample tests have been used in previous publications, including median permutation tests (Brough et al., 2011b; Campbell et al.,

2016) and mutual information based measures (Cowley et al., 2014). The Mann-Whitney U test has a number of advantages for

CancerGD – it is rapid to calculate and it does not assume that the scores for each gene are normally distributed. The latter is impor-

tant as it means the test can be used uniformly on loss-of-function screens frommultiple sources that use different scoring schemes.

For all screens we use the authors’ provided scoring scheme (zGARP for Marcotte et al (Marcotte et al., 2012; Marcotte et al., 2016),

ATARIS phenotype score for Cowley et al (Cowley et al., 2014), robust Z score for Campbell et al (Campbell et al., 2016), andCS score

for Wang et al (Wang et al., 2017)). As in (Marcotte et al., 2012) we apply Z score normalization to the zGARP scores from (Marcotte

et al., 2012) to enable reasonable comparison of scores across cell lines. In addition to the p-value from the Mann-Whitney U test we

calculate a common language effect size (CLES) for each dependency. The CLES is equivalent to the Area under the ROC curve and

the Probability of Superiority and indicates the probability that a cell line with an alteration in a particular driver gene is more sensitive

to a given RNAi reagent than a cell line without that alteration. In the database we store all nominally significant dependencies

(p<0.05) with a CLESR 0.65. In a small number of instances multiple ATARIS scores are presented for a single gene – when storing

CGDs we incorporate the ATARIS score with the lower p-value.

DATA AND SOFTWARE AVAILABILITY

Source code for the entire project (R/Python/Javascript/HTML) is publicly available on GitHub (https://github.com/cancergenetics/

cancergd). Detailed instructions on how to run the statistical analysis, install the web application and populate the database are also

provided in the GitHub repository.
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