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Abstract

Malignant mesothelioma is a relatively rare malignancy arising in the body’s serosal surfaces, with 

malignant pleural mesothelioma (MPM) being the most common type. It is characterized by local 

spread within the thorax, poor prognosis and resistance to treatment. The development of various 

immunotherapeutic options has provided a new way- and hope- in treating cancer patients. 

Chimeric antigen receptor (CAR) T cell therapy has been proven very successful in treating 

hematological cancers, like leukemias and lymphomas, and its use is now being tested in solid 

tumors. CARs that recognize and bind to a specific tumor-associated antigen on the tumor’s cell 

surface, are engineered and transduced into T cells. Interaction of the CAR T cell with the tumor 

then results in T cell activation and subsequent tumor cell lysis. In this review, we provide a 

current update on our previous comprehensive study summarizing the CAR T cell preclinical 

studies and clinical trials in MM, and discuss the future perspectives of CAR T cell therapy in this 

disease.
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Introduction

Malignant mesothelioma (MM) is an incurable primary tumor of the body’s serosal surfaces: 

the pleura, peritoneum, pericardium and the tunica vaginalis (in men). It is causally linked to 

occupational or environmental exposure to asbestos [1-3], a natural mineral that has been 

recognised as a carcinogen and its mining and use has been subsequently banned or reduced. 

Despite the severe health implications in using asbestos and the stringent regulations on its 
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use imposed, the asbestos industry is still present in many countries worldwide. Given the 

long latency period from exposure to diagnosis [4], the incidence of MM is still increasing in 

some countries. The UK is currently in the midst of a ‘mesothelioma epidemic’ with the 

number of deaths having increased from 153 per annum in 1968 to 2,046 in 2005 and 

currently affecting around 3,000 people annually [5]. The incidence of MM in the United 

States peaked in around 2000 and it is currently estimated to be around 3300 cases per year 

[6].

Malignant pleural mesothelioma (MPM) arises in the parietal pleura, spreads contiguously 

to invade local structures and can pass through the diaphragm into the abdominal cavity. 

MPM accounts for around 65% to 70% of all mesotheliomas, while those arising in other 

mesothelial membranes (peritoneal around 30%; pericardial 1-2%) are much less common 

[7]. Histopathologically, there are three main subtypes of mesothelioma: epithelioid, 

sarcomatoid and biphasic [4]. The disease is characterised by profound resistance to therapy 

and poor prognosis.

There is currently no known cure for MM, therefore any treatment aims to improve quality 

of life and extend survival. Standard treatments may involve a combination of surgery, 

chemotherapy and radiotherapy (trimodality therapy). Radical surgery aiming for complete 

tumor resection, either by sacrificing the neighboring/affected lung (extrapleural 

pneumonectomy; EPP) or by sparing it (pleurectomy/decortication; P/D), can be beneficial 

to a small cohort of selected patients [8,9]. The mainstay of treatment in MPM, whether 

after surgery or in unresectable tumors, has been chemotherapy. Although the only FDA-

approved frontline therapy is pemetrexed with platinum (cisplatin or carboplatin) [10], other 

chemotherapeutic agents including gemcitabine and vinorelbine have also been used [11]. 

Radiotherapy is being used to the surgical wound to prevent tumor seeding (prophylactic 

radiotherapy) after surgery, or in the palliative setting [12]. To date, the outcomes of 

multimodality therapy regimens have been disappointing with modest survival benefit of 

9-17 months, emphasizing the need for more effective treatments [13,14].

Chimeric Antigen Receptors (CARs)

Chimeric antigen receptors (CARs) are engineered T cell receptor-like molecules whose 

antibody-based extracellular targeting moieties provide exquisite specificity to tumor 

associated antigens (TAAs) and result in T cell activation in a predictable fashion. CARs can 

bind directly to a variety cell surface targets (including proteins, lipids and carbohydrates), 

independently of MHC presentation of the antigen and provide thus a wide targeting 

repertoire [15]. Intracellularly, the CAR’s main component is the CD3ζ activating signaling 

domain, with additional costimulatory domains fused that provide lasting T cell activation 

and survival [15,16]. The extra- and intra-cellular domains are fused together with 

appropriate spacer and transmembrane molecules. The multiple design options resulted in 

“generations” of CARs. “First generation” CARs consist of an extracellular domain that 

binds to the tumor antigen via a single-chain variable antibody fragment (scFv) that is fused 

to a CD3ζ intracellular activating domain [17]. “Second generation” CARs have ccommonly 

incorporated on co-stimulatory domain, like CD28 and 4-1BB, to the primary signaling 

domain CD3ζ [17]. CARs with combined co-stimulatory domains are termed “third 
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generation”. The addition of one or more co-stimulatory domains led to enhanced overall 

CAR T cell effector function, increased T-cell proliferation and persistence, delayed 

apoptosis, and markedly improved anti-tumor efficacy in vivo [18,19]. “Fourth generation” 

CARs, termed TRUCK (T cells Redirected for Universal Cytokine-mediated Killing) CARs 

have the ability to release transgenic ‘payload’ (cytokines, enzymes, co-stimulatory ligands) 

upon CAR T cell activation [20]. The four generations of CAR designs are drawn in Figure 

1.

Other CAR T cell designs include: a) Two co-expressed CARs so that two TAAs on a tumor 

cell can be synchronously recognized [21], b) A bispecific CAR (TanCAR) that transmits 

the activating signal upon engagement of either antigen 1 or antigen 2 or both [22], and c) an 

inhibitory CAR (iCAR) that provides a blocking signal upon antigen binding [23].

CARs can be inserted into autologous T cells using viral (lentiviral or retroviral) or non-viral 

(transposon) gene transfer systems to achieve permanent CAR expression or using 

messenger RNA (mRNA) electroporation to achieve transient expression for toxicity 

assessment [24,25]. Following transduction, the produced CAR T cells are expanded ex vivo 
in specialized gene transfer facilities and re-infused to the patient, either systemically or 

regionally, as a therapeutic intervention. CARs targeting the B-cell antigen CD19, have 

shown dramatic results in clinical trials for a number of hematologic B cell malignancies 

(ALL, CLL, and lymphoma) [26-28], and have provided the “proof of principal” rationale 

for CAR T cell development in a variety of solid tumors, including MPM [18]. A 

requirement for successful CAR T cell therapy, however, is a specific and highly expressed 

candidate TAA. In MPM, two such candidate target TAAs are currently being investigated in 

clinical trials: mesothelin, which is overexpressed on the tumor cells, and fibroblast 

activation protein (FAP) that is overexpressed on tumor stromal cells [18].

Mesothelin-targeting CARs

Mesothelin is a cell-surface glycoprotein that is expressed at low levels on normal tissues 

whereas it is overexpressed in the majority of MPM, as well as in lung, pancreatic, and 

ovarian carcinomas [29]. Mesothelin is an especially appealing target antigen since several 

preclinical and clinical studies found that it was involved in the malignant transformation of 

tumors and had a clear association with tumor aggressiveness, which led to local invasion 

and eventual metastasis [30,31]. Given its overexpression in MPM, versus limited expression 

on normal mesothelial cells of the pleura, pericardium, peritoneum, and tunica vaginalis, 

mesothelin-targeting CARs have been extensively studied in the preclinical and clinical 

setting.

Based on potent anti-tumor effects observed in preclinical studies using mRNA 

electroporation [32], an initial study focusing on toxicity assessment was conducted 

(NCT01355965) at the University of Pennsylvania, US, using T cells that only transiently 

expressed the second-generation murine anti-mesothelin CAR that contained the CD3ζ and 

41BB signalling domains [24,33]. No patient in this phase I safety trial demonstrated “on 

target, off tumor” toxicity (pleuritis, peritonitis, pericarditis) from CAR mesothelin T cell 

infusion; however, no evident clinical responses were attained [18,24]. Interestingly, an 
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immediate serious anaphylactic reaction was noted in one patient during a delayed 

mesothelin CAR T cell infusion that was attributed to the immunogenicity of the murine SS1 

scFv used in the CAR construct [33]. Given safety confirmation with transient CAR 

mesothelin expression, a second phase 1 trial (NCT02159716) was conducted in 15 patients 

with mesothelioma, ovarian cancer and pancreatic cancer using a lentiviral transduction 

vector expressing the same murine-based anti-mesothelin second generation CAR [34]. In 

this trial, two different doses of T cells were administered and cyclophosphamide was added 

as a lymphodepletion agent in some cohorts. The mesothelin CAR T cells were well 

tolerated and CARexpressing cells in the blood could be detected using qPCR for about 30 

days. Cyclophosphamide pre-treatment enhanced CART-meso expansion but did not 

improve persistence beyond 28 days [34]. Unfortunately, limited clinical activity was 

reported, with best overall response being stable disease in 11/15 patients [34]. A third trial 

has been initiated at the University of Pennsylvania using a more active, fully human anti-

mesothelin CAR, with addition of cyclophosphamide and using different routes of 

administration (intravenous and intrapleural respectively) aiming in overall enhanced CAR T 

cell persistence and efficacy (NCT03054298).

Investigators at the Memorial Sloan Kettering are also conducting mesothelin-targeting CAR 

T cell trial for the treatment of malignant pleural disease, including MPM (NCT02414269). 

Their approach is based on preclinical studies in an orthotopic MPM mouse model showing 

potent and long-lasting antitumor efficacy of intrapleurally-administered mesothelin CAR T-

cell therapy [35]. This phase I/II clinical trial uses a CAR with a human-derived anti-

mesothelin scFv and a CD3Z/CD28 signalling domain transduced using a retroviral vector 

and is being administered intrapleurally in patients with primary or secondary pleural 

malignancies, with MPM being the primary target population. A subset of the MPM patient 

cohort is also subsequently administered Pembrolizumab, a PD-1 checkpoint inhibitor, to 

test whether it prolonged the activity of CAR T cell therapy. Preliminary results from 27 

patients (25 of whom had MPM) were presented at the 2019 American Society of Clinical 

Oncology (ASCO) meeting and showed that, of the patients who received 

cyclophosphamide, CAR-T cell therapy, and who had at least 3 doses of Pembrolizumab, 

63% of patients achieved either a partial response or a complete response [36]. Additionally, 

in these patients, the CAR T cells persisted in the pleural fluid for up to 42 weeks [36]. This 

promising trial is currently recruiting. A summary of all mesothelin-targeting CAR T cell 

clinical trials is summarized in Table 1 below.

Other CARs Targeting Tumor Antigens in MPM Being Studied Preclinically

Pan-ErbB ‘T4’ CAR

Klampatsa et al. investigated the efficiency of a CAR targeting the four members of the 

ErbB family (EGFR, HER2, ErbB3, ErbB4) in MPM [37]. They firstly demonstrated 

expression of EGFR and ErbB4 in a cohort of MPM histological samples, which provided 

the rationale for testing this CAR in MPM [37]. To redirect T-cell specificity against the 

ErbB family, they engineered a second generation CAR named T1E28Z [37]. The CAR is 

co-expressed with a chimeric cytokine receptor named 4ab that delivers an interleukin 

(IL)-2/IL-15 signal upon binding of IL-4, thereby enabling the selective enrichment of CAR 
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T-cells during ex vivo expansion [37]. The study used MPM patients’ blood and showed that 

successful transduction and enrichment of CAR T-cells was achieved in all patients, either at 

diagnosis or following chemotherapy [18]. Functionality of the expanded cells was indicated 

both in vitro and in vivo. These data provided support for clinical evaluation of intra-cavitary 

T4 immunotherapy in MPM patients in a Phase 1 clinical trial, subject to funding 

acquisition.

5T4 CAR

The oncofetal cell surface glycoprotein, 5T4, is overexpressed in numerous malignancies, 

including testicular, breast and colon cancer, while its expression in normal tissues is 

restricted to specialized epithelial cells [38], making it another promising immunotherapy 

target. Recently, it was reported that 5T4 was also expressed in a very high percentage of 

MPM cell lines and biopsies and pleural fluid samples [39]. Interestingly, 5T4-specific 

CD8+ T-cells were able to kill four out of six HLA-A2+ MPM cell lines but not an HLA-

A2– cell line, demonstrating immune recognition of MPM-associated 5T4 antigen at the 

effector T-cell level [39]. Given that a 5T4 CAR has recently been generated and shown to 

efficiently kill 5T4-expressing nasopharyngeal carcinoma cells in vitro [40], 5T4 CARs 

represent a promising therapeutic strategy for MPM.

Chondroitin sulfate proteoglycan CARs

The cell surface proteoglycan chondroitin sulphate proteoglycan 4 (CSPG4) has been found 

to be overexpressed MPM where it has been reported that CSPG4 was overexpressed in 6 

out of 8 MPM cell lines, and in 25 out of 41 MPM biopsies [41]. In 2014, investigators from 

the National Cancer Institute in the United States constructed four 2nd generation CARs, 

each from a different murine monoclonal antibody, linked to the CD28 co-stimulatory 

domain and the intracellular T cell receptor signalling chain CD3ζ [24,42]. Donor T cells 

transduced with these CARs demonstrated cytokine release and cytolytic function when co-

cultured with several tumor cell lines, including MPM [42]. The authors concluded that 

CSPG4 is an attractive target for CAR T-cell therapy, yet some issues were raised about 

lowlevel expression of this protein in normal small bowel samples [42].

MET CAR

MET is a single pass tyrosine kinase receptor, normally expressed by cells of epithelial 

origin, but abnormally activated and overexpressed in a variety of cancers, including MM 

[43,44]. Thayaparan et al. engineered MET-specific CARs in which a CD28+CD3ζ 
endodomain was fused to one of three peptides from the N and K1 domains of hepatocyte 

growth factor (HGF), the minimum MET binding element present in HGF [45]. The 

developed constructs were demonstrated to show cytotoxicity against MET-expressing MPM 

cell lines in vitro and in an orthotopic (abdominal) tumor model in vivo, with no adverse 

effects.

CARs Targeting Non-Tumor Antigens in MPM

In addition to tumor cell-specific antigens, it has been proposed that CARs that target 

essential components of the tumor-associated stroma, such as fibroblasts or endothelial cells, 
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might also be valuable to enhance anti-tumor activity [18]. There are multiple potential 

advantages to this approach: 1) stromal cells are more genetically stable and less likely to 

lose antigen expression, 2) attacking the stromal components may alter the tumor 

microenvironment to improve standard chemotherapeutic or ACT efficacy, and 3) it could be 

used on multiple different tumor types [18]. Two proposed stromal candidates are fibroblast 

activation protein (FAP) and vascular endothelial growth factor receptor 2 (VEGFR2), of 

which FAP is being explored in MPM.

FAP is a transmembrane serine protease, which is highly expressed in the cancer-associated 

stromal cells (CASCs) of virtually all epithelial cancers with low expression on normal cells 

[46]. FAP is overexpressed in all three major MPM subtypes including epithelioid, 

sarcomatoid, and biphasic [47]. Figure 2 shows an example of FAP staining in two 

mesothelioma tumors.

Preclinical studies have demonstrated that CAR T cells targeted to murine FAP have anti-

tumor efficacy in MPM models with minimal toxicity [46]. An anti-human directed FAP 

CAR with the CD3ζ and CD28 signaling domains was produced at the University of Zurich 

and shown to induce killing of tumor cells expressing human FAP [47]. Based on these 

preclinical studies, this group has initiated a phase I clinical trial to evaluate the safety of 

administering FAP-redirected T cells intrapleurally to patients with MPM (NCT01722149) 

[48]. Preliminary results presented at the European Society of Molecular Oncology (ESMO) 

Congress in Autumn 2019 showed that, in 3 MPM patients treated, there was good tolerance 

of treatment and some persistence of CAR-T cells was seen. With a median follow-up of 18 

months, 2 out of 3 patients were alive [49].

The Future: CAR Augmentation Strategies to Overcome the Challenges of 

MPM TME

To date, the success of CAR T cells seen in hematologic malignancies has not yet been 

reproduced in solid tumors and successful MPM treatment with CAR T cells will 

doubtlessly be challenging. This will be due to multiple mechanisms that include insufficient 

T cell trafficking to the tumor, CAR T cell suppression due to soluble mediators (like 

adenosine, TGFβ, and prostaglandin E2), upregulation of checkpoint inhibitors (like PD1) 

on the CARs, and CAR suppression due to intrinsic inhibitory T cell programs [50]. In 

addition, TAA expression heterogeneity and immune escape could also be potential issues.

Many groups are developing approaches aiming to overcome these hurdles. Combination of 

CAR T cells with systemic drugs that affect immune function in general, such as checkpoint 

blockade using antibodies [51], inhibitors of immunosuppressive agents, like indoleamine 

2-3 dioxygenase (IDO) [52], adenosine, PGE2, or immunosuppressive cell types (like CD4 

T-regulatory cells) have been explored. The Adusumilli group has investigated the effect of 

PD-1/PD-L1 mediated T-cell exhaustion on mesothelin CAR T cells using an orthotopic 

mouse model of MPM [53]. Their study demonstrated that, following repeated antigen 

exposure, CAR T cells become exhausted and non-functional [54]. This was attributed to 

PD-1 upregulation on CAR T cells, with corresponding tumor cell upregulation of PD-L1 

and PD-L2 in response to effector cytokines exposure, and they demonstrated that exhausted 

Klampatsa and Albelda Page 6

J Cell Immunol. Author manuscript; available in PMC 2020 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01722149


CAR T cells can be rescued by PD-1 checkpoint blockade [54]. CARs can also be combined 

with other types of immunotherapy such as oncolytic viruses or whole-cell vaccines.

The ability to genetically manipulate CARs allows the possibility of generating improved 

CARs by inserting or removing specific genes, thus adding an additional level of opportunity 

and excitement. Aiming to improve CAR T cell trafficking, Moon et al. explored the efficacy 

of genetically enhancing a matched chemokine receptor (CCR2b) that is expressed on 

mesothelin CAR T cells in response to measuring elevated levels of the corresponding 

tumor-secreted chemokine (CCL2) by the MPM cells [55]. This preclinical in vivo study 

demonstrated that transduction of CCR2b onto mesothelin-targeting CAR T cells was able to 

significantly enhance tumor localization, infiltration, and eradication [55]. Liu et al. 

successfully demonstrated the utility of combining CAR T cells with a PD1/CD28 chimeric 

switch-receptor to overcome the suppressive effects of this inhibitory regulator [56]. This 

switch-receptor fuses an extracellular PD-1 domain to a cytoplasmic CD28 domain, which 

stimulates the T-cell upon binding to the PD-L1 ligand, thereby activating, rather than 

inhibiting, T-cell effector function [56]. Administration of PD1CD28 resulted in 

significantly increased levels of T-cell infiltration, cytokine secretion, and lytic function with 

long-term statistical reductions in tumor volume [56].

Other examples include: TGFβ blockade expressing a decoy receptor [57], inhibition of 

adenosine and PGE2 immunosuppressive effects by inserting a small peptide that prevents 

activation of protein kinase A [58], delivery of activating cytokines (like IL-12) [20] and 

improved CAR T cell function by using cytoplasmic domains derived from natural killer 

cells [59]. Many other approaches are actively being pursued.

Conclusion

The exciting successes seen in hematologic malignancies have prompted development of 

CAR T-cell therapy for solid tumors, such as MPM. Mesothelioma has two potential 

advantages. First, a relatively safe and specific TAA (mesothelin) has been identified. 

Second, mesothelioma may provide an opportunity to use local therapy by intrapleural or 

intratumoral injection. However, although clinical trials of CARs for use in mesothelioma 

are underway, clear success of CAR T cells in any solid tumor has not yet been achieved. 

Accordingly, the results of these trials and knowledge gained from CAR T cell trials in other 

solid tumors will need to be used iteratively to improve the next series of trials, hopefully 

eventually leading to adoptive T cell transfer as an important part of the MPM therapeutic 

armamentarium.
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Figure 1: 
Generations of chimeric antigen receptor (CAR). The single chain scFv- derived from the 

heavy (VH) and light (VL) antigen-binding domains of antibodies- is fused through a hinge 

and a transmembrane domain to CD3ζ, the primary signalling domain from the T-cell 

receptor (TCR) complex; this is the first-generation CAR. Additional intracellular domains 

(such as CD28 and 41BB) added for costimulatory signals, to yield second- and third- 

generation CARs. In addition to costimulatory signals, the fourth generation CAR (also 

referred to as “TRUCK”) incorporates transgenic expression of stimulatory molecules 

(cytokines, enzymes, or ligands).
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Figure 2: 
Fibroblast Activating Protein (FAP) immunohistochemical staining in MPM. Histological 

slide of an MPM tumor shows dual staining of tumor cells (red; cytokeratin) and cancer-

associated fibroblasts staining (brown; FAP).
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