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BACKGROUND
Inherited mutations in DNA-repair genes such as BRCA2 are associated with in-
creased risks of lethal prostate cancer. Although the prevalence of germline muta-
tions in DNA-repair genes among men with localized prostate cancer who are 
unselected for family predisposition is insufficient to warrant routine testing, the 
frequency of such mutations in patients with metastatic prostate cancer has not 
been established.

METHODS
We recruited 692 men with documented metastatic prostate cancer who were un-
selected for family history of cancer or age at diagnosis. We isolated germline DNA 
and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes 
associated with autosomal dominant cancer-predisposition syndromes.

RESULTS
A total of 84 germline DNA-repair gene mutations that were presumed to be del-
eterious were identified in 82 men (11.8%); mutations were found in 16 genes, 
including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men 
with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation 
frequencies did not differ according to whether a family history of prostate cancer 
was present or according to age at diagnosis. Overall, the frequency of germline 
mutations in DNA-repair genes among men with metastatic prostate cancer sig-
nificantly exceeded the prevalence of 4.6% among 499 men with localized prostate 
cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% 
in the Exome Aggregation Consortium, which includes 53,105 persons without a 
known cancer diagnosis (P<0.001).

CONCLUSIONS
In our multicenter study, the incidence of germline mutations in genes mediating 
DNA-repair processes among men with metastatic prostate cancer was 11.8%, 
which was significantly higher than the incidence among men with localized 
prostate cancer. The frequencies of germline mutations in DNA-repair genes 
among men with metastatic disease did not differ significantly according to age 
at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer 
and others.)
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Carcinoma of the prostate is a com-
mon cancer with a wide spectrum of clini-
cal behavior that ranges from decades of 

indolence to rapid metastatic progression and 
lethality.1,2 Prostate cancer is also among the 
most heritable of human cancers, with 57% 
(95% confidence interval [CI], 51 to 63) of the 
interindividual variation in risk attributed to 
genetic factors.3 Thus far, genomewide associa-
tion studies have identified more than 100 com-
mon variants that account for approximately 
33% of the excess familial prostate cancer risk.4-7 
Mutations in other genes, including BRCA1, 
BRCA2, MSH2,8-10 and HOXB13,11 account for a 
small proportion of familial cases, with BRCA2 
mutations associated with 1.2 to 1.8% of pros-
tate cancer overall.9,12

Thus far, only mutations that disrupt the 
function of genes involved in repairing DNA 
damage through homologous recombination 
have been shown to be associated with the ag-
gressive clinical behavior of localized prostate 
cancer and with cancer-specific mortality.9,12-14 
The need for genetic prognostic markers is criti-
cal, because the clinicopathological diversity of 
prostate cancer has confounded efforts to de-
velop effective screening strategies that avoid 
overdetection and overtreatment yet capture can-
cers that are destined to affect survival.15 Per-
sons who are shown to have cancer-predisposi-
tion mutations in the germline may serve as 
sentinels for the identification of families at 
high risk. It should be noted that men with 
metastatic prostate cancer and DNA-repair gene 
mutations have been reported to have sustained 
responses to poly-ADP ribose polymerase (PARP) 
inhibitors and platinum-based chemotherapy.16,17

Although the prevalence of germline DNA-
repair gene mutations is low among men with 
localized prostate cancer who are unselected for 
family predisposition, the frequency of such 
mutations among men with metastatic prostate 
cancer has not been established. We recently 
reported an analysis of the spectrum of somatic 
aberrations that occur in metastatic prostate 
cancer, using whole-exome sequencing of meta-
static tumors.18 For comparison purposes, we 
also sequenced germline DNA exomes from 
these men and unexpectedly found that 8% car-
ried pathogenic germline mutations in DNA-
repair genes. This finding suggested that men 
with metastatic prostate cancer represent a popu-

lation that is enriched for heritable defects in 
DNA repair. To confirm this finding and to 
further ascertain the spectrum and prevalence of 
germline DNA-repair gene mutations in meta-
static prostate cancer, we recruited 542 addi-
tional men with a confirmed prostate cancer 
metastasis and used next-generation sequencing 
to analyze DNA-repair genes associated with 
autosomal dominant cancer-predisposition syn-
dromes.

Me thods

Study Populations

Seven case series of men with metastatic pros-
tate cancer across multiple institutions in the 
United States and United Kingdom, including a 
total of 692 patients, were analyzed. All the pa-
tients had a diagnosis of metastatic prostate can-
cer and were not selected on the basis of family 
history, age, or any knowledge of genetic back-
ground. The demographic characteristics of the 
men in each series are summarized in Table 1. 
Detailed information on the specific germline 
mutations and on clinical features of mutation 
carriers in each series is provided in Tables S1, 
S2, and S3 in the Supplementary Appendix, avail-
able with the full text of this article at NEJM.org.

Case Series 1, the Stand Up to Cancer–Pros-
tate Cancer Foundation (SU2C-PCF) International 
Prostate Cancer Dream Team discovery series, 
was made up of 150 patients for whom data 
were previously reported in the SU2C-PCF study 
of molecular stratification of metastatic prostate 
cancer.18 Case Series 2, the SU2C-PCF validation 
series, was made up of 84 patients who were 
newly enrolled in the SU2C-PCF study and for 
whom data had not been reported previously. 
Case Series 3, Royal Marsden Prostate Cancer 
Genomics series, included 131 patients who 
were considered for enrollment in clinical trials 
at the Royal Marsden Hospital from January 
2013 through July 2015. Case Series 4 consisted 
of 91 consecutive patients included in the Univer-
sity of Washington rapid autopsy program from 
1997 through 2013. Case Series 5 included 69 
consecutive patients who were enrolled in the 
Weill Cornell Medical College precision medicine 
program. Case Series 6 was made up of 43 con-
secutive patients from the University of Michi-
gan rapid autopsy program. Case Series 7, from 
the Memorial Sloan Kettering Cancer Center, 
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included 124 consecutive patients who were en-
rolled through the Memorial Sloan Kettering 
Integrated Mutation Profiling of Actionable Can-
cer Targets (MSK-IMPACT) study.

The protocols for these case series were ap-
proved by the local institutional review boards, 
and written informed consent was obtained from 
all patients at the local sites before enrollment. 
Correlative clinical data were collected at each 
site with the use of electronic patient records 
and were entered into deidentified databases. The 
study was designed by the Stand Up To Cancer–
Prostate Cancer Foundation International Pros-
tate Cancer Dream Team investigators. The study 
sponsors had no role in the design of the study, 
the collection or analysis of the data, or the 
preparation of the manuscript. The manuscript 
was written by four of the authors. All authors 
reviewed the manuscript, agreed to submit the 
manuscript for publication, and vouch for the 
accuracy and completeness of the data and for 
the fidelity of the study to the protocol.

Sequencing and Bioinformatics Analysis

For the analysis involving Case Series 1, 2, and 
6, whole-exome sequencing of germline and tu-
mor DNA was performed as described previ-
ously.18 Germline DNA from buccal swabs, buffy 
coats, or whole blood was isolated with the use 
of the QIAGEN DNeasy Blood and Tissue Kit. 
Whole-exome sequencing was performed on the 
Illumina HiSeq 2500 in paired-end mode.

For the analysis of Case Series 3, germline 
DNA was extracted from saliva or buccal swab 
samples with the use of the Oragene kit (DNA 
Genotek). Libraries for targeted sequencing 
were constructed with a customized GeneRead 
DNaseq Panel (Qiagen) covering 53 genes and 
run on the Illumina MiSeq sequencer, as de-
scribed previously.16

For the analyses of Case Series 4 and 5, germ-
line DNA was extracted from peripheral blood or 
nontumor tissue and from matched tumor DNA, 
as described previously.19 Targeted deep sequenc-
ing was performed with the BROCA panel of 53 
DNA-repair pathway genes. The bioinformatics 
pipeline has been described previously.20,21 For 
tumors from Case Series 5, analyses were per-
formed by means of exome sequencing, as de-
scribed previously.22 For Case Series 7, tumor 
and germline genomic sequencing was per-
formed as described previously, with the use of 

the MSK-IMPACT hybrid capture-based next-
generation sequencing assay.23,24

The mean sequencing depth of coverage was 
more than 100× for all case series, with the ex-
ception of sequencing of BAP1, BARD1, BRIP1, 
and FAM175A, which were not included on the 
Royal Marsden Hospital panel, and GEN1, which 
was not included on the Royal Marsden Hospital 
or Memorial Sloan Kettering panel. Data from 
the Royal Marsden Hospital and Memorial Sloan 
Kettering cases were censored for analyses of 
these genes. In addition, data were censored for 
CHEK2 in 158 cases for which exon sequencing 
coverage was incomplete. The depth of coverage 
for each gene according to site is provided in 
Table S4 in the Supplementary Appendix.

To compare our results with data from a large 
series of patients with localized prostate cancer, 
we analyzed public data from the Cancer Ge-
nome Atlas prostate cancer study.25 Paired-end 
reads (100 bp) were aligned to the hg19 refer-
ence human genome with the use of the Burrows–
Wheeler Aligner. Annotations were defined with 
ANNOVAR (http://annovar . openbioinformatics . org/ 
 en/  latest). Population allele frequencies were ex-
tracted from the Exome Aggregation Consortium 
ExAC Browser (http://exac . broadinstitute . org/  ), 
1000 Genomes (www . 1000genomes . org), and the 
single-nucleotide polymorphism database of the 
National Center for Biotechnology Information 
(dbSNP), version 138 (www . ncbi . nlm . nih . gov/ 
 projects/  SNP).

Interpretation of Variants

Our analysis focused on variants identified 
among 20 genes associated with autosomal 
dominant cancer-predisposition syndromes that 
involve maintenance of DNA integrity (Table 2). 
The pathogenicity of germline variants was de-
termined according to established American 
College of Medical Genetics and Genomics and 
Association for Molecular Pathology consensus 
criteria and International Agency for Research 
on Cancer guidelines.24,26 At least two indepen-
dent expert reviewers evaluated all variants 
against published literature and public data-
bases, including ClinVar and variant-specific 
databases, in addition to population frequency 
databases, including 1000 Genomes and the 
Exome Aggregation Consortium. Expected high-
penetrance or moderate-penetrance variants clas-
sified as mutations that are pathogenic or likely 
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to be pathogenic are reported here. Low-pene-
trance variants, such as CHEK2 p.I157T, were 
excluded.

Statistical Analysis

Associations between DNA-repair gene mutation 
status and age, race, or Gleason score strata 
were evaluated with the use of two-sided Fisher’s 
exact tests. The frequencies of DNA-repair gene 
mutations among the 692 patients with meta-
static prostate cancer were evaluated relative to 
the expected frequencies from the Exome Ag-
gregation Consortium (53,105 persons) or the 
Cancer Genome Atlas cohort (499 persons) with 
the use of two-sided exact binomial tests. We 
also performed analyses in which the 150 men 
from the previously reported Case Series 1 were 
excluded18 (Table S5 in the Supplementary Ap-
pendix). No adjustments were made for multiple 
comparisons; P values of less than 0.05 were 
considered to indicate statistical significance.

R esult s

Patient Characteristics

All 692 men in our analysis had documented 
metastatic prostate cancer, as determined by 
histologic evaluation of a tumor-biopsy speci-
men or surgical-resection specimen. The demo-
graphic characteristics of the men from each 
case series are shown in Table 1.

Germline DNA-Repair Gene Mutations

We assessed 20 genes that maintain DNA integ-
rity and have been associated with autosomal 
dominant cancer-predisposition syndromes (Ta-
ble 2), using whole-exome sequencing or targeted 
next-generation sequencing assays designed to 
interrogate the status of DNA-repair genes.27 Of 
the 692 men evaluated, 82 (11.8%) had at least 
one presumed pathogenic germline mutation in a 
gene involved in DNA-repair processes (Table 2). 
Mutation frequencies were similar across inde-
pendent case series (Table 3). The 84 germline 
mutations that were presumed to be pathogenic 
(2 men had mutations in 2 genes) included 79 
truncating mutations and 5 known deleterious 
missense mutations (Fig. 1, and Table S1 in the 
Supplementary Appendix). Mutations were iden-
tified in 16 different genes, including BRCA2 (37 
mutations [44% of total mutations]), ATM (11 
[13%]), CHEK2 (10 [12%]), BRCA1 (6 [7%]), RAD51D C
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(3 [4%]), and PALB2 (3 [4%]) (Fig. 2). Four genes 
had no clearly detrimental aberrations. One 
man had mutations in ATM and CHEK2, and one 
man had mutations in BRCA2 and CHEK2. The 
majority of men with DNA-repair gene muta-
tions for whom the Gleason score was available 
(73 men) had primary tumors with high scores 
(Gleason scores range from 2 to 10, with higher 
scores associated with worse clinical outcomes): 
56 men (77%) had a Gleason score of 8 through 
10, 15 men (21%) had a score of 7, and 2 men 
(3%) had a score of 6. We found no association 
between the presence of a germline DNA-repair 
gene mutation and an age at diagnosis of younger 
than 60 years versus 60 years or older (P = 0.90) 

or non-Hispanic white versus other race (P = 0.84). 
There was marginal evidence that the presence 
of a germline DNA-repair gene mutation was 
associated with a Gleason score of 8 through 10 
versus 7 or lower (odds ratio, 1.8; 95% confi-
dence interval [CI], 1.0 to 3.5; P = 0.04).

Family Cancer History

Information regarding family history was avail-
able for 72 of 82 men (88%) with presumed 
pathogenic mutations in DNA-repair genes and 
for 537 of 610 men (88%) without DNA-repair 
gene mutations. In both groups, 22% of the men 
(16 of 72 men with DNA-repair gene mutations 
and 117 of 537 men without such mutations) had 

Gene

Metastatic 
Prostate 
Cancer 

(N = 692)*

Exome 
Aggregation 
Consortium 

(N = 53,105)†

TCGA Cohort 
with Primary 

Prostate Cancer 
(N = 499)

Metastatic Prostate Cancer vs. 
Exome Aggregation Consortium

Metastatic Prostate Cancer 
vs. TCGA Cohort

No. of Mutations (% of Men)
Relative Risk 

(95% CI) P Value
Relative Risk 

(95% CI) P Value

ATM 11 (1.59) 133 (0.25) 5 (1.00) 6.3 (3.2–11.3) <0.001 1.6 (0.8–2.8) 0.12

ATR 2 (0.29) 43 (0.08) 0 3.6 (0.4–12.8) 0.11 — —

BAP1‡ 0 1 0 — — — —

BARD1‡ 0 38 (0.07) 1 (0.20) — — — —

BRCA1 6 (0.87) 104 (0.22) 3 (0.60) 3.9 (1.4–8.5) 0.005 1.4 (0.5–3.1) 0.32

BRCA2 37 (5.35) 153 (0.29) 1 (0.20) 18.6 (13.2–25.3) <0.001 26.7 (18.9–36.4) <0.001

BRIP1‡ 1 (0.18) 100 (0.19) 1 (0.20) 0.9 (0.02–5.3) 1.0 0.9 (0.0–4.9) 1.0

CHEK2‡ 10 (1.87) 314 (0.61) 2 (0.40) 3.1 (1.5–5.6) 0.002 4.7 (2.2–8.5) <0.001

FAM175A‡ 1 (0.18) 52 (0.10) 0 1.8 (0.05–10.1) 0.42 — —

GEN1‡ 2 (0.46) 42 (0.08) 0 5.8 (0.7–20.8) 0.048 — —

MLH1 0 11 (0.02) 0 — — — —

MRE11A 1 (0.14) 36 (0.07) 1 (0.20) 2.1 (0.1–11.8) 0.38 0.7 (0.0–4.0) 1.0

MSH2 1 (0.14) 23 (0.04) 1 (0.20) 3.3 (0.1–18.5) 0.26 0.7 (0.0–4.0) 1.0

MSH6 1 (0.14) 41 (0.08) 1 (0.20) 1.9 (0.05–10.4) 0.41 0.7 (0.0–4.0) 1.0

NBN 2 (0.29) 61 (0.11) 1 (0.20) 2.5 (0.3–9.1) 0.19 1.4 (0.2–5.2) 0.40

PALB2 3 (0.43) 65 (0.12) 2 (0.40) 3.5 (0.7–10.3) 0.05 1.1 (0.2–3.1) 0.76

PMS2 2 (0.29) 56 (0.11) 1 (0.20) 2.7 (0.3–9.8) 0.17 1.4 (0.2–5.2) 0.40

RAD51C 1 (0.14) 59 (0.11) 2 (0.40) 1.3 (0.03–7.2) 0.54 0.4 (0.0–2.0) 0.54

RAD51D 3 (0.43) 40 (0.08) 1 (0.20) 5.7 (1.2–16.7) 0.02 2.2 (0.4–6.3) 0.16

XRCC2 0 23 (0.04) 0 — — — —

*  The denominators for genes for which data were censored were 561 (BAP1, BARD1, BRIP1, and FAM175A), 437 (GEN1), and 534 (CHEK2).
†  Data are for the persons in the Exome Aggregation Consortium, minus the patients included in the TCGA studies. The percent with a muta-

tion was calculated on the basis of the total number of persons for whom sequence coverage was adequate for the given allele, which dif-
fered slightly from the total of 53,105 persons, depending on the specific mutation.

‡  Data for metastatic cases with inadequate sequencing for this gene were censored.

Table 2. Germline Mutations in Metastatic Cases as Compared with the General Population and Primary Cases.
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a first-degree relative with prostate cancer (P = 1.0). 
However, 51 of the 72 patients with DNA-repair 
gene mutations (71%) had a first-degree relative 
with cancer other than prostate cancer, whereas 
270 of the 537 patients without DNA-repair gene 
mutations (50%) had a first-degree relative with 
cancer other than prostate cancer (odds ratio, 
2.4; 95% CI, 1.4 to 4.3; P = 0.001). Inspection of 
extended pedigree information of probands with 
DNA-repair gene mutations revealed affected 
relatives with breast cancer (24 probands), ovar-
ian cancer (10), leukemia and lymphoma (6), 
pancreatic cancer (7), or other gastrointestinal 
cancers (18).

Somatic Mutations in DNA-Repair Genes

Tumor sequencing data were available for 61 of 
the men with germline DNA-repair gene muta-
tions. For 36 (59%) of these men, the second 
allele was clearly aberrant, in that either a sec-
ond loss-of-function mutation or a gene-copy 
loss was present (Table S1 in the Supplementary 
Appendix). A study of cancer-predisposition 
genes in children with cancer showed that 66% 
of children with a presumed pathogenic gene 
mutation had a second “hit” somatic aberration 
within the tumor genome,28 and a study involv-
ing patients with advanced cancer showed that 
21.4% of patients with a presumed pathogenic 
gene mutation had a somatic second-allele aber-
ration.23 Although a subset of germline loss-of-
function mutations may not represent the causal 
event in the genesis of a given tumor, inactiva-
tion of the remaining allele may occur through 
epigenetic mechanisms or other processes.29

Germline Mutations in DNA-Repair Genes in 
Localized Prostate Carcinomas

We compared the frequency of germline DNA-
repair gene mutations among men with meta-
static prostate cancer with the frequency of such 
mutations among men with localized prostate 
cancer. In the Cancer Genome Atlas prostate 
cancer study,25 which included 499 men for 
whom germline whole-exome sequencing data 
were available, 23 men (4.6%) had germline mu-
tations in DNA-repair genes (P<0.001 for the 
comparison with metastatic disease). In addi-
tion, 6 men harbored the BRCA2 K3326* poly-
morphism, a C-terminal truncating variant that 
is unlikely to be associated with a predisposition 
to prostate cancer.30 It should be noted that to 

accommodate Cancer Genome Atlas require-
ments, the majority of tumors had high-risk 
characteristics: 90% were clinical stage T2c or 
greater, and 91% of the carcinomas had a Glea-
son score higher than 6, which far exceeds the 
approximately 30% of cancers with a Gleason 
score higher than 6 that was reported among 
men whose cancer was diagnosed by screen-
ing.31-33 Presumed pathogenic mutations in DNA-
repair genes were identified in 2 of 45 men (4%) 
who had cancer with a Gleason score of 6, in 9 
of 249 men (4%) who had cancer with a Gleason 
score of 7, and in 12 of 205 men (6%) who had 
cancer with a Gleason score of 8, 9, or 10 
(P = 0.37 for trend). Four of 162 men (2%) with 
localized low-to-intermediate–risk tumors and 
19 of 337 men (6%) with localized high-risk tu-
mors, as categorized according to National Com-
prehensive Cancer Network risk criteria,34 had 
germline DNA-repair gene mutations (Table 1). 
The odds of DNA-repair gene mutations being 
present among men with metastatic prostate 
cancer differed significantly from the odds 
among men with localized low-to-intermediate–
risk tumors (odds ratio, 5.3; 95% CI, 1.9 to 20.2; 
P<0.001) or among those with high-risk tumors 
(odds ratio, 2.2; 95% CI, 1.3 to 4.0; P = 0.002) 
(Table S6 in the Supplementary Appendix). As 
observed in men with metastatic prostate can-
cer, there was no association between the pres-
ence of a germline mutation in a DNA-repair 
gene and an age at diagnosis of younger than 

Case 
Series Description Patients

Patients with 
Mutations

no. no. (%)

1 Stand Up To Cancer–Prostate Cancer 
Foundation discovery series

150 15 (10.0)

2 Stand Up To Cancer–Prostate Cancer 
Foundation validation series

84 9 (10.7)

3 Royal Marsden Hospital 131 16 (12.2)

4 University of Washington 91 8 (8.8)

5 Weill Cornell Medical College 69 7 (10.1)

6 University of Michigan 43 4 (9.3)

7 Memorial Sloan Kettering Cancer 
Center

124 23 (18.5)

Total 692 82 (11.8)

Table 3. Germline DNA-Repair Gene Mutations in Seven Metastatic Prostate 
Cancer Case Series.
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60 versus 60 years of age or older (P = 0.28) or 
non-Hispanic white versus other race (P = 0.39).

Germline Mutations in DNA-Repair Genes in 
the Population

To estimate the population frequencies of germ-
line mutations in DNA-repair genes, we analyzed 
exome data compiled from 53,105 persons in-
cluded in the Exome Aggregation Consortium. 
We excluded data from persons with cancer who 
had been included in the Cancer Genome Atlas 
studies, the inclusion of which could have biased 
the comparisons with men with prostate cancer. 
The odds of any deleterious DNA-repair gene 
mutation being present in men with metastatic 
prostate cancer differed significantly from the 
odds in the Exome Aggregation Consortium 
population (odds ratio, 5.0; 95% CI, 3.9 to 6.3; 
P<0.001); a similar result was obtained when 
men from the previously reported Case Series 1 
were excluded (odds ratio, 5.2; 95% CI, 4.0 to 
6.8; P<0.001) (Table S5 in the Supplementary 
Appendix). The relative risk of mutations in in-
dividual DNA-repair genes among men with 
metastatic prostate cancer, as compared with 
men in the Exome Aggregation Consortium 
population, was substantial, ranging from 18.6 
(95% CI, 13.2 to 25.3; P<0.001) for BRCA2 to 3.1 
(95% CI, 1.5 to 5.6; P = 0.002) for CHEK2 (Table 2).

Discussion

Inherited and acquired defects in DNA damage 
repair are key mechanisms in the genesis of 
malignant tumors. The detection of mutations 
in DNA-repair genes identifies persons and 
families who have a predisposition to cancer and 
defines cancer subtypes that have distinct vul-
nerabilities to specific therapeutics.35 The ascer-
tainment of germline mutations in DNA-repair 

genes in men with prostate cancer has several 
important clinical implications. First, the recent 
finding that pharmacologic inhibitors of PARP1 
induce substantial objective responses in pa-
tients with metastatic prostate cancer expressing 
homologous recombination DNA-repair defects 
provides a clear treatment pathway in accor-
dance with precision medicine strategies.16 These 
tumors also appear to be responsive to platinum-
based chemotherapy,17 as has been documented 
for cancers of the ovary and breast in carriers of 
BRCA1 and BRCA2 mutations.36,37 Second, the 
identification of a germline mutation in a DNA-
repair gene provides information that is key to 
relatives, both male and female, and that can 
prompt “cascade” counseling to identify cancer 
predisposition and deploy risk-reduction strategies. 
Prospective studies assessing the prognostic and 
predictive significance of mutations in DNA-
repair genes with regard to clinical outcomes 
are now needed to inform personalized care.

The significant family history of nonprostate 
cancers among men with mutations in DNA-
repair genes was largely accounted for by breast, 
ovarian, and pancreatic cancers, in which muta-
tions in DNA-repair pathways are known. The 
possible association between mutations in DNA-
repair genes and familial hematologic and gas-

Figure 2. Distribution of Presumed Pathogenic Germline Mutations.

Shown are mutations involving 16 DNA-repair genes. Four genes did not 
have any pathogenic mutations identified and are not included in the distri-
bution.

BRCA2, 44%

ATM, 13%

CHEK2, 12%

BRCA1, 7%

PALB2, 4%

RAD51D, 4%

ATR, 2%
NBN, 2%

PMS2, 2% 
GEN1, 2%

MSH2, 1%
MSH6, 1%

RAD51C, 1%

BRIP1, 1%

MRE11A, 1%

FAM175A, 1%

Figure 1 (facing page). Presumed Pathogenic Germline 
Mutations.

Locations of mutations and domains in proteins encoded 
by 16 predisposition genes are shown by lollipop struc-
tures, with the mutation type indicated by color. Protein 
domains are also distinguished by color. On the graph 
of each gene, the x axis reflects the number of amino 
acid residues, and the y axis represents the total num-
ber of mutations identified. Of the 20 genes analyzed, 
4 (BAP1, BARD1, MLH1, and XRCC2) had no presumed 
pathogenic germline mutations.
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trointestinal cancers requires further analysis of 
cosegregation in affected kindreds. As observed 
for BRCA1 and BRCA2 in breast cancer, mutations 
may be found in persons who do not have a 
known syndromic history.38,39 Thus, broader 
testing of patients with metastatic prostate can-
cer without regard to family history will increase 
the yield of actionable mutations identified, in a 
manner parallel to the recent inclusion of all 
patients with epithelial ovarian cancers for 
germline testing regardless of family history.40

This study has several limitations. First, al-
though efforts were made to standardize DNA-
sequencing analyses, direct comparability across 
institutions and with public data is not guaran-
teed. Second, we focused on clearly deleterious 
mutations in a selected set of DNA-repair genes; 
consequently, our findings may underestimate 
the true frequency of pathogenic events that in-
fluence the development of metastatic prostate 
cancer. Third, although patients across institu-
tions and in the control populations were un-
selected for family history, possible bias cannot 
be ruled out. Finally, our case series and the 
Cancer Genome Atlas study include few persons 
who were older than 70 years of age at diagnosis, 
and the incidence of germline DNA-repair gene 
mutations may differ in this older age group.

In conclusion, the 11.8% overall frequency of 
germline aberrations in genes responsible for 
maintaining DNA integrity in men with meta-
static prostate cancer is substantially higher 
than the 1.2 to 1.8% incidence of BRCA2 muta-
tions alone in localized prostate cancer9,12 or the 
7.3% incidence of mutations in 22 tumor-sup-
pressor genes in familial prostate cancer.14 Be-
cause the high frequency of DNA-repair gene 
mutations is not exclusive to an early-onset 
phenotype and is associated with clinically and 
histologically aggressive disease, with compel-
ling evidence for therapeutic relevance, it may be 

of interest to routinely examine all men with 
metastatic prostate cancer for the presence of 
germline mutations in DNA-repair genes.
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