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ABSTRACT

The genetic basis underlying the inherited risk of developing multiple myeloma 
(MM) is largely unknown. To examine the impact of rare protein altering variants on the 
risk of developing MM we analyzed high-coverage exome sequencing data on 513 MM 
cases and 1,569 healthy controls, performing both single variant and gene burden tests. 
We did not identify any recurrent coding low-frequency alleles (1–5%) with moderate 
effect that were statistically associated with MM. In a gene burden analysis we did 
however identify a promising relationship between variation in the marrow kinetochore 
microtubule stromal gene KIF18A, which plays a role in control mitotic chromosome 
positioning dynamics, and risk of MM (P =3.6x10−6). Further analysis showed KIF18A 
displays a distinct pattern of expression across molecular subgroups of MM as well 
as being associated with patient survival. Our results inform future study design and 
provide a resource for contextualizing the impact of candidate MM susceptibility genes.

INTRODUCTION

Multiple myeloma (MM) is a malignancy of 
plasma cells [1] for which there is an increasing 
incidence as the population ages. Case-control and 
cohort studies have consistently demonstrated a two to 
four-fold increased risk of MM in first-degree relatives 
of MM patients supporting the role of inherited 
susceptibility in tumour development [2].

Defining the genetic basis of this risk has proven 
difficult but recent genome-wide association studies 
(GWAS) have provided the first direct evidence for 
genetic susceptibility to MM, identifying risk single 
nucleotide polymorphisms (SNPs) at several independent 
loci [3-5]. Statistical modelling indicates that additional 
common variants with small effect should be identifiable 
by further GWAS. However, other types of variants should 

also be important and inference from studies of other 
cancers shows it is likely that rare, high-impact variants 
also contribute to the heritable risk of MM. Identifying 
such variants is important as this class of susceptibility 
can provide important insights into the molecular basis 
of familial and sporadic tumorigenesis. Furthermore, 
improved understanding of the molecular factors involved 
in tumorigenesis through such mechanisms has provided 
a basis for the rational development of targeted therapies 
for a number of cancers. While imputation broadens 
the accessible frequency spectrum of GWAS datasets, 
its fidelity is typically restricted to the detection of 
variants having minor allele frequencies >0.01. Other 
methodologies offer advantages over this and there is a 
strong rationale for searching for rare-disease associated 
alleles directly utilising high-throughput sequencing.

Since the exome is a highly enriched subset of 
the genome in which to conduct such screens, we have 
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searched for rare high impact variants influencing MM 
risk by analysing whole-exome sequencing (WES) data 
on 553 cases of MM and 1,609 UK controls.

RESULTS

We first examined individual recurrent variants 
with MAF ≤ 5% for an association with MM risk. No 
association was statistically significant after adjustment 
for multiple testing (i.e. P >2.02×10−6; Supplementary 
Table 1). The strongest association was observed 
for a synonymous variant rs13300554 in the gene 
SEC16A (hg19 chr9:g.139357939.A>G, risk allele 
G, MAF=0.014, OR=2.55, P=6.27×10−5). Relaxing 
criteria to include common variants the strongest 
association was provided by the SNP rs7188880 
(hg19 chr16:g.74664810.A>T, risk allele A, MAF 
=0.46, OR =1.41, P =2.15×10−6), a synonymous SNP 
mapping to the gene encoding RFWD3, which was of 
borderline significance. rs7188880 is in strong linkage 
disequilibrium with the missense variant rs7193541 
(r2=0.65, D’=0.96) previously shown by GWAS to 
influence MM risk [6].

We next examined the impact of rare alleles 
(MAF<1%) collectively within a gene on MM risk by 
aggregating SNVs and indels (‘T1’ test) in each gene 
and comparing the counts between cases and controls. 
Acknowledging the limitations of in-silico prediction to 
enrich for harmful alleles, we considered three nested 
classes of variant (see Methods): ‘disruptive’ (Class 1), 
‘predicted damaging’ (Class 2) and ‘all non-synonymous’ 
(Class 3).

No individual gene showed a significant 
enrichment of Class 1 variation in cases, the strongest 
association being shown for CC2D2B (P =4.2x10−4; 
Table 1). Furthermore, there was no global over-
representation of associations across Class 1 variants 
(e.g. 6 vs. 3.3 expected at P ≤0.01, Supplementary 
Figure 1C; Supplementary Table 2). While no gene 
was formally statistically significant across any class 
when adjusting for multiple tests (i.e. P >3.3×10−6; 
Table 1; Supplementary Table 2) we did identify 
a promising relationship with Class 3 variants in 
the marrow kinetochore microtubule stromal gene 
KIF18A gene (P =3.6×10−6; Supplementary Table 3 
details specific variants). For 14 of the 16 cases where 
matched tumor WES data was available there was no 
statistical evidence for preferential loss of wild-type 
allele in carriers (P = 0.19, one-sided binomial test). 
Analyzing Total Therapy and MRC-IX trial data, 
KIF18A expression was significantly elevated in the 
MAF/MAFB (MF) and overexpression of proliferation-
related genes (PR) subtypes (P =3.9×10−14 and P =0.019 
in Total Therapy and MRC-IX data sets, respectively; 

Figure 1A). The level of expression of KIF18A in 
normal plasma cells was also found to be lower than 
that seen in MM (P<0.001; Figure 1A). KIF18A 
expression is significantly correlated with the gene 
expression-based proliferation index (GPI) [7] in both 
data sets (Figure 1B). In addition, there is a significant 
association between high expression of KIF18A (top 
10% versus lower 90%) and poor outcome in the Total 
Therapy and MRC-IX trials (P<0.001 in both sets; 
Figure 1C). However, in a multivariate cox regression 
including MF and PR subgroup designation, elevated 
KIF18A expression, and GPI, KIF18A expression did 
not retain significance suggesting that proliferation is the 
primary independent prognostic factor. Pathway analysis 
revealed significantly increased activation of Cell Cycle 
and DNA replication pathways in samples with high 
expression of KIF18A.

Since many cancer susceptibility genes (CSGs) have 
pleiotropic effects, influencing the risk of different cancer 
types to varying degrees, we assessed a set of 114 well-
established CSGs for enrichment in mutations in cases 
versus controls. The strongest CSGs associations were 
provided by SOS1 (P =0.03), BUB1B (P = 0.002) and 
ABCB11 (P =0.001) for Classes 1, 2 and 3 respectively 
(Supplementary Table 2). Imposing a significance 
threshold of 4.4x10−4 to address the issue of multiple 
testing due to evaluating the 114 CSGs, no significant 
association was shown.

DISCUSSION

We report the first analysis of the contribution 
of rare disease-causing alleles to MM by analyzing 
germline WES data. Our results summarize observed 
variation in the largest MM germline sequencing 
study to date, thus providing an invaluable reference 
for future genetic and functional studies. We have 
identified KIF18A as a possible candidate for defining 
MM susceptibility. The proliferation arrest of MM 
cells out of niche has been shown to be associated 
with the widespread down regulation of mitotic and 
transcriptional genes [7], which includes KIF18A, 
hence variation in KIF18A has a strong biological 
basis for having a role in MM susceptibility a priori. 
Moreover elevated expression of KIF18A has been 
shown in other cancers to be associated with enhanced 
cell proliferation and predictive of poor prognosis [8] 
[9] [10].

Some regions of the genome are refractory to 
WES, hence we cannot exclude the possibility of 
disease-causing variants which could not be assayed. 
Accepting such a caveat a number of conclusions can 
be derived from our findings. First, the existence of 
rare recurrent protein altering variants with population 
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frequencies of 1% or greater and conferring a RR of 4.0 
seem implausible. Our analysis is however, based on UK 
data and does not exclude the possibility of this class 
of allele contributing to MM risk in populations with 
a more restricted allelic architecture. We acknowledge 
that our study had limited power to identify alleles 
with moderate penetrance. The use of familial cases 
provides a means of significantly empowering the 
search for rare disease-causing alleles for cancer. 

Although in concept an attractive strategy the number 
of familial MM cases are few, hence the practicality of 
adopting this as a means of gene identification for MM 
is inherently problematic. Such considerations should 
not however detract from performing WES or whole 
genome sequencing on MM families that potentially 
offer the prospect of discovering high-impact mutations 
likely to be highly informative for understanding MM 
biology.

Table 1: Summary of the gene burden results; genes are ordered by their minimum P-value (Pmin) in any of the 
3 classes 

Gene Pmin

Class 1 variants Class 2 variants Class 3 variants

P Ca. Co.
No. unique 

variants P Ca. Co.
No. unique 

variants P Ca. Co.
No. unique 

variants

Total Ca. Co. Total Ca. Co. Total Ca. Co.

KIF18A 3.6 × 10−6 - 0 0 0 0 0 1.5 × 10−1 2 2 4 2 2 3.6 × 10−6 16 7 13 10 6

GPRC5A 1.1 × 10−4 - 0 0 0 0 0 1.1 × 10−4 6 0 6 6 0 6.1 × 10−2 18 35 13 10 6

CNTN1 1.8 × 10−4 - 0 0 0 0 0 1.7 × 10−3 7 3 5 4 3 1.8 × 10−4 13 8 15 9 8

TMEM79 2.8 × 10−4 7.2 × 10−1 0 2 1 0 1 7.6 × 10−1 2 11 7 1 7 2.8 × 10−4 33 42 12 4 12

TBC1D17 3.3 × 10−4 - 0 0 0 0 0 6.2 × 10−4 11 7 7 6 3 3.3 × 10−4 15 12 13 9 8

OXA1L 4.1 × 10−4 4.5 × 10−3 14 16 3 1 3 7.9 × 10−4 18 19 8 4 6 4.1 × 10−4 38 59 16 10 13

CC2D2B 4.2 × 10−4 4.2 × 10−4 8 3 8 7 1 7.1 × 10−4 9 5 11 8 3 4.0 × 10−3 10 11 17 10 7

HSD11B2 4.5 × 10−4 - 0 0 0 0 0 1.2 × 10−1 1 0 1 1 0 4.5 × 10−4 5 0 4 4 0

ADAM29 4.5 × 10−4 3.0 × 10−2 2 0 2 2 0 4.5 × 10−4 5 0 4 4 0 1.7 × 10−2 10 12 14 8 9

RALGPS2 4.7 × 10−4 7.5 × 10−3 3 0 5 5 0 4.7 × 10−4 6 1 9 8 1 1.3 × 10−2 6 7 17 10 7

PRUNE2 4.7 × 10−4 1.4 × 10−2 7 6 3 2 2 7.4 × 10−3 41 78 31 17 25 4.7 × 10−4 74 149 76 40 60

ALDH1L2 5.1 × 10−4 4.6 × 10−2 5 5 6 4 4 5.1 × 10−4 18 19 21 15 14 2.6 × 10−3 19 27 27 16 19

ABCD4 5.7 × 10−4 - 0 0 0 0 0 5.7 × 10−4 8 3 6 5 2 1.7 × 10−1 10 20 14 7 9

CSMD2 5.9 × 10−4 - 0 0 0 0 0 3.3 × 10−2 19 34 13 8 9 5.9 × 10−4 47 76 41 24 27

SOX13 6.2 × 10−4 - 0 0 0 0 0 - 0 0 0 0 0 6.2 × 10−4 11 7 6 5 4

LPCAT2 6.4 × 10−4 - 0 0 0 0 0 6.4 × 10−4 6 1 2 2 1 6.4 × 10−2 15 28 6 3 5

PPY 6.4 × 10−4 - 0 0 0 0 0 2.2 × 10−3 5 1 2 2 1 6.4 × 10−4 6 1 3 3 1

ACTL6B 6.4 × 10−4 - 0 0 0 0 0 - 0 0 0 0 0 6.4 × 10−4 7 2 2 2 1

UNC13C 6.5 × 10−4 5.7 × 10−2 3 3 5 5 1 6.5 × 10−4 30 46 26 15 16 5.5 × 10−3 44 84 55 23 40

ABCA6 6.9 × 10−4 1.0 × 10−1 4 5 7 4 4 1.8 × 10−3 23 31 26 12 19 6.9 × 10−4 35 53 43 22 31

ABCB11 9.9 × 10−4 1.2 × 10−1 1 0 1 1 0 4.8 × 10−2 8 11 15 7 9 9.9 × 10−4 29 43 28 13 21

Significance threshold P = 3.3× 10−6; number of cases = 513; number of controls = 1569; full results are shown in 
Supplementary Table 1
Ca. = Cases; Co. = Controls
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Figure 1: KIF18A expression in the Total Therapy and MRC-IX (MRC Myeloma-IX) trials. (A) KIF18A expression for 
the seven established MM molecular subtypes [27]. TC classification groups are generated by molecular classification of patients based on 
unsupervised hierarchical clustering. Y-axis denotes normalized log2 KIF18A expression. On the boxplot the width of the boxes corresponds 
to the group size; the thick black line to the median; the vertical extremities of the boxes correspond to the lower and upper quartiles. The 
CD-1 and CD-2 groups relate to IgH translocation cases with activating CCND1 or CCND3, the CD-2 group is distinguished from CD-1 
by the expression of CD20 and PAX5. MS group defines upregulation of FGFR3 and/or MMSET, whilst the MF group is characterized by 
c-MAF or MAFB. LB group is defined by a low number of bone lesions. HY group that contains HD cases and PR group is characterized by 
the overexpression of cancer-testis antigens, cell cycle and proliferation-related genes. KIF18A is significantly highly expressed in subtypes 
MF and PR. The level of expression of KIF18A in normal plasma cells (NPC) is shown. (B) Relationship between gene expression-based 
proliferation index [7] (GPI) and KIF18A expression. (C) KIF18A expression and prognosis in MM. High expression (top 10%) of KIF18A 
is significantly associated with worse survival in the Total Therapy trial, and the MRC-IX trial data exhibits the same trend.
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MATERIALS AND METHODS

Patients

We analyzed WES data on 553 (307 male) patients 
with MM (mean age at diagnosis 65 years) that have been 
the subject of a previously reported study [11]. Briefly, the 
patients comprised 527 from the UK Medical Research 
Council (MRC) Myeloma XI trial and 260 from the UK 
MRC Myeloma IX trial. Germline DNA was extracted from 
EDTA venous blood samples obtained at diagnosis. Paired 
tumor DNA was extracted from CD138-sorted bone marrow 
samples where available [11]. WES of germline and tumor 
samples was performed using Agilent-Custom 53Mb Exome 
Capture (Agilent, Santa Clara, CA, USA) and Illumina 
HiSeq2000 technology (Illumina, San Diego, CA, USA).

Controls

The controls comprised 1,609 healthy individuals 
from the UK 1958 Birth cohort [12] - 961 from the 
ICR1000 dataset (EGAD00001001021) [13] and an 
additional 648 individuals all sequenced using Illumina 
TruSeq 62Mb expanded exome enrichment kit in 
conjunction with Illumina HiSeq2000 technology.

We analyzed germline WES data on 553 UK MM 
patients and 1,609 1958BC controls. Cases and controls 
had similar sequencing metrics (Supplementary Table 4). 
80 samples were excluded due to low-quality data or non-
northern European ancestry leaving 513 cases and 1,569 
controls for analysis.

Variant analysis pipeline

CASAVA (v.1.8.1, Illumina) was used to extract 
paired end fastq files, then Stampy and BWA [14] were 
used to align reads to human reference genome build 37 
(hg19). Alignments were processed using the Genome 
Analysis Tool Kit (GATK v3), according to best practices 
[15, 16]. Variants were called on the genomic region 
comprising the union of the TruSeq 62Mb capture and 
the Agilent-Custom 53Mb capture, plus 100bp padding 
at each boundary (Supplementary Table 5). Variants 
were called simultaneously across all case and control 
samples. For the loss of heterozygosity analysis, MM 
germline and tumor sample variants were called using 
Platypus [17]. The Variant Effect Predictor (VEP) was 
used to annotate each variant with its effect on canonical 
protein transcripts [18]. For the gene burden analysis if a 
variant received multiple relevant VEP annotations for a 
gene, we used only the single annotation deemed likely 
to have the most profound impact adopting the hierarchy: 
stop gained, frameshift, splice acceptor/donor variants, in-
frame insertion/deletion, and lastly missense, which were 
additionally annotated with predicted pathogenicity using 
the CONDEL algorithm [19]. All variants were annotated 
with their distance from simple repeats, and their 100mer 

alignability, using the UCSC browser [20]. ClinVar was 
used to check variants in promising genes for previously 
documented evidence of pathogenicity [21]. Linkage 
disequilibrium (LD) between variants was retrieved using 
the SNAP pairwise LD online tool with SNP data set 
‘1000 Genomes Pilot 1’ and population panel ‘CEU’ [22].

Sample quality control

Germline samples were excluded for the following 
reasons (Supplementary Table 6): (i) sex discrepancy 
(n =13, using PLINK); (ii) high missingness rate (n 
=43, >3 standard deviations (SDs) above the mean, 
calculated across a set of 6,100 SNVs catalogued by 
dbSNPv138, hereafter called ‘Common_SNV_Set’); (iii) 
high rate of heterozygosity (n =6, >3 SDs above mean, 
across Common_SNV_Set); (iv) non-Northern European 
ancestry (n =16, as assessed by principal component 
analysis using EIGENSTRAT with HapMap Project 
data as reference , Supplementary Figure 2); (v) sample 
duplication (n =2) [23].

Variant quality control

A variant was only considered to be present if the 
GATK genotype-quality was ≥30, the alternate depth was 
>3, and it was in an acceptable truth tranche (i.e. <99.5 
for SNVs and <99 for indels) as per GATK best practices.

Variant quality control for single variant analysis

For the single-variant analysis criteria were 
chosen to ensure the genomic inflation factor over the 
highest 90% of passing P-values remained close to unity 
(Supplementary Figure 1A). Variants were thus discarded 
if: (i) UCSC alignability ≠ 1 (100bp window size); (ii) 
variant within 10 bps of a simple repeat region; (iii) highly 
significant deviation from Hardy-Weinberg equilibrium 
(HWE) in cases or controls (P <10−5); (iv) no call rate 
significantly different between case-samples and control-
samples (P <10−5); (v) no call rate across either case or 
control samples >0.03. Furthermore for each variant the 
‘minimum possible’ P-value it could obtain was calculated 
based upon the number of variant alleles observed, by 
assuming all variant alleles were in cases. Variants with 
high minimum possible P-values were disregarded if 
this value was greater than the Bonferroni corrected 
significance threshold resulting from their inclusion 
leaving 24,752 for analysis.

Variant quality control for gene centric analysis

For the gene-centric analysis (sample, variant)-
pairs were excluded if a heterozygous site was called yet 
the read counts in support of the reference and alternate 
alleles were unbalanced (P <0.0001, χ2 test). Variants were 
excluded across all samples if the UCSC alignability ≠ 1, 
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the variant mapped within a simple repeat, the HWE P-
value across cases and controls was <10−8, or the no call 
rate across either case- or control-samples was ≥25%.

Publicly accessible control data

As additional sources of variant frequency in 
controls we referenced UK10K exome data (ALSPAC n 
=1,828 and TWINSUK n =1,754) and Exome Aggregation 
Consortium (ExAC– release 0.3, non-Finnish European 
population, excluding samples analyzed by The Cancer 
Genome Atlas).

Statistical analyses

Single variant association

The difference in allele frequency in cases and 
controls was assessed using Fisher’s exact test (two-
sided) implemented in R [24]. A P-value of <2.02x10−6 
was declared as significant; corresponding to a Bonferroni 
correction for 24,752 tests.

Gene-centric analysis

To test whether rare mutations contribute to MM we 
performed a collapsing burden test imposing a maximal 
MAF threshold of 1% (T1 test). We applied the T1 test 
for three nested classes of variant: Class 1) ‘disruptive’ 
(nonsense, frameshift); Class 2) ‘predicted damaging’ 
(disruptive + missense predicted to be damaging by 
CONDEL, and splice site acceptor/donors); Class 3) ‘all 
non-synonymous’ (predicted damaging + all sufficiently 
rare non-synonymous variants). To ensure nominal power 
to identify associations we restricted our analysis to genes 
featuring variants in ≥10 samples amongst cases and controls 
(Supplementary Figure 3). Exome-wide significance was 
considered to be P =3.3×10−6, corresponding to a Bonferroni 
correction for the 15,358 tests conducted when considering 
all classes. Significance levels were assessed using a one-
sided permutation test on case/control status.

Study power

Single variants were characterized by their minor 
allele frequency (MAF) and relative risk (RR); for 
(MAF, RR)-pairs discovery power was analysed by 
simulating 10,000 draws of case and control alleles from 
the population (Supplementary Figure 4A). Gene based 
analysis was treated in a similar manner to single-variants, 
except instead of using MAF, the “% of population with 
a Class 1 (or 2 or 3) variant in the gene-of-interest” was 
used (Supplementary Figure 4B).

Loss of heterozygosity

A search for loss of heterozygosity in paired tumor 
samples was performed using ExomeCNV (v1.4) [25].

Impact of pleiotropic effects of cancer 
susceptibility genes

In addition to performing an agnostic search for 
novel susceptibility genes, under the hypothesis that some 
MM cases might be ascribable to the pleotropic effects of 
known cancer susceptibility genes (CSG) we also adopted 
a focused assessment of the 114 established CSGs [26].

Expression analysis of KIF18A

The impact of KIF18A (221258_s_at) expression in 
MM was from Affymetrix Human Genome U133 2.0 Plus 
array data in plasma cells from Total therapy (GSE2658) 
and MRC Myeloma IX trial patients (NCBI GEO Datasets 
GSE31161) by TC classification. Differences in KIF18A 
expression between MM subtypes was assessed using 
the Wilcoxon test. Significance of difference in patient 
survivorship was determined using the log-rank test with 
“high” expression defined as the top 10% of samples, and 
“low” as the bottom 90%. All statistical analyses were 
performed using R version 3.2.1 software. A P-value 
of 0.05 (two-sided) was considered to be statistically 
significant.

Data availability

Whole-exome sequence data that support the 
findings of this study have been deposited in EGA with 
accession codes EGAS00001001 and EGAD00001001021. 
Expression data that support the findings of this study have 
been deposited in GEO with accession codes GSE2658 
and GSE31161. The remaining data are contained within 
the paper and Supplementary Files or available from the 
author upon request.

Web addresses

Genome Analysis Tool Kit (GATKv3): https://www.
broadinstitute.org/gatk

ClinVar: http://www.ncbi.nlm.nih.gov/clinvar
Uk10k: http://www.uk10k.org
Exome Variant Server, NHLBI GO Exome 

Sequencing Project (ESP), Seattle, WA: http://evs.
gs.washington.edu/EVS

PLATYPUS: http://www.well.ox.ac.uk/platypus
EXAC: http://exac.broadinstitute.org/
PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/
SNAP: https://www.broadinstitute.org/mpg/snap/

ldsearchpw.php
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