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SUMMARY

XRCC1 accelerates repair of DNA single-strand
breaks by acting as a scaffold protein for the recruit-
ment of Polb, LigIIIa, and end-processing factors,
such as PNKP and APTX. XRCC1 itself is recruited
to DNA damage through interaction of its central
BRCT domain with poly(ADP-ribose) chains gener-
ated by PARP1 or PARP2. XRCC1 is believed to
interact directly with DNA at sites of damage, but
the molecular basis for this interaction within
XRCC1 remains unclear. We now show that the cen-
tral BRCT domain simultaneously mediates interac-
tion of XRCC1 with poly(ADP-ribose) and DNA,
through separate and non-overlapping binding sites
on opposite faces of the domain. Mutation of resi-
dues within the DNA binding site, which includes
the site of a common disease-associated human
polymorphism, affects DNA binding of this XRCC1
domain in vitro and impairs XRCC1 recruitment and
retention at DNA damage and repair of single-strand
breaks in vivo.
INTRODUCTION

X-ray repair cross-complementing protein 1 (XRCC1) is a scaf-

fold protein that coordinates the repair of DNA single-strand

nicks and gaps (single strand breaks [SSBs]; Caldecott, 2003).

It constitutively associates with a DNA polymerase (Polb) and

a DNA ligase (Lig3a) to fill and ligate the broken strand

(Caldecott et al., 1994, 1996; Kubota et al., 1996; Nash et al.,

1997) and recruits the end-processing enzymes polynucleotide

kinase-30-phosphatase (PNKP) and aprataxin (APTX), which

ensure the presence of 30-hydroxyl and 50-phosphate groups

at gap margins (Ahel et al., 2006; Jilani et al., 1999; Loizou

et al., 2004).
Ce
This is an open access article und
Recruitment of XRCC1 complexes to sites of DNA damage is

strongly dependent on activation of the DNA-damage-respon-

sive poly(ADP-ribose) polymerases PARP1 and PARP2 (El-Kha-

misy et al., 2003; Hanzlikova et al., 2017; Mortusewicz et al.,

2007; Schreiber et al., 2002). PARP-dependent recruitment of

XRCC1 requires the central BRCT domain (BRCT1), which con-

serves components of a pocket similar to the phosphopeptide-

binding BRCT domains in proteins such as TOPBP1 (Rappas

et al., 2011; Wardlaw et al., 2014). However, rather than interact-

ing with phosphorylated proteins, the phosphate-binding pocket

in XRCC1-BRCT1 has been shown to mediate interaction with

the poly(ADP-ribose) (PAR) chains generated by PARP1 or

PARP2 (Breslin et al., 2015; Li et al., 2013).

Although an interaction with PAR plays a major role in recruit-

ing XRCC1 to sites of DNA damage, several studies have sug-

gested that XRCC1 is able to interact directly with DNA (Mani

et al., 2004; Nazarkina et al., 2007a, 2007b; Ström et al., 2011)

and that this plays a role in its DNA repair function (Berquist

et al., 2010; Wei et al., 2013). Previous NMR studies implicated

the N-terminal domain of XRCC1 in high-affinity interactions

with gappedDNAmolecules (Marintchev et al., 1999), but subse-

quent work has cast doubt on this, and there is currently no

coherent understanding of which part of XRCC1 is involved (Lon-

don, 2015). We show here that both PAR and DNA interactions

are mediated by non-overlapping binding sites on the first of

the two BRCT domains in XRCC1 (BRCT1). Targeted mutations

in the DNA-binding site, which contains a common human poly-

morphism, impair XRCC1 interaction with DNA in vitro andmark-

edly affect the kinetics of XRCC1 recruitment, its retention on

damaged chromatin, and the efficiency of DNA single-strand

break repair in vivo. These data resolve a critical unanswered

question in the field.

RESULTS

XRCC1 Binds DNA through BRCT1
Previous studies had suggested that the N-terminal domain

(NTD) of XRCC1, which is required for association of Polb with
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Figure 1. XRCC1-BRCT1 Binds DNA

(A) Electromobility shift assay (EMSA) shows that the ability to bind DNA re-

sides in the C-terminal region of XRCC1 containing the two BRCT domains

rather than the N-terminal region as previously suggested (Marintchev et al.,

1999).

(B) Fluorescence polarization assay of XRCC1-BRCT1 binding to various

fluorescein isothiocyanate (FITC)-labeled dsDNA oligonucleotides. No sub-

stantial differences in affinity were observed between intact, nicked, and

gapped molecules, which all bound with sub-micromolar affinity. Oligonu-

cleotide structures and Kd values for their binding to XRCC1-BRCT1 are

shown in Figure S1A. Data represent the mean of four measurements

comprised of two separate replicates with XRCC1-BRCT1 from two separate

protein purifications. Error bars show ± 1 standard error of the mean (SEM).
XRCC1, possesses an inherent affinity for DNA with single-

strand nicks and short gaps (Marintchev et al., 1999). To

discover whether other parts of XRCC1 might also be involved,

we expressed and purified separate N-terminal (residues

1–223) and C-terminal (224–631) constructs of murine XRCC1

and examined their ability to interact with a 39-base-pair DNA

duplex containing a single-strand nick, in an electrophoretic

mobility shift assay (EMSA) (see STAR Methods). Contrary to

the published model, we were unable to detect any significant

interaction in EMSAs with the construct containing the NTD

domain. By contrast, the C-terminal construct lacking the

putative DNA binding NTD produced robust EMSA band shifts

(Figure 1A). The marked difference in behavior of the two parts

of XRCC1 suggests that its inherent DNA-binding ability resides

in the C-terminal region, which incorporates the two BRCT do-

mains, rather than in the Polb-binding N-terminal domain.
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As BRCT domains in other proteins have been implicated in

binding to DNA (Leung and Glover, 2011 and references therein),

and asPARandDNAhavemany structural and chemical features

in common, we considered the notion that BRCT1, which medi-

ates the interaction of XRCC1 with PAR (Breslin et al., 2015; Li

et al., 2013), might also bind DNA. To address this, we expressed

and purified the isolated BRCT1 domain of human XRCC1 and

assessed its interaction with DNA using a fluorescence polariza-

tion assay (see STAR Methods). We observed robust interaction

of XRCC1-BRCT1 with a blunt-ended double-stranded DNA

(dsDNA) oligonucleotide and a variety of different ‘‘damaged’’

dsDNA molecules with Kd values in the range �0.2–0.4 mM (Fig-

ures 1B and S1). Oligonucleotides incorporating single-strand

gaps bound slightlymore tightly than the nicked or intact oligonu-

cleotides, but thepresenceor absenceof 50-phosphate groupsat
the nick or gap had little effect on the affinity of the interaction.

Mapping PAR- andDNA-Binding Sites on XRCC1-BRCT1
We previously showed that mutation of residues in XRCC1-

BRCT1 that are topologically equivalent to phosphate-binding

residues in other BRCT domains disrupted the interaction of

XRCC1 with PAR (Breslin et al., 2015). To further characterize

the PAR-binding site, we recorded two-dimensional (2D)
1H–15N heteronuclear single quantum coherence (HSQC) NMR

spectra on isotopically labeled samples of human XRCC1-

BRCT1 (see STAR Methods) and measured chemical shift per-

turbations in the presence of a purified PAR oligomer (PAR4)

(see STAR Methods; Figures 2A, 2B, and S2). We observed sig-

nificant chemical shift perturbations in residues within and prox-

imal to the putative phosphate-binding pocket, including Arg 335

and Lys 369, whosemutation disrupts binding to PAR in vitro and

XRCC1 recruitment to DNA damage in vivo (Breslin et al., 2015

and see below), confirming our identification of this pocket as

critical for PAR binding. The exchange behavior of the chemical

shift perturbations observed were in the slow-exchange range,

suggesting an affinity for PAR4 in the sub-micromolar range,

consistent with previous observations (Kim et al., 2015).
1H–15N HSQC spectra recorded in the presence of a nicked

dsDNA oligonucleotide with the internal 50 end phosphorylated

(see STAR Methods) instead of PAR also display clear chemical

shift changes consistent with the sub-micromolar affinity of the

nickedDNA for XRCC1-BRCT1 observed in the fluorescence po-

larization experiments (see above) and confirming an interaction

between XRCC1-BRCT1 and DNA. However, most of the

observed perturbations upon DNA binding occurred in residues

that were not strongly affected by PAR (Figure 2C), suggesting

that the DNA and PAR molecules were binding to distinct sites

on XRCC1-BRCT1. We tested this by titrating in increasing

amounts of nicked dsDNA into XRCC1-BRCT1 already saturated

by PAR4 and observed a pattern of chemical shift perturbations

that represented the superposition of perturbations observed for

the separate additions of PAR and DNA to protein alone

(Figure 2D).

Mapped onto the NMR solution structure of XRCC1-BRCT1

(PDB: 2D8M), the sets of residues perturbed by binding of PAR

or by binding of DNA define distinct non-overlapping patches

on the solvent accessible surface of the domain (Figures 2E

and 2F). The residues perturbed by PAR binding lie on the face



Figure 2. Mapping PAR- and DNA-Binding Sites

(A) 1H–15N heteronuclear single quantum coherence (HSQC) NMR spectra for XRCC1-BRCT1 alone (black) overlayed with the HSQC spectrum for XRCC1-

BRCT1 in the presence of a fragment of poly(ADP-ribose)—PAR4 (cyan; see STARMethods). Assignments for these and other spectra have been deposited in the

Biological Magnetic Resonance Bank (BRMB: 27598).

(legend continued on next page)
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of the domain formed by the C-terminal end of the central parallel

b sheet andmap in and around the phosphate-binding ‘‘pocket,’’

which is conserved inmany BRCT domains that mediate interac-

tion with phosphorylated peptide motifs (Leung and Glover,

2011). The residues perturbed by DNA binding localize to the

opposite face of the domain within the N-terminal ends of the b

strands and from a segment of polypeptide extending from the

C-terminal a helix.

Mutation Analysis of the DNA-Binding Site
Next, we sought to validate the results of the NMR experiments

by exploring the effect of disruptive mutations in the predicted

DNA-binding site on biochemical and functional assays. In the

absence of a high-resolution structure for a complex, predicting

a single point mutation that abrogates XRCC1-BRCT1 interac-

tion with DNA, as we have been able to do with phosphopeptide

interactions with other BRCT domains (Qu et al., 2013; Rappas

et al., 2011), is challenging. However, the highly basic nature of

the surface patch revealed by NMR titration experiments with

DNA suggests that mutations altering the electrostatics should

affect interaction of the XRCC1-BRCT1 domain with DNA (Fig-

ure 3A). We thereforemutated a number of residues in this region

that were perturbed by DNA binding in the NMR studies and

found that an XRCC1-BRCT1-R399D,R400Q double mutant,

which would be expected to substantially disrupt the basic na-

ture of the putative DNA-binding site without perturbing the

structure of the domain, could be readily expressed and purified

as a soluble protein.

Human populations have a common CAG / CGG polymor-

phism in codon 399 (allele frequency between 16%–35%), which

results in a glutamine rather than an arginine in the expressed

protein (Hu et al., 2005). Multiple studies have suggested asso-

ciation of the G/G and A/G genotypes with enhanced suscepti-

bility to a broad range of cancer types (Casse et al., 2003; Divine

et al., 2001; Mateuca et al., 2008; Mittal et al., 2008; Natukula

et al., 2013) and/or variable responses to chemotherapy (Deng

et al., 2015; Li and Li, 2013; Singh et al., 2017; Wu et al., 2012).

However, other studies and meta-analyses have failed to

demonstrate such association, and the significance of this com-

mon polymorphism remains controversial (Jacobs and Bracken,

2012; Taylor et al., 2002; Yuan et al., 2010; Zeng et al., 2013).

Because the participation of this polymorphic residue in DNA

binding provides the first suggestion of a biochemical role, we

compared Gln399 and Arg399 variants of the XRCC1-BRCT1

for functionality, alongside the R399D/R400Q double mutant.
(B) Close up of boxed region in (A), highlighting residues in and around the putativ

on binding of PAR4.

(C) Close up of equivalent region to (B), showing the HSQC spectra for XRCC1-BR

presence of a 19-mer dsDNA with a 50-phosphorylated nick on one strand, 8 nuc

shifts change on binding of the dsDNA are highlighted.

(D) As (C) but showing the overlay of HSQC spectra for XRCC1-BRCT1 bound to

50-phosphorylated dsDNA (orange). Residues that display a change in chemical sh

the dsDNA is added to XRCC1-BRCT1 already bound to PAR4, showing that th

ligands are not mutually competitive.

(E) Secondary structure cartoon of the NMR structure of XRCC1-BRCT1 (PDB: 2

PAR4 binding highlighted in cyan and those whose chemical shifts are perturbed

those whose chemical shift perturbation exceeds 2 SD of the average chemical

(F) As (E) but with a solvent-accessible surface representation showing the non-ov
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Using a previously described assay (Breslin et al., 2015), we

tested the ability of the XRCC1-BRCT1 constructs to bind to

PAR chains generated on histone H1 by PARP1 in the presence

of NAD+ (see STAR Methods; Figure 3B). PAR binding by the

DNA-binding site double mutant and the Gln399 variant were

essentially identical to that of the Arg399 XRCC1-BRCT1 domain,

whereas a construct with a previously described double mutation

in the PAR-binding pocket (R335A, K369A; Breslin et al., 2015)

failed to interact with PAR. These data demonstrate that the

DNA-binding site identified by the NMR titration experiments

does not contribute significantly to the interaction with PAR and

confirms that neither the double mutation nor the polymorphic

variation have any substantial effect on the three-dimensional

structure andconsequent functional integrity of theBRCTdomain.

By contrast, although both codon 399 variants and the PAR-

binding pocket mutant protein displayed low or sub-micromolar

affinity for 50-phosphorylated or unphosphorylated nicked dsDNA

in a fluorescence polarization assay (see STAR Methods), the

R399D,R400Q double mutant failed to bind DNA, confirming the

critical involvement of these residues in DNA binding by XRCC1-

BRCT1 (Figures 3C and S3).

DNA Binding Is Required for XRCC1-Dependent Repair
To determine whether the ability of XRCC1-BRCT1 to bind DNA

plays a role in its function as a DNA repair scaffold, we employed

U2OS cells in which the XRCC1 gene was disrupted by CRISPR/

Cas9-mediated gene editing and XRCC1 expression then

restored in the edited cells by transfection with wild-type or

mutant EGFP-XRCC1 fusion protein (see STAR Methods).

We observed robust and rapid recruitment of both R399 and

Q399 variants of the EGFP-XRCC1 fusion to DNA damage

caused by laser micro-irradiation in these cell lines (see STAR

Methods), whereas we failed to detect recruitment of the PAR-

binding-defective R335A,K369A double mutant, as previously

described (Breslin et al., 2015). The R399D,R400Q double

mutant that is competent for PAR binding but defective in DNA

binding (see above) was still recruited to DNAdamage. However,

this occurred with markedly slower kinetics than the native vari-

ants (Figure 4A). Chromatin retention of the EGFP-XRCC1 fusion

protein following DNA damage was also strongly affected by

mutational disruption of the DNA-binding site in BRCT1, with

the R399D,R400Q double mutant being as poorly retained as

the PAR-binding defective R335A,K369A mutant (Figure 4B).

Finally, we looked at the ability of the variant and mutant

XRCC1 proteins to support DNA repair in U2OS cells following
e phosphate-binding pocket in XRCC1-BRCT1, whose chemical shift changes

CT1 alone (black), overlayed with the HSQC spectrum for XRCC1-BRCT1 in the

leotides in from the 30 end (orange)—see Figure S1. Residues whose chemical

PAR4 (cyan) with that of XRCC1-BRCT1 + PAR4 with the addition of nicked,

ift on binding of dsDNA to XRCC1-BRCT1 alone display very similar shifts when

e binding sites for PAR4 and dsDNA are non-overlapping and that these two

D8M), with residues showing perturbed peptide backbone chemical shifts on

by binding of nicked dsDNA, highlighted in orange. Highlighted residues are

shift across the whole domain or those where the peak becomes broadened.

erlapping binding sites for PAR and for dsDNA on opposite faces of the domain.



Figure 3. Mutational Analysis of the DNA-

Binding Site

(A) Solvent-accessible surface of the DNA-binding

site colored by electrostatic potential (calculated

in PyMol). Residues perturbed by DNA binding

(including Arg399 and Arg400) map to an intensely

positively charged surface patch (left), whose po-

larity is predicted to be reversed by the combination

of R399D and R400Q mutations (right).

(B) PAR-binding assay (see STAR Methods) of

XRCC1-BRCT1 variants and mutants. Both codon

399 variants and the putative DNA binding

disruptive R399D,R400Q double mutant bind

tightly to PAR chains generated on plates coated

with histone H1 and incubated with PARP1 and

NAD+, whereas no binding is seen with the

R335A,K369A double mutant, which affects two

residues in the PAR-binding site (Breslin et al.,

2015). No binding is seen for any of the constructs

in the absence of NAD+. Data represent the mean

of four measurements of three separate replicates

analyzed by two-way ANOVA. Error bars show ± 1

SEM.

(C) Fluorescence polarization assays of XRCC1-

BRCT1 variants and mutants to FITC-labeled nicked

dsDNA oligonucleotides with (left) or without (right)

50 phosphorylation at the nick site. The codon

399 variants and the PAR-binding site mutant all

bind with high affinity to both nicked duplex oligo-

nucleotides, whereas the R399D,R400Q double

mutant shows very low fluorescence poloarization

(FP) values, which cannot be fitted to a binding

curve (for Kd values, see Figure S1B). Data

represent the mean of four measurements

comprised of two separate replicates with XRCC1-

BRCT1 from two separate protein purifications.

Error bars show ± 1 SEM.
treatment with varying doses of methyl methanesulfonate

(MMS), using an alkaline comet assay that reports on

unrepaired DNA SSBs (Breslin et al., 2006). Wild-type U2OS

cells (which contain the R399 XRCC1 variant) in which the

endogenous XRCC1 gene was disrupted by gene editing

accumulated far higher levels of SSBs than did wild-type

U2OS cells (Figures 4C and S4B–S4D). The SSB repair

defect in these XRCC1 gene-edited cells was effectively

rescued by expression of either of the residue 399 polymor-

phic variants of EGFP-XRCC1, but not by the PAR-binding

defective R335A,K369A double mutant (Figure 4C). Expres-

sion of the PAR-binding competent but DNA-binding-defective

R399D,R400Q mutant resulted in an intermediate level of SSB

repair that was significantly reduced compared to wild-type

U2OS cells.
Cell
DISCUSSION

A direct consequence of the activation of

PARP1 and/or PARP2 at DNA strand

breaks is the rapid formation of PAR chains

covalently anchored primarily to the PARP

enzymes themselves (Caldecott, 2008;

Daniels et al., 2015). A primary function of
these PAR chains in the context of DNA repair is the recruitment

of the XRCC1 scaffold protein to sites of DNA damage (London,

2015; Li et al., 2013; Breslin et al., 2015; Hanzlikova et al., 2017).

XRCC1-dependent repair of single-strand DNA breaks gener-

ated by oxidative damage, alkylation, or abortive topoisomerase

1 activity requires the catalytic activity of up to four associated

DNA repair enzymes (Polb, Lig3a, PNKP, and APTX), each of

which requires access to the 50 and/or 30 termini at the margins

of the DNA break to perform its particular reaction. To facilitate

this, XRCC1 functions as a DNA-binding scaffold protein to

help recruit, retain, and coordinate its partner enzymes at the

site of damage once PARP1 or PARP2 are released.

The results we present here unambiguously identify the central

BRCT domain as both necessary and sufficient for DNA binding

by XRCC1 and resolve a long-standing question in the field. The
Reports 26, 573–581, January 15, 2019 577



Figure 4. DNA Binding Contributes to XRCC1-Dependent DNA

Damage Repair

(A) Recruitment of XRCC1 variants and mutants to laser micro-irradiation

DNA damage. Both codon 399 variants are rapidly recruited to sites of DNA

damage in U2OS cells transiently transfected with GFP-XRCC1 and accu-

mulate to comparable levels over 15–20 s post-laser exposure. Consistent

with previous studies (Breslin et al., 2015), mutational disruption of XRCC1

PAR binding (R335A,K369A) abolishes XRCC1 recruitment to DNA damage

in this time frame. The R399D,R400Q mutant, which is fully competent for

PAR binding but defective for DNA binding in vitro, still accumulates at sites

of damage but with markedly slower kinetics than the DNA-binding and PAR-

binding competent constructs. Error bars are SEM for 30 cells analyzed for

each curve, except for the R399D,R400Q mutant, where only 10 cells were

analyzed.

(B) Retention of XRCC1 at DNA damage. Both codon 399 variants showed

high levels of retention on chromatin in U2OS cells stably transfected with

GFP-XRCC1 10–20 min after exposure to DNA damage by hydrogen

peroxide, whereas the PAR-binding defective mutant shows much

lower levels. The DNA-binding defective mutant is retained at higher levels

than the PAR-binding defective mutant but markedly reduced in com-

parison to the unmutated variants. Data represent the mean of three

measurements, with >8000 cells per sample per experiment using Perkin-

Elmer Operetta software and analysed by two-way ANOVA. Error bars

show ± 1 SEM.

(C) Untransformed U2OS cells, which carry the R399 XRCC1 variant, display

moderate dose-dependent alkaline comet tail moments (see STAR Methods)

after treatment with methyl methanesulfonate (MMS), indicative of unrepaired

single-strand breaks (SSBs). U2OS cells where the XRCC1 gene is disrupted

by CRISPR/Cas9 gene editing and consequently expresses undetectable

levels of XRCC1 protein (Figure S2) show significantly larger tail moments

indicative of much higher levels of SSBs. This repair defect can be substan-
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DNA-binding site in the BRCT domain is distinct from the binding

site for PAR, which interacts with the conserved pocket that me-

diates phosphopeptide binding in BRCT domain proteins, such

as BRCA1, 53BP1, and TOPBP1 (Baldock et al., 2015; Clapper-

ton et al., 2004; Kilkenny et al., 2008; Leung et al., 2011; Qu et al.,

2013; Shiozaki et al., 2004; Sun et al., 2017; Williams et al., 2004)

and DNA end binding in RFC1 (Kobayashi et al., 2006). Further-

more, the PAR-binding and DNA-binding sites on BRCT1 are

non-overlapping, so that both polymers can interact with

XRCC1 simultaneously. This would allow a smooth transfer

from PAR to DNA as the main anchor for retaining XRCC1 at

the site of damage, while its partner enzymes process and repair

the DNA break. Consistent with this model, we find that DNA

binding, although not essential for recruitment of XRCC1 down-

stream of PARP activation, contributes to XRCC1 recruitment

and retention on damaged chromatin. In vivo, this is reflected

in a significant reduction in the efficiency of SSB repair. However,

like some other XRCC1 mutations that affect SSB repair effi-

ciency (Breslin and Caldecott, 2009; Loizou et al., 2004), disrup-

tion of DNA binding does not significantly impact cell survival

(Figure S4E), probably due to the ability of homologous recombi-

nation to compensate for reduced SSB repair during S phase

(Caldecott, 2008).

The DNA-binding site we have identified on XRCC1-BRCT1

encompasses residue 399, which has a common Arg/Gln ge-

netic polymorphism in human populations. The significance of

this polymorphism is a matter of considerable study and

debate, but there is no clear consensus as to whether or not

the less common Q399 variant predisposes individuals to a

variety of cancers or whether it predicts a better response to

a variety of genotoxic chemotherapies—both of which are

claimed in the literature. Our data do show small differences

in DNA binding and damage recruitment between the Q399

and R399 variants of XRCC1, with the Q399 variant being

overall less effective in SSB repair than the R399 variant (Fig-

ure 4C), but none of these differences achieve statistical sig-

nificance in our hands. Nonetheless, the involvement of this

polymorphic residue in a defined biochemical function of

XRCC1 may provide a more mechanistic basis for assessing

its importance.

Our results reinforce the role of XRCC1 as a spatial organizer

of SSB repair, providing a stable protein scaffold on DNA in the

vicinity of a break that is completely independent of the highly

specific and competing interactions of its partner enzymes

with the 30 and 50 termini at the margins of the break. How

this competition is structurally orchestrated and coordinated

by XRCC1 to achieve efficient SSB repair remains to be

determined.
tially rescued by expression of GFP-XRCC1 with either codon 399 variant, but

not by GFP-XRCC1 with the PAR-binding defect. Consistent with its much

reduced DNA binding in vitro, its slower recruitment to laser damage, and its

poorer chromatin retention post-damage, the R399D,R400Q mutant is

significantly less able to rescue SSB repair in the xrcc1�/� cells. Error bars

indicate SEM over three replicates (Figure S3). Average tail moments from

100 cells/sample were measured using Comet Assay IV software (Perceptive

Instruments, UK) and were scored blind. Data are the average of three inde-

pendent experiments. Error bars show ± 1 SEM.
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HRP-conjugated mouse anti-mouse IgG GE healthcare Cat#NA931

Bacterial and Virus Strains

NEB 5-alpha Competent E. coli New England Biolabs Cat#C2987H

BL21(DE3) Competent E. coli New England Biolabs Cat#C2527I
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[15N] NH4Cl CortecNet Cat#CN80P10

[13C3] glycerol CortecNet Cat#CC1065P10

Isopropyl b-D-1-thiogalactopyranoside Generon Cat#Gen-S-02122

HEPES Fisher Scientific Cat#10081113

NaCl Fisher Scientific Cat#10735921

Imidazole Acros Organics Cat#301870010

TCEP Sigma-Aldrich Cat#646547

cOmplete, EDTA-free Protease Inhibitor Cocktail Sigma-Aldrich Cat#4693159001

Talon resin TaKaRa Bio Cat#635503

Calf thymus histones Sigma-Aldrich Cat#H9250

Tris-HCl Fisher Scientific Cat#10316893

MgCl2 Fisher Scientific Cat#10386743

NAD+ Sigma-Aldrich Cat#N8410

trichloroacetic acid Fisher Scientific Cat#10775151

EDTA Fisher Scientific Cat#10716481

KOH Fisher Scientific Cat#10448990

Ammonium acetate Fisher Scientific Cat#10365260

Guanidine HCl Acros Organics Cat#120230025

3-Aminophenylboronic acid monohydrate Sigma-Aldrich Cat#287512

Bio-Rex 70 Cation Exchange Resin Bio-Rad Cat#1425822

Urea Fisher Scientific Cat#10578260

Bromophenol blue Fisher Scientific Cat#10679733

Xylene cyanol Sigma-Aldrich Cat#X4126

Pierce Color Silver Stain Kit Fisher Scientific Cat#10096113

D2O Sigma-Aldrich Cat#151882

6% DNA Retardation Gel Fisher Scientific Cat#12080086

Tris-borate-EDTA Fisher Scientific Cat#10542985

Gibson Assembly New England Biolabs Cat#E2611L

human PARP1 Trevigen Cat#4668-02K-01

Tween 20 Sigma-Aldrich Cat#P9416

3,30,5,50-tetramethylbenzidine Sigma-Aldrich Cat#T4319

Triton X-100 Sigma-Aldrich Cat#T9284

Dulbecco’s Phosphate-Buffered Saline (PBS) ThermoFisher Scientific Cat#14190136

Hoechst 34580 Sigma-Aldrich Cat#63493

Dulbecco’s modified Eagle’s medium (DMEM) ThermoFisher Scientific Cat#21969035

Foetal bovine serum Sigma-Aldrich Cat#F7524
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Glutamine ThermoFisher Scientific Cat#25030081

Penicillin-Streptomycin Sigma-Aldrich Cat#P4333

Genejuice Novagen Cat#70967

Blasticidin InvivoGen Cat#ant-bl-1

Methyl methanesulfonate Sigma-Aldrich Cat#129925

Low-gelling-temperature agarose, Type VII-A Sigma-Aldrich Cat#A0701

DMSO Sigma-Aldrich Cat#276855

SybrGreen I Fisher Scientific Cat#S7563

Hydrogen peroxide Sigma-Aldrich Cat#H1009

Paraformaldehyde Agar Scientific Cat#AGR1026

Hoechst 33342 Sigma-Aldrich Cat#B2261

ECL reagent Fisher Scientific Cat#10455145

PD MidiTrap G-10 column Sigma-Aldrich Cat#GE28-9180

Tankyrase 1 (Elliott et al., 2015) N/A

Deposited Data

Biological Magnetic Resonance Bank 27598

Experimental Models: Cell Lines

Osteosarcoma U2-OS Genome Damage and Stability

Centre cell repository

ID: U2-OS

Oligonucleotides

Oligonucleotides for DNA-binding experiments,

see Figure S1.

Integrated DNA Technologies N/A

Recombinant DNA

pET15b Novagen 69661

peGFP-N1 Clontech 6085-1

pET15b-SUMO-XRCC1-BRCT1 This paper N/A

Software and Algorithms

GraphPad Prism7 for Mac OS X Graphpad https://www.graphpad.com/scientific-software/

prism/

SlideBook 6 3i https://www.intelligent-imaging.com/slidebook

CcpNmr Analysis Collaborative Computing Project

for NMR

https://www.ccpn.ac.uk/

Comet Assay IV software Perceptive Instruments http://www.scorecomets.com/comet-scoring/

comet-assay-iv

Harmony high-content analysis software PerkinElmer Cat#HH17000001

ImageJ64 ImageJ Software https://imagej.nih.gov/ij/

Other

BD FACSMelody BD Biosciences N/A

Operetta CLS high-content analysis system PerkinElmer Cat#HH16000000

3i Spinning Disk Confocal microscope 3i N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Laurence Pearl FRS (Laurence.Pearl@sussex.ac.uk).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture
The osteosarcoma cell line U2-OS (obtained from theGenomeDamage and Stability Centre cell repository) wasmaintained asmono-

layers in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% (vol/vol) fetal bovine serum, 100 U/ml penicillin,

2 mM glutamine and 100 mg/ml streptomycin.

METHOD DETAILS

Cloning
DNA encoding the required region of human XRCC1 was amplified by PCR from human cDNA. DNA encoding human 6xHis-SUMO-

XRCC1-BRCT1301-410 was amplified by PCR, using synthetic DNA codon-optimized for expression inE. coli as a template (Genscript,

Piscataway, USA). Primers were designed to sub-clone the amplified DNA into vectors suitable for protein expression in E. coli by

Gibson Assembly (New England Biolabs).

Expression and purification
E. coli strain BL21(DE3) (Merck Millipore) was co-transformed with pET15b-SUMO-XRCC1-BRCT1 plasmid. Transformants were

selected on LB-agar plates added with antibiotics. From an overnight culture, 25 ml was used to inoculate a 2 l flask, containing 1

l of Turbo-broth media (Molecular Dimensions, Newmarket, UK) again supplemented with antibiotics. Cultures were grown in an

orbital-shaking incubator, at 37�C, until an optical density of �1.5 units at a wavelength of 600 nm was reached. The temperature

was then reduced to 20�C, and recombinant protein expression induced by the addition of 0.15 M isopropyl b-D-1-thiogalactopyr-

anoside. Cells were subsequently harvested by centrifugation after 16 h at the reduced temperature. The resultant pellet was stored

at �20�C until required.

For NMR experiments, the protein was expressed in 1 l filter-sterilized Overnight Express Autoinduction NMRMedia (Merck-Milli-

pore, Billerica, MA, USA) containing 50mM [15N] NH4Cl and 0.5% (w/v) [13C3] glycerol (CortecNet, Voisins-le-Bretonneux, France) at

a temperature of 25�C for 30 h.

The cell pellet resulting from 4 l of culture was resuspended in Buffer A (50 mM HEPES.NaOH pH 7.5, 250 mM NaCl, 10 mM

imidazole, 0.5 mM TCEP) supplemented with protease inhibitor tablets (Roche, Burgess Hill, UK). Cells were then disrupted by son-

ication, and insoluble material removed by centrifugation. The resultant supernatant was incubated with Talon resin (TaKaRa Bio)

pre-equilibrated in Buffer A. After successive washes with Buffer A to remove unbound material, the retained recombinant proteins

were eluted by the additon of Buffer B (50mMHEPES.NaOH pH 7.5, 250mMNaCl, 300mM imidazole, 0.5mMTCEP). The affinity tag

and SUMO were then cleaved by overnight incubation with SENP1 at 4�C. The proteins were concentrated to a final volume of 3 ml

using Vivaspin 20 (10,000MWCO) centrifugal concentrators (Sartorius StedimBiotech, Goettingen, Germany) and then loaded onto a

Superdex 75 size exclusion chromatography column (GEHealthcare Life Sciences, Little Chalfont, UK) pre-equilibrated with Buffer C

(20 mM HEPES.NaOH pH 7.5, 250 mM NaCl, 0.5 mM TCEP) as the final purification step. Fractions containing the purified complex

were identified by SDS-PAGE, pooled and then concentrated to 11 mg ml�1 and either used immediately or flash-frozen in liquid N2

and stored at �80�C until required.

Poly(ADP-ribose) preparation
The purification protocol is based on (Tan et al., 2012) with some minor alterations. The PARylation reaction was as follows: 1mg/ml

calf thymus histones (Sigma-Aldrich) in PARP reaction buffer (50mM Tris-HCl pH 8, 0.8mMMgCl2, 1% v/v glycerol and 0.5mMDTT),

200mM NAD+ (Sigma-Aldrich) were mixed with 1mg/ml tankrase 1 enzyme. The reaction was stopped after 1 hour at room

temperature by adding an equal volume of 20% v/v ice-cold trichloroacetic acid, and incubated on ice for 15 min. The precipitated

ribosylated protein was pelleted by centrifugation at top speed at 4�C, dissolved in 100ml 1M KOH/50mM EDTA and was incubated

for 60 min at 60�C. Then, AAGE9 buffer (250mM ammonium acetate, 6M guanidine HCl, 10mM EDTA, pH 9.0) was added and the

sample was loaded onto 1ml dihydroxyboryl Bio-Rex resin pre-equilibrated with AAGE9 buffer. The dihydroxyboryl resin was pre-

pared by coupling BioRex 70 beads, (100-200 mesh, Bio-Rad) and N-ethyl-N’-(3-diethylaminopropyl)-carbodiimide (Sigma-Aldrich),

as described (Wielckens et al., 1981). The resin was washed with 10 column volumes (cv) AAGE9 buffer, 20cv 1M ammonium acetate

pH 9.0 buffer, eluted with 6cv water and collected in 1cv fractions. Successive fractions were analyzed by UV spectroscopy (258nm),

using a NanoDrop2000 (Thermo Fisher Scientific) and fractions containing bulk PAR were loaded onto a 1ml MonoQ 5/50 chroma-

tography column (GEHealthcare). The columnwas extensively washedwith Buffer A (25mMTris-HCl, pH9.0) to remove any unbound

material. Bound PARwas eluted by the application of the following linear gradient series fromBuffer A to Buffer B (25mMTris-HCl, pH

9.0, 1M NaCl): 0% to 15% B over 5cv, then 15% to 40% B over 130 cv, followed by 40% to 45% B over 80cv, and a final step from

45% to 100%B over 3cv. Fractions were dried in a Savant DNA120 SpeedVacTM concentrator (Thermo Fisher Scientific) and stored

at �20�C until required. Fractions containing PAR with the same elution volume, were loaded together onto a PD MidiTrap G-10

column (GEHealthcare) pre-equilibratedwithwater, eluted following themanufacturer’s protocol and again dried before being stored

at �20�C. Purified PAR fractions were adjusted to a final concentration of 0.3mM and then diluted in loading buffer (40% w/v urea,

4mM EDTA, 0.02% w/v Bromophenol blue, and 0.02% w/v Xylene cyanol) to a final volume of 15ml and then loaded onto a 20% v/v
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polyacrylamide gel (Thermo Fisher Scientific) containing 1x TBE buffer. The gel was run at a constant power of 15W until the dye front

migrated approximately 50%of the gel; after which the gel was fixed in a 50% v/v ethanol and 5% v/v acetic acid solution for 2 hours,

andwashedwith ultrapurewater. It was stainedwith a Pierce Color Silver Stain Kit (Thermo Fisher Scientific) followingmanufacturer’s

protocol.

NMR resonance assignment
NMR spectra were recorded at 303K on Bruker DRX600 and DRX800 spectrometers equipped with cryo-probes. XRCC1-BRCT1

was dissolved in 300 ml NMR buffer containing 20 mM Tris-HCl, pH 7.5, 125 mM NaCl, 1 mM TCEP and 10% D2O to a final concen-

tration of�350 mM. The chemical shifts of 1HN, 15N, 13Ca, 13Cb and 13CO cross-peaks were assigned usingCBCA(CO)NH, HNCACB,

HNCO and HN(CA)CO experiments and data were analyzed using the programCCPNMRAnalysis (Skinner et al., 2016). > 90%of the

amino acid backbone resonances were assigned. A similar procedure was followed to assign chemical shifts after formation of com-

plexes between XRCC1-BRCT1 and DNA (oligonucleotides detailed in Figure S1) or Poly (ADP-ribose). For binding of DNA to the

BRCT1-PAR complex, the BRCT1 was saturated by addition of PAR4 until no further chemical shift was obtained. After saturation

with PAR4 andDNA, peakswere reassigned in the HSQC spectrum usingHNCAdata. Chemical shift perturbations (CSP) were calcu-

lated as: [1HD2 + (0.15*15ND) 2]0.5. NMR data has been deposited in the Biological Magnetic Resonance Bank with accession number

27598.

Electrophoretic Mobility Shift Assay
Oligonucleotides at a concentration of 100 nM, were mixed with increasing concentrations of constructs of XRCC1, in 20 mM

HEPES.NaOH pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5 mM TCEP, and incubated for 10 min at room temperature. Samples were

then analyzed on 6% v/v native polyacrylamide gels (6% DNA Retardation Gel, ThermoFisher Scientific) containing 0.5X tris-

borate-EDTA (TBE) and visualized by direct scanning of the gel in a Fuji FLA-5100 Fluorescent Image Analyzer.

Fluorescence polarization
Fluorescent dsDNA oligonucleotides were assembled as shown in Figure S1, with fluorescein isothiocyanate attached to the 50-ter-
minus of the continuous strand. For fluorescent polarization experiments, annealed oligonucleotides at a concentration of 10 mM

were incubated with increasing concentrations of wild-type XRCC1-BRCT1, in 20 mM HEPES.NaOH pH7.5, 100 mM NaCl, 1 mM

EDTA, 0.5 mM TCEP, and incubated for 10 min at room temperature. Fluorescence polarization was measured in a POLARstar

OMEGA multimode plate reader (BMG Labtech GmbH, Offenburg, Germany).

Poly (ADP-ribose) binding assays
The wells of flat bottomed 96 well PS-microplates (Greiner) were incubated with either 50 mL recombinant histone H1 at 0.1 mg/ml in

phosphate buffered saline (PBS) overnight at 4�C and the wells rinsed (4 3 ) with 0.2 mL 0.1% Triton X-100 in PBS. The adsorbed

proteins weremock ribosylated in the absence of NAD+ or ribosylated in the presence of the 50mMNAD+ (Sigma) in PARP1 reaction

buffer (50 mM Tris–HCl pH7.5, 0.8 mM MgCl2, 1% glycerol and 1.5 mM DTT) containing 40 nM single-stranded oligodeoxyribonu-

cleotide (50-CATATGCCGGAGATCCGCCTCC-30) and 5 nM human PARP1 (Trevigen) in a final volume of 50 mL at room temp for

30 min. After rinsing (4 3 ) with 50 mL of 0.1% Tween 20 in PBS, 50 mL of His-SUMO-XRCC-BRCT1 or its variants (diluted to

25 nM in 20 mM Tris pH7.5, 130 nM NaCl) were added to the adsorbed proteins and incubated on ice for 30 min. The wells were

then rinsed (4 3 ) as above and incubated with 50 mL mouse anti-polyhistidine (His-tag) Mab (Takara Bio, diluted 1:2500 in

20 mM Tris pH7.5, 130 nM NaCl) followed by 50 mL HRP-conjugated mouse anti-mouse IgG (ECL, GE Healthcare, 1: 5000 in dilution

buffer) for 30min each on ice. After a final wash with 3,30,5,50-tetramethylbenzidine liquid substrate, slow kinetic form (Sigma-Aldrich)

was added to the wells, incubated in the dark for 10 min, stopped by adding 0.2 M HCl, and the absorbance was read at 450 nm.

UVA-laser micro-irradiation
ORFs encoding human XRCC1-R399-GFP was generated by PCR amplification of the human XRCC1 ORF and subcloning using

Gibson Assembly (New England Biolabs) in peGFP-N1. Point mutations in the BRCT1 domain were generated by site-directed muta-

genesis. Osteosarcoma U2-OS cells were seeded onto glass-bottom dishes (Nunc, Thermo Scientific) and transfected with 1 mg of

the indicated GFP constructs 24 h before micro-irradiation and incubated with 10 mg ml�1 Hoechst 34580 for 30 min before irradi-

ation. Cells were micro-irradiated with a 405 nm UV-laser at a dose of 0.22 mJ mm�2 (Breslin et al., 2015), and time-lapse images re-

corded at 0.5 s intervals for a total of 3 min per cell using a Spinning Disk Confocal microscope (3i).

Generation of gene-edited U2-OS cells
XRCC1 gene editedU2OS cells, denoted in the figures as XRCC1�/� for simplicity, were generated using the Cas9 and XRCC1 guide

expression constructs as previously described (Hanzlikova et al., 2017). This cell line will be described in detail, elsewhere. Success-

ful gene editing was confirmed by Sanger sequencing and by western blotting (Figure S2).
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Cell lines expressing XRCC1
The cell lines with U2OS-GFP-XRCC1 WT and its variants were generated by transfection of 1 3 106 XRCC1�/� U2OS cells with

0.5 mg of vectors by Genejuice transfection (Novagen). Twenty four hours after transfection, cells were selected in media containing

7.5 mg ml-1 of Blasticidin (InvivoGen) for 3 weeks, and a population of cells were selected based on their level of GFP expression by

using a Melody cell sorter (BD).

Alkaline comet assays
Osteosarcoma U2-OS cells were treated with 0.1 and 0.2 mg/ml of MMS at 37�C. Cells were then suspended in pre-chilled

Dulbecco’s PBS and mixed with an equal volume of 1.2% low-gelling-temperature agarose (Sigma, type VII) maintained at 42�C.
Cell suspension was immediately layered onto pre-chilled frosted glass slides (Fisher) pre-coated with 0.6% agarose andmaintained

in the dark at 4�C until set, and for all further steps. Slides were immersed in pre-chilled lysis buffer (2.5 M NaCl, 10 mM Tris-HCl,

100 mM EDTA, 1% Triton X-100, 1% DMSO; pH10) for 1 h, washed with pre-chilled distilled water (2 3 5 min), and placed for

45 min in pre-chilled alkaline electrophoresis buffer (50 mM NaOH, 1 mM EDTA, 1% DMSO). Electrophoresis was then conducted

at 1 V/cm for 25 min, followed by neutralization in 400 mM Tris-HCl pH7.4 overnight. Finally, DNA was stained with SybrGreen I

(1:10,000 in PBS) for 30min. Average tail moments from 100 cells/sample weremeasured using Comet Assay IV software (Perceptive

Instruments, UK). Data are the average ± 1 SEM of three independent experiments and were scored blind.

Chromatin associated XRCC1
XRCC1�/�-U2OS stably expressing GFP-XRCC1 WT and variants were mock-treated or treated with 1 mM hydrogen peroxide

(H2O2) for 10 min, incubated at 37�C in drug free media for indicated times, pre-extracted with 0.2% Triton X-100 for 2 min, washed

with phosphate buffered saline (PBS), then fixed for 10 min in 4% paraformaldehyde in PBS at room temperature and stained with

Hoechst 33342 (blue, Sigma-Aldrich, B2261).

Cell survival assay
Clonogenic survival was determined by colony formation assays. Briefly, U2-OS cells were counted and plated in DMEM medium

containing 10% FBS. Cells were treated with MMS and after incubation for 10 days colonies that were visible by eye were counted.

Survival was calculated by dividing the number of colonies in treated wells by those in untreated wells.

SDS-PAGE and western blotting
Cells were collected and lysed in SDS sample buffer (2% SDS, 10% glycerol, 50 mM Tric-Cl, pH 6.8), denatured for 10 min at 95�C,
and sonicated for 30 s using Bioruptor� Pico (Diagenode). Samples were subjected to SDS-PAGE, proteins transferred onto

nitrocellulosemembrane and detected by relevant specific antibodies combinedwith horseradish peroxidase-conjugated secondary

antibodies. Peroxidase activity was detected by ECL reagent (GE Healthcare) in an ImageQuant LAS-4000 image reader (GE life

sciences). Primary antibodies: His-affinity tag, mouse monoclonal at 1:5000 dilution (631212, Takara Bio) and XRCC1 Antibody,

rabbit polyclonal at 1:2000 (NBP1-87154, Bio-techne). Band intensities were determined using ImageJ64 (ImageJ Software).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed usingGraphPad Prism. Binding data from fluorescent polarization were analyzed with GraphPad

Prism 7.0, by non-linear fitting with a one-site binding model, to give the reported dissociation constants (Kd). All data from fluores-

cent polarization experiments represent the mean of four measurements comprised of two separate replicates with XRCC1-BRCT1

from two separate protein purifications. Data fromPoly (ADP-ribose) binding assayswas the result of represent themean of fourmea-

surements of three separate replicates and it was analyzed by two-way ANOVA. Average comet tail moments from 100 cells/sample

were measured using Comet Assay IV software (Perceptive Instruments, UK). Quantification of detergent-insoluble XRCC1 signal

from > 8000 cells per sample per experiment using Perkin-Elmer Operetta analysis software and analyzed by two-way ANOVA.

Comet assay data and cell survival results were scored blind and are shown as the average ± 1 SEM of three independent experi-

ments, compared using two-way ANOVA. Western blot band intensities were analyzed by one-way ANOVA.

Chemical shift perturbations (CSP) were calculated as: [1HD2 + (0.15*15ND)2]0.5.

DATA AND SOFTWARE AVAILABILITY

NMR assignment data have been deposited into the Biological Magnetic Resonance Data Bank with accession number 27598. No

other large datasets are associated with this work. All other data are available from the authors on request.
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