
https://doi.org/10.1007/s11265-020-01548-9

Towards Real Time Radiotherapy Simulation

Nils Voss1,2 · Peter Ziegenhein3 · Lukas Vermond2,4 · Joost Hoozemans2 ·Oskar Mencer2 ·Uwe Oelfke3 ·
Wayne Luk1 ·Georgi Gaydadjiev1,2,4

Received: 2 December 2019 / Revised: 10 March 2020 / Accepted: 5 May 2020
© The Author(s) 2020

Abstract
We propose a novel reconfigurable hardware architecture to implement Monte Carlo based simulation of physical dose
accumulation for intensity-modulated adaptive radiotherapy. The long term goal of our effort is to provide accurate dose
calculation in real-time during patient treatment. This will allow wider adoption of personalised patient therapies which has
the potential to significantly reduce dose exposure to the patient as well as shorten treatment and greatly reduce costs. The
proposed architecture exploits the inherent parallelism of Monte Carlo simulations to perform domain decomposition and
provide high resolution simulation without being limited by on-chip memory capacity. We present our architecture in detail
and provide a performance model to estimate execution time, hardware area and bandwidth utilisation. Finally, we evaluate
our architecture on a Xilinx VU9P platform as well as the Xilinx Alveo U250 and show that three VU9P based cards or two
Alevo U250s are sufficient to meet our real time target of 100 million randomly generated particle histories per second.

Keywords Monte Carlo simulation · FPGA acceleration · Radiotherapy · Dataflow · Dose calculation

1 Introduction

Radiotherapy is a commonly used treatment for various
cancer types. High doses of radiation are used to kill cancer
cells. Modern radiotherapy relies on an intensity modulation
technique that aims to deliver high dose gradients to
cancerous tissues while sparing the surrounding healthy
organs as much as possible. This is achieved by setting
up a therapy treatment plan which takes into account the
anatomy as well as the clinical case and dose delivering
machine. In order to validate and optimise such therapy
plans, the expected spatial dose distribution within the
patient has to be simulated before the actual treatment.
This is often implemented by Monte Carlo methods which
simulate the pathway of millions of radiation particle

� Nils Voss
n.voss16@ic.ac.uk

1 Department of Computing, Imperial College London, London,
UK

2 Maxeler Technologies, London, UK

3 Joint Department of Physics at The Institute of Cancer
Research and The Royal Marsden NHS Foundation Trust,
London, UK

4 Delft University of Technology, Delft, The Netherlands

trajectories as they enter the patient body. These simulations
are very accurate. On the other hand, they require relatively
long computation times.

Historically, these long computation times were not a
problem. However, modern treatment machines in addition
to radiation delivery, also allow imaging of the patient dur-
ing treatment [12]. Real time dose simulation would allow
patient treatment adjustments in real time. This is advan-
tageous since, e.g., in the case of prostate or lung cancer
target tissue might significantly move between imaging and
treatment or even within one treatment session. The usage
of real time imaging techniques will enable doctors to adapt
to these changes and facilitate accurate radioactive dose
delivery. This would minimise dose accumulation in healthy
tissue and therefore reduce the damage caused. Addition-
ally, it will be possible to significantly reduce the number of
treatments per patient by delivering a higher dose delivery
at shorter time due to more targeted radiation. While this
would decrease the overall treatment costs and improve
treatment quality for the patient, it is crucial to ensure very
high accuracy to compensate for the high dosage delivery.
As a result of this, the simulation has to be repeated regu-
larly based on new measurements. According to medical
experts, the time required for the simulation of the system
has to stay below one second to facilitate real time updates.

To solve the computational challenge of real time
dose simulation, different technologies have been proposed

/ Published online: 27 June 2020

Journal of Signal Processing Systems (2020) 92:949–963

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-020-01548-9&domain=pdf
http://orcid.org/0000-0001-7466-4545
mailto: n.voss16@ic.ac.uk


which utilise Central Processing Units (CPUs) or Graphics
Processing Units (GPUs) on local or cloud based systems.
However, in the case of CPUs and GPUs the size of the
machine required to meet the realtime target is prohibitive.
In the case of cloud based systems privacy concerns,
bandwidth requirements and latency issues as well as the
need to guarantee service quality during treatment provide
major challenges for practical deployment.

In this paper, we will discuss the usage of Field-
Programmable Gate Arrays (FPGAs) to address these
problems in order to build the first real time radiotherapy
simulation systems. There is a long history of accelerating
Monte Carlo simulations using FPGAs. The inherent
parallelism of Monte Carlo simulations allows very high
speedups on FPGAs. Additionally, FPGA implementations
are highly predictable making them especially suited for real
time applications. Finally, the compute density of FPGA
based systems is typically superior, allowing for placement
directly in the medical facility. As a result, FPGAs are an
excellent fit for the problem of real time dose simulation.

Programmability of FPGAs, however, is still a major chal-
lenge. Especially for this use case, it is crucial that medical
domain experts can fine tune the FPGA design to their needs.
To ease the programming we adopted the static dataflow
abstraction and Maxeler’s MaxCompiler. This provides a
higher level of abstraction for the underlying hardware.

The main contributions of this paper are as follows:

• A dataflow architecture for Monte Carlo based dose
accumulation simulation;

• An analytical model to estimate hardware usage and
accurately assess performance; and

• Evaluation of the architecture and model using imple-
mentations based on a Xilinx VU9P FPGA and the
Xilinx Alveo U250.

The remainder of the paper is organised as follows. In
Section 2 we will discuss the background of radiotherapy
and dataflow computing. Section 3 will present related
work. Afterwards in Section 4 we will present the
architecture used for the FPGA implementation. The
performance will be modelled in Section 5. In Section 6
we will present and evaluate our implementation. Finally,
Section 7 will conclude the paper and present possible
directions for future work.

2 Background

2.1 Monte Carlo Based Dose Simulation
for Radiotherapy

Using Monte Carlo simulations to calculate the dose
distribution in radiotherapy is widely considered to be the

most accurate method. This process relies on simulating
individual particles and their trajectories through material
representing the patient. The software simulates particle
interactions and calculates the dose deposition along the
trajectories following fundamental physics laws. However,
this accuracy comes at a cost, since a significant amount
of particles need to be simulated to achieve statistically
significant results.

In our work we will focus on the Dose Planning Method
(DPM) [18] implementation of a Monte Carlo technique
that simulates the dosimetric effect of high energy photons
in organic materials. This algorithm is specifically opti-
mised for the radio therapy use case. DPM provides imple-
mentations for all relevant photon-matter and electron-
matter interactions that occur in radiotherapy. High effi-
ciency is achieved by optimising the physical interaction
description as well as their implementation on modern
processors. The authors distinguish between hard interac-
tion processes which have to be calculated analogously
and soft interactions which can be accumulated and only
simulated once over a certain distance. Especially the lat-
ter reduces the simulation time of electron interactions
significantly.

The DPM implementation uses a patient cube to store
details on the patient as well as the accumulated dose.
The cube consists of voxels, which can represent different
materials, e.g., bone, tissue or water. In each dimension the
cube has a configurable number of voxels, which divide the
patient cube volume into equally sized parts. To achieve sta-
tistically significant results 100 million particles have to be
generated and for real time operation the simulation needs
to finish within one second according to medical experts [4].
The real time requirement to finish the simulation within
one second is the result of the need to respond to the move-
ment of the cancer cells. These are relative slow movements,
e.g., breathing, in the case of lung cancer or the influence
of rectal filling in the case of prostate cancer. All these
movements happen within a few seconds and thus a single
second is sufficient to adapt the treatment accordingly.

The DPM algorithm calculates the dosage by simulating
the particle interactions along their individual trajectories.
Each generated particle is initialised with energy and
fuel values. The fuel values are used to determine the
interaction point within the voxel cube and are used up as
the particle travels through the cube. Depending on which
fuel runs out, an interaction occurs. These interactions can
either be a hard inelastic scattering interaction modelled
according to Moller, an elastic particle scattering using the
Hinge theory or the bremsstrahlung interaction which is
the result of the acceleration or deceleration of a charged
particle. Dependent on the interaction, different simulation
subroutines are used to calculate the resulting dose as well
as the changes to the particle direction, velocity, energy and

950 J Sign Process Syst (2020) 92:949–963



fuel. If the energy of the particle drops below a threshold
it gets absorbed leading to a further dosage accumulation.
The dose is deposited in the individual voxel in which the
interaction occurs or the particle gets absorbed.

2.2 Dataflow

Streaming dataflow graphs provide a good abstraction for
hardware structures. Each node of the dataflow graph repre-
sents a hardware unit and each edge represents the wires con-
necting these hardware units. Maxeler MaxCompiler uses
this dataflow concept as main abstractionfor the programmer.

MaxCompiler uses the notion of Kernel, which rep-
resents a single dataflow graph with inputs and outputs.
The dataflow graph is scheduled automatically and deeply
pipelined to help with timing closure. Due to the dataflow
graph description, the inherent parallelism is fully exposed
to the compiler. The control logic for the kernel is auto gen-
erated and stalls the kernel when either an input is empty
or an output becomes full. As a result, the kernel abstrac-
tion provides an easy way to implement massively parallel
computational hardware structures without requiring deep
understanding of the underlying hardware concepts.

Additionally, MaxCompiler uses a Manager to describe
connections between kernels and all external interfaces.
These I/O interfaces include Peripheral Component Inter-
connect Express (PCIe) and double data rate synchronous
dynamic random-access memory (DDR), but also network-
ing like ethernet. I/O interfaces can be created using a single
function call. Similarly, only a single operator is necessary
to connect these interfaces with each other or user logic.
Another block that can be included in the manager is a State
Machine. A state machine can be used to program custom
flow control based on simple push and pull interfaces. As
a result state machines are harder to program, but allow
the implementation of more complicated and latency critical
components, e.g., complex data arbitration tasks.

MaxCompiler targets different FPGA accelerator cards,
including in-house developed so called Dataflow Engines
(DFEs), Xilinx Alveo cards and the Amazon EC2 F1
instances. The main assumption is that a CPU based host
is available and connected to the card. Additionally, the
SLiC runtime interface can be used to integrate the FPGA
design into a normal CPU application utilising Maxeler’s
proprietary drivers and libraries.

3 RelatedWork

3.1 Monte Carlo Dose Simulation

Due to the practical relevance of Monte Carlo dose
simulation and the high computational requirements related

to it a considerable amount of research has focused on
accelerating it. This includes algorithmic improvements as
presented in [2, 9, 10, 15, 18, 24]. There are also multiple
studies which use GPUs to accelerate the workload, e.g.,
[7] and [20]. In these cases, speedups of up to multiple
100x are reported in comparison to CPU code. However,
the authors of [13] and [8] report that this performance
advantage is actually a lot smaller, if realistic test cases
are considered and the comparison is performed against
optimised CPU code. In those cases, the speedup of GPU
over CPU implementations is closer to 2.5x.

In addition to the GPU implementations, also CPU based
implementations were proposed. Examples for these can be
found in [3], [21] and [26]. The latter manages to finish
the dose simulation in less than a minute and outperforms
well-known GPU implementations.

To facilitate adaptive radiotherapy and the required real
time dose simulation, the work in [26] was further expanded
in [27] by adding support for cloud computing. The authors
propose to use the scalability of cloud based systems to
create a bigger cluster of cloud instances to perform the
simulation. They manage to reduce the runtime of Monte
Carlo dose simulations to values between 1.1 and 10.9
seconds depending on the specific use case. Additionally,
they make use of encryption to facilitate privacy for the
medical data transferred into the cloud. However, cloud
based solutions have the disadvantage of requiring a very
good and stable internet connection in the hospital to be
useable for reliable medical treatment.

This work presents an extension to [23]. Most notably
we extend the implementation to also use a Xilinx Alveo
U250 card and provide a significantly more detailed
evaluation.

3.2 Monte Carlo Simulations on FPGAs

In [6] the authors propose an FPGA implementation for
Monte Carlo based dose simulation. They simulate photons
and electrons, where the initial photons are generated by
an external source and sent to the FPGA. Afterwards, the
dose is calculated and accumulated in the patient cube.
However, the patient cube voxels are only saved in on-
chip memory, limiting the resolution of the patient cube
to 64 voxels in each dimension. A speedup of up to two
orders of magnitude compared to a CPU implementation is
claimed.

In [5] a methodology to develop FPGA based mixed
precision Monte Carlo designs is presented. The authors
propose an analytical model to determine the optimal
precision and resource allocation for a given Monte Carlo
simulation. They combine an FPGA and a CPU to achieve
the desired accuracy while using reduced precision. As
a result they report speedups of up to 4.6x, 7.1x and

951J Sign Process Syst (2020) 92:949–963



163x compared to recent GPU, FPGA and CPU designs
respectively.

The authors of [14] present a domain specific language
for the development of Monte Carlo simulations which
targets FPGAs and GPUs. They report a 3.7x speedup
compared to CPUs for the generated FPGA designs. The
advantage of this work is that the user only needs to describe
the Monte Carlo simulation using a high level framework
based on LATEX equations to obtain the FPGA design.

A significant amount of other related work exists, in
which different Monte Carlo simulations are accelerated
using FPGAs. This includes image reconstruction for
Single-Photon Emission Computed Tomography (SPECT)
[11], pricing of Asian options [17], simulation of electron
dynamics in semiconductors [16] and simulation of
biological cells [25].

Additionally, there exists work to accelerate particle
simulation in hardware. The most prominent examples
of these are the ANTON Application-Specific Integrated
Circuits (ASICs) [1, 19]. In contrast to our workload they
focus on the accurate simulation of atoms to understand
proteins, while we focus on particles in a high energy
context and the radioactive dosage accumulation caused by
them.

The major challenge of accelerating the dose simulation
compared to this related work is the difference in data
structures and most notably the random memory access into
the patient cube. As a result a novel architecture is needed.

4 Architecture

For simplicity the full capability of DPM is not completely
implemented. For example, we focus only on the simula-
tion of electrons, do not consider Bremsstrahlung and only
use water as material within the patient cube. However,
these simplifications have no impact on the feasibility of
the architecture and adding them will add only minimal
overhead. For the full feature set the following changes are
required. Bremsstrahlung is an additional form of particle
interaction and as a result only needs more area. Dif-
ferent materials can be implemented as added on-chip
memory initialised from DDR. Additionally, interaction
equations will need to select different material coefficients
dependent on the current voxel. All in all the simulation
kernel area will slightly increase and a bit more on-chip
memory as well as DDR bandwidth will be required.

One of the major challenges involved in implementing
the dose accumulation simulation is the memory access into
the patient cube. This is due to the random paths an electron
takes through the patient cube. As a result, the position of
the memory access into the patient cube to accumulate the
dose is also random. We only need to access a few bytes per

voxel of the patient cube. If placed in DDR memory, this
would lead to a practical bandwidth of less than 10 % of the
theoretical achievable bandwidth due to the random access
pattern to DDR memory. For this reason the patient cube has
to be buffered on-chip.

The on-chip memory capacity of even the largest
contemporary FPGAs is not sufficient to store patient cubes
of the required resolution for all envisioned use cases. For
example the overall memory capacity of a Xilinx VU9P
FPGA is just under 48 MB while a patient cube of size
256 in each dimension will require at least 64 MB of
memory. As a result, the possible patient cube sizes would
be severely limited, since other components also require
on-chip memory. To circumvent this issue, we decided
to decompose the patient cube into multiple subdomains,
where each subdomain fits into on-chip memory. Since we
only consider water as material, the on-chip patient cube
buffer only needs to store the dose. If other materials are
also used, we would also need to store the material type
which can usually be encoded in two bits. Due to on-chip
buffering of the patient cube, we can perform fully random
memory access without impacting performance.

The buffer containing the patient cube is implemented
in a kernel. Additionally, this kernel contains the arithmetic
to perform the actual simulation of the electrons and the
calculation of the emitted dose. As described above, the
simulation of the electron decides which interaction occurs.
Based on this, the emitted dose is calculated and the values
of the electron can be updated. The updated electron moves
into a new direction and has updated energy and fuel values.
The energy and fuel values determine which interaction
occurs and when an electron gets absorbed. In the CPU
implementation, a while loop is executed for each externally
generated electron, which repeats these steps until the
energy of the electron is depleted. This is shown in Fig. 1,
which depicts the loopflow graph of the original application.
In a loopflow graph the boxes represent loops and arrows
represent the flow of data, where the thickness corresponds
to the amount of data that flow between the components.

Generate Particles
100,000,000 per simulation

Process until absorbed
random number of iterations (usually 20-30)

(82 Mults, 15 Divs, 45 Adds, 8 Interpolation, 11 RNGs, 8 Sin/Cos/Sqrt)

Patient Cube
(e.g., 256x256x256)

16,777,216 elements

Figure 1 Loopflow Graph of the CPU implementation.

952 J Sign Process Syst (2020) 92:949–963



Within the box, the number iterations and the operations
executed are indicated.

However, in our case, the kernel accepts new electrons,
evaluates the interaction and outputs the updated electrons
on every cycle. Since the kernel is deeply pipelined, a
loop implementation is not feasible. To circumvent this,
the processing order of electrons differs between CPU and
FPGA. This is a valid transformation, since all electron
interactions are fully independent. As a result, the data
arbitration and loop logic are handed off to a different
component, which also handles the transport of electrons
between subdomains.

Fig. 2 shows the simplified architecture of the applica-
tion. An External Particle Generator kernel generates new
electrons and sends them to the Particle Distributor state
machine. The particle distributor has three inputs, one from
the External Particle Generator, one from DDR and another
from the kernel containing the subdomain buffer and inter-
action simulation. Additionally, it has outputs to DDR and
to the particle simulation kernel. This kernel sends the
patient cube back to the host via PCIe once the dose is cal-
culated and forwards the updated electrons to the particle
distributor.

The particle distributor handles the arbitration of the
electrons and controls the simulation kernel. It decides
when the simulation kernel is going to switch to the next
subdomain. Additionally, it makes sure that only electrons
which are in the current subdomain are sent to the kernel. If
they belong to a different subdomain, they are buffered in
DDR and read as soon as the kernel switches to the correct
subdomain.

The amount of data that have to be stored for each
electron approximates the native word width of the DDR4
memory controller. To simplify memory layout, we decided
to pad the electron data structure to 512 bits. Additionally,
for each subdomain we reserve the same memory capacity.
However, this means that only a very limited number
of electrons can be buffered in the DDR memory. Since
we need to generate around 100 million electrons for
statistically significant results and each of those electrons
can create multiple additional electrons, this has to be
considered.

If the complete simulation is run, it is not possible to
buffer all electrons for a specific subdomain in the allocated
off-chip memory block. As a result, we split the overall
simulation into multiple batches. Within each batch we run
through all subdomains, which means that each subdomain
of the patient cube is processed multiple times. However, we
decided that we could further simplify the architecture by
sending the current part of the patient cube back to the CPU
once processing of the current batch is finished. As a result,
it is not required to accumulate the dose of multiple batches
on the FPGA, which removes the requirement to buffer
the results of the simulation on-card once processing for
the current subdomain is finished. As such, we decided to
double buffer the patient cube. Therefore, when processing
of a subdomain finishes the buffers can be switched and the
now inactive half can be streamed out and set to zero in
preparation for the next subdomain.

As a result of splitting the patient cube into subdomains,
a problem occurs if an electron updated by an interaction
moves into an already processed subdomain. Since we use
multiple batches, it is possible to buffer these electrons
in DDR for the next batch. However, on the last batch
this is not possible. To address this problem, we added
another output to the particle distributor which sends those
electrons back to the CPU when the last batch is currently
processed. Since the amount of electrons sent back is orders
of magnitude smaller than the total, it is possible to simulate
those electrons on the CPU. We also start the simulation of
the electrons sent back as soon as they arrive to overlap the
compute time on the CPU and on the FPGA.

In the proposed architecture, DDR memory is used only
to buffer electrons. Potentially, the amount of electrons
which have to be buffered in DDR is very large. As such,
we need to consider the access patterns to optimise the
achievable bandwidth. By using long continuous memory
access we can get closest to the theoretical peak memory
bandwidth.

Reading electrons from DDR is inherently linear, since
we can simply read all electrons buffered for a specific
subdomain sequentially. However, the access pattern on the
write side is not linear. Since the direction of electrons after

Figure 2 The simplified
architecture of the dose
accumulation simulation. DDR

Particles

moved

between

Subdomains

FPGA

E
xt

er
na

l
P

ar
tic

le
G

en
er

at
or

P
ar

tic
le

 D
is

tr
ib

ut
or

Subdomain
buffer and

Particle
Interaction
Simulation

Patient domain
(re)construction

CPU

Dose
cube

output

953J Sign Process Syst (2020) 92:949–963



interaction is based on random number generators, it is very
likely that each electron is written to different parts of the
memory. To alleviate this problem, we added an additional
state machine, which has small on-chip buffers for each
subdomain. We accumulate multiple electrons in these on-
chip buffers and only when they are full we write the
complete buffer to DDR. Additionally, they can be flushed
by the particle distributor to make sure that all electrons for
the current subdomains are written to memory, so that they
can be read again for processing. We decided to make these
buffers hold sixteen electrons, which limits the required on-
chip memory capacity but already manages to achieve up
to 90% of the peak bandwidth. By packing all individual
buffers into a single on-chip memory we can also increase
the on-chip memory utilisation. Each individual buffer has
a unique address range in the bigger on-chip memory and
since only one particle can be received per cycle there is no
possibility for write port conflicts. By ensuring that read and
write patterns are linear, we are able to significantly improve
off-chip memory bandwidth.

The area required for the simulation of a single electron
is small compared to the area available on modern FPGAs
(see Section 5). As such, we cannot only rely on the
pipeline parallelism but also need to exploit algorithm level
parallelism to use all available chip resources. We exploit
the inherent parallelism of the Monte Carlo simulation on
two levels.

The first additional level of parallelism creates multiple
instances of the entire design. The motivation for this can
be found in the platform we target (see Section 6). We use
FPGA accelerator cards based on the Xilinx Ultrascale+
architecture. The big devices used in this work consist of
multiple individual dies and interconnectivity between these
dies is limited. As such it is often a good idea to treat those
dies like separate FPGAs. On the platforms used here, each
die is connected to one DDR4 DIMM (dual in-line memory
module) and as a result implementing one design on each
die is easy. The individual designs only share the PCIe
controller and are otherwise completely independent.

The second additional level of parallelism allows us
to process multiple electrons in parallel within the same
simulation kernel. Parallelising the computation in the
kernel itself is accomplished by simply duplicating the
dataflow graph. However, the patient cube buffer has to
be shared to save on-chip memory resources. As a result,
we need to consider potential memory access conflicts.
To decrease the likelihood of such events, we implement
each xy plane of the cube as a separate memory instance.
As a result we have z individual memories holding
the data of one xy planes. This will also help with
timing closure, since big on-chip memory structures often
have problems routing control signals between memory
columns.

Another state machine is introduced which checks the
electrons coming from the particle distributor for memory
access conflicts. Only if the z position of the electrons is
different, meaning different physical memories are used,
or they access the same memory position, all electrons are
sent to the simulation kernel. Otherwise, only a conflict
free subset is forwarded. To avoid starving one input, a
round robin scheme is used to prioritise all inputs fairly.
Since it is non-trivial to parallelise the particle distributor,
we decided to instead create one instance of the particle
distributor for each electron processed in parallel. This also
means that the off-chip memory space has to be equally split
between each particle distributor. The overhead introduced
by this is negligible, but the implementation complexity is
significantly reduced.

The final architecture for a single die where the kernel pro-
cesses two electrons per cycle is shown in Fig. 3. All arrows,
apart from the kernel output sending the dose cube to the
host, represent electrons. These connections use FIFOs.

Figure 4 shows the loopflow graph of the application
after all the proposed changes for a patient cube size of 256
in all dimensions, split into subdomains of size 128 in x

dimension and 64 in all others. Additionally the execution
is done in two batches. In comparison to Fig. 2, one can see,
that the algorithm structure is more complicated, but it is
better suited to hardware acceleration.

To summarise, the main technical challenges are to
support big voxel cubes and the processing of multiple
electrons within the same kernel using the same on-chip
dose memory. The first challenge is addressed by splitting
the voxel cube into multiple subdomains and adding
particle distribution logic to deal with electrons transitioning
between subdomains. Additionally, we add logic to improve
memory efficiency and maximise our usable memory
bandwidth. The second challenge is addressed by adding a
unit for resolving potential memory conflicts at the input of
the kernel.

5 PerformanceModel

The performance model consists of a set of simple equations
capturing the most important system characteristics. It is
used for rapid design space exploration without running
place and route. It also guides the architectural design and is
used to evaluate the final implementation. The architecture
described above was developed using an iterative process
of performance modelling and refinement. We, however,
present only the final results. The performance model
will be used to verify if our implementation meets our
expectations in Section 6.

One of the major challenges in modelling the perfor-
mance of this application is the extensive use of random

954 J Sign Process Syst (2020) 92:949–963



DDR

Particles

moved

between

Subdomains

Pipe 1

FPGA

E
xt

er
na

l
P

ar
tic

le
G

en
er

at
or

P
ar

tic
le

 D
is

tr
ib

ut
or

Subdomain
Buffer and

Particle
Interaction
Simulation

Patient Domain
(re)construction

CPU

Dose
Cube

Output

E
xt

er
na

l
P

ar
tic

le
G

en
er

at
or

P
ar

tic
le

 D
is

tr
ib

ut
or

W
rit

e
C

ac
he

W
rit

e
C

ac
he

Particles

moved

between

Subdomains

Pipe 2

P
ar

tic
le

 C
on

fli
ct

R
es

ol
ut

io
n

Figure 3 The architecture of the dose accumulation simulation for a single FPGA die if the kernel processes two electrons on every cycle.

number generators. For example, after how many iterations
an electron is absorbed and the amount of electrons stored
in DDR are both variable. As such, we need to work with
estimations based on measurements using the CPU code.

We will denote the amount of electrons updated by
interactions before they are absorbed as ninter . The
percentage of electrons which move between subdomains,

and therefore require DDR buffering, is noted as psub.
Finally, the percentage of cases in which there is a memory
access conflict in the patient cube buffer of the simulation
kernel is represented by pmem. These factors are also highly
dependent on the way in which the external electrons are
generated and as a result we will discuss the factors in more
detail in Section 6 while keeping all equations generic here.

Iterate over batches
e.g., 2

Generate Particles
50,000,000 per batch

Patient Cube
(e.g., 256x256x256)

100,000,000 elements

Process until absorbed
random number of iterations (usually 20-30)

(82 Mults, 15 Divs, 45 Adds, 8 Interpolation, 11 RNGs, 8 Sin/Cos/Sqrt)

Iterate over subdomains
e.g., 32

Iterate over batches
e.g., 2 + 1

1,610,612,736 elements

Process until absorbed of unprocessed particles
random number of iterations

(82 Mults, 15 Divs, 45 Adds, 8 Interpolation, 11 RNGs, 8 Sin/Cos/Sqrt)

Figure 4 Loopflow Graph of the FPGA implementation.

955J Sign Process Syst (2020) 92:949–963



In this section, we will provide equations for area
usage, the achievable electron processing speed, memory
bandwidth and finally PCIe bandwidth requirements.

5.1 Area Usage

To forecast the area usage of the implementation we need
to count the operations in the CPU code. The simulation of
the electrons includes multiple trigonometric functions and
square roots. For some of those MaxCompiler offers API
functions and we implement the remaining ones as a linear
interpolation between values in a ROM lookup table.

Table 1 shows the operation count and the predicted
area usage for one simulation kernel which processes one
electron per cycle. We determined the area usage for
each operation using micro benchmarks and then simply
multiplying these with the number of operations needed and
calculating the sum over all operations. The area usage will
scale linearly with the number of processed electrons per
cycle. It should be noted that additional memories and FFs
(flipflops) are needed for scheduling of the dataflow graph.

The simulation kernel also contains the memory to buffer
the patient cube. The size of this memory depends on
the dimensions of the subdomain, xsub, ysub and, zsub in
voxels. Additionally we have to consider the depth and
width of the physical memories, which we call memd and
memw respectively. Eq. 1 calculates the number of physical
on-chip memories required for a single xy plane. The
parameter accWidth represents the number of bits required
for the datatype used for the dose accumulation. In total
zsub of these memories are needed. However, they might
use different memory resources, since MaxCompiler will
automatically use either BRAMs (Block Random Access
Memories) and URAMs (Ultra Random Access Memories).

#memcube =
⌈

accWidth

memw

⌉
∗

⌈
xsub ∗ ysub

memd

⌉
(1)

In addition to the kernel resource, we also have to
consider the state machines and other manager blocks. The
state machines predominantly use LUTs (lookup tables),
FFs and on-chip memory. We can safely estimate the
number of LUTs and FFs required per state machine to
be less than 5,000 and 10,000 respectively. The particle
distributor does not need any additional memory resources,
while the write cache to improve memory efficiency mainly
consists of a single buffer. The size of this buffer can be
estimated using Eq. 2 with elecw representing the width of

the electron data structure in bits without padding, 417 bits
in our case. The depth is determined by the total number
of necessary subdomains. d represents the depth of the
memory per subdomain, which in our case is 16.

#memcache =
⌈

elecw

memw

⌉
∗

⌈ xcube

xsub
∗ ycube

ysub
∗ zcube

zsub
∗ d

memd

⌉
(2)

Lastly, we need to consider the remaining manager
blocks. The memory requirements for each FIFO can be
estimated using Eq. 3. Usually the depth of a FIFO is 512
and since most FIFOs buffer electrons the width is usually
either 417 or 512 bits. Each memory controller requires
3 DSPs (digital signal processing slices), roughly 20,000
LUTs and 30,000 FFs and around 50 BRAMs. Per design
instance we will require one memory controller. Finally,
the resource requirements for the PCIe controller can be
estimated as 8,000 LUTs, 12,000 FFs and 35 BRAMs. The
PCIe controller is shared between all instances of the design.

#memFIFO =
⌈

FIFOw

memw

⌉
∗

⌈
FIFOd

memd

⌉
(3)

5.2 Electron Processing Speed

To calculate the electron processing speed, we need to
estimate how many electrons can be processed by the kernel
at a given frequency. Equation 4 shows how to calculate
this. nelec represents the number of electrons processed per
second, while ndesign and npipes represent the parallelism
in terms of number of instances of the design and electrons
processed in parallel respectively. Finally f represents the
assumed frequency the implementation will be running at.

nelec = ndesign ∗ (pmem + npipes ∗ (1 − pmem)) ∗ f (4)

Additionally, we have to consider that for each subdo-
main the on-chip buffer has to be written back to the host.
Normally, this can be overlapped with the compute latency
using double buffering. However, if only a very small num-
ber of electrons belong to a given subdomain the time
required for the computation might not be sufficient to flush
the previous buffer. As a result, we need to wait for the pre-
vious buffer to be fully written back before we can switch
to the next subdomain. The number of cycles required for
that per subdomain can be calculated as shown in Eq. 5.
In this case, readoutwidth represents the number of voxel
values read from the patient cube buffer per cycle. The over-
lap between the flushing of the patient cube buffer and the

Table 1 Overview of operation count and predicted area usage for the simulation of one electron.

Mults Divs Adds Interpolation RNG Sin/Cos/Sqrt LUT FF DSP BRAM

82 15 45 8 11 8 85,000 120,000 408 54

956 J Sign Process Syst (2020) 92:949–963



electron calculation heavily depends on the electron gener-
ation pattern.

cyclesf lush = xsub ∗ ysub ∗ zsub

readoutwidth

(5)

5.3 Memory Bandwidth Requirements

The total amount of data that need to be transferred to
and from DDR memory, SDDR , is calculated in Eq. 6.
Each electron requires 64 bytes and needs to be written
and read only once. Additionally, the data volume depends
on the number of electrons created by the external particle
generator nelec,total . The required bandwidth can then be
calculated as a function of the execution time ttotal as shown
in Eq. 7, where DDReff is the average memory efficiency.

SDDR = 2 ∗ 64 ∗ nelec,total ∗ ninter ∗ psub (6)

BWDDR = SDDR

ttotal

∗ 1

DDReff

(7)

5.4 PCIe Bandwidth Requirements

The PCIe bandwidth requirements are determined by two
factors. The patient cube has to be streamed back to the host
and in addition we also send the electrons back, which we
cannot process within the last batch. Equation 8 estimates
the amount of data that have to be transmitted for the
patient cube. We assume that all values sent back from the
FPGA are converted to single precision floating point, to
ease usage on the CPU side of the system. As such, the
total amount of data are simply the product of the cube
dimensions, the number of batches that are processed and
four, the size of single precision floating point number in
bytes.

SPCIe,PatientCube = xcube ∗ ycube ∗ zcube ∗ batches ∗ 4 (8)

Additionally, the amount of data transferred for the
electrons that have to be sent back to the CPU is calculated
in Eq. 9 based on the number of electrons sent back
nelectron,PCIe. This factor again depends on the external
particle generation.

SPCIe,Electron = nelectron,PCIe ∗ 64 (9)

The required bandwidth can be obtained by adding both
equations and dividing by the execution time.

5.5 Lessons Learned From the PerformanceModel

As stated above, the performance model and architecture
were iteratively developed alongside each other, where

problems identified by the performance model lead to
changes to the architecture. We only present the final
iteration of this pairing in the paper to avoid confusion, but
it has to be stressed that the detailed performance model was
crucial to derive the proposed architecture. In this section
we plan to highlight a few examples of the impact the
performance model had on the architecture development
and how it was used for design space exploration.

Using equations similar to those presented in Section 5.1
we determined that it would be infeasible to store the
complete voxel cube on-chip and it would need to be
stored in DDR memory. We then modelled the required
memory bandwidth to access the memory regions along
the trajectories of the particles. Due to the random nature
of these trajectories it was quickly discovered that an
architecture which fully simulates one particle at a time
would be heavily limited by off-chip memory bandwidth.
To mitigate this issue we decided to instead focus on sub-
regions of the memory cube which are simulated one at a
time. This decision leads to most other design decisions in
the proposed architecture.

Modelling the memory bandwidth requirements more
accurately, we noticed that the process of writing particles
which cross subdomains back into the memory might lead to
high bandwidth requirements as well. This is caused by the
random access pattern. To circumvent this issue we added
the write caches.

We also used the performance model to determine what
we could send back over PCIe to the host computer at what
time. The model showed that the overhead of accumulating
the dosage cube on the FPGA would be relatively big and
instead it is possible to send each individually processed
subdomain to the host where the partial results can be
combined. Additionally the model suggested that in most
cases it would be faster to send particles which can not be
processed in the last batch to the CPU rather then making
another iteration.

The hardware builds generated in Section 6 are a direct
result of the design space exploration using the performance
model. By evaluating the equations for area usage we could
quickly determine the possible sizes for the subdomains
stored on the chip. Additionally, we calculated how much
parallelism was feasible while not requiring too much area
or too much IO bandwidth.

6 Evaluation

To evaluate our architecture we implemented it using
Maxeler MaxCompiler version 2019.1 and Vivado 2018.3.
We target Maxeler’s MAX5C Dataflow Engine (DFE)
and the Xilinx Alveo U250 as our FPGA platforms. The
compute device of the MAX5C DFE is the Xilinx VU9P

957J Sign Process Syst (2020) 92:949–963



FPGA, which consists of 1,182,240 LUTs, 2,364,480 FFs,
6,840 DSPs, 4,320 BRAMs and 960 URAMs. Additionally
the card has three 16GB DDR4 DIMMs which provide a
peak theoretical bandwidth of 15 GB/s each. The Xilinx
Alveo U250 card is based on the VU13P FPGA and offers
1,728,000 LUTs, 12,288 DSPs, 5,376 BRAMs and 1,280
URAMs. The card has four DIMMs of DDR4 memory.

We evaluated our MAX5C based implementation with
different degrees of parallelism and cube sizes to run the
resulting bitstreams on up to three cards in parallel. For
this we used a 2U server powered by two six-core Intel
Xeon E5-2643 v4 CPUs running at 3.4 GHz. The U250
design was tested on only one card, which was hosted in a
server powered by two 18-core Intel Xeon Gold 6154 CPUs
running at 3.0 GHz. Even though we used servers, building
a workstation with similar configurations is possible.

6.1 Area Results

We decided to implement eight different configurations,
four for the MAX5C and another four for the Alveo U250.
In the case of the MAX5C all configurations use three
design instances to make optimal use of the three dies of the
VU9P. For builds 1 and 3, the simulation kernel processes
only one electron per cycle, while builds 2 and 4 process
two. In the case of builds 1 and 2, we set the patient cube
size to 128 voxels in each dimension and the subdomain size
is 64 voxels accordingly. For builds 3 and 4, the resolution is
increased and the cube size is set to 256 in each dimension.
The subdomain in these cases consists of 128 voxels in x
dimension and 64 in y and z.

The four builds targeting the Alveo U250 all consist of
four design instances to make optimal use of the four SLRs
(super logic regions) and DIMMs available. Builds 5 and
7 process one electron per cycle while 6 and 8 process
two. Again, the patient cube size is set to 128 voxels in all
dimensions and the subdomain size to 64 voxels for builds
5 and 6. Builds 7 and 8 have a patient cube size of 256
in each dimension and the subdomain size is set to 128 in
x dimension and 64 in y and z. An overview of all design

points is provided in Table 2 and the area usage for these
designs is depicted in Table 3.

The area usage predicted using the equations presented
in Section 5.1 as well as the error compared to the actual
usage are shown in Table 4. The prediction for DSPs is
highly accurate and has no error. The LUT prediction is
also very close to the actual usage with errors ranging
from an underestimation of 3% to an overestimation of
14.9% compared to the actual usage. In the case of a higher
kernel parallelism the LUT prediction is slightly higher than
the actual usage, which can be explained by a pessimistic
estimation of the area required by the state machines.

The prediction of memory resources is more compli-
cated. The reason for this is that MaxCompiler automati-
cally allocates URAMs and BRAMs, while trying to use
roughly the same percentage of available URAMs and
BRAMs. This is done to help achieve timing closure on
chips consisting of multiple SLRs [22]. In order to pro-
vide predictions for the URAM as well as BRAM usage
we decided to use the following approach: First, we predict
the memory usage using only BRAMs. Then we assume
that the same memories can be implemented using URAMs
with an efficiency of 50%, since this leads to a balanced
mapping between URAMs and BRAMs as targeted by the
memory mapping algorithm used by MaxCompiler. This
means that eight BRAM18s can be replaced by one URAM.
Using this assumption, we can calculate how many URAMs
would be needed to implement all on-chip memories. Based
on this translation between URAM and BRAM memory
capacity we can also calculate the percentage of the overall
memory which is available as URAMs and BRAMs respec-
tively. The final resource usage is predicted by multiplying
these percentages with the worst case mapping assumptions
calculated above.

Applying this method to the design leads to a URAM
prediction which is overall very close to the actual usage
with an error ranging from -2.9% to 11.6%. The error for
the BRAM prediction is significantly larger and in the worst
case we underestimate the BRAM usage by up to 38%. The
reason for this is that we do not consider the scheduling

Table 2 Design points
evaluated for the proposed
architecture.

Num Card Frequency Design Kernel Cube Subdomain

Count parallelism size size

1 MAX5C 250 MHz 3 1 128 64

2 MAX5C 250 MHz 3 2 128 64

3 MAX5C 250 MHz 3 1 256 128

4 MAX5C 250 MHz 3 2 256 128

5 U250 250 MHz 4 1 128 64

6 U250 250 MHz 4 2 128 64

7 U250 250 MHz 4 1 256 128

8 U250 250 MHz 4 2 256 128

958 J Sign Process Syst (2020) 92:949–963



Table 3 Hardware resource
usage for the different design
points.

Num LUT FF DSP BRAM URAM

1 339,030 (28.68%) 641,249 (27.12%) 1,233 (18.03%) 1,209 (27.99%) 414 (43.13%)

2 547,980 (46.35%) 1,071,404 (45.31%) 2,457 (35.92%) 2,535 (58.68%) 468 (48.75%)

3 346,363 (29.30%) 669,903 (28.33%) 1,233 (18.03%) 2,469 (57.15%) 708 (73.75%)

4 558,875 (47.27%) 1,108,486 (46.88%) 2,457 (35.92%) 3,471 (80,35%) 804 (83.75%)

5 431,572 (24.98%) 830,041 (24.02%) 1,644 (13.38%) 1,482 (27,57%) 548 (42.81%)

6 704,282 (40.76%) 1,395,707 (40.39%) 3,276 (26.66%) 3,198 (59,49%) 596 (46.56%)

7 441,146 (25.53%) 868,371 (25.13%) 1,644 (13.38%) 3,066 (57,03%) 948 (74.06%)

8 719,487 (41.64%) 1,445,042 (41.81%) 3,276 (26.66%) 4,350 (80,92%) 1052 (82.19%)

of the dataflow graph, which requires FIFOs that are often
implemented using BRAMs. As a result, especially in cases
where the degree of parallelism is higher and the dataflow
graph is larger our error is bigger as well. This means that
in general we are underestimating the memory footprint of
the application, which is especially noticeable in the case
of larger designs. However, the URAMs are mostly used by
MaxCompiler to implement the voxel cube buffers, which
can be implemented with a URAM efficiency of 75%,
which somewhat mitigates this underestimation. As such
we tend to overestimate memory usage for smaller design
points while underestimating it for larger design points. To
summarise, the area predictions are sufficiently accurate and
allowed us to perform a very fast design space exploration.

6.2 Performance Results

The results of processing 100 million externally generated
electrons are shown in Table 5. The particles are generated
as a single beam, where all electrons enter the voxel cube at
the same point with an energy of 6MeV. The offset column
indicates whether this voxel is within a subdomain or at the
centre of the cube. No offset means that the beam is pointed
at the centre of the patient cube. In this case, the cube is
entered at the intersection of four subdomains, significantly
increasing the number of electrons needing DDR buffering.

We show FPGA and total runtime separately. The total
runtime includes the time required to finish simulation for
all electrons sent back to the CPU as well as the time

required to combine all partial results into one single patient
cube. In the case of the Alveo U250, no particles are sent
back to the CPU due to limitations of the PCIe controller. As
such only the combination of partial results has to be carried
out. To measure the runtime we make five independent
measurements and report the mean over these five runs.
Additionally, the min and max values as well as the standard
deviation are provided for the FPGA runtime.

We predicted the runtime and the time required to
perform memory transfers using the equations in Section 5.
For each combination of offset and build we simulate a
smaller run on the CPU to derive the factors determined by
random number generators like the number of iterations for
each initial electron and the rate of electrons which require
buffering in DDR.

We manage to reach our target of sub one second runtime
for the complete simulation including CPU execution for
run 6. This run uses three MAX5C cards simulating a
patient cube of 128 voxels in all directions and processing
two pixels in parallel in each of the three design instances.
It stands to reason that we could reach the same target using
two Alveo U250 cards using build 6. However, we did not
have access to the hardware required to verify this.

Since the execution time is dependent on the random
numbers generated, one can expect a certain amount of
deviation between the predicted runtime and the actual
runtime. In most cases the standard deviation between
executions is very low and stays below 10 ms and in some
cases even below 1 ms. However, e.g., in the case of run

Table 4 Predicted hardware
resource usage results for the
proposed design points and
prediction error.

Num LUT FF DSP BRAM URAM

1 338,000 (-3%) 492,000 (-30.4%) 1,233 (0%) 1,888 (36%) 420 (1.4%)

2 623,000 (12%) 912,000 (-17.4%) 2,457 (0%) 2,043 (-24.1%) 455 (-2.9%)

3 338,000 (-2.5%) 492,000 (-36.2%) 1,233 (0%) 3,547 (30.4%) 789 (10.3%)

4 623,000 (10.3%) 912,000 (-21.5%) 2,457 (0%) 3,702 (6,2%) 824 (2.4%)

5 448,000 (3.7%) 652,000 (-27.3%) 1,644 (0%) 2,391 (38%) 570 (3.9%)

6 828,000 (14.9%) 1,212,000 (-15.2%) 3,276 (0%) 2,574 (-24.2%) 614 (2.9%)

7 448,000 (1.5%) 652,000 (-33.2%) 1,644 (0%) 4,506 (32%) 1,073 (11.6%)

8 828,000 (13.1%) 1,212,000 (-19.2%) 3,276 (0%) 4,689 (7.3%) 1,117 (5.8%)

959J Sign Process Syst (2020) 92:949–963



Table 5 Actual and predicted runtime.

Run num Build num Cards Offset Mean FPGA Stdev FPGA Mean total Predicted compute Predicted DDR

time [ms] time [ms] time [ms] time [ms] time [ms]

1 1 1 yes 2,869.8 1,9 2,968.6 2,667 110

2 1 2 yes 1,452.6 0.9 1,546.6 1,333 55

3 1 3 yes 980.4 1.67 1,088 889 37

4 2 1 yes 2,294.2 2.9 2,443 1,901 69

5 2 2 yes 1,167.8 3.1 1,325.2 950 34

6 2 3 yes 813.2 2.2 967.8 634 23

7 3 1 yes 3,956.2 4.7 4,572.2 3,333 378

8 3 2 yes 2,151.2 20.2 2,832.4 1,667 189

9 3 3 yes 1,652.8 55.8 2,358 1,111 126

10 4 1 yes 3,128.2 12 4,264.6 2,427 351

11 4 2 yes 1,702.8 20 2,814.4 1,214 176

12 4 3 yes 1,460.4 57.6 2,610.6 810 117

13 1 1 no 5,431.2 103.7 7075 2,800 1,364

14 1 2 no 3,539.8 60.2 4,585.8 1,400 682

15 1 3 no 3,134.8 252.9 3,575.6 933 455

16 2 1 no 6,099.2 1119.9 6,060.8 2,011 1,404

17 2 2 no 3,136.2 378.7 3,522.8 1,005 702

18 2 3 no 2,655 128.7 3,079.8 670 468

19 5 1 yes 2,171.4 2.5 2182.4 2,000 83

20 6 1 yes 1,735.8 9 1742.4 1,325 52

22 7 1 yes 3,113.2 34.6 3,179.4 3,333 283

23 8 1 yes 2,989.2 107.8 3,216.4 1,821 264

25 5 1 no 1,986.4 16 2,010.2 2,100 1,023

26 6 1 no 1,735.8 9 1,742.4 1,508 1,053

16, the standard deviation increases significantly and in this
case reaches more than 1,000 ms.

In general, there are three common patterns for runs with
increased standard deviation of execution times. The first is
that multiple electrons are processed in parallel. This can,
for example, be observed by comparing runs 1 and 4 or
19 and 20. In these cases the deviation increases slightly
for builds which have the same parameters apart from this
additional degree of parallelism. The reason for this is that
a random chance of conflicts for patient cube memory
accesses is introduced. The resolution of these conflicts
results in changes to the degree of parallelism possible and
as a result impacts the execution time. This deviation can be
expected even though the impact is very small.

The second factor is the size of the patient cube. If the
patient cube is large as in the cases of builds 3, 4, 7 and
8 the discrepancy between runs is also larger. This has two
reasons: Firstly, each voxel represents a smaller portion of
the actual patient. As a result particles can travel across
more voxels leading to an increase in subdomain changes.
Secondly, more data have to be sent back to the CPU,
leading to stalls if the PCIe bus is currently congested.
This congestion is caused by multiple designs flushing

their patient cube at the same time. Overall the introduced
deviation is still limited.

The third factor is the position of entry of the particle
beam into the patient cube. If the beam enters in the
centre of the cube, which is also the boundary of four
subdomains, the standard deviation of execution times
increases significantly. By comparing the deviation that
occurs in runs 13 to 18 with runs 25 and 26, one can see
that only for the first two cases the deviation is high while
for the other it is not. The only major difference between
both designs, apart from the additional design copy, is that
in the case of the U250 based design particles are not sent
back to the CPU if they cannot be processed on the card
itself. Indeed, closer examination of the run shows that a
significant portion of the particles is sent back to the CPU.
Since this data transfer is not based on Direct Memory
Access (DMA) but on active polling, it seems like the CPU
execution and the order in which threads get access to the
data mostly cause this high deviation.

We also need to evaluate the accuracy of our predictions.
For runs 1 to 6 the prediction is accurate even though it is
a bit too optimistic. In general we predict the system to be
roughly 100 to 200 ms faster than in reality. The reason for

960 J Sign Process Syst (2020) 92:949–963



Figure 5 Visualisation of the
kernel and PCIe activity for run
number 7.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Application Run Time [ns] 1e9

Dose Cube
Output

Simulation
Kernel

0

25

50

75

100

U
til

is
at

io
n 

[%
]

this prediction error is twofold: Firstly, we ignore the system
initialisation time, which can be in the order of hundreds of
milliseconds for Maxeler systems. Secondly, there is a high
likelihood that multiple designs are sending their patient
cube data back to the CPU at the same time leading to an
additional small delay.

Figure 5 shows the activity of the compute kernel as
well as of the output, which is used to send the patient
cube back to the CPU for run 7. For these runs (7-12)
the difference between predicted and actual runtime starts
to grow, but is still limited to an error of 50%. There are
two interesting observations that can be made from it. First
it takes roughly 200 ms until the kernel becomes active.
This verifies that the initialisation overhead is partly causing
the discrepancy between actual and predicted runtime. The
reason for the higher than expected initialisation time can
be traced back to the seed initialisation of the random
number generators. It is possible to remove this overhead
by sharing the seed between multiple initialisations and not
resetting the random number generator in between runs to
not generate the same numbers on every run.

The second observation is that the kernel execution
sometimes has to pause for patient cube data to be sent over
PCIe back to the CPU. This is caused by subdomains for
which no or only very small numbers of calculations have
to be performed. In our performance model we assume that
it is possible to overlap data transfer and calculation, which
is only possible if for each subdomain a sufficiently high
number of calculations is performed. This adds an addi-
tional overhead in the order of a few hundred milliseconds.

To mitigate this effect we could, for example, skip
subdomains which have nothing to compute or increase
the PCIe bandwidth by switching to PCIe Gen. 3, for
which driver support is in development. Additionally, it is
expected that the addition of Bremsstrahlung will change
the distribution of particles across subdomains removing
this problem altogether.

For runs 13 to 18 the difference between the actual
and predicted runtime is the biggest. Again by comparing
to runs 25 and 26 we can conclude that this is caused
by the transmission of particles back to the CPU. While
it might be possible to partly mitigated this problem by
higher PCIe bandwidth, it seems more promising to perform
more batches without the generation of new particles on the
FPGA in these special cases. Additionally, we think that it is
possible to further optimise the CPU code and to avoid this

worst case in the actual deployment of the system altogether
by shifting the position of the subdomains accordingly.

For the designs using the U250 the same patterns can be
seen as for the builds using the MAX5C card as discussed
in detail above. To summarise, the model seems to be highly
accurate for the most straightforward cases as represented
by runs 1 to 6 as well as 19 and 20. If the cube size is
increased or the particle beam enters the patient cube at the
boundary of subdomains effects that were not included in
the model have significant impact on the runtime leading to
bigger prediction errors. We think it is possible to mitigate
most of these effects in the future.

6.3 Comparison to Traditional Systems

A fair comparison to related work for this application is not
easy to accomplish, since the precise test case is often not
reproducible or accessible due to patient data protections.
In [26] the authors report execution times of 10.8 seconds
for a patient cube of size 256x256x234 on a two socket
Intel Xeon system. Additionally they report a speedup of
1.95x compared to the GPU implementation presented in
[7], which is based on a single GPU card. A similar test
case on our system (Run 12) takes 2.6 seconds including the
not fully optimised CPU code. Since our test case is slightly
larger the comparison should be slightly biased towards the
CPU and GPU based technologies. As a result we achieve a
speedup of 4.1x compared to the CPU and 8x compared to
the GPU implementation for a slightly larger patient cube.

The FPGA as well as the CPU and GPU systems can
be realised as a single workstation system. In this use case
the space efficiency of the solution is the most important
metric, since the simulation system should be placed
close to the treatment machine to reduce latencies and
minimise potential network issues. As such the simulation
system has to fit into the existing rooms available for
the treatment which are often in dedicated underground
buildings due to radiation shielding requirements. The price
of the simulation system is negligible compared to the costs
of the complete installation.

7 Conclusion and FutureWork

In this paper, we presented an FPGA based implementa-
tion for real time Monte Carlo dose simulation for adaptive

961J Sign Process Syst (2020) 92:949–963



radiotherapy. We proposed an architecture which decom-
poses the voxel cube representing the patient into multiple
subdomains to reduce on-chip memory space requirements.
The performance and area usage for this architecture were
modelled using simple equations to predict the hardware
implementation characteristics. Finally, we presented eight
implementations of the architecture and showed that in the
most typical cases the performance model provides an accu-
rate indication of the measured runtime. We manage to fulfil
our realtime goals of simulating 100 million electrons in less
than a second using three FPGA cards for a voxel cube with
a size of 128 in all dimensions.

Future work will include the implementation of
Bremsstrahlung, additional particle types, support of differ-
ent materials as well as an increase of the PCIe bandwidth.
The integration of our approach into the latest adaptive
radiotherapy systems will also be explored.

Acknowledgments The support of the United Kingdom EPSRC (grant
number EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/S030069/1
and EP/L00058X/1), Maxeler, Intel and Xilinx is gratefully acknowl-
edged.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Ant (2014). The ANTON 2 chip a second-generation ASIC
for molecular dynamics. In 2014 IEEE Hot Chips 26 Sympo-
sium (HCS) (pp. 1–18), https://doi.org/10.1109/HOTCHIPS.2014.
7478807.

2. Buckley, L.A., Kawrakow, I., Rogers, D.W.O. (2004). CSNrc:
correlated sampling Monte Carlo calculations using EGSnrc.
Medical Physics, 31(12), 3425–3435.

3. Cassidy, J., Nouri, A., Betz, V., Lilge, L. (2018). High-
performance, robustly verified Monte Carlo simulation with Full-
Monte. Journal of Biomedical Optics, 23(8), 1–11. https://doi.org/
10.1117/1.JBO.23.8.085001.

4. Chetty, I.J., Charland, P.M., Tyagi, N., McShan, D.L., Fraass,
B.A., Bielajew, A.F. (2003). Photon beam relative dose validation
of the DPM Monte Carlo code in lung-equivalent media. Medical
Physics, 30(4), 563–73.

5. Chow, G.C.T., Tse, A.H.T., Jin, Q., Luk, W., Leong, P.H., Thomas,
D.B. (2012). A Mixed Precision Monte Carlo Methodology
for Reconfigurable Accelerator Systems. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA ’12 (pp. 57–66). New York: ACM. https://doi.
org/10.1145/2145694.2145705.

6. Fanti, V., Marzeddu, R., Pili, C., Randaccio, P., Siddhanta, S.,
Spiga, J., Szostak, A. (2009). Dose calculation for radiotherapy
treatment planning using Monte Carlo methods on FPGA based
hardware. In 2009 16th IEEE-NPSS Real Time Conference
(pp. 415–419). https://doi.org/10.1109/RTC.2009.5321468.

7. Jia, X., Gu, X., Graves, Y.J., Folkerts, M., Jiang, S.B. (2011).
GPU-Based fast Monte Carlo simulation for radiotherapy dose
calculation. Physics in Medicine and Biology, 56(22), 7017–7031.
https://doi.org/10.1088/0031-9155/56/22/002.

8. Jia, X., George Xu, X., Orton, C.G. (2015). GPU Technology
is the hope for near real-time Monte Carlo dose calculations.
Medical Physics, 42(4), 1474–1476. https://doi.org/10.1118/1.
4903901.

9. Kawrakow, I., Kling, A., Baräo, F.J.C., Nakagawa, M., Távora, L.,
Vaz, P. (Eds.) (2001). VMC++, Electron and photon monte carlo
calculations optimized for radiation treatment planning. Berlin:
Springer.

10. Kawrakow, I., & Fippel, M. (2000). Investigation of variance
reduction techniques for Monte Carlo photon dose calculation
using XVMC. Physics in Medicine and Biology, 45(8), 2163–
2183. https://doi.org/10.1088/0031-9155/45/8/308.

11. Kinsman, P.J., & Nicolici, N. (2013). Noc-based FPGA
Acceleration for Monte Carlo Simulations with Applications to
SPECT Imaging. IEEE Transactions on Computers, 62(3), 524–
535. https://doi.org/10.1109/TC.2011.250.

12. Lagendijk, J.J.W., Raaymakers, B.W., Raaijmakers, A.J.E.,
Overweg, J., Brown, K.J., Kerkhof, E.M., van der Put, R.W.,
Hårdemark, B., van Vulpen, M., van der Heide, U.A. (2008).
MRI/linac integration. Radiotherapy and Oncology, 86(1), 25–29.
https://doi.org/10.1016/j.radonc.2007.10.034.

13. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen,
A.D., Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund,
P., Singhal, R., Dubey, P. (2010). Debunking the 100X GPU
vs. CPU Myth: An Evaluation of Throughput Computing on
CPU and GPU. SIGARCH Comput Archit News, 38(3), 451–460.
https://doi.org/10.1145/1816038.1816021.

14. Lindsey, B., Leslie, M., Luk, W. (2016). A Domain Specific
Language for accelerated Multilevel Monte Carlo simulations. In
2016 IEEE 27th International Conference on Application-specific
Systems, Architectures and Processors (ASAP) (pp. 99–106).
https://doi.org/10.1109/ASAP.2016.7760778.

15. Ma, C.M., Li, J.S., Pawlicki, T., Jiang, S.B., Deng, J.,
Lee, M.C., Koumrian, T., Luxton, M., Brain, S. (2002). A
Monte Carlo dose calculation tool for radiotherapy treatment
planning. Physics in Medicine and Biology, 47(10), 1671–1689.
https://doi.org/10.1088/0031-9155/47/10/305.

16. Negoi, A., & Zimmermann, J. (1996). Monte carlo hardware
simulator for electron dynamics in semiconductors. In 1996 Inter-
national semiconductor conference. 19th edition. CAS’96 pro-
ceedings, (Vol. 2 pp. 557–560). https://doi.org/10.1109/SMICND.
1996.557443.

17. Schryver, C.d., Shcherbakov, I., Kienle, F., Wehn, N., Marxen,
H., Kostiuk, A., Korn, R. (2011). An Energy Efficient FPGA
Accelerator for Monte Carlo Option Pricing with the Heston
Model. https://doi.org/10.1109/ReConFig.2011.11.

18. Sempau, J., Wilderman, S.J., Bielajew, A.F. (2000). DPM
A fast, accurate monte carlo code optimized for photon
and electron radiotherapy treatment planning dose calcula-
tions. Physics in Medicine and Biology, 45(8), 2263–2291.
https://doi.org/10.1088/0031-9155/45/8/315.

19. Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson,
R.H., Salmon, J.K., Young, C., Batson, B., Bowers, K.J., Chao,
J.C., et al. (2008). Anton, a special-purpose machine for molecular
dynamics simulation. Communications of the ACM, 51(7), 91–97.
https://doi.org/10.1145/1364782.1364802.

962 J Sign Process Syst (2020) 92:949–963

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/HOTCHIPS.2014.7478807
https://doi.org/10.1109/HOTCHIPS.2014.7478807
https://doi.org/10.1117/1.JBO.23.8.085001
https://doi.org/10.1117/1.JBO.23.8.085001
https://doi.org/10.1145/2145694.2145705
https://doi.org/10.1145/2145694.2145705
https://doi.org/10.1109/RTC.2009.5321468
https://doi.org/10.1088/0031-9155/56/22/002
https://doi.org/10.1118/1.4903901
https://doi.org/10.1118/1.4903901
https://doi.org/10.1088/0031-9155/45/8/308
https://doi.org/10.1109/TC.2011.250
https://doi.org/10.1016/j.radonc.2007.10.034
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1109/ASAP.2016.7760778
https://doi.org/10.1088/0031-9155/47/10/305
https://doi.org/10.1109/SMICND.1996.557443
https://doi.org/10.1109/SMICND.1996.557443
https://doi.org/10.1109/ReConFig.2011.11
https://doi.org/10.1088/0031-9155/45/8/315
https://doi.org/10.1145/1364782.1364802


20. Townson, R., Jia, X., Zavgorodni, S., Jiang, S. (2012). SU-E-
t-476: GPU-based Monte Carlo Radiotherapy Dose Calculation
Using Phase-Space Sources. Medical Physics, 39(6 Part 17),
3814–3814. https://doi.org/10.1118/1.4735565.

21. Tyagi, N., Bose, A., Chetty, I.J. (2004). Implementation of
the DPM Monte Carlo code on a parallel architecture for
treatment planning applications. Medical Physics, 31(9), 2721–
2725. https://doi.org/10.1118/1.1786691.

22. Voss, N., Quintana, P., Mencer, O., Luk, W., Gaydad-
jiev, G. (2019). Memory mapping for multi-die fpgas. In
2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM) (pp. 78–
86). https://doi.org/10.1109/FCCM.2019.00021.

23. Voss, N., Ziegenhein, P., Vermond, L., Hoozemans, J., Mencer,
O., Oelfke, U., Luk, W., Gaydadjiev, G. (2019). Towards
real time radiotherapy simulation. In 2019 IEEE 30th Inter-
national Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), (Vol. 2160-052X pp. 173–180).
https://doi.org/10.1109/ASAP.2019.000-6.

24. Wulff, J., Zink, K., Kawrakow, I. (2008). Efficiency improve-
ments for ion chamber calculations in high energy photon beams.
Medical Physics, 35(4), 1328–1336.

25. Yamaguchi, Y., Azuma, R., Konagaya, A., Yamamoto, T. (2003).
An approach for the high speed Monte Carlo simulation with
FPGA - toward a whole cell simulation. In 2003 46th Midwest
Symposium on Circuits and Systems, (Vol. 1 pp. 364–367).
https://doi.org/10.1109/MWSCAS.2003.1562294.

26. Ziegenhein, P., Pirner, S., Kamerling, C.P., Oelfke, U. (2015).
Fast CPU-based Monte Carlo simulation for radiotherapy dose
calculation. Physics in Medicine and Biology, 60(15), 6097–6111.
https://doi.org/10.1088/0031-9155/60/15/6097.

27. Ziegenhein, P., Kozin, I.N., Kamerling, C.P., Oelfke, U. (2017).
Towards real-time photon Monte Carlo dose calculation in the
cloud. Physics in Medicine and Biology, 62(11), 4375–4389.
https://doi.org/10.1088/1361-6560/aa5d4e.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

963J Sign Process Syst (2020) 92:949–963

https://doi.org/10.1118/1.4735565
https://doi.org/10.1118/1.1786691
https://doi.org/10.1109/FCCM.2019.00021
https://doi.org/10.1109/ASAP.2019.000-6
https://doi.org/10.1109/MWSCAS.2003.1562294
https://doi.org/10.1088/0031-9155/60/15/6097
https://doi.org/10.1088/1361-6560/aa5d4e

	Towards Real Time Radiotherapy Simulation
	Abstract
	Introduction
	Background
	Monte Carlo Based Dose Simulation for Radiotherapy
	Dataflow

	Related Work
	Monte Carlo Dose Simulation
	Monte Carlo Simulations on FPGAs

	Architecture
	Performance Model
	Area Usage
	Electron Processing Speed
	Memory Bandwidth Requirements
	PCIe Bandwidth Requirements
	Lessons Learned From the Performance Model

	Evaluation
	Area Results
	Performance Results
	Comparison to Traditional Systems

	Conclusion and Future Work
	References


