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A B S T R A C T

Background and purpose: Retrieving quantitative parameters from magnetic resonance imaging (MRI), e.g. for
early assessment of radiotherapy treatment response, necessitates contouring regions of interest, which is time-
consuming and prone to errors. This becomes more pressing for daily imaging on MRI-guided radiotherapy
systems. Therefore, we trained a deep convolutional neural network to automatically contour involved lymph
nodes on diffusion-weighted (DW) MRI of head and neck cancer (HNC) patients receiving radiotherapy.
Materials and methods: DW-images from 48 HNC patients (18 induction-chemotherapy + chemoradiotherapy;
30 definitive chemoradiotherapy) with 68 involved lymph nodes were obtained on a diagnostic 1.5 T MR-
scanner prior to and 2–3 timepoints throughout treatment. A radiation oncologist delineated the lymph nodes on
the b = 50 s/mm2 images. A 3D U-net was trained to contour involved lymph nodes. Its performance was
evaluated in all 48 patients using 8-fold cross-validation and calculating the Dice similarity coefficient (DSC) and
the absolute difference in median apparent diffusion coefficient (ΔADC) between the manual and generated
contours. Additionally, the performance was evaluated in an independent dataset of three patients obtained on a
1.5 T MR-Linac.
Results: In the definitive chemoradiotherapy patients (n = 96 patients/lymphnodes/timepoints) the DSC was
0.87 (0.81–0.91) [median (1st-3rd quantiles)] and ΔADC was 1.9% (0.8–3.4%) and both remained stable
throughout treatment. The network performed worse in the patients receiving induction-chemotherapy
(n = 65), with DSC = 0.80 (0.71–0.87) and ΔADC = 3.3% (1.6–8.0%). The network performed well on the MR-
Linac data (n = 8) with DSC = 0.80 (0.75–0.82) and ΔADC = 4.0% (0.6–9.1%).
Conclusions: We established accurate automatic contouring of involved lymph nodes for HNC patients on di-
agnostic and MR-Linac DW-images.

1. Introduction

By studying the tumour microenvironment throughout radiotherapy
(RT) treatment, we might be able to determine an optimal tumour-
specific dose depending on the treatment's efficacy and update treat-
ment accordingly [1]. One way of studying the tumour microenviron-
ment is by diffusion-weighted (DW) magnetic resonance (MR) imaging
(MRI) [2–5]. However, the exact predictive and prognostic value of DW
MRI's quantitative parameter (apparent diffusion coefficient; ADC) in

the context of RT remains to be defined.
The ideal system for obtaining regular DW MRI of RT patients is an

MR-guided RT system, such as the MR-Linac. Studies assessing long-
itudinal DW MRI on such systems are currently underway [6], and,
ultimately, DW MRI can be performed daily throughout treatment. Such
an approach would deliver a wealth of information, enabling a full
evaluation of the relation between treatment response and ADC.

However, to retrieve ADC values, regions of interest (ROIs) need to
be drawn within the images. Currently, an expert clinician places these
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ROIs manually. Such a process is labour-intensive, which will become a
major issue when DW MRI is obtained daily (30 fractions; 30 contour
sets). Furthermore, clinicians do not agree upon the precise ROI
boundaries [7], resulting in contour variations.

Automation of contouring could substantially decrease the work-
load while increasing contour consistency [8]. In recent years, com-
puter vision has greatly improved, especially due to the introduction of
convolutional neural networks [9]. A promising commonly used net-
work for biomedical image contouring is the U-net [10,11], which has
been successfully employed for contouring on head and neck cancer
(HNC) patient computed tomography (CT) images [12] and T2-
weighted MR-images [13].

We hypothesise that a 3D U-net can be utilized for automatic and
accurate contouring of metastatic lymph nodes in DW-images from
HNC patients. We used a database with diagnostic MR-images from 48
patients with metastatic lymph nodes who underwent MRI at different
timepoints throughout treatment to train and evaluate our network. We
further assessed the network's performance on a fully independent da-
taset from the MR-Linac.

2. Materials and Methods

2.1. Data

We used two datasets: the diagnostic MRI set and the MR-Linac set
(Table 1). Our local ethics committee approved both studies and all
patients gave written informed consent. Our exclusion criteria were: 1)
lymph nodes smaller than 100 voxels (< 0.8 cm3) because our eva-
luation metric, the Dice similarity coefficient (DSC), was not suitable
for small volumes; 2) retropharyngeal lymph nodes, as only one me-
tastatic retropharyngeal lymph node was visible in our dataset; 3)
images with large artefacts, e.g. due to dental implants, as clinicians
were also unable to accurately contour.

Clinical results from the diagnostic set were previously published
[2,14]. It contained 60 patients receiving chemoradiotherapy (CRT).
After the exclusion criteria listed above were applied, the dataset con-
sisted of 124 DW-images of 68 metastatic lymph nodes from 48 patients.
Eighteen patients received a course of induction chemotherapy (IC) prior
to CRT and the remainder received definitive CRT alone. CRT consisted
of six weeks of RT with concomitant chemotherapy (100 mg/m2 cisplatin
or carboplatin AUC 5 on days 1 and 29), whereas the IC consisted of two
additional cycles of three-weekly TPF chemotherapy prior to RT (day 1:
75 mg/m2 docetaxel and 75 mg/m2 cisplatin; days1–4: 1000 mg/m2 5-

fluorouracil). For the IC + CRT group, MR-images were obtained at
baseline, during IC (three weeks and six weeks into treatment) and one
week into CRT. For the CRT-only patients, MR-images were obtained at
baseline, and one week and two weeks into CRT.

The MR-Linac set consisted of DW-images from three patients with a
total of eight metastatic lymph nodes. The images were taken at base-
line (three patients) and two weeks into treatment (one patient).

For both datasets, patients were imaged in RT positioning, using a
flat tabletop, a headrest with 5-point thermoplastic shell immobilisation
(i.e. Fig. 2 from [14]). Table 1 shows further acquisition details.

An expert clinician (KW; 6 years of experience) contoured the me-
tastatic lymph nodes (including necrotic regions) on the b = 50 s/mm2

image with guidance of the other available images (T2-weighted and
dynamic contrast-enhanced images for the diagnostic set; T2-weighted
and Dixon images for the MR-Linac set) using the treatment planning
system RayStation (RaySearch Laboratories AB, Stockholm, Sweden).
The clinicians felt most confident contouring on the b = 50 s/mm2 as it
had a good trade-off between signal-to-noise ratio and visibility of the
involved lymph nodes and surrounding tissue. The contours were drawn
for the purpose of evaluating the ADC values within the lymph nodes.
These contours were used to train and evaluate the network. To enable
the evaluation of interobserver variation as a reference benchmark, a
second expert clinician (BN; 7 years of experience) contoured the me-
tastatic lymph nodes on 15 randomly selected baseline scans. ADC-maps
were calculated by the vendor-provided software using all b-values.

2.2. Network

In a clinical workflow, one is interested in the ADC of a given lymph
node. Therefore, we envisioned a clinical workflow in which a clinician
selects a metastatic lymph node (mouse click) on the image to initiate
the network. In this workflow, a bounding box (64 × 64 × 32 voxels)
is placed centred at the selected voxel and used as input for the U-net.

We implemented a 3D U-net [11] in Python (version 3.6.6) using
Keras (version 2.2.2) [15] and Tensorflow (version 1.10) [16]. The
network built upon an earlier implementation by Kieselmann et al [17].
The input consisted of a single-channel image of 64 × 64 × 32 voxels.
Our 3D U-net was similar to the original 3D U-net [11], except that we
used zero-padding, had 5 resolution steps (similar to 2D U-net [10]),
instead of 4 and added a local bias layer (LocalBias from neurons toolkit
[18]) before each ReLu layer. The bias layer allowed the network to
have spatial awareness and, hence, to focus on the central lymph node.
At full resolution, the convolutions consisted of 64 feature channels and
at each subsequent resolution level, the convolution doubled the
number of features up to 1024 at the bottleneck. Our final layer con-
sisted of a 1 × 1 × 1 convolution followed by a local bias layer and
sigmoid activation function.

2.3. Training

Our network was trained to contour on the b = 50 s/mm2 DW-images
(no additional channels). Networks were trained on a Tesla V100-PCIE-
16 GB GPU with 112 TFLOPS (NVIDIA, CA, USA). MR-images were
normalized by dimming the 0.5% brightest voxels to the 0.5% percentile
intensity and then normalizing all intensities to a value between 0 and 255.
We used a Dice loss as loss function [19]. The network was trained using an
Adam optimiser [20] with a learning rate of 2 × 10−4 and a batch size of 6.
Dropout [21] of 20% was introduced throughout the network, as well as
batch normalisation [22]. Once the performance of the network on the
validation dataset did not improve over the past 20 epochs, the training
was stopped and the best performing model was saved. We used data
augmentation. By mirroring in left–right direction pre-training all data was
doubled. On-the-fly data-augmentation was used to simulate the clinician’s
click by selecting a random voxel from the lymph node contour as centre for
our input patch.

Table 1
MRI scan parameters.

Diagnostic dataset MR-Linac dataset

Patients 48 3
lymph nodes 68 8
Scanner 1.5 T Magnetom Aera* 1.5 T Unity†

Coils Large flex (8-channel) and
spine (32-channel)

Posterior (4-channel) and
anterior (4-channel)

Sequence Axial 2D multi-slice EPI Axial 2D multi-slice EPI
Diffusion-

weighting
Mono-polar diffusion
gradients

Mono-polar diffusion
gradients

Field of view 200 × 200 mm2 400 × 240 mm2

Resolution 2 × 2 mm2 3.2 × 3.2 mm2

(1.2 × 1.2 mm2

reconstruction)
Slices 40 39
Slice thickness 2 mm 4.5 mm
TR/TE 13,400/61 ms 5,000/63 ms
Bandwidth 1,000 Hz 2,053 Hz
b-values 50, 400 and 800 s/mm2 0, 50, 400 s/mm2

Averages 5, 5, 5 5, 5, 15

* Siemens Healthineers, Erlangen, Germany; † Elekta, Stockholm, Sweden.
Abbreviations: EPI: echo-planar imaging; TR: repetition time; TE: echo time.
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2.4. Evaluation

We validated the network on all patients by making use of 8-fold
cross-validation at patient level (repeated scans were in the same
group). Eight networks were trained separately. For each network, six
different patients were removed for independent testing and not shown
to that network. The remaining patients were used to train that network
and were split such that 80% of the lymph nodes were used to train the
system and update the weights, whereas 20% were used as the vali-
dation dataset for determining stopping criteria. Once trained, the
network was evaluated on the six independent test patients that the
network had not seen nor used for validation. This way, every patient
could be used as independent test for one of the eight networks and the
networks were validated on a total of 48 patients to extensively eval-
uate it performance.

All voxels for which the network was 50% certain of being meta-
static lymph nodes were included in the predicted contours. For some
patients, the lymph nodes were close to each other and multiple nodes
would be present within the input patch. For automatic evaluation, a
post-processing toolkit was developed that selected the central lymph
node of interest. This toolkit used a distance transform on the predicted
lymph node map, followed by a watershed algorithm (scikit's skima-
ge.morphology.watershed; compactness = 0.15) [23] originating from
the different selected lymph node locations (simulated clicks).

Quantitative evaluation of data was done separately for the
IC + CRT and CRT-only patients. The DSC between the manual con-
tours and the contours generated by the network was used as the main
evaluation criteria (1 is full overlap, 0 is no overlap). We also calculated
the DSC between the manual contours of the two expert clinicians in the
subset of 15 patients in which we had obtained repeated contours. For
comparison, the median DSC between the auto-contour and the expert
clinician was also recalculated using only these 15 patients. After
testing for normality (Shapiro-Wilk test at significance level α = 0.05),
a paired samples Wilcoxon signed-rank test was performed to identify
any significant differences (significance level α = 0.05).

One of the clinically interesting parameters is the median ADC value
from within the ROI which can potentially be used as biomarker to

personalise treatment or for treatment response monitoring. Therefore,
we compared the median ADC value from within the auto-contour ROI
to the one from the clinician. Due to the low sample size, it was hard to
guarantee normality, and hence we used a paired samples Wilcoxon
signed-rank test to test for any significant systematic differences (sig-
nificance level α = 0.05). We also reported the absolute difference of
median ADC over the patient group as ΔADC.

To investigate how acquisition at a lower resolution would affect
the performance of our network, we repeated training and validation of
the diagnostic MRI data while decreasing the simulated acquisition
resolution from 2.0 mm to 5.0 mm in steps of 0.5 mm. This was done by
downscaling the image to the desired resolution and upscaling back to a
blurred 2.0 mm.

2.5. MR-Linac

To assess the performance of our network in a different independent
dataset, we applied our network to MR-Linac data. Note that this da-
taset had a substantially different image acquisition protocol. We
sampled down the diagnostic MRI data to 3.2 × 3.2 × 4.5 mm3 (ac-
quisition resolution from MR-Linac data) and then sampled up both
datasets to 2 × 2 × 2 mm3 resolution. The network was retrained using
all resampled diagnostic MRI data with an 80/20% split between
training/validation. Once trained, its performance was evaluated on the
MR-Linac dataset, without ever having seen MR-Linac data.

3. Results

3.1. Diagnostic dataset

The network took an average of 245 min to train (range
221–265 min), whereas inference only took 55 ms (range 52–58 ms).
Fig. 1 illustrates the contours on the baseline lymph nodes where the
network had best, median and worst performance. In the worst per-
forming case, the network contoured the lymph node properly, but the
post-processing attributed the contours to its neighbouring lymph node,
instead. The contours of the CRT-only patients showed a median DSC of

Fig. 1. DW-images (b = 50 s/mm2) with the best, median and worst performing auto-contours of the baseline data.
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0.87, which did not change considerably throughout treatment
(Table 2). For the IC + CRT patients, the network performed similarly
at baseline, however, its performance substantially decreased
throughout treatment (Table 2). The decrease in performance was
partially attributed to the fact that metastatic lymph nodes got poorly

defined diffuse borders during IC-CRT (Fig. 2). Fig. 3 shows that most
DSCs were skewed towards the high end of the spectrum with some
outliers to lower values for both groups. The lowest DSCs were found in
smaller lymph nodes (Fig. 3).

The median (1st-3rd quartiles; notation used throughout paper) DSC

Table 2
The median (1st quantile-3rd quantile) DSC and ΔADC for the CRT-only (top) and IC + CRT (bottom) patients.

CRT-only Baseline Week 1 Week 2 Overall

n* 41 29 25 96
DSC 0.89 (0.82–0.92) 0.85 (0.8–0.89) 0.84 (0.79–0.89) 0.87 (0.81–0.91)
ΔADC (%) 1.4 (0.57–3.4) 2.1 (1.0–4.8) 1.8 (0.8–2.5 1.9 (0.8–3.4)

IC + CRT Induction chemo Radiotherapy

Baseline Week 3 Week 6 Week 1 Overall

n* 26 18 12 9 65
DSC 0.82 (0.78–0.87) 0.82 (0.71–0.87) 0.72 (0.63–0.84) 0.71 (0.40–0.79) 0.80 (0.71–0.87)
ΔADC (%) 3.0 (1.2–7.3) 2.7 (1.5–7.4) 4.0 (2.2–7.8) 5.7 (3.3–11.4) 3.3 (1.6–8.0)

* As patients responded to treatment, fewer metastasized lymph nodes were observed throughout treatment. Abbreviations: n is the number of metastasized lymph
nodes analysed, DSC = Dice similarity coefficient, ΔADC = the percentage of absolute change in ADC between expert observer and auto-contour.

Fig. 2. Selected poorly performing contours in DW-images (b = 50 s/mm2) from different timepoints throughout IC + CRT.

Fig. 3. Histograms of the Dice similarity coefficients (DSCs) for both patient groups (left) as well as the relation between DSC and mask size (right).
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between both expert observers was 0.92 (0.87–0.93) in the 15 patients
that had two sets of contours. The network had a median DSC of 0.89
(0.83–0.93) in these patients. This subset of patients happened to in-
clude the one patient where the post-processing step from the neural
network failed (Fig. 1). When this data point was considered an outlier
due to malfunctioning of the post-processing, the median DSC of the
network increased to 0.90 (0.84–0.93). In both cases, the difference
between manual and automatic contouring was not significant
(p = 0.27; p = 0.44).

For the CRT-only patients, the median ΔADC was 1.9% (0.8–3.4%)
and it remained stable throughout treatment (Table 2). For IC + CRT
patients, the median ΔADC was 3.3% (1.6–8.0%) and increased during
treatment. The difference between ADC from the automatically gener-
ated contour and that from the manual contour was significantly not
normally distributed (p < 0.001 for CRT-only and p = 0.009 for
IC + CRT data), justifying the use of the signed-rank Wilcoxon test.
There was no significant difference between the ADCs obtained by the
network and the expert observers for the CRT-only patients, with
p = 0.20 and median difference of −0.2%. For IC + CRT patients, the
ADCs were significantly (p < 0.001) lower, with a median decrease of
2.4% compared to the expert observer.

We found that the median DSC (over all patients and time-points)
decreased as function of resolution, with DSCs of 0.83 at 2.0 mm
throughout, 0.81 (2.5 mm), 0.82 (3.0 mm), 0.81 (3.5 mm), 0.79 (4.0
mm) and 0.78 (4.5 mm) to 0.77 at 5.0 mm.

3.2. MR-Linac dataset

In the fully independent MR-Linac test dataset, the DSC was slightly
lower at 0.80 (1st-3rd quantile: 0.75–0.82), with ΔADC of 4.0%
(0.6–9.1%). Fig. 4 highlights the best, median and worst contour in
these patients, respectively. Note that the network had not seen any
MR-Linac data before this evaluation and that none of the network
parameters were tweaked.

4. Discussion

We have successfully trained a 3D convolutional neural network to
automatically contour metastatic lymph nodes on DW-images of HNC
patients throughout RT. There was no significant difference between
the performance of our algorithm and expert observers. Furthermore,
we demonstrated the success of our network on an independent and
highly relevant dataset of DW-images obtained on an MR-Linac.

We found that for the CRT-only patients, the contouring remained
stable throughout the first two weeks of treatment, during which
treatment-induced changes are considerable [24]. This would indicate
that our auto-contouring framework will be accurate throughout
treatment, which is essential when studying treatment response.

The worst performing contour, depicted in Fig. 1, third column,
seemed to only contour the edges of the lymph node. On closer in-
spection, it showed the network had accurately contoured the lymph
node but that the post-processing step had failed, as the randomly se-
lected seed point was selected close to the lymph node's edge. We felt
further fine-tuning of the post-processing kit might lose general-
izability. Instead, we believe this case can easily be noticed by an ob-
server and can be corrected for by repeating the contour while using a
different seed point. In a rerun, we found that selecting a more sensible
seed point resulted in a DSC of 0.77 instead of 0.41.

Clinically relevant changes in the ADC throughout the treatment of
lymph nodes are in the order of 15–19% [4], depending on the time of
assessment. It is promising to see that the difference in ADC between
the auto-contour and an observer (medians of 1.9% for CRT-only, 3.3%
for IC + CRT) was substantially smaller than these clinically relevant
changes. Note that both our ADC and the ADC from [4] were calculated
using b-values from < 150 s/mm2, and hence both ADCs can include
some intravoxel incoherent motion effects.

Our network performed poorly on the IC + CRT patients, with
lower DSCs, larger ΔADCs and a significant bias. It would appear that IC
caused the boundaries of tumours to be less well detectable/more dif-
fuse, as depicted in Fig. 2. Potentially, a network that only trains on
post-IC patients would perform better in this subgroup. However, we
were not able to test this hypothesis with the limited number of
IC + CRT patients in our dataset.

We are unaware of any other CNNs being used for automated con-
touring of metastatic lymph nodes of HNC patients using DW MRI data,
impairing a direct comparison of our results to literature. In the past,
neural networks were used to contour nasopharyngeal carcinoma on T2-
weighted MR-image, where a median DSC of 0.79 was reported [13],
which is lower than in our study. Atlas-based attempts were reported,
particularly for contouring of organs at risk (e.g. [25,26]), which
achieved DSCs in the order of 0.74–0.85 on MR-images. Note that such
approaches are more challenging in metastatic lymph nodes due to the
huge variation of potentially involved nodal levels (although this has
been done for CT [27–29]). Many automated contouring algorithms were
developed for contouring organs at risk (e.g. [12,17,30–33]), tumours
(e.g. [28,34]) and lymph nodes (e.g. [27–29,34]).

Clinicians had all the available MRI information present for con-
touring, whereas our network only saw the b = 50 s/mm2 image. It is
promising to see that, despite not seeing the additional images, our
network was similarly effective at contouring. Potentially, additional
channels containing these images could be added to the network [35].
However, these images were not aligned to each other (e.g. motion,
deformations due to field heterogeneity) and in exploratory work (data
not show), this reduced the network’s performance compared to a
single channel. Furthermore, adding modalities reduces the network’s
flexibility, as it requires the additional images, or needs strategies to
deal with missing data [36].

Our network performed slightly worse (median DSC 8.0% lower) in
the independent MR-Linac dataset compared to the diagnostic data.
This is not fully explained by the lower resolution alone (which showed
2.4% decrease at this resolution). After closer examination, we ob-
served that the test dataset consisted of a particularly large number of
neighbouring lymph nodes. The network mainly made errors at borders
between those neighbouring lymph nodes. The blurry edges (due to
lower resolution) of such neighbouring lymph nodes caused our algo-
rithm to predict both nodes as a single lymph node. Subsequently, the
automated post-processing step developed to separate neighbouring
lymph nodes failed due to a large overlap of the borders, which was not
typically seen in the diagnostic MR-images. The only two lymph nodes
without neighbouring lymph nodes were contoured accurately, with
DSCs of 0.89 and 0.91. Finally, we only used a limited amount of data
augmentation (flipping and shifting). In a preliminary study, we found
that additional augmentation did not improve the performance of the
U-net in our diagnostic MRI dataset (results not shown). As the MR-
Linac data was an independent dataset, we wanted to evaluate the U-
net without further optimisation. However, it is known [37] that data
augmentation can increase the generalizability of networks and, hence,
we also retrained the network with on-the-fly augmentation of the di-
agnostic dataset (scaling, sheering, rotation, mirroring, shifting and
blurring), which at first attempt already substantially improved the
contours with DSC of 0.82 (0.81–0.88) and ΔADC of 2.1% (1.5–4.0%)
when tested on the MR-Linac data.

Neural networks often lack generalisability [38]. Typically, when
the MRI acquisition protocol changes, one will have to retrain the
network using new data obtained with the new protocol. In the current
study, we instead modified the diagnostic MRI data to mimic MR-Linac
data, by blurring. In other work [17], we have shown that when the
new imaging protocol is substantially different (i.e. MRI instead of CT),
one can use cycle-GANs for this, too. However, these approaches still
require retraining the neural network for the newly generated data.

Our dataset consisted of repeated scans throughout treatment. In
our approach, we contoured from scratch on each repeated scan. As the
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baseline scans were contoured most accurately one could focus on
harnessing these contours for improving subsequent scans in future
research.

A limitation was that we did not evaluate the performance in small
(< 0.8 cm3) lymph nodes. Our evaluation metric, DSC, is not very re-
liable for small volumes [39], as they are less likely to overlap (see e.g.
Fig. 3 right). Including these nodes introduced several outliers that
greatly biased the results to mainly reflect those outliers. However, we
believe the network can still perform equally well as expert observers in
such lymph nodes.

It would also be interesting to evaluate the ADC in the primary
tumour. However, HNC has a large variety of locations and shapes and
we felt our dataset was insufficient to train for contouring of the pri-
mary tumour. We believe that with this work, we have shown the
capability of deep neural networks to contour relevant pathologies in
HNC patients and we are convinced that once a larger dataset becomes
available, the network should be able to learn the contouring of pri-
mary tumours in the future.

Our network required a seed point to determine a bounding box.
This is, to some extent, similar to radiation oncologists, who often rely
upon additional medical information such as cytology or radiology re-
port to determine which lymph nodes are involved. We, therefore, in-
terpret the seed selection by a click as a translation from the medical
terminology to a numerical input for the network. Note that in repeated
measures, the click could potentially be replaced by registration to the
previous acquisition.

We believe that clinical implementation of automated contouring to
obtain quantitative parameters from an image should be relatively
straight forward. Despite the network being a black box, the resulting
contours are easily visually checked. Even if all contours would initially
require visual quality assurance, this would still be a substantial time
saver compared to full contouring from scratch.

In conclusion, we have trained a deep neural network that can ac-
curately contour metastatic lymph nodes on DW-images. The network
can reduce the workload in DW MRI studies and potentially improve
contouring consistently. This will particularly be beneficial for long-
itudinal studies that collect multiple DW-images, such as daily imaging
on an MR-Linac.
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