Table 1 List of Donors and Acceptors Constructs Available for BRET2 RAS Biosensors | RLuc8 donor constructs | GFP ² acceptor constructs | |------------------------|--| | KRAS ^{WT} | iDAb RAS | | KRAS ^{G12A} | iDAb _{dm} RAS | | KRAS ^{G12C} | iDAb control (iDAb LMO2) | | KRAS ^{G12D} | PI3Kα RBD | | KRAS ^{G12R} | PI3Kγ RBD | | KRAS ^{G12V} | CRAF RBD | | KRAS ^{S17N} | RALGDS RA | | NRAS ^{WT} | CRAF ^{S257L FL} | | NRAS ^{Q61H} | $PI3K\alpha^{FL} (\pm p85\alpha^{FL})$ | | HRAS ^{WT} | | | HRAS ^{G12V} | | | LMO2 | iDAb _{dm} LMO2 | Table 2 DNA Mix for a Typical BRET2 Titration Curve Experiment a | RLuc8
constructs (ng) | GFP ² constructs (ng) | pEF-myc-cyto
empty (ng) | RLuc8:GFP ²
constructs ratio | |--------------------------|----------------------------------|----------------------------|--| | 50 | 0 | 1550 | 1:0 | | | 12.5 | 1537.5 | 1:0.25 | | | 25 | 1525 | 1:0.5 | | | 50 | 1500 | 1:1 | | | 100 | 1450 | 1:2 | | | 250 | 1300 | 1:5 | | | 500 | 1050 | 1:10 | | | 750 | 800 | 1:15 | | | 1000 | 550 | 1:20 | ^aQuantities are indicated for transfection of one well of a 6-well plate. Table 3 List of Competitor Constructs Available for BRET2 Competition Assay | Positive competitors | Negative competitors | |---|---------------------------------| | Intracellular Domain Antibodies (iDAb) comp | etitors | | pEF-membrane-FLAG-iDAb RAS-myc | pEF-membrane-FLAG-iDAb LMO2-myc | | pEF-iDAb RAS-myc | pEF-iDAb LMO2-myc | | Designed Ankyrin Repeat Proteins (DARPins) | competitors | | pEF-DARPin K27-myc | pEF-DARPin E3.5-myc | | pEF-DARPin K55-mvc | | Table 4 Ratio of DNA Used for the Competition Assays With iDAbs or DARPins | RLuc8
constructs
(DNA ng) | GFP ² constructs
(DNA ng) | RLuc8:GFP ²
constructs
ratio | Competitor
constructs
(DNA ng) | pEF-myc-
cyto empty
(ng) | |---------------------------------|---|---|--------------------------------------|--------------------------------| | RAS (50 ng) | | | 100 | 1300 | | | PI3Kα RBD (150 ng) | 1:3 | 500 | 900 | | | | | 1000 | 400 | | | | | 100 | 1350 | | | PI3Kγ RBD (100 ng) | 1:2 | 500 | 950 | | | | | 1000 | 450 | | | | | 100 | 1350 | | | CRAF RBD (100 ng) | 1:2 | 500 | 950 | | | | | 1000 | 450 | | | | | 100 | 1350 | | | RALGDS RA (100 ng) | 1:2 | 500 | 950 | | | | | 1000 | 450 | | | | | 100 | 1400 | | | CRAFFL (50 ng) | 1:1 | 500 | 1000 | | | | | 1000 | 500 | | | | | 100 | 1200 | | | PI3Kα ^{FL} (250 ng) | 1:5 | 500 | 800 | | | | | 1000 | 300 | Table 5 Anti-RAS Macromolecules 96-Well Plate Layout for EGF Treatment | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|---|------------------|---------------------|---------------------|----------------------|------------------|---------------------|---------------------|----------------------|--------|-------------|-------| | A | | or | r 1 | r 1 | r 1 | or | r2 | r2 | r2 | | | | | В | | o
etit | etito
ng | etito
ng | etito)
O ng | o
etit | etito
ng | etito
ng | etitor
O ng | Non-ti | eated EGI | Frome | | C | | No
competitor | ompetitor
100 ng | ompetito
500 ng | ompetitor
1000 ng | No
competitor | ompetitor
100 ng | ompetitor
500 ng | ompetitor
1000 ng | Non-u | cated EG | Tows | | D | | 33 | S | လ | ပိ | 8 | S | Co | တ | | | | | E | | or | л 1 | л 1 | or 1 | tor | лг 2 | or 2 | or 2
3 | | | | | F | | No
petit | etito
ng | etito
ng | etitor
O ng | No | etito
ng | etito
ng | etitor
0 ng | FGI | F treated r | owe | | G | | No
competitor | ompetitor
100 ng | ompetitor
500 ng | ompetitor
1000 ng | No
competi | ompetitor
100 ng | ompetitor
500 ng | ompetitor
1000 ng | Lo | i treated i | ows | | Н | |)3 | Co | Co | သိ | ဒ | သိ | Co | င် | | | | Table 6 Ratio of DNA Used for the Competition Assays with Small Molecules | RLuc8 constructs
(DNA ng) | GFP ² constructs (DNA ng) | RLuc8:GFP ² constructs ratio | |------------------------------|--------------------------------------|---| | KRAS (50 ng) | PI3Kα RBD (150 ng) | 1:3 | | | PI3Kγ RBD (100 ng) | 1:1 | | | CRAF RBD (100 ng) | 1:1 | | | RALGDS RA (100 ng) | 1:1 | | | CRAFFL (100 ng) | 1:2 | | | PI3Kα ^{FL} (250 ng) | 1:5 | | NRAS (50 ng) | PI3Kα RBD (150 ng) | 1:3 | | | PI3Kγ RBD (100 ng) | 1:1 | | NRAS (40 ng) | CRAF RBD (20 ng) | 1:0.5 | | | RALGDS RA (20 ng) | 1:0.5 | | NRAS (50 ng) | CRAFFL (100 ng) | 1:2 | | HRAS (40 ng) | PI3Kα RBD (120 ng) | 1:3 | | | PI3Kγ RBD (40 ng) | 1:1 | | | CRAF RBD (20 ng) | 1:0.5 | | | RALGDS RA (20 ng) | 1:0.5 | | | CRAFFL (80 ng) | 1:2 | **Table 7** Volume of DMSO and Compound to Add to Make a 10× Intermediate Compound Solution in 200 μ I, 2% DMSO | Final concentration (µM) | 0 | 50 | 100 | 200 | |---|-----|----|-----|-----| | DMSO (μl) | 4 | 3 | 2 | 0 | | 10 mM compound in 100% DMSO (μl) | 0 | 1 | 2 | 4 | | OptiMEM no phenol red + 4% FBS (μ l) | 196 | | | | Table 8 Compound 96-Well Plate Layout | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | - 11 | 12 | |---|---|------|------------------|-------------------|-------------------|------|--------------------|-------------------|-------------------|----|------|----| | A | | | 1 | 1 | 1 | | 2 | 2 | 2 | | | | | В | | DMSO | punoc | ound
Mu | ρuno | DMSO | μη | ound
hM | μησ | | | | | С | | DM | Compound
5 µM | Compound
10 μM | Compound
20 µM | DM | Compound 2
5 µM | Compound
10 µM | Compound
20 µM | | | | | D | | | 0 | 0 | 0 | | 0 | 0 | 0 | | | | | E | | | 3 | 3 | 3 | | 4 | 4 | 4 | | | | | F | | DMSO | ροσουρ | oumo
Mu | oumo
Mu | DMSO | Mu | oumo
MM | puno
Mn | | | | | G | | DM | Compound
5 µM | Compound
10 µM | Compound
20 µM | DM | Compound
5 µM | Compound
10 µM | Compound
20 µM | | | | | Н | | | ŭ | Č | ŭ | | ŭ | ŭ | ŭ | | | | Table 9 Compound 96-Well Plate Layout for EGF Treatment | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|---|------|------------------|-------------------|-------------------|------|------------------|-------------------|-------------------|-----|-------------|----------| | Α | | | 1 | 1 | 1 | | 2 | 2 | 2 | | | | | В | | SO | ρυπος | ound
μΜ | ound
µM | SO | punoc | puno | ound | Non | -treated EC | TE moure | | С | | DMSO | Compound
5 μM | Compound
10 μM | Compound
20 µM | DMSO | Compound
5 μM | Compound
10 µM | Compound
20 µM | Non | -treated EC | or rows | | D | | | 0 | C | 0 | | 0 | 0 | 0 | | | | | Е | | | 1 | 1 | 1 | | 2 | 2 | 2 | | | | | F | | SO | punoc | ound | ound
μΜ | SO | | ρuno | рипо | Б | GF treated | | | G | | DMSO | Compound
5 μM | Compound
10 μM | Compound
20 μM | DMSO | Compound
5 μM | Compound
10 μM | Compound
20 µM | ь | Or treated | iows | | Н | | | O | 0 | 0 | | 0 | 0 | 0 | | | | Table 10 Ratio of DNA Used for the Competition Assays with Small Molecules (Short Incubation) | RLuc8 constructs (DNA ng) | GFP ² constructs (DNA ng) | RLuc8:GFP ² constructs ratio | |---------------------------|--------------------------------------|---| | KRAS (50 ng) | CRAF ^{FL} (100 ng) | 1:1 | | | $PI3K\alpha^{FL}$ (250 ng) | 1:5 | Table 11 Key Troubleshooting Steps | Step | Problem | Possible reasons | Advice | |--------------------------|---|---|--| | Basic
Protocol 1 | BRET pair of proteins
of interest (POI) are not
functioning correctly | GFP ² /RLuc8 reporter moieties are interfering with protein function | Add the reporter
moieties to the other
end of the protein or
increase the linker
length between the
protein of interest and
the moiety | | | | There was an error in construct generation | Sequence and check
entire fusion protein
cDNA | | BRET mea-
surement | Low luminescence or fluorescence detected by the instrument | The donor and/or the acceptor
constructs are poorly expressed
or interact weakly or
sub-cellular location incorrect of
one or both of the POI | Change the transfection
reagent, try a codon
optimization, check the
localization of the POI
by immunofluorescence | | | | Substrate is not working | Check the storage condition and try to use another aliquot | | | | Substrate was not added | Add the substrate | | | | | Check the injectors (if used) | | | | Instrument is not working | Check the BRET configuration/protocol on the instrument | | BRET mea-
surement | Luminescence and
fluorescence signals are
produced but no BRET | Distance between the donor and acceptor molecules is too high | Change the position of
the donor and acceptor
moieties on the POI | | | signal detected despite
validated BRET pair
proteins | The orientation of the donor and/or acceptor moieties is not optimal for BRET | Increase the linker
length between the POI
and the GFP ² /RLuc8 | | Basic
Protocol 3, | No decrease of the
BRET signal upon | Inhibitor not working in cells | Include a positive inhibitor as control | | Alternate
Protocols 2 | inhibitor treatment | Inhibitor interfering with the assay | Check the RLuc8 and GFP ² channels | | and 3 | | | Add a negative control BRET pair | | | | Too high expression of the donor
and/or acceptor plasmids
inducing a titration of the
inhibitor | Decrease the donor/acceptor ratio |