
Systemic radiotherapy of bone metastases with radionuclides 

Introduction 
The development of bone metastases is a frequent occurrence in prostate, breast and lung cancers 

and is associated with a reduced quality of life and decreased survival [1]. Skeletal related events 

(SREs) including pathological bone fractures and spinal cord compression are considered to be caused 

by disruption of the normal balance between osteoblast and osteoclast activity, giving rise to a loss of 

bone integrity [2, 3]. Bone metastases are also associated with pain that can be felt continuously or 

can be more severe, arising spontaneously with movement [4].  

Bone pain can be extremely resistant to standard first line treatment with non-steroidal anti-

inflammatory drugs. External beam radiotherapy may also be used, either to target specific sites of 

disease or to treat a wider region of bone metastases using hemi-body radiotherapy [2]. For patients 

with widespread bone metastases, a range of alpha or beta particle emitting radiopharmaceuticals 

provide a means of specifically targeting all sites of bone disease. The physical decay properties of all 

the radionuclides described in this review are described in Table 1. 

 The first beta emitter to be used for the treatment of bone metastases was Phosphorus-32 [5]. 

However, higher rates of myelosuppression and pancytopenia were observed compared to other 

beta-emitters subsequently introduced for clinical use.   

Strontium-89 (89Sr) 
89Sr given in the form of strontium chloride is a beta emitting radionuclide with a half-life of 50.5 days. 

The mean and maximum energies of the beta particle spectrum are 0.58 MeV and 1.46 MeV 

respectively. The recommended activity is 150 MBq at 90 day intervals. Strontium behaves similarly 

to Calcium and is absorbed preferentially in sites of osteogenesis resulting in approximately ten times 

higher concentrations at sites of metastases compared to normal healthy bone [6].   

A 2005 systematic review of observational studies and randomised controlled trials concluded that 

treatment with 89Sr resulted in some degree of response in 76% of patients and complete response 

with respect to pain relief in 32% of cases [2].  For example, a double blinded randomised control trial 

of 89Sr vs placebo showed no difference in pain relief between two arms but did demonstrate a survival 

difference at two years  [7]. On the other hand a second double blinded randomised control trial of 
89Sr vs stable 88Sr did demonstrate the effectiveness of 89Sr in providing pain relief. Furthermore, this 

study also demonstrated that this was due to the beta radiation emitted by 89Sr and not due to a 

placebo effect or to a chemical effect arising from the injection of Strontium.  

Several early studies compared the effect of 89Sr in addition to local radiotherapy or as an alternative 

to hemi-body radiotherapy. Porter et al described a randomised phase III study that assessed the 

additional effect of 89Sr vs placebo on patients referred for local radiotherapy of painful metastases 

[8].  This study of 126 patients showed that the arm receiving 89Sr had a reduced requirement for 

analgesics or further external beam radiotherapy as well as an improved quality of life.  

A retrospective study of matched cohorts receiving either hemi-body radiotherapy or 1-3 MBq/kg 89Sr 

for treatment of metastatic prostate cancer demonstrated similar levels of pain control between the 

two groups [9]. A prospective study addressing the same question also showed no significant 



difference in overall survival between patients treated with 200 MBq 89Sr or external beam 

radiotherapy. However, they did also show a reduced incidence of new pain sites in the 89Sr arm [10]. 

A larger EORTC study of 203 patients concluded that there was no difference in time to progression 

or progression free survival between prostate cancer patients treated with a single injection of 150 

MBq 89Sr and those treated with palliative local field radiotherapy, although there was improved 

overall survival associated with external beam radiotherapy [11]. 

In general the toxicity of 89Sr has been reported as low and reversible. Both white cell counts and 

platelet levels will fall below normal levels in the majority of patients, with the nadir commonly 

occurring 12-16 weeks after treatment [2, 12]. 

Samarium-153 (153Sm) 
153Sm is a beta emitting radionuclide with a half-life of 1.9 days. The mean and maximum energies of 

the beta particle spectrum are 0.32 MeV and 0.81 MeV respectively. The recommended activity is 37 

MBq/kg. Unlike 89Sr, 153Sm is not naturally taken up in bone. Instead, 153Sm is complexed with 

ethylenediaminetetramethylene phophanate (EDTMP) which localises to sites of active bone turnover 

[13]. In common with 89Sr a number of randomised trials have been used to evaluate the efficacy of 
153Sm-EDTMP.  

For example, Sartor et al reported on a double blinded randomised prospective trial of a single 

administration of 37 MBq/kg 153Sm-EDTMP vs a stable 152Sm-EDTMP placebo. Patients on the 

treatment arm reported pain relief within 1-2 weeks as well as reduction in opioid use 3-4 weeks after 

treatment [14]. This followed an earlier double blinded placebo controlled trial which also reported 

fast pain relief and reduction of opioid analgesics in approximately 70% of patients receiving a single 

administration of 37 MBq/kg [15]. A later study reported that in cases where bone pain recurred, 

repeat administrations of 153Sm-EDTMP were tolerated as long as haematological function was 

adequate at the time of injection [16]. Similarly to 89Sr, toxicity was limited to transient 

myelosuppression with recovery to normal levels typically observed by 8 weeks post treatment [14, 

17].  

Both 89Sr and 153Sm-EDTMP have received marketing authorisation and are available as licensed 

products (Metastron and Quadramet respectively.) 

Rhenium-186 (186Re) and Rhenium-188 (188Re) 
Rhenium has similar chemical properties to technetium and can be used to label phosphonates such 

as hydroxyethylidine diphosphonate (HEDP). Therefore both 186Re-HEDP and 188Re-HEDP have been 

used to treat patients with bone metastases [18-22]. Both isotopes are beta emitters although with 

differing half-lives and beta particle energies. Palliation of pain was observed in 60-75% of patients 

treated with 188Re activities of 2.6 GBq or higher [23] and multiple administrations have been shown 

to be well tolerated [24]. Interest in the use of 188Re-HEDP continues. A clinical trial (NCT03458559) is 

underway aiming to compare overall survival in 402 metastatic castrate resistant prostate cancer 

patients treated with either 188Re-HEDP or 223Ra [25].  

 

 

https://cancerres.aacrjournals.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT03458559&atom=%2Fcanres%2F79%2F13_Supplement%2FCT145.atom


Imaging and treatment planning  
Despite the demonstrated efficacy of both 89Sr and 153Sm-EDTMP it is clear from the literature that not 

all patients will respond to treatment. A common component of early studies was the inclusion of 

dosimetry studies designed to measure the absorbed radiation dose to the metastatic lesions 

themselves. As well as 89Sr, tracer amounts of 85Sr, a gamma photon emitting isotope of strontium 

were administered. Uptake in metastases was quantified using a gamma camera in order to calculate 

the absorbed radiation dose to those metastases [6]. Results showed that the currently recommended 

activity of 150 MBq would result in absorbed doses ranging from 9-90 Gy. Other authors have imaged 

patients without the injection of additional 85Sr. The majority of these reports detail qualitative 

assessment of 89Sr uptake and its correlation with sites of abnormal uptake identified by diagnostic 

bone scans [26, 27]. However one report described the quantitation of uptake seen on 89Sr images as 

part of their routine clinical assessment of patients receiving 89Sr therapy [28]. Initially it was assumed 

that these quantitative images were based on bremsstrahlung emissions since 89Sr is a pure beta 

emitter. In fact, it has since been reported that detected emissions are most likely due to high energy 

photons emitted by 85Sr impurities giving rise to characteristic x-rays from the gamma camera 

collimator [29, 30]. 

Further to in-vivo imaging and dosimetry, Ben-Josef et al performed dosimetry calculations with 

autoradiography to quantify uptake in ex-vivo samples of bone from patients previously treated with 
89Sr. They estimated absorbed doses to metastases ranging from 1.3 to 64 Gy [31] which are in 

accordance with the earlier work of Blake et al. 

Overall it is clear that administration of the same activity results in wide variations in the absorbed 

dose to lesions. The reasons for this variable uptake are not precisely understood but it has been noted 

that better responses are observed in patients presenting with fewer metastases, and in osteoblastic 

lesions [32] 

Variations in the absorbed doses delivered have also been observed for 153Sm-EDTMP studies. 

Quantitative imaging of 153Sm is possible due the emission of gamma photons with an energy of 103 

keV (29% abundance.) Relative to 89Sr treatments, lower absorbed doses to bone metastases have 

been reported. Van Rensburg et al reported absorbed doses to metastatic lesions ranging from 3 to 

15 Gy for patients who received 55 MBq/kg or 110 MBq/kg [33]. The recommended administered 

activity is 37 MBq/kg.  

A number of studies have explored the effect of increasing the amount of radioactivity administered.  

Mertens et al reviewed the early literature describing the effect of 89Sr, finding a positive correlation 

between the administered activity and the proportion of patients who experienced complete pain 

relief [34]. A study comparing 153Sm-EDTMP administrations of 28 MBq/kg, 55 MBq/kg and 110 

MBq/kg did not demonstrate a statistically significant relationship between the administered activity 

and outcome [35]. Conversely Resche et al reported higher rates of pain relief in patients receiving 37 

MBq/kg compared to those who were administered 17.5 MBq/kg [36]. However, it should be noted 

that the difference in these administered activities is relatively modest compared to the range of the 

reported doses described earlier. Consequently strategies involving higher administered activities 

were investigated.  



However, it has been shown that increased radiation doses to the marrow result in an increased risk 

of toxicity [13]. As with the absorbed radiation dose to bone metastases, the same administered 

activity can result in significant inter-patient differences in the absorbed dose to the bone marrow. 

Therefore, treatment planning strategies were developed to administer the highest activity possible 

to an individual patient whilst keeping the absorbed dose to the bone marrow below a threshold level. 

For example, Turner et al described a protocol under which patients received an initial administration 

of 740 MBq 153Sm-EDTMP alongside an assessment of dosimetry to the bone marrow. A second 

administration was then given to bring the total absorbed dose to the bone marrow to 2 Gy [37].  

An alternative approach is to administer higher activities in conjunction with stem cell support. 

Anderson et al administered up to 1.1 GBq of 153Sm EDTMP to patients with either bone metastases 

or osteosarcoma followed by stem cell support 14 days later [38]. At this level of activity absorbed 

doses to metastases ranged from 21 to 241 Gy, notably higher than the absorbed doses reported by 

Van Rensburg et al.  

Radium-223 (223Ra) 

More recently, the use of beta emitting radionuclides in this field has declined [39], due to the 

development of 223Ra as a treatment for castrate resistant prostate cancer. Radium is a calcium 

mimetic which targets osteoblastic cells. 223Ra is an alpha particle emitter with a half-life of 11 days. 

The standard administration protocol is 6 cycles of 55 kBq/kg at intervals of six weeks. The Phase III 

double blinded randomised controlled ALSYMPCA study   compared 223Ra against placebo  [40]. As 

well as a reduced time to symptomatic skeletal events, patients receiving 223Ra had a longer median 

survival by approximately 3 months.  

Treatment with 223Ra is reported to result in lower toxicity in comparison to treatment with beta 

emitting radionuclides [41, 42] [43, 44]. Monte Carlo simulations suggest that this may be due to the 

much shorter path length of alpha particles. 223Ra accumulates at the endosteal layer but the alpha 

particle path length is significantly lower than the dimension of the bone marrow cavities [45]. 

Therefore a significant fraction of the bone marrow is spared from irradiation. However, a recent 

meta-analysis of randomised controlled trials involving radionuclides concluded that there was no 

significant difference in haematological effects between 223Ra and beta emitting radionuclides, 

although it did confirm the advantage of 223Ra with respect to overall survival and time to symptomatic 

skeletal events [46]. 

Gamma camera imaging has been used to perform dosimetry studies of 223Ra in patients [47, 48].  

Figure 1 shows an example of the 223Ra biodistribution compared to the corresponding 99mTc-MDP 

bone scan [49]. As with beta emitting radionuclides, there is a wide range in the absorbed doses 

delivered to metastatic lesions. Murray et al reported absorbed doses ranging from 0.6 Gy to 44 Gy 

following administration of 110 kBq/kg [49]. Of note, these values did not include application of a 

relative biological effectiveness (RBE) factor to account for the more damaging effects of alpha 

particles. Absorbed doses of a similar range and magnitude were also reported by Pacilio et al [50]. 

Murray et al also demonstrated a dose-response relationship between the absorbed lesion dose and 

functional changes in the lesion measured with Na18F PET. The precise magnitude of the RBE that 

should be applied to the deterministic effects of alpha particles is uncertain. A value of 5 is commonly 

cited [51, 52] and this is close to specific values of 5.4-5.6 reported for Ra-223 [53]. 



Early trials demonstrated an increased response rate at higher administered activities [54]. Patients 

receiving 100 kBq/kg were more likely to respond to treatment than patients receiving lower activities 

of 5 kBq/kg, 25 kBq/kg or 50 kBq/kg. Conversely a recent study comparing six cycles of 55 kBq/kg vs 

88 kBq/kg did not demonstrate any advantage in the cohort receiving the higher activity [55]. When 

considering such results, it should be noted that the range of reported doses in the literature is many 

times greater than the relative increase in activity. Therefore it cannot be assumed that patients 

treated with 1.6 times more activity received systematically higher absorbed doses to their 

metastases. 

 

Combination therapies 
In routine practice, radionuclides have been administered as monotherapies. However, there have 

been studies of radionuclides in combination with other therapies, particularly for prostate cancer. An 

early study found the addition of 89Sr to doxorubicin chemotherapy extended overall survival by 11 

months [56]. This encouraging result led to furthers studies of beta emitting bone agents in 

combination with chemotherapy. Docetaxel is a form of chemotherapy that has been shown to 

prolong survival in castrate resistant prostate cancer patients as well as reduce pain and improve 

quality of life [57]. A Phase I study of 89Sr in combination with docetaxel concluded that both both 

agents coud safely be administered concomitantly [58]. Fizazi et al carried out a single arm Phase II 

study of 153Sm-EDTMP in combination with docetaxel [59]. The authors reported that the treatment 

was well tolerated and suggested improved overall survival compared to reference data.  

The bisphosphonate Zoledronic acid induces apoptosis of osteoclasts and reduces the risk of skeletal 

related events. A small number of studies have been carried out showing a synergistic effect of 

combing zoledronic acid with 89Sr [60-63]. It has been hypothesised that this may in part be due to 

alteration of the 89Sr kinetics leading to increased retention. Use of zoledronic acid in combination 

with 223Ra has also been proposed to reduce the risk of symptomatic skeletal events [64]. Denusomab 

is a monoclonal antibody treatment which also inhibits osteoclastic activity. As well as reducing the 

risk of symptomatic skeletal events, review of an open label single arm study suggested that the 

combination of denusomab with 223Ra was more effective than 223Ra alone [65]. 

The same study also suggested an advantage in combing 223Ra with abiraterone, a hormonal agent 

shown to be effective as a monotherapy in its own right [66]. However, the prospective ERA-223 study 

demonstrated an increased risk of bone fracture and reduced overall survival when 223Ra was 

combined with abiraterone plus prednisolone/prednisone compared to abiraterone plus 

prednisolone/prednisone only [67].   

Nonetheless, interest in this field continues with clinical trials underway investigating the combination 

of Ra-223 with other hormone therapies such as enzalutamide (NCT02194842, NCT02225704) or 

different approaches such as immunotherapy (NCT02463799). 

  

 



PSMA 
89Sr, 153Sm-EDTMP and 223Ra all target osteoblastic bone cells rather than the metastatic cancer cells 

themselves. An alternative strategy is to target the cancer cells themselves allowing the delivery of 

targeted radiation to both bony and extraosseous disease. Prostate Specific Membrane Antigen 

(PSMA) is a transmembrane protein expressed at high levels by prostate cancer cells. A number of 

agents which target PSMA with high affinity have been developed as treatments for metastatic 

prostate cancer. Of these, 177Lu-PSMA-617 is the most advanced in terms of clinical trials. 177Lu is a 

beta emitting radionuclide with a 6.65 day half-life and also emits gamma photons thus allowing 

imaging.  

Initial experience of the safety and efficacy of 177Lu-PSMA-617 was gained through compassionate use 

under the German Medicinal Product Act [68-70]. These studies were followed by an Australian 

prospective  Phase II, open-label, single arm study of 30 patients [71]. Patients received up to four 

cycles of 177Lu-PSMA-617 (with an average activity of 7.5 GBq per cycle). A PSA decline of 50% or more 

was observed in 57% of patients. An objective radiological response was achieved in 87% of patients 

with measureable soft tissue disease as well as reductions in bone pain scores for all patients. This 

study also benefited from dosimetry measurements in all patients [72].The mean absorbed doses to 

the kidneys, salivary glands, liver, spleen and bone marrow were 0.44, 0.58, 0.1, 0.06 and 0.11 Gy/GBq 

respectively. In bone metastases, absorbed doses ranged from 3.4 Gy to 73.9 Gy, whilst the absorbed 

dose to nodes ranged from 4.4 Gy to 92.5 Gy. 177Lu-PSMA-617 has been under evaluation in a Phase 

III setting – the VISION study (NCT 03511664) compares patients treated with standard of care vs 

standard of care plus 177Lu-PSMA-617. 

PSMA-617 has also been labelled with 225Ac, an alpha emitting radionuclide with a half-life of 9.9 days. 

Initial studies suggest an even greater efficacy than 177Lu-PSMA-617. For example in a study of 17 

patients treated with an initial activity of 8 MBq followed by successively lower activities in the case 

of good response, a fall of PSA >90% was observed in 14 patients. All patients experienced grade 1-2 

xerostomia. This is in line with initial salivary gland dosimetry estimates of 2.5 Sv/MBq for 225Ac-PSMA-

617 derived from 177Lu-PSMA-617 biodistribution data [73].   

Conclusions 
Overall the use of radionuclides to treat bone metastases has been a story of steady progress. Well 

planned clinical trials have conclusively demonstrated the beneficial effect of internal radiation in 

providing palliative treatment. Efforts to improve response rates and optimise the potential of beta-

emitting radionuclides by increasing the radiation dose to the disease have been well documented. In 

addition, studies suggest that combining these agents with complementary therapies may result in 

synergistic effects. The greatest improvements in patient outcomes have been seen with the 

development of the alpha particle emitter, 223Ra which has largely replaced the use of beta emitters 

for treating prostate cancer patients. Nevertheless, 223Ra may be superseded itself in the near future 

depending on the outcome of clinical trials investigating both beta and alpha emitting PSMA targeted 

therapies. 
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Tables 

Radionuclide T1/2 [days] E [MeV] (%) E [MeV] (%) E[keV] (%) 
32P 14.3 0.695 (100%) - - 
89Sr 50.5 0.58   (100%) - - 
153Sm 1.9 0.200 (32.2%) 

0.226 (49.6%) 
0.265 (17.5%) 

- 103 (29.8%) 

186Re 3.7 0.306 (21.5%) 
0.359 (71.0%) 

- 137.2 (9.4%) 

188Re 0.71 0.728 (25.6%) 
0.795 (71.1%) 

- 155.0 (15.1%) 

177Lu 6.73 0.048 (12.0%) 
0.112 (9.1%) 
0.149 (78.6%) 

- 112.9 (6.4%) 
208.4 (11.0%) 

223Ra 11.4 - 5.6 (25.7%) 
5.7 (52.6%) 

83.8 (24.9%) 
94.9 (11.3%) 
269.5 (13.7%) 

225Ac 10.0  5.8 (18.1%) 
5.8 (50.7%) 

- 

 

Table 1: Physical decay properties of radionuclides used in the treatment of bone metastases. The 

physical half-life (T1/2), mean beta particle energy and percentage abundance (E), mean alpha 

particle energy and percentage abundance (E) and the energy of gamma photons (E) relevant to 

imaging are shown. 

 



Figures 

 

 

Figure 1: Anterior gamma camera images of 99mTc-MDP distribution (A) and 223Ra distribution (B). 

Corresponding sites of increased uptake are indicated. Note the excretion of 223Ra via the intestines. 
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