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Abstract

Colorectal cancer (CRC) is a heterogeneous disease, both at the molecular level and
in the context of patients’ responses to treatment. Few biomarkers are currently in
place that can help to stratify patients in the clinical setting.

This thesis begins by describing inter- and intratumoural transcriptomic heterogeneity
in CRC, before extending to the integration of multiomics data for a system-wide view
of the pathways active in this disease.

Initially, taking previously described gene expression subtypes of CRC that have prog-
nostic indications and potential associations with patient outcomes/drug responses,
I redefined their gene expression signatures to a smaller gene set (measurable on a
platform that has previously been approved for clinical use) using a consensus of
statistical gene selection and class prediction methods, thus enabling future subtype-
based prospective clinical trials. Subtyping with this new gene set and platform was
highly accurate against the previous standard, and has the additional benefit that it
can also be applied to large archives of formalin-fixed paraffin-embedded tissues for
retrospective analyses.

Furthermore, I explored the intratumoural heterogeneity of these subtypes using ma-
chine learning techniques and single-cell data, concluding that they co-exist in the
vast majority of tumours. Using these subtype sub-populations, I was able to signifi-
cantly improve prognostic power in survival models versus traditional “bulk” subtyp-
ing, and identify subsets of patients that respond best to already-available therapies
(as well as those who could be spared unnecessary toxicities). For example, early-
stage patients whose tumours were deemed to have a high stem-like subpopulation
by computational deconvolution had significantly poorer prognosis than those with
a low subpopulation, while no prognostic difference was observed between patients
with bulk stem-like verus other bulk subtype tumours. In addition, TA subtype sub-
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populations were significantly higher in patients and pre-clinical models of CRC who
responded/were sensitive to cetuximab.

Finally, I have used a Bayesian latent variable machine learning framework to inte-
grate multi-omics data (including gene, miRNA and protein expression, methylation,
copy number and mutations) and clinicopathological variables from the TCGA CRC
database. In this way, I found patterns of co-expression across molecular levels that
relate to complex interactions between clinically interpretable covariates. The results
from this analysis included novel biomarkers that had significant and context-specific
prognostic implications.

Overall, in this thesis, I present several characterisations of CRC’s multi-faceted
heterogeneity. I demonstrate how the existing transcriptomic CRCAssigner inter-
tumoural subtypes can be profiled in a clinically-practicable manner, expand on our
understanding of these subtypes by quantifying their co-existence within individual
tumours, and move beyond transcriptomics to delineate CRC heterogeneity on a pan-
molecular scale.
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Chapter 1

Introduction

1.1 Colorectal cancer and its heterogeneity

1.1.1 Anatomy, structure and function of the human large intestine and
colon

The gastrointestinal (GI) tract is a series of connected organs that runs from the
mouth to the anus, at the lower end of which is the large intestine (Betts et al., 2016)
(Figure 1.1a). The large intestine’s prime function is to absorb nutrients and water
not taken up by the small intestine, host a commensal microbiome that synthesises key
vitamins (including vitamins K and B12, folic acid, and thiamine) (Gorbach, 1996),
and expel faeces from the body (Betts et al., 2016).

The caecum (Figure 1.1b) is the first section of the large intestine to receive food
residue from the small intestine, and is also connected to the appendix and colon
(Betts et al., 2016). From the caecum, the residue travels up the right side of the
abdomen through the ascending colon, which then bends sharply to the left at the
hepatic flexure to be passed across the body through the transverse colon (Betts et
al., 2016). Another sharp bend at the splenic flexure redirects the colon back down
the left side of the abdomen through the descending colon (Betts et al., 2016). A final
curve of the sigmoid colon through the pelvis back towards the midline of the body
leads to the rectum and anus (Betts et al., 2016) (Figure 1.1b).
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Figure 1.1: Anatomy of the human gastrointestinal system. The anatomy of the human (a)
gastrointestinal tract and (b) large intestine. Adapted from “Complete digestive apparatus” and “Colon”
by Servier Medical Art, used under CC BY 3.0. Labels added to original.

The inner mucosal wall of the colon is densely scattered with deep crypts that pene-
trate perpendicular to the colonic lumen (Betts et al., 2016) (Figure 1.2a-b). At the
superficial ends of the crypts lie the differentiated absorptive (enterocyte) and secre-
tive (goblet) cells (Figure 1.2c) that absorb water, salts and microbially-synthesised
vitamins, and secrete mucus to lubricate the movement of faeces and protect the
intestine (Betts et al., 2016). These cells are maintained by a indefinitely-dividing
population of colon stem cells at the deepest ends of the crypts, whose progeny —
transit-amplifying cells — will divide a finite number of times before differentiating
into enterocyte and goblet cells (Rao & Wang, 2010).
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Figure 1.2: The colon crypts contain multiple distinct cell types along their depth. Haemotoxylin
and eosin (H&E) light microscopy images of colon crypts in the (a) transverse and (b) longitudinal planes.
“Crypt of Lieberkühn, transverse section” and “Crypt of Lieberkühn, muscularis mucosae” (cropped) by
Lutz Slomianka. (c) An illustration of the cellular structure of a crypt in the colon. Derived from
“Intestinal villi” by Servier Medical Art, used under CC BY 3.0.

The passage of foreign substances, including microbes, in the colonic lumen also war-
rants the presence of immune cells in the deeper layers of the colon wall to react
to pathogens, as well as to the invasion of commensal microorganisms. Underneath
the epithelium, the lamina propria layer of connective tissue hosts leukocyte cells in
solitary lymphoid follicles (Mowat & Agace, 2014).

1.1.2 Colorectal cancer biology and progression

Colorectal cancer (CRC) can sometimes be caused by mutations in either APC (Ade-
nomatous Polyposis Coli) or DNA mismatch repair (MMR) genes, leading to Familial
Adenomatous Polyposis (FAP) or Hereditary Non-Polyposis Colon Cancer (HNPCC)
syndrome respectively, and an extremely high probability of developing CRC at an
early age (Sturrock et al., 2015). However, these familial cases account for a small
minority of CRCs (Sturrock et al., 2015).

The majority of CRCs are sporadic, and originate from the mucosal epithelial lining of
the large intestine, making them adenocarcinomas (Sturrock et al., 2015). The canon-
ical pathological sequence of CRC follows a progression from adenoma to carcinoma
(Christie & Sieber, 2011), illustrated in Figure 1.3.
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Figure 1.3: Colorectal cancer can develop along a canonical adenoma-carcinoma sequence. (a)
The chromosome instability (CIN) and (b) microsatellite instability (MSI) adenoma-carcinoma pathways.
Derived from Figure 1 of (De Palma et al., 2019), used under CC BY 3.0 license.

This sequence is estimated to take 10-40 years, although not all adenomas will become
malignant (Christie & Sieber, 2011).

In early sporadic adenomas, APC mutation is present in the majority of samples
(161/278 adenomas in (Diergaarde et al., 2005); Figure 1.3a), leading to aberrant Wnt
activation which disrupts stem cell maintenance, proliferation, and differentiation of
large intestine epithelia (Zhan, Rindtorff & Boutros, 2017). Also common are gains
of chromosome 7p, occuring in 36% of cases according to meta-analysis of 430 CRC
samples (Baudis, 2007). At the intermediate stages, approximately 12% of adenomas
harbour mutant KRAS (72/622 in(Juárez et al., 2017)) (Kirsten Rat Sarcoma Viral
Oncogene Homolog), abrogating its regulation of cell proliferation (Pylayeva-Gupta,
Grabocka & Bar-Sagi, 2011). This is followed in approximately 47%% of adenomas by
loss of chromosome 18q (Baudis, 2007) (which carries SMAD2 and SMAD4 (Mothers
Against Decapentaplegic Homolog 2 and 4) of the TGFβ (Transforming Growth Factor
Beta) signalling pathway). Additionally, in approximately 27% of cases, 17p is lost
(Baudis, 2007) (which carries TP53 (Tumor Protein P53), a critical regulator of
cellular stress and the DNA damage response).

Another precursor sequence can lead to adenocarcinomas from adenomas (Figure
1.3b). Estimated to be the pathway of ~10-15% of sporadic CRCs, it has been de-
scribed as constituting early methylation of the promoter region of MLH1 (MutL
Homolog 1), leading to impaired MMR (Sandmeier et al., 2009), and often BRAF (v-
Raf Murine Sarcoma Viral Oncogene Homolog B) mutation. Defective MMR causes

24



genome-wide hypermutation — particularly at sections of short, repeated sequences of
1-6 basepairs called microsatellites — dubbed microsatellite instability (MSI) (Boland
& Goel, 2010). Mutations are common in the repeated sections of AXIN2 (Axin 2),
TGFβR2 (Transforming Growth Factor Beta Receptor 2), and IGFR2 (Insulin-like
Growth Factor 2 Receptor). Patients with MSI cancers tend to be female, older, have
disease in the right-hand side of the colon, and can expect better prognosis (Kawakami,
Zaanan & Sinicrope, 2015).

While this level of understanding of molecular and morphological aberrations has
certainly shed light on the biology and progression of CRC, only a fraction of this has
translated into the refinement of clinical practice, as discussed below.

1.1.3 Clinical management of CRC and clinico-pathological markers

1.1.3.1 Staging

Due to the known progression of carcinomas from adenomas, screening and removal
of precancerous polyps by colonoscopy can prevent CRC or facilitate early diagnosis
(Sturrock et al., 2015). When adenocarcinoma is suspected, diagnosis is confirmed
via a biopsy (National Institute for Health and Care Excellence, 2014). The process
of staging the cancer then follows (Table 1.1). The primary concern is identifying if
distant metastasis has occurred, as this would reduce the benefit to the patient of
invasive surgical resection of the primary tumour (Sturrock et al., 2015). A computed
tomography (CT) scan of the chest, abdomen and pelvis to evaluate the common sites
of metastases (mesenteric lymph nodes, liver and lungs) is performed, alongside blood
work including carcinoembryonic antigen (CEA) levels as a baseline for post-treatment
surveillance (Sturrock et al., 2015).
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Table 1.1: Overview of the staging criteria for colorectal tumours. (Martins et al., 2018)

Stage Primary tumour state
Regional lymph node
metastases Distant metastases

Stage I Invades submucosa or
muscularis propria

None None

Stage II Penetrates muscularis
propria, peritoneum or
other organs

None None

Stage III Any of the above At least one metastasis None

Stage IV Any of the above Any of the above Metastasis in at
least one distant
organ/site

For rectal cancer, a more thorough assessment of the primary tumour is performed
due to concerns over local invasion due to the rectum’s extraperitoneal location and
associated high risk of local invasion and recurrence; endoscopic ultrasound or mag-
netic resonance imaging (MRI) can be used to precisely evaluate the tumour’s location
in relation to these (National Institute for Health and Care Excellence, 2014).

1.1.3.2 Treatment strategies in early and late stage CRC

The main treatment strategy for CRC is complete surgical resection, wherever possible
(National Institute for Health and Care Excellence, 2014). When disease is metastatic
or the primary tumour is unresectable, treatment refocuses on limiting progression
and palliating symptoms (Sturrock et al., 2015).

1.1.3.2.1 Early stage colon and rectal cancer management. Table 1.2 gives
an overview of the main treatment pathways for early-stage (i.e. non-metastatic, stages
I-III) CRC. For colon tumours, resection aims to remove the tumour, its surrounding
margins, and any associated lymph nodes (Sturrock et al., 2015). Adjuvant chemother-
apy is then offered in the case of lymph node involvement or deep invasion of the tu-
mour through the colon wall to reduce the odds of subsequent recurrence or metastasis.
(National Institute for Health and Care Excellence, 2014).
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For locally advanced rectal cancer, a more multimodal treatment approach is employed
(National Institute for Health and Care Excellence, 2014), in view of the fact that
neoadjuvant radio- and/or chemotherapy reduce the chance of recurrence(Sturrock et
al., 2015; National Institute for Health and Care Excellence, 2014).

1.1.3.2.2 Late stage colon and rectal cancer management. At stage IV
metastatic disease, surgery with curative intent may still be feasible (resection of
both the primary and metastatic tumours) if metastases are isolated to the liver or
lungs (Sturrock et al., 2015; National Institute for Health and Care Excellence, 2014).
In this case, perioperative chemotherapy can also be offered to reduce the risk of
recurrence.

If the tumours are not immediately resectable, local control of the primary tumour
with chemotherapy (and/or radiotherapy for rectal cancer, Table 1.3) may help to
control symptoms, control disease and prolong life (Sturrock et al., 2015). Targeted
biological agents such as anti-EGFR (Epidermal Growth Factor Receptor; e.g. cetux-
imab, panitumumab) or anti-angiogenic agents (e.g. bevacizumab) can also be applied.
If the disease is widely metastatic, palliative chemotherapy (with biological agents, de-
pending on the patient’s fitness) is the remaining option for patients (Sturrock et al.,
2015).

Underlying patients’ responses to all these therapies is the crucial factor of intertu-
moural heterogeneity: the spatial, morphological and molecular differences between
tumours. This variation – particularly molecular variation – will be introduced next.

Table 1.2: Overview of the recommended treatment pathway of patients with early-stage (stage
I–III) colorectal tumours in the UK. Adapted from "NICE Pathways: Managing local colorectal tu-
mours"* and BMJ Best Practice (Stein, 2019) .

Treatment stage Patient group Treatment

Preoperative
management

Moderate/high-risk resectable primary
rectal tumours

Preoperative
radio/chemoradiotherapy

High-risk primary rectal tumours that
appear unresectable or borderline
resectable

Preoperative
chemoradiotherapy

Surgery All patients Open or laparoscopic
surgery
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Treatment stage Patient group Treatment

Further treatment High risk stage II and all stage III
tumours

Adjuvant chemotherapy
(e.g. capecitabine/5FU and
oxaliplatin)

Follow-up after
apparently curative
resection

All patients CT scans,
CEA levels,
colonoscopies

Table 1.3: Overview of the recommended treatment pathway of patients with late-stage (stage
IV) colorectal tumours in the UK. Adapted from "NICE Pathways: Managing advanced and metastatic
colorectal cancer"∗ and BMJ Best Practice (Stein, 2019).

Treatment
stage

Patient
group

Treatment
type

Imaging All patients CT scans to determine metastases’
extent/location

Perioperative
management

Resectable rectal tumours Fluoropyrimidine-based chemotherapy ±
oxaliplatin and/or irinotecan ±
radiotherapy

Resectable colon tumours Fluoropyrimidine-based chemotherapy ±
oxaliplatin and/or irinotecan

Surgery Resectable tumours

First-line
therapy

All patients Fluoropyrimidine-based chemotherapy ±
oxaliplatin and/or irinotecan ±
anti-angiogenic or anti-EGFR (RAS WT
only)

Second-line
therapy

Patients who progress after
first line

Alternative chemotherapy
to first line

1.1.3.3 Biomarkers in clinical use in CRC

Molecular biomarkers are still limited in their clinical application to CRC. RAS family
mutations predict primary resistance to anti-EGFR monoclonal antibodies, e.g. cetux-
imab (Sorich et al., 2015) in metastatic CRC. However, while approximately ~47%
of metastatic CRCs harbour wild-type RAS, only half of these will respond to these
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drugs (Sorich et al., 2015), with varying unclear mechanisms of primary and acquired
resistance (Martins et al., 2018). In early stage cancers, MSI cases may have better
prognosis, are less likely to gain a survival benefit from fluorouracil (5FU; a chemother-
apy agent that inhibits DNA replication by blocking the synthesis of thymidine), but
may benefit from longer survival under irinotecan treatment (which inhibits topoi-
somerase I, damaging DNA) (Christie & Sieber, 2011). Overall, only around half
of CRC patients will survive 10 years or more after diagnosis (Cancer Research UK,
2016; Yu et al., 2019), although 10-year disease-specific survival is higher at 68%,
partially due to the high incidence of mortality from other causes in CRC patients
owing to their age at diagnosis (median approximately 62 years(Yu et al., 2019)).

1.1.4 Characterisations of intertumoural molecular CRC heterogeneity

Despite the appealing simplicity of a step-wise accumulation of driver mutations as
a model for CRC development, as described above, the vast majority of CRCs do
not exhibit mutations in all three key genes in this model (APC, KRAS and TP53 )
(Joung et al., 2017), and a minority show no detectable mutations in any of these genes.
Hence, additional molecular features have gained traction as important discriminators
in CRC.

Alongside MSI, described earlier in this chapter, CpG island methylator phenotype
(CIMP) and chromosomal instability (CIN) are markers which have been widely in-
vestigated in CRC research, although not included in routine clinical practice. CIMP
is distinguished by increased methylation of CpG island-enriched promoter regions,
silencing tumour suppressor genes (Toyota et al., 1999). CIMP tumours are highly
mutated, poorly differentiated, but CIMP is not a reliable independent predictor of
prognosis (Toyota et al., 1999). The CIN phenotype (Fearon & Vogelstein, 1990),
where aneuploidy causes the loss of e.g. APC, KRAS or TP53 function, is mostly
exclusive of MSI (Simons et al., 2013) and has worse prognosis than MSI tumours
(Watanabe et al., 2012) in early-stage cancers.

MSI CRCs can be further subdivied into MSI-high (MSI-H) and MSI-low (MSI-L) sub-
groups, the latter representing tumours where a lower number of repeat markers show
evidence of MSI — however, there is not a consensus over whether MSI-L tumours
are functionally different enough from MSS tumours to be treated as a distinct group
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(Pawlik, Raut & Rodriguez-Bigas, 2004). MSI and CIMP status can be combined
into 4 major subtypes, in order of decreasing incidence (Ogino & Goel, 2008):

i. MSI-L/Microsatellite stable (MSS), CIMP-low (L) or negative (0): (~75-80%)
ii. MSI-H, CIMP-high (CIMP-H) (~10%)
iii. MSI-L/MSS, CIMP-H (~5-10%)
iv. MSI-H, CIMP-L/0 (~5%)

These methylation-, genomic- and chromosome-level classifications can be augmented
by transcriptomic subgroups, as pioneered in breast cancer (Perou et al., 2000;
Dowsett et al., 2013). Previously, our lab published five gene expression subtypes
of CRC (Sadanandam et al., 2013), the CRCAssigner subtypes, named for their
enrichment of genes associated with normal colon cell types described in Chapter
1.1.1 (Figure 1.4): enterocyte, goblet-like, TA, stem-like and inflammatory. The
CRCAssigner subtypes are appealing as an adjunct to MSI, CIMP and CIN as they
are conceptually equivalent to these other classifications: their designation is based
on transcriptomic cell phenotypes alone, similarly to MSI being based on genomic,
CIMP on methylomic, and CIN on chromosomal features.

1.1.4.1 The CRCAssigner subtypes

The five CRCAssigner subtypes can be distinguished by their expression of genes char-
acteristic of normal cell types found in the colon (Sadanandam et al., 2013) (Chapter
1.1.1, Figure 1.4). The enterocyte subtype expresses enterocyte marker genes (CA1-2,
KRT20, SLC26A3, AQP8 and MS4A12 ); the goblet-like subtype is characterised by
goblet cell markers (MUC2 and TFF3 ); the inflammatory subtype has high expres-
sion of chemokines and interferon-related genes (CXCL9-13 and IFIT3 ); the stem-like
subtype disproportionately expresses Wnt signalling targets and stem cell, myoepithe-
lial and mesenchymal markers (SFRP2, SFRP4, FN1, TAGLN, ZEB1-2, TWIST1,
SNAI2 ); while the TA subtype has more heterogeneous expression due to TA cells’
spread along a differentiation gradient from intestinal stem cells to differentiated en-
terocyte and goblet-like cells.

While the CRCAssigner subtypes were named for their transcriptomic similarities
to normal crypt cells, they do show enrichment for non-transcriptomic biomarkers
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(those not primarily defined by gene expression characteristics). For example, the
inflammatory, stem-like and TA subtypes are enriched for the known categories of
MSI and MSS, with MSI tumours falling into the inflammatory group, and MSS
tumours into the stem-like and TA subtypes (Sadanandam et al., 2013; Guinney et
al., 2015). Correspondingly, the inflammatory subtype has favourable disease-free
survival (DFS), while stem-like has poor DFS (Sadanandam et al., 2013). However,
the TA subtype has good DFS despite being MSS (Sadanandam et al., 2013).

Figure 1.4: The CRCAssigner subtypes have differential prognostic power and potential drug
associations, and similarities to normal colon crypt cell types. Overview of the CRCAssigner sub-
types of CRC, including disease-free survival (DFS) and crypt phenotypes from the original publication
(Sadanandam et al., 2013) and drug sensitivities from the original (FOLFIRI and cetuximab) and follow-
up (oxaliplatin (Song et al., 2016)) publications. Coloured cells indicate the location of the equivalent
normal cell types in the colon crypt.

CRCAssigner subtypes were shown to exhibit subtype-specific associations with cetux-
imab and FOLFIRI (folinic acid, 5FU and irinotecan) treatments in patients (Sadanan-
dam et al., 2013). More recently, their possible association with oxaliplatin treatment
was demonstrated, wherein CRCAssigner was retrospectively identified as more able
to stratify patients into those who do and do not experience increased recurrence-
free survival from oxaliplatin than the CMS classifier (described in the next section),
with enterocyte subtype patients representing those who have longer survival (Song
et al., 2016). This difference was significant in the discovery cohort, but did not reach
significance in the validation cohort, although the trend remained the same.
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1.1.4.2 The CMS subtypes

Five other groups have released major publications on gene expression subtypes in
CRC near-concomitantly, and defined the following subtypes: (Budinska et al., 2013;
Marisa et al., 2013; Roepman et al., 2013; De Sousa E Melo et al., 2013; Schlicker et
al., 2012)

1. Budinska et al.
i. Surface crypt-like
ii. Lower crypt-like
iii. CIMP-H-like
iv. Mesenchymal
v. Mixed

2. Roepman et al.
i. Deficient MMR epithelial
ii. Proliferative epithelial
iii. Mesenchymal

3. De Sousa E Melo et al.
i. CIN
ii. MSI
iii. Serrated

4. Marisa et al.

i. CIN immune down
ii. Deficient MMR
iii. KRAS -mutant
iv. Cancer stem cell
v. CIN Wnt up
vi. CIN normal-like

5. Schlicker et al.

i. 1.1 (Strongly mesenchymal,
late stage)

ii. 1.2 (Mesenchymal, MSI)
iii. 1.3 (Mesenchymal, MSS)
iv. 1.4 (Epithelial)
v. 1.5 (Epithelial, MSS)

A consortium effort consolidated these subtypes into a consensus solution (consensus
molecular subtypes, CMS) of four subtypes (Guinney et al., 2015):

i. CMS1 - MSI immune (enriched for: MSI, CIMP, hypermutation, BRAF mutan-
tion, immune infiltration)

ii. CMS2 - Canonical (enriched for: somatic copy number aberrations (SCNAs),
Wnt and MYC activation)

iii. CMS3 - Metabolic (enriched for: KRAS mutation, metabolic disregulation)
iv. CMS4 - Mesenchymal (enriched for: SCNAs, stromal infiltration, TGFβ activa-

tion, angiogenesis)
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These subtypes were defined using a network approach, whereby the overlap of sam-
ples between subtypes from different studies (measured using Jaccard index†) were
interpreted as edges in a weighted network (Guinney et al., 2015). The nodes of this
network were then clustered using the Markov Cluster Algorithm (Van Dongen, 1998).
This graph-based clustering algorithm relies on the idea that when some nodes are
more densely clustered than others, a random walk from one node to another is more
likely to stay within a cluster than travel between clusters. Hence, by performing
many random walks through the graph, dense regions of nodes can be grouped into
clusters.

These consensus subtypes have been adopted for many subsequent studies, with
clinically-relevant but sometimes contradictory findings (Lenz et al., 2018; Mooi et
al., 2018). However, efforts continue on developing the six original publications’ sub-
types due to their context-specific use as markers where the CMS subtypes may be
too broad, for example in the context of personalising oxaliplatin treatment for stage
II/III patients (Song et al., 2016). In addition, new subtyping schemes have been
published (Isella et al., 2017) in reaction to the suggestion that mesenchymal/stem-
like subtypes may be reflecting stromal gene expression, rather than tumour gene
expression (Isella et al., 2015), discussed in the section below.

1.1.4.3 Contamination of gene expression profiles by stromal cells and
the CRIS subtypes

Human tumour samples contain a mixture of cancerous cells and non-cancerous stro-
mal cells. Whilst impossible to determine using microarrays on human tumour sam-
ples, the recent use of RNA-seq to profile patient-derived mouse xenograft (PDX)
samples has allowed for the delineation of which genes are expressed mostly in cancer
or stromal cells. This can be achieved because PDX samples will contain human can-
cer cells, but mouse stroma; hence, by aligning sequencing reads to the human and
the mouse genomes, the relative expression of each gene in cancer and stromal cells
can be calculated.

†The Jaccard index of two sets of labels A and B is defined at the intersection of the label sets
divided by the union of the label sets, i.e.

J(A, B) = |A ∩ B|
|A ∪ B|
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In the context of CRC gene expression signatures, recent work (Isella et al., 2015) has
shown that the expression of ∼ 85% of stem-like subtype (and ∼ 50% of inflamma-
tory subtype) genes is higher in the PDX’s stroma than in its human cancer cells. In
reaction to this result, new subtypes (CRC intrinsic subtypes, or CRIS) were devel-
oped from PDX data (Isella et al., 2017) , using an otherwise similar methodology to
the derivation of the CRCAssigner subtypes using patient samples (Sadanandam et
al., 2013), the major change being the removal of genes for which more than 50% of
expression could be attributed to stromal cells.

The differences between these two classifiers is to be expected, as the CRCAssigner
subtypes were discovered using patient samples having tumour content > 65%, mean-
ing non-cancer cells were included in the expression profiling. However, whether it is
preferable to include or exclude stromal expression when classifying tumours is not
settled. While it is certainly important to understand which signals are coming from
the cancer and non-cancerous cells for furthering biological understanding, stromal
signalling can heavily influence tumour progression (Mueller & Fusenig, 2004), and
the inclusion of stromal expression in a subtyping scheme utilised in a clinical setting
could be informative.

1.1.5 Summary

Given these reported differences in subtypes’ prognosis and drug-specific associations
from cell lines and retrospective analyses of patient data, the question arises of how
to make prospective decisions about patients’ care that are informed by these insights.
This question will be the subject of the next section.
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1.2 Clinical translation of molecular subtypes

In CRC, the clinical evaluation of RAS and BRAF mutations is performed with
polymerase chain reaction (PCR)-based methods or newer pyrosequencing, next-
generation sequencing (NGS) or Sanger methods (Westwood et al., 2014). MSI can
be assessed by determining the loss of MMR genes by immunohistochemistry (IHC)
or PCR-based testing to compare the counts of nucleotide repeats in established
microsatellite markers between tumour and normal samples (Ryan et al., 2017) —
but there is no evaluation of transcriptomic subtypes in routine clinical management
of CRC.

In breast cancer, however, the five breast cancer subtypes first defined in the year 2000
(Perou et al., 2000) are arguably the most-studied cancer gene expression subtypes,
and there have been efforts to translate them into routine clinical use (the Prosigna
PAM50 assay (Dowsett et al., 2013) below). This assay, and others not based on these
subtypes, have been successful in predicting prognosis and guiding chemotherapy
decision-making in patients with ER+/HER2- early breast cancer, and have been
FDA-approved (Pond, Piccart-gebhart & Brand, 2019). As such, they could provide
a model for developing a similar tool in CRC. These assays include:

i. Oncotype DX (Cronin et al., 2007)
21 genes measured using reverse transcription (RT)-PCR on FFPE samples
giving a high/intermediate/low risk call

ii. MammaPrint (Mook et al., 2007)
70 genes measured using microarrays on fresh frozen (FF) or FFPE samples,
giving a high/low risk call and subtype information

iii. Prosigna PAM50 (Dowsett et al., 2013)
50 genes measured using nCounter (NanoString Technologies) on FFPE samples
giving high/intermediate/low risk and subtype information

The results of these tests are often discordant with each other (Vieira & Schmitt, 2018).
A prospective clinical trial is ongoing which will compare Oncotype DX, MammaPrint
and Prosigna PAM50 and other breast gene signatures in the same samples, with
preliminary results showing agreement as low as 39.4% (Bartlett et al., 2016). Some
previous studies have shown greater prognostic power using the Prosigna PAM50 test
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(Dowsett et al., 2013), but which assay is the most effective at stratifying patients so
that some can be safely spared chemotherapy is yet to be settled.

Two gene expression tests for colon cancer, designed by the developers of the
MammaPrint and Oncotype DX assays, were made available in the early 2010s:

i. Oncotype DX Colon Cancer (Kerr et al., 2009)
12 genes meaured using RT-PCR on FFPE samples giving a high/intermedi-
ate/low risk call

ii. ColoPrint (Salazar et al., 2011)
18 genes measured using microarrays on FF samples, giving a high/low risk call

These assays aim to identify patients which with stage II colon cancer should receive
adjuvant chemotherapy in addition to surgery. However, they have not been approved
by the FDA (U.S. Food & Drug Administration, 2019). This is because the difference
in risk between groups in colon cancer was lower using these tests than between
the equivalent risk groups in breast cancer (Kelley & Venook, 2011), and while they
provide information on risk of recurrence, evidence is lacking of their ability to predict
responses to chemotherapy (Kelley & Venook, 2011; Sharif & O’Connell, 2012).

The breast cancer tests listed above are routinely performed in appropriate cases
of that disease, as are the above-listed mutation and MSI assessments in CRC —
but no equivalent assays for the determination of subtype/risk have previously been
successfully developed for use beyond research in CRC. One aspect of implementation
of such a gene expression assay for clinical use that must be assessed is its ability to
handle tissue preserved via different methods, discussed next.

1.2.1 Tissue preservation and platform considerations

In research, fresh frozen tissue (that which has been snap frozen in liquid nitrogen
and stored at ultra-low temperatures) provides the highest quality DNA, RNA and
proteins for subsequent profiling (Klopfleisch, Weiss & Gruber, 2011). In clinical
practice, frozen tissue is prohibitively expensive to store long-term and cannot be
used for routine pathology, e.g. haemotoxylin and eosin (H&E) staining and IHC.

Instead, tissue is fixed by immersing it in formalin, passing ethanol and xylene through
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it to dehydrate it and make it permeable to paraffin, followed by infiltrating it with
liquid paraffin which is then allowed to cool and harden (formalin-fixed, paraffin-
embedded; FFPE) (Iles & Butler, 2012). However, this has severe molecular implica-
tions. DNA, RNA and protein are cross-linked to each other by addition of methylol
groups, which can progress into methylene bridge formation (Masuda et al., 1999).
These chemical alterations cause damage that can severely impede and distort DNA,
RNA and protein profiling of FFPE samples (Vermeulen et al., 2011; Kong et al.,
2014).

A number of publications have evaluated the applicability of RNA profiling techniques
such as qRT-PCR, microarrays and nCounter to FFPE tissue. In general, these tech-
niques can be applied to FFPE tissue with moderately high (but variable) concordance
with FF tissue results (see e.g. qRT-PCR (Sánchez-Navarro et al., 2010; Mullins et
al., 2007); microarrays (Fedorowicz et al., 2009; Duenwald et al., 2009; Frank et al.,
2007)). Differences between these platforms’ concordance between FF and FFPE can
be attributed to several factors. For example, differing probe/primer designs for the
same transcript between technologies can target different locations on the mRNA,
leading the degradation associated with FFPE tissue to have different effects on ex-
pression quantification (Etienne et al., 2004). Normalisation of qRT-PCR data is
also done in relation to a handful of reference or housekeeping genes, presumed to be
uniformly expressed across samples, whereas microarray data normalisation relies on
the expression of all transcripts measured (Guénin et al., 2009). nCounter — while
a newer technology and as such not so extensively studied — exhibits particularly
high correlation between FFPE and FF tissue gene expression profiles, in the range
of 0.87–0.9 (Kolbert et al., 2013; Norton et al., 2013; Reis et al., 2011). While these
studies may have had only modest sample sizes, the requirement of the nCounter
probes for only a relatively short section of RNA to be intact provides a theoretical
basis for this technology being particularly suited to FFPE tissues (see Chapter 2.3.1
for more details of the platform).

The nCounter platform (Geiss et al., 2008) has previously been exploited to develop
the FDA-approved breast cancer PAM50 assay described above, as well as assays to
predict medulloblastoma (Northcott et al., 2012) and lymphoma (Scott et al., 2014)
subtypes. This platform measures gene expression in the form of discrete counts of a
set of pre-defined, barcoded mRNAs, and requires no amplification step, eliminating a
potential source of bias. While nCounter can profile fewer genes simultaneously than
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microarrays (which measure the relative expressions of a large panel of pre-defined
transcripts) or RNA-seq (which directly reads the base sequences of all transcripts
in the sample), it has less hands-on time for the user, and faster turn-around time
(Ragulan et al., 2019).

Another feature of subtyping assays that must be considered is the process by which
the data is normalised, and how each sample is then assigned to a subtype, as exam-
ined in the following section.

1.2.2 Data normalisation and subtype calling

Gene expression subtype classification methods vary greatly in their procedures for
both normalising the data and assigning a subtype to an expression profile. These
depend on both the gene expression profiling protocol (e.g. platform and tissue type),
and how the subtypes were defined (e.g. a characteristic “average” gene expression
profile, relative expression of genes) and discovered (e.g. clustering algorithm). Con-
sideration also needs to be given to whether the classifier should be “single sample”,
that is, whether the classification of a particular sample stay constant regardless of
the other samples processed alongside it.

The different studies’ CRC subtypes described above in Chapter 1.1.4 all derived
from clustering (usually hierarchical) of microarray gene expression profiles from fresh
frozen tissues. The classifiers were more varied, including linear discriminant analysis
(LDA) (Budinska et al., 2013), a shrunken-centroid variant of LDA (De Sousa E Melo
et al., 2013), and clustering of new samples based on differentially expressed genes
(Schlicker et al., 2012).

The CRCAssigner classifier was built on subtype centroids that were derived in the
original publication (Sadanandam et al., 2013), from clusters of samples that were
discovered using non-negative matrix factorisation (NMF) clustering (Brunet et al.,
2004). These centroids are characteristic profiles of each subtype, consisting of genes
selected using significance analysis of microarrays (SAM) (Tusher, Tibshirani & Chu,
2001) and prediction analysis of microarrays (PAM) methodologies (Tibshirani et al.,
2002).

SAM is a permutation-based method to identify differentially expressed genes be-
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tween subtypes (Tusher, Tibshirani & Chu, 2001). PAM can then be used to derive
centroids for the subtypes by calculating the mean and standard deviation of the
expression of each gene within each class, and dividing the two. These centroids are
then thresholded by a given value to set non-informative genes to zero ‡ (Tibshirani
et al., 2002). The subtype of a sample can then be predicted by finding the nearest
centroid to that sample, in squared Euclidean distance. Different thresholds can be
tested by measuring the misclassification error rate for each threshold during K-fold
cross-validation.

1.2.3 Summary

In Chapter 2, I will show how classification of patient samples into the CRCAssigner
subtypes can be achieved using both fresh-frozen and FFPE tissue using the clinically-
approved nCounter platform. This new assay could facilitate subtype-driven prospec-
tive clinical trials to personalise CRC therapy based on patient transcriptomes.

While the intertumoural heterogeneity described in this section has clear implications
for CRC biology and therapy, it is increasingly clear that the variability within in-
dividual tumours — intratumoural heterogeneity — has an additional confounding
effect on patient outcomes (Dunne et al., 2016), as discussed in the next section.

‡This can be represented as

Cij =
{

µij

σij
− θ if µij

σij
> θ,

0 otherwise,
where Cij is the centroid value, µij is the mean, and σij is the standard deviation for gene i in

subtype j, and θ is the threshold value.
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1.3 Characterisations, and in silico deconvolution, of CRC
intratumoural heterogeneity

Intratumoural heterogeneity is the molecular and morphological variability that can
be observed within individual tumours. Intratumoural heterogeneity has an impact
on patient outcomes that has only relatively recently been subject to investigation on
a pan-cancer scale (Morris et al., 2016; Raynaud et al., 2018; Andor et al., 2015). In-
tratumoural heterogeneity is influenced by factors such as the profusion of metabolites
and nutrients, the abundance of stroma, and immune infiltration in different regions
of the tumour (Yuan, 2017).

CRC intratumoural heterogeneity has, in the past two decades, been investigated at
the level of KRAS and TP53 mutations, loss of heterozygosity at chromosomes 5q
and 18q (Losi et al., 2005), and more recently single-gland mutations(Sottoriva et al.,
2015), copy number aberrations (Sottoriva et al., 2015) and methylation (Siegmund et
al., 2009), and single-cell PCR (Dalerba et al., 2011) and RNA-seq (scRNA-seq) (Li
et al., 2017a). These works have conflicting conclusions over the extent of selection
exerted on the tumour during its development, showing either a drop-off in hetero-
geneity in more advanced cases (Losi et al., 2005), or a lack of selection that means the
prevalence of a clone only depends on the time it has had to expand (Sottoriva et al.,
2015). In epigenetic terms, it was found that while there is diversity in methylation
patterns across malignant glands, this diversity was not spatially dependent, indi-
cating a large early expansion untouched by later selection (Siegmund et al., 2009).
An early single-cell study that utilised PCR found that phenotypic differentiation,
independent of any clonal or genetic diversification, was an important factor in the
intratumoural heterogeneity of CRC (Dalerba et al., 2011). The most recent work,
applying single-cell RNA-seq technology, found diverse subgroups of tumour epithelial
cells that were associated with the CRCAssigner subtypes (Li et al., 2017a).

The current gold-standard for quantifying intratumoural heterogeneity lies in single-
cell techniques such as scRNA-seq and fluorescence-activated cell sorting (FACS).
These techniques allow for the direct quantification of cells having particular mu-
tations or expressing pre-selected cell surface markers, and as such give the most
high-resolution data regarding the cellular composition of a tumour. However, lim-
itations in sample throughput (due to both technical factors and cost) mean these
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approaches are not yet suited to profiling the kind of large, well-annotated datasets
needed to get a population-level understanding of CRC intratumoural heterogeneity.
Hence, computational or in silico methods can be turned to, to predict various kinds
of intratumoural heterogeneity from data that is not at single-cell resolution. These
methods can utilise both genomic and transcriptomic data, as discussed below.

1.3.1 Mutation- and copy number-based deconvolution in CRC

In cancer, the majority of efforts in computationally quantifying intratumoural het-
erogeneity have focussed on genomic strategies utilising single-nucleotide variation
(SNV) and copy number aberration (CNA) data. In CRC in particular, multi-region
whole-exome sequencing and copy number profiling allowed for the reconstruction of
phylogenetic trees showing the clonal history of primary tumours and their metastases
(Kim et al., 2015). This analysis revealed that mutations in APC are both highly
common and clonally/regionally universal, while mutant KRAS was also universal
but less common. A subsequent independent study mirrored these results in another
set of tumours, and also identified arm-level amplifications of 7p, 7q, 13q, 20p and
20q as common founder events (Uchi et al., 2016).

These multi-region analyses give valuable insights into genomic heterogeneity in CRC.
However, they usually only consider a limited sample set due to the complexities of
obtaining and profiling multiple sections of tissue from one tumour. In order to draw
conclusions about outcomes such as survival in the wider CRC patient population,
techniques can be used that estimate genomic intratumoural heterogeneity from bulk
data.

One study that took such an approach (Joung et al., 2017) utilised PyClone (Roth et
al., 2014), a model that uses Bayesian hierarchical clustering of somatic mutations to
identify tumour clones while accounting for possible multiplication of the mutation
through copy number aberrations. It found that the presence of more than two clones
was significantly associated with a detrimental effect on patient survival (Joung et al.,
2017).

While these findings of intratumoural genomic heterogeneity in CRC have undoubt-
edly increased understanding of the disease and its mechanisms, the question remains
as to how this understanding can be translated into patient benefit in the clinic.
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Meanwhile, intertumoural transcriptomic heterogeneity in CRC has been shown to
have multiple therapeutic implications, both in the basic research setting and in ret-
rospective analysis of clinical trials (see Chapter 1.1.4). Hence, it is worth exploring
whether intratumoural transcriptomic heterogeneity could be an alternative route to
bring knowledge of the implications of intertumoural heterogeneity into the clinic.

1.3.2 Transcriptomic deconvolution strategies

While it has been known for a short time that some tumour samples can have gene
expression characteristic of multiple different transcriptomic subtypes simultaneously
(Guinney et al., 2015) — hypothesised to be due to the concomitance of cells of
different subtypes within the same tumour — the extent and implications of this
phenomenon have not yet been widely investigated in CRC. Due to the present scarcity
of single-cell data in CRC, it is also not yet possible to directly answer this question
by subtyping individual cells. Hence, computational methods can be turned to in
order to explore this observation.

Several pioneering tools in the field of transcriptome-based cell type deconvolution
have come from the field of immunology. Normal immune cell types do not exhibit
genomic variability within the same human, i.e. somatic mutations and copy number
aberrations that would be needed to utilise the tools described in the previous section
(Chapter 1.3.1). Instead, several methods for the deconvolution of immune cell types
from transcriptomic data have been adopted.

Methods of transcriptomically quantifying cell types can be broadly categorised by
their input and output (Finotello & Trajanoski, 2018). Firstly, lists of marker genes
for cell types can be input for the calculation of enrichment of each cell type within
each sample, although this is not usually interpretable as cell type subpopulations.
Secondly, characteristic gene expression profiles of cell types can be used in a super-
vised fashion to evaluate the proportion of gene expression in a sample attributable
to each cell type — this can be taken as an estimate of cell type subpopulations.
Finally, totally unsupervised deconvolution of gene expression into characteristic cell
type transcriptomic profiles and proportions of these cell types is possible. However,
this requires further downstream analysis to identify and understand these cell types.
Additionally, none of these methods can be used to directly estimate the number
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of cells belonging to each subpopulation, only relative proportions, due to the fact
that the RNA from all the cells in the sample has been pooled and can no longer be
attributed back to individual cells.

The second approach listed above is utilised in this thesis, due to the cell types of
interest (CRCAssigner subtypes) having well-defined characteristic gene expression.
While several methods exist based on linear (Abbas et al., 2009; Li et al., 2016) and
constrained least squared regression (Gong et al., 2011; Gong & Szustakowski, 2013;
Racle et al., 2017), it is likely that the most popular recent method of this category
is CIBERSORT (Newman et al., 2015). CIBERSORT utilises a variant of support
vector regression (SVR), which is similar to simple linear regression in that it treats
the gene expression profile of interest as a linear combination of the cell types’ gene
expression profiles. SVR estimates coefficients § that can then be normalised and
interpreted as cell type proportions within the sample (Figure 1.5). For more details
on SVR and its implementation in CIBERSORT, see Chapter 3.2.3.

§Linear deconvolution of cell subpopulations can be represented by

g
i

=

⎛

⎝
J∑

j=1
βijcj

⎞

⎠ + ϵi

where g
i

is the gene expression profile vector of sample i, cj is the gene expression profile vector
of cell type j, βij is the coefficient representing the subpopulation of each cell type in each sample,
and ϵi is the residual error.
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Figure 1.5: Computational deconvolution can be used to predict cell type subpopulations in
a heterogeneous sample. Summary of the transcriptomic deconvolution methodology employed by
CIBERSORT for the estimation of cell type subpopulations. g

i
is the gene expression profile vector of

sample i, ck is the gene expression profile vector of cell type k, βik is the coefficient representing the
subpopulation of each cell type in each sample, and ϵi is the residual error. gij and ϵij are the expression
and error of the fit of gene j in sample i. β̂ik is the normalised coefficient so that ∑K

k=1 β̂ik = 1.

CIBERSORT’s algorithm was validated against automated cell counting and flow cy-
tometry, and benchmarked against other deconvolution tools such as least squares
regression. It was found to predict immune cell subpopulations with high accuracy,
and produced lower errors than competing methods (Newman et al., 2015). These ex-
ercised included testing CIBERSORT on simulated tumour/leukocyte mixtures, and
on 14 patient follicular lymphoma tumours with known immune cell subpopulations
measured using flow cytometry. In Chapter 3, I will adopt CIBERSORT’s approach
to quantify the subpopulations of cells belonging to different transcriptomic cancer
subtypes within individual tumours. While this application is different to the original
intent of CIBERSORT in that I aim to enumerate different tumour subtype subpop-
ulations, as opposed to immune cell subpopulations, the core problem of quantifying
the heterogeneity of cell types present using bulk gene expression profiles and cell
type signatures remains identical.

44



1.3.3 Summary

Elucidation of transcriptomic inter- and intratumoural heterogeneity will likely garner
new insights that can bring patient benefit in the relatively near future. Beyond
this, the next generation of personalised treatment will require the understanding of
each patient’s cancer as a complex biological system, consisting of multiple levels of
molecular signalling and feedback. How the integration of molecular data of different
“omics” types can be achieved for the realisation of this level of comprehension is the
subject of the next section.
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1.4 Multiomics data integration and analysis

1.4.1 Strategies for step-wise integration of omics data

“Omics” data refers to information — usually high-dimensional — on the molecular
landscape of a sample, e.g. mutations and copy number alterations (genomics), DNA
methylation (epigenomics), gene/mRNA and microRNA expression (transcriptomics),
and protein expression (proteomics). The most common strategy for the integration
of data of one omics type to another is through simple step-wise evaluation of the
association of postulated features/groups of interest with known features/groups of
interest. An quantitative example of this would be the use of Fisher’s exact test
to evaluate the enrichment of various mutations in the known transcriptomic CMS
subtypes (Guinney et al., 2015), but qualitative analysis is also common.

In the Sadanandam Lab, previous work on pancreatic neuroendocrine tumours has
integrated mRNA and microRNA subtypes using a hypergeometric test, revealing
that the samples in subtypes had a high overlap (Sadanandam et al., 2015).

In CRC, these kinds of analyses have shed light on the relationships between many
omics features/subtypes. Continuing the example of the CMS subtypes (Guinney et
al., 2015), CMS1 was found to be enriched for BRAF mutation, hypermethylation, hy-
permutation, CIMP and immune pathway proteins. CMS2 was enriched for CN gain of
oncogenes and loss of suppressor genes, and MYC-associated micro-(mi)RNAs, while
CMS3 was enriched for KRAS mutations and metabolic disregulation. CMS4 had en-
richment of proteins from the pathways of stromal invasion, mesenchymal activation
and complement pathways.

Another example in CRC specifically addressed the question of a transcriptomic sig-
nature for the prognosis of patients treated with 5FU, and how mutations and CNAs
were enriched in the high- and low-risk groups defined by this signature (Tong et al.,
2016). Fisher’s exact tests was used to find several arm-level features (7p, 8q, 13q,
20p, 20q amplification; 8p, 17p, 18p, 18q deletion) enriched in the high-risk group.

Extending this concept to incorporate proteomics, one study (Zhang et al., 2014)
determined that while CNAs had strong impacts on mRNA expression, mRNAs were
not reliably associated with their translated protein’s abundance. Using hierarchical
consensus clustering (Zhang et al., 2014) of proteomics data, they then found five
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subtypes of CRC. Then, using Fisher’s exact tests, they found that one subtype was
enriched for hypermutation, MSI and BRAF mutation. These five subtypes did not
significantly overlap with the CRCAssigner subtypes (Zhang et al., 2014).

As the size of omics datasets has grown, the methods used for post-hoc integration
have been pushed further and further. The most complex multiomic analysis of CRC
to date included mutations, CNAs, miRNA, mRNA, proteins and phosphoproteins
in paired tumour and adjacent normal tissues (Vasaikar et al., 2019). Among the
results of this study, were: i. the identification of personalised neoantigens using
mutations and proteomics; ii. the detection of increased glycolysis associated with
CD8 infiltration in MSI cancers, determined by proteomics and transcriptomic data;
iii. that phosphorylation of RB1 is a driver of CRC proliferation that could be targeted
by CDK2 inhibition, as inferred from phosphoproteomics data. These three key results
give avenues of exploration for novel therapies (i. personalised cancer vaccines; ii.
combined glycolysis and checkpoint inhibition; iii. CDK2 inhibition), and illustrate
the power of integrative omics analysis.

There is, however, a limitation to this approach to data analysis. The discrete, pair-
wise tests of association between features or groups only provide information on those
specific variables, and may make it harder to discover wider patterns of alterations
that give a global view of CRC. This is the reasoning behind the development of the
tools described below, whose focus is on the simultaneous analysis of multiple omics
datasets.

1.4.2 Parallel integration of multiple omics data types

One of the conceptually simplest approaches that can be taken to simultaneously
integrate multiple omics data types is to firstly cluster the samples using each data
type separately, followed by clustering the samples using their class assignments in
each data type (“cluster of cluster assignments”).¶ This was the methodology adopted
by The Cancer Genome Atlas (TCGA) consortium to find subtypes using the vast
data they collected from 3,527 patients on six omics data types (mutations, CN,
methylation, m/miRNA and protein expression) (Hoadley et al., 2014) and 12 cancer
types (including CRC). As may have been expected, most of the samples were tightly
clustered within their respective cancer type. In particular, all 255 CRC samples
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clustered together without exception.

We have previously applied a similar approach in uveal melanoma (Eason, Nyamun-
danda & Sadanandam, 2018) — although the motivation in that case was to integrate
clusters from different clustering algorithms, this approach can also be applied to in-
tegrate clusters from different omics types. However, the drawback of these types of
approaches to integration is that it groups samples based on their discrete binning ac-
cording to each separate omics type, and does not take into account the correlations
between features of different omics types. These correlations are abundant in mul-
tiomics biological data due to, e.g., direct physical interactions between molecules,
or the resulting patterns of regulation across pathways and networks. Losing this
information is likely to lead to an unstable, less reproducible grouping of patients.

One solution to this loss of information is to integrate data using latent variable
models. The underlying conceptual assumption of these models is that there exist a
set of unmeasurable or “latent” variables which explain the correlations in the data
(hence, conditional on these latent variables, the features in the data are independent
of each other) (Akalin, 2019). These latent variables can be interpreted as patterns
of co-expressed features that are likely regulated through the same (or closely-linked)
pathways. The latent variables can further be utilised for sample clustering, as the
hundreds of thousands of features that represent one sample at the molecular level
can be reduced to just a few latent variables, whose weighting represents the strength
of the signalling in key biological networks in that sample.

Perhaps the most widely-adopted latent variable model for multiomics integration
is iCluster (Shen, Olshen & Ladanyi, 2009). iCluster has been utilised to identify
multiomics subtypes of cancers including breast (Shen, Olshen & Ladanyi, 2009), lung
adenocarcinoma (Shen, Olshen & Ladanyi, 2009) and glioblastoma (Shen et al., 2012).
An extension of the original iCluster software, iClusterPlus (which can handle binary

¶The matrix that is finally clustered has the form

M =

⎡

⎢⎢⎢⎢⎢⎢⎣

s11 s12 . . . s1T

s21 s22 . . . s2T

...
... . . . ...

sN1 sN2 . . . sNT

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where snt is the classification of sample n ∈ [1..N ] in the omics data type t ∈ [1..T ]. The rows of
M are clustered to define “clusters of clusters".
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data such as mutations alongside continuous data), has previously been applied to
CRC (Mo et al., 2013). Using exonic mutations, copy number, promoter methylation
and mRNA expression, three subtypes were identified from 189 samples:

i. Cluster 1

• CIN positive
• High fraction of genome altered (FGA)
• TP53 mutations
• CIMP-L/0
• MSI-L/MSS
• Amplified chromosome 8q

ii. Cluster 2

a. Cluster 2a
• CIN negative
• Low FGA
• BRAF mutations
• Hypermutated
• CIMP-H
• MSI-H

b. Cluster 2b
• CIN low
• Moderate FGA

iii. Cluster 3

• CIN positive
• High FGA
• TP53 mutations
• CIMP-L/0
• MSI-L/MSS
• Normal chromosome 8q

These groups largely overlap with the known associations of MSI, CIMP and muta-
tions outlined in Chapter 1.1.4. Because they did not show significant prognostic
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power (Appendix A), it is not certain how these subtypes could be used to stratify
patients in a clinical setting.

It is possible that the clinical applicability of integrated molecular analysis could
be augmented by the inclusion of clinical variables within the model as covariates,
rather than evaluating the model’s output against clinical variables as a post-analysis.
This increases the statistical power to find clinical variables associated with groups of
patients. This concept will be introduced next.

1.4.3 Inclusion of clinical covariates in omics models

The addition of clinical covariates to multiomics latent variable models is little-
explored in the literature. In cancer in general, some progress has been made in
including clinical covariates in latent variable modelling of a single omics data
type, but this does not appear to be the case in CRC. One example is phenMap
(Nyamundanda, Eason & Sadanandam, 2017), developed by Dr Gift Nyamundanda
from the Sadanandam Lab, which models latent variables as a function of clinical
covariates. This novel extension to standard latent variable models allows for the
interpretation of the latent variables in the light of important potential confounders
such as age, gender, or cancer stage, facilitating a more direct clinical interpretation
of the results and any putative biomarkers revealed. This is in contrast to the
alternative of treating clinical covariates in the same way as molecular data, which
does not facilitate understanding patterns of molecular features the in specific context
of different clinical characteristics.

phenMap has not previously been applied to CRC. Notably, it can be extended to
model multiple omics data types simultaneously, alongside clinical covariates (Chapter
4.2.1). The resulting latent variables can be referred to as metavariables, in reference
to their representing the integration of multiple omics data types, as well as clinical
variables. In Chapter 4, I will use this extended version of phenMap to model TCGA
CRC data.
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1.5 Summary of chapters, specific aims and hypotheses

1.5.1 Summary of chapters

In this thesis, I present several characterisations of CRC’s multi-faceted heterogene-
ity. In Chapter 2, I demonstrate how the existing transcriptomic CRCAssigner in-
tertumoural subtypes can be profiled in a clinically-practicable manner using fewer
genes than was possible previously. Chapter 3 expands on our understanding of these
subtypes by quantifying their co-existence within individual tumours, and the prog-
nostic power and potential drug associations that knowledge of this intratumoural
heterogeneity can give. In Chapter 4, I move beyond transcriptomics to delineate the
mechanisms driving CRC on a pan-molecular scale, holistically integrating genomics,
epigenomics, transcriptomics and proteomics with clinicopathological data. Finally,
Chapter 5 summarises and discusses the implications that the results of these analyses
could have for the fields of CRC research and medicine.

1.5.2 Specific aims and hypotheses

Chapter 2: Development and analytical validation of a clinically practicable assay
for detecting gene expression CRC subtypes to translate intertumoural heterogeneity

Hypothesis: To assess the CRCAssigner subtypes’ value prospectively, a low-cost,
fast and accurate assay is required, ideally that can be applied to both fresh frozen
and FFPE tissue samples. The nCounter platform can be used to profile the gene
expression of tissue preserved using both these techniques, using a modified lower-cost
protocol which is equivalent to the standard protocol. These gene expression profiles
can then be used for subtyping.

Aims: To develop and analytically validate an nCounter-based gene expression assay
to classify patients into the CRCAssigner subtypes, specifically:

1. To test the correlation of a lower-cost modified assay protocol with the standard
protocol, in both fresh frozen and FFPE tissue samples

2. To test the correlation of technical replicates of the modified assay protocol, in
both fresh frozen and FFPE tissue samples
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3. To select an optimal gene set to use for subtype classification, from the 48
subtype-specific genes pre-selected to be included in the assay

4. To compare the results of microarray/RNA-seq-based and nCounter-based clas-
sification

5. To compare the results of nCounter-based classification in fresh frozen and
FFPE tissue samples

Chapter 3: Comprehensive quantification of intratumoural subtype heterogeneity in
CRC using in vitro-validated machine learning models in large, clinically-annotated
datasets

Hypothesis: There exists substantial intratumoural transcriptomic heterogeneity,
which can be studied through the quantification of intratumoural subpopulations of
the CRCAssigner subtypes. This intratumoural subtype heterogeneity could have
clinicallys prognostic implications and predictive power.

Aims: To quantify the level of intratumoural transcriptomic subtype heterogeneity in
CRC and assess its relationship with survival outcomes and responses/sensitivity to
different therapies, specifically:

1. To test the SVR method of gene expression deconvolution using co-cultured cell
line and single-cell gene expression data

2. To test whether subtype subpopulation information adds significant prognostic
information over bulk subtype

3. To compare the subtype subpopulations of patients, PDXs and cell lines with
their drug responses/sensitivity to FOLFIRI and anti-EGFR therapy

4. To compare the subtype subpopulations of MSI/MSS patients, and the effects
of subtype subpopulations on their prognosis

Chapter 4: Integrated multiomics factor analysis of CRC molecular profiles, inter-
actions between clinicopathological categories, and prognostic implications

Hypothesis: Previous methods developed to integrate multiomics data do not model
the potentially confounding effect of clinical covariates. Including these variables
explicitly could increase the interpretability of multi-omics integration by adding im-
portant information about context.
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Aims: To integrate multi-omics molecular data in parallel with clinical variables in or-
der to understand correlated molecular features across data types and their specificity
to different clinicopathological contexts, specifically:

1. To select appropriate features/clinical variables to include in the model that
will be the most informative in downstream analyses

2. To explore the molecular features and clinical variables most highly weighted in
each metavariable, and their relationship to each other

3. To test for the enrichment of known biological pathways in the highly weighted
features in each metavariable

4. To test whether the metavariables are prognostic of patient survival
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Chapter 2

Development and analytical validation of a
clinically practicable assay for detecting gene
expression CRC subtypes to translate
intertumoural heterogeneity

2.1 Introduction

As described in Chapter 1.1.4, previously, CRCs were classified into five CRCAssigner
subtypes with different prognoses and potential treatment responses (Sadanandam et
al., 2013). These subtypes and those described by five other groups were merged into
a consensus subtyping scheme (CMS), that bears strong resemblance to CRCAssigner
subtypes (Guinney et al., 2015; Ragulan et al., 2019). In this chapter, the analyt-
ical development and validation of a custom NanoString nCounter platform-based
biomarker assay (NanoCRCA) to stratify CRC into subtypes is demonstrated.

To reduce costs, the standard nCounter protocol was switched to a custom modified
protocol. The assay included a reduced 38-gene panel from the original 786-gene sig-
nature that was selected using an in-house computational pipeline of methods (fully
described in Chapter 2.2.6) comprising a consensus of gene selection and class predic-
tion methods. NanoCRCA was applied to 295 samples from 237 CRC patients. From
the fresh frozen samples (n = 237), a subset had matched RNA-seq/microarray pro-
files (n = 47) or FFPE samples (n = 58). Further, the assay results were compared
with the CMS classifier, different platforms (microarrays/RNA-seq) and gene-set clas-
sifiers (38 and 786 genes).
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Full details of the datasets and methods utilised in this chapter are given in Chapter
2.2.
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2.2 Methods and data sources

2.2.1 Patient cohorts and datasets

Five CRC cohorts of primary tumour samples collected prior to treatment were stud-
ied, as summarised in Table 2.1 and detailed below; three derived from fresh frozen,
one from FFPE samples and one from matched fresh frozen and FFPE. The first
included RNA samples from 17 stage IV patients (Montpellier cohort) from a pub-
lished study (Del Rio et al., 2007). A second cohort of RNA samples (OriGene;
n=17) was purchased from OriGene (Rockville, MD, USA). A third cohort included
145 fresh frozen samples (Singapore) from patients participating in an on-going ob-
servational study approved by the institutional review board (Singhealth Centralised
IRB — 2013/110/B). The fourth cohort consisted of 12 FFPE CRC samples from
a retrospective tissue collection from The Royal Marsden Hospital, UK (RETRO-
C cohort: IRB and ethical approval NRES Committee East of England-Cambridge
Central: 10/H0308/28). The fifth and final cohort consisted of 58 stage II-III CRC pa-
tients (INCLIVA-Valencia cohort) with matched prospectively collected fresh frozen
and FFPE tissue (ethical approval Comité Etico de Investigacion Clinica del Clínico
Universitario de Valencia: F-CE-GEva-15). Cellularity in this cohort was scored by
a trained pathologist on H&E stained slides. All the patients provided informed
consent.

Table 2.1: Overview of patient cohorts for assay development. Sample numbers, types, platforms,
and clinical characteristics. All samples are from surgical/biopsy specimens collected prior to treatment.

Cohort
Number of
patients

Sample
preservation Platforms

Clinical
characteristics

Montpellier 17 Fresh frozen NanoCRCA,
Microarray

Stage IV primary
CRCs

OriGene 17 Fresh frozen NanoCRCA,
Microarray

Mixed stage CRCs

Singapore 145 Fresh frozen NanoCRCA,
RNA-seq (13
matched)

Mixed stage
primary CRCs

RETRO-C 12 FFPE NanoCRCA Stage IV primary
CRCs

INCLIVA-
Valencia

58 Matched fresh
frozen and FFPE

NanoCRCA Stage II and III
primary CRCs
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Sample material from the Montpellier cohort was kindly provided by Dr Maguy Del
Rio and Dr Pierre Martineau of Université Montpellier, France; from the Singapore
cohort by Dr Koo Si-Lin, Dr Tan Wah Siew, and Dr Iain Beehuat Tan of the Na-
tional Cancer Centre Singapore and Singapore General Hospital, Singapore; from the
RETRO-C cohort by Dr Francesco Sclafani, Ms Ruwaida Begum, Dr Larissa Sena
Teixeira Mendes, and Prof. David Cunningham of the Royal Marsden NHS Founda-
tion Trust, UK; and from the INCLIVA-Valencia cohort by Dr Noelia Tarazona and
Prof. Andrés Cervantes of the University of Valencia, Spain.

2.2.2 nCounter assay protocols and data normalisation

The nCounter assay hybridisation and data collection was kindly performed by Ms
Chanthirika Ragulan and Dr Elisa Fontana of the Institute of Cancer Research, UK.

nCounter Max Analysis System (NanoString Technologies, Seattle, WA, USA) was
used to perform the assay using either standard or modified (Elements chemistry) pro-
tocol as per the manufacturer’s instructions. For the standard protocol, custom Code-
Sets (pre-built capture probes and barcoded reporter probes having sequences comple-
mentary to the target genes) for the selected genes were designed and built by NanoS-
tring Technologies. For the modified protocol, nCounter Elements TagSets (only cap-
ture and reporter tags; NanoString Technologies) and custom-designed target-specific
oligonucleotide probe pairs were procured separately (Integrated DNA Technologies,
Inc., Leuven, Belgium).

For both standard and modified protocols, 100 ng of total mRNA (20 ng/μL) from
fresh-frozen or FFPE tissues was used. Hybridisation reactions were prepared ac-
cording to manufacturers’ instructions for either 18 hours at 65 °C using Standard
CodeSets reagents for the standard protocol or for 20 hours at 67 °C using Elements
TagSets reagents for the modified protocol. Hybridised samples were pipetted using
the nCounter Prep Station and immobilised on to the sample cartridge for data quan-
tification and collection using nCounter Digital Analyzer (NanoString Technologies).
The nCounter Prep Station and Digital Analyzer together constitute the nCounter
Max Analysis System.

Data quality from nCounter assays was checked and data normalization was performed
using nSolver v3.0 analysis software (NanoString Technologies). Firstly, counts were
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corrected to background noise using geometric means of 8 negative control probes,
followed by the correction using geometric means of 6 internal positive control spike-
ins in each lane/sample. These negative and positive probes were built-in to both
standard and modified protocols. Only those housekeeping genes with raw molecular
counts greater than 50 and those selected by geNorm algorithm (part of the nSolver
analysis software) were retained for further analysis. Variations due to RNA input vol-
ume were corrected by normalising to the expression of geNorm selected housekeeping
genes. The normalised final count data were log2 transformed for further analysis.

2.2.3 Microarray/RNA-seq protocols and data normalisation

OriGene microarray data was kindly generated by Ms Chanthirika Ragulan of the
Institute of Cancer Research, UK.

For the OriGene cohort, 100 ng of total RNA was used for first strand cDNA synthesis
and labelled according to the manufacturer’s protocol. Labelled single stranded cDNA
was hybridised in GeneChip Human Transcriptome Array (HTA) 2.0 (Affymetrix,
High Wycombe, UK) then arrays were washed (Gene Chip Fluidics station 450) and
scanned (Gene Chip Scanner).

RNA-seq data for the Singapore cohort was kindly provided by Dr Iain Beehuat Tan
of the Singapore General Hospital, Singapore, with additional advice provided by Mr
Yatish Patil of the Institute of Cancer Research, UK.

RNA-seq libraries were prepared using TruSeq Stranded mRNA Library Prep Kit
(Illumina, Singapore). Libraries were quality controlled using KAPA qPCR (Roche,
Singapore) and Agilent Bioanalyzer, before pooling and sequencing on the Illumina
HiSeq (Illumina) to a median of 22 million paired reads per sample. Fastq files were
checked for read counts for paired end reads and read quality using fastqc (v0.11.4)
(Andrews, 2016). All 17 samples had mean Phred score greater than 34. Mapping
quality was checked using RSEM (v1.2.22) (Li & Dewey, 2011) - samtools-flagstat
(1.3.1) (Li et al., 2009) using reference transcriptome (GRCh37). RNA quality (ribo-
somal, coding, intronic and intergenic) was checked using the CollectRnaSeqMetrics
function of picard (v2.1.0) (Broad Institute, 2015) on mapping to reference genome
(GRCh37). Transcripts per million (TPM) values were calculated using RSEM, genes
with <20% missing values were retained and log2(TPM + 1) transformed.
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2.2.4 Clustering and heatmaps of gene expression

All sample clustering was performed using Euclidean distance and complete linkage
as implemented in the hclust and dist functions of the R package stats (v3.3.2) (R
Core Team, 2017). Arc plots were generated using the circlize package (v0.4.0) (Gu
et al., 2014). Heatmaps were plotted from gene-wise median-centred expression data
thresholded to [−3, 3] using the heatmap.plus package (v1.3) (Day, 2012)

2.2.5 Subtype assignment

CRCA subtypes were assigned by performing Pearson correlation of gene-wise median-
centred expression profiles for each sample with corresponding centroids for the sub-
types. The subtype with the highest correlation was then assigned to that sample.
Samples were marked as having undetermined subtype if the sample’s correlation with
the subtype centroid had a value (Pearson’s r) ≤ 0.15, or if the correlation was high
for multiple subtype centroids (Pearson’s r difference between first and second highest
subtypes ≤ 0.06), in line with the published CMS classifier (Guinney et al., 2015).

CMS subtypes were determined from microarray or RNA-seq data using the CMSclas-
sifier R package (v1.0.0)(Reynies & Guinney, 2015) and the classifyCMS function,
using the single sample prediction (SSP) classifier (Guinney et al., 2015).

2.2.6 Gene selection pipeline

This gene selection pipeline was developed by Dr Gift Nyamundanda of the Institute
of Cancer Research, UK.

Having selected samples with minimal intratumoural subtype heterogeneity using the
support vector regression (SVR) method fully described in Chapter 3.2.3, these sam-
ples are passed to a gene selection pipeline detailed here (dubbed “intPredict” (Rag-
ulan et al., 2019)). Firstly, the samples (and their known subtypes) are randomly
partitioned 50 times into training and test sets (Monte Carlo cross-validation). On
each training set, prediction strength (Golub et al., 1999), PAM (Tibshirani et al.,
2002) and between-within group sum of squares ratio (Dudoit, Fridlyand & Speed,
2002) are used to select the genes that are most strongly discriminant of the classes,
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according to each method. This process is repeated across the range of possible gene
set sizes (in this case [2, 48]).

Each of the gene sets obtained from the training sample sets, as well as their respective
test sample sets, are then passed to four subtype prediction methods: random forest
(Breiman, 2001), diagonal linear discriminant analysis (Dudoit, Fridlyand & Speed,
2002), and linear and radial SVM (Cortes & Vapnik, 1995). The number of genes p

with the lowest median MCR – defined as the proportion of samples in the training
set that are assigned an incorrect subtype based on these subtype prediction methods
– is then selected. The p most frequently identified genes from the gene selection
methods are then taken as the final gene set.

2.3 Results

2.3.1 Evaluation of a modified lower-cost protocol for nCounter assays in
fresh frozen tissue

In the standard chemistry nCounter protocol (Geiss et al., 2008), two probes having
complementary sequences to different sections of the target mRNA are hybridised
to said target (Figure 2.1a). One probe has the purpose of capturing the mRNA for
adherence to a cartridge surface that immobilises it, using a “capture tag”. The second
probe barcodes the target for subsequent identification. This is achieved using a DNA
backbone to which a pre-defined sequence of fluorophore-labelled RNA segments have
been annealed. Using the nCounter Digital Analyzer, the cartridge can be optically
scanned, barcodes identified, and mRNAs quantified.

More flexibility can be achieved using the nCounter Elements protocol. Here, the
two probes described above are assembled by the user using barcodes and capture
tags manufactured by NanoString, and target-specific oligonucleotides procured by
the user (Figure 2.1b). This approach allows for more cost-effective assay runs as
large batches of oligos can be sourced at relatively low cost.
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Figure 2.1: Two protocols (chemistries) for quantification of mRNA using the NanoString
nCounter platform. (a) Standard chemistry probes and an mRNA target. (b) Modified (Elements)
chemistry probes and an mRNA target. In the modified chemistry, the user procures oligonucleotides that
attach the capture tag and the barcode to the mRNA target.

For both the standard and modified (Elements-based) protocols, the same initial set
of 50 genes were selected for profiling (prior to the commencement of this PhD project,
by Dr Anguraj Sadanandam of the Institute of Cancer Research), 48 of which were
from the original 786-gene CRCAssigner signature, henceforth refered to as “CRCA-
786”. The 50 genes were initially selected based on the original report (Sadanan-
dam et al., 2013) and criteria fully defined in Appendix B. Briefly, these constituted
the qRT-PCR/IHC marker genes proposed in said report; genes that scored highly
in the CRCA-786 centroids; genes which may distinguish cetuximab-resistant from
cetuximab-sensitive samples (Sadanandam et al., 2013); and genes from signalling
pathways characteristic of each subtype (Sadanandam et al., 2013).

2.3.1.1 Description of data collected using nCounter

Data collected using the nCounter platform comes in the form of integer counts per
barcode, which uniquely identify the genes of interest, synthetic DNA positive controls,
and negative control probes that should not hybridise. The counts of endogenous genes
can range from as low as 25, to over 50,000 (Geiss et al., 2008). The normalisation
procedure (fully described in Chapter 2.2.2) includes correction for positive/negative
controls and housekeeping genes. This normalisation shifts the data into non-integer
continuous values, which are then log2 transformed, and a final matrix of genes of
interest by samples was used for downstream analysis.
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2.3.1.2 Concordance of modified with standard protocol profiles

Firstly, we sought to identify whether the modified protocol could accurately repro-
duce the gene expression profiles measured using the standard protocol (using paired
aliquots of RNA extracted from the same piece of tissue, to avoid spatial sampling
effects). I performed hierarchical clustering on the normalised (gene-wise median cen-
tred (Sadanandam et al., 2013)) gene expression measured using the standard and
modified protocols in 22 CRC samples (from the Montpellier and OriGene cohorts;
Chapter 2.2.1), which showed clustering of profiles based on the source sample, rather
than the protocol used (Figure 2.2).

62



Sample

QPRT
ACSL6
PLEKHB1
AXIN2
AREG
MET
EREG
CFTR
KRT23
LY6G6D
CEL
SFRP4
SFRP2
TWIST1
COL10A1
SNAI2
BHLHE41
ZEB2
TAGLN
FLNA
ZEB1
MSRB3
CYP1B1
MGP
MUC2
SPINK4
REG4
IDO1
CXCL9
CXCL13
TCN1
LINC00261
TFF1
TFF3
KRT20
SLC4A4
GZMA
IFIT3
STAT1
TOX
RARRES3
BIRC3
PCSK1
CLCA4
ZG16
CA1
MS4A12
AQP8
CLDN8
CA4

Standard
Low-cost

Protocol

Protocol

-3

0

3

Figure 2.2: Repeat measurements of fresh frozen samples using the standard and modified
protocols cluster by sample, rather than by protocol. Hierarchical clustering and heatmap of gene
expression of samples profiled using standard and modified assay protocols (n = 22). nCounter data
collected by Ms. Chanthirika Ragulan.
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I then merged data from each protocol after normalisation and subjected them to
prinicpal component analysis (PCA), which demonstrated high similarity between
samples measured on the two protocols (Figure 2.3a). Calculating the correlation
coefficient between the two datasets confirmed they were highly concordant (Pearson’s
r = 0.90; p < 0.001; Figure 2.3b).
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Figure 2.3: Gene expression profiles of fresh frozen samples measured using the standard and
modified protocols are highly concordant. (a) PCA analysis and (b) scatter plot of normalised
gene expression profiles from the standard and modified assay protocols (n = 22). Colours in a and b
represent the sample and the subtype association of each gene, respectively. nCounter data collected by
Ms. Chanthirika Ragulan.

2.3.1.3 Technical reproducibility of modified protocol

To test the reproducibility of the modified assay protocol, gene expression profiles were
measured from 5 samples twice, on dates a maximum of 40 weeks apart. Figure 2.4
shows the clustering of replicates, and Figure 2.5a the grouping of replicate samples in
the principal space, with no visible batch effect. There was high correlation between
the replicates (Pearson’s r = 0.98; p < 0.001; Figure 2.5b). This establishes the
high reproducibility of this assay over non-negligible periods of time. It was not
assessed whether RNA dropped in quality between timepoints, because RNA from
each replicate was thawed immediately prior to running each assay, meaning the
quality should be consistent for each replicate.
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Figure 2.4: Replicates of fresh frozen samples using the modified protocol cluster together.
Hierarchical clustering and heatmap of gene expression of replicates of samples profiled using the modified
assay protocol (n = 5). nCounter data collected by Ms. Chanthirika Ragulan.

65



a. b.

Replicates

● Replicate 2
Replicate 1

PC1
-4 40 2-2 6-6 8

0

-4
-2

-6
-8

2
4
6

PC
2

Replicate 1
expression

Re
pli

ca
te

 2
ex

pr
es

sio
n

0 5 10 15
0

5

10

15

20

20
●

●

●
●

●

r = 0.98

Enterocyte
Goblet-like
In�ammatory

Stem-like
TA

Subtype

●

●

●

●

●

p < 0.001

Figure 2.5: Gene expression profiles measured using replicate fresh frozen samples and the
modified protocol are highly concordant (a) PCA analysis and (b) scatter plot of normalised gene
expression profiles from replicates of the modified assay protocol (n = 5). Colours in a and b represent the
sample and the subtype association of each gene, respectively. nCounter data collected by Ms. Chanthirika
Ragulan.

2.3.2 Evaluation of a modified lower-cost protocol for nCounter assays in
FFPE tissue

Although FFPE samples may contain a low abundance or highly degraded RNA,
they also represent the most frequently available type of samples for diagnosis and
biomarker assessment (Chapter 1.2.1). Therefore, an efficient biomarker assay for
FFPE samples is crucial for routine clinical application.

Details of the RETRO-C cohort of samples used for this analysis are given in Chapter
2.2.1.

2.3.2.1 Concordance of modified with standard protocol profiles and tech-
nical reproducibility

I repeated the analysis as described in Chapter 2.3.1 for fresh frozen samples for
FFPE tissues. This again achieved successful clustering of gene expression profiles by
sample, rather than by protocol (Figures 2.6 and 2.7a). Correlation of gene expression
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between the two profiles near-matched that of fresh frozen tissue (Pearson’s r = 0.88;
p < 0.001; Figure 2.7b).
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Figure 2.6: FFPE gene expression profiles show the same levels of expression regardless of assay
protocol used. Hierarchical clustering and heatmap of gene expression of FFPE samples profiled using
standard and modified assay protocols (n = 12). nCounter data collected by Ms. Chanthirika Ragulan
and Dr Elisa Fontana.
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Figure 2.7: Gene expression profiles measured on FFPE samples measured using the standard
and modified protocols are highly concordant (a) PCA analysis and (b) scatter plot of normalised gene
expression profiles from the standard and modified assay protocols in FFPE tissue (n = 22). nCounter
data collected by Ms. Chanthirika Ragulan and Dr Elisa Fontana. Colours in a and b represent the sample
and the subtype association of each gene, respectively.
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Moreover, 5 pairs of technical replicates also showed highly reproducible results (Fig-
ures 2.8 and 2.9a) with a correlation of 0.96, similar to that for fresh frozen samples
(Figure 2.8b).
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Figure 2.8: Replicates of FFPE samples using the modified protocol cluster together. Hierarchical
clustering and heatmap of gene expression of replicates of samples profiled using the modified assay
protocol in FFPE tissue (n = 5). nCounter data collected by Ms. Chanthirika Ragulan and Dr Elisa
Fontana.
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Figure 2.9: Gene expression profiles measured on replicate FFPE samples are highly concordant.
(a) PCA analysis and (b) scatter plot of normalised gene expression profiles from replicates of the modified
assay protocol in FFPE tissue (n = 5). Colours in a and b represent the sample and the subtype association
of each gene, respectively. nCounter data collected by Ms. Chanthirika Ragulan and Dr Elisa Fontana.

2.3.3 Gene selection and subtype centroid design

Successful clinical biomarker assays should be able to classify samples into subtypes
with high concordance, and this requires a robust set of genes. Hence, the accuracy of
the 48-gene preliminary gene set was tested using two in-house bioinformatics tools,
described briefly below, and in detail in Chapters 2.2.6 and 3.2.3.

2.3.3.1 Selection of maximally subtype-homogeneous samples

Since mixed subtype samples comprising more than one subtype are present in CRC
(Guinney et al., 2015), only the samples from the original CRCAssigner dataset
(Sadanandam et al., 2013) that showed at least 70% of their gene expression at-
tributable to a single subtype were used for gene selection. This was achieved using
an SVR method based on CIBERSORT (Newman et al., 2015) (Figure 2.10a; method
described in full detail in Chapter 3.2.3).
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Figure 2.10: Training sample selection and gene set selection pipeline. Overview of the process
and pipelines used to select a robust gene set for the NanoCRCA assay using in-laboratory developed
computational tools, (a) sample selection and (b) gene selection. SVR: Support vector regression; SV:
support vector; BW: Between-within sum of squares; DLDA: Diagonal linear discriminant analysis; RF:
Random forest; SVM: Support vector machine; PAM: Prediction analysis of microarrays; PS: Prediction
strength.
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2.3.3.2 Minimisation of gene set and centroid derivation

Furthermore, I used the second tool, which comprises a pipeline of supervised class
prediction methods (Chapter 2.2.6), to identify the 38 genes (out of the 48 subtype
genes measured on the panel, which were selected prior to the commencement of this
PhD project) that classify samples into their known subtypes (Sadanandam et al.,
2013) with the lowest MCR (Figure 2.10b). In order to subsequently classify sam-
ples into CRC subtypes using the selected 38 genes, I derived new 38-gene centroids
(CRCA-38 ) using PAM (Tibshirani et al., 2002).

2.3.4 Subtyping of fresh frozen tissue samples using multiple gene sets
and platforms

To determine if the 38-gene centroids and modified assay protocol could be used to
accurately classify new samples into CRCAssigner subtypes, the NanoCRCA assay
was applied to fresh frozen CRC samples (n = 179; combined from the Montpellier,
Singapore and OriGene cohorts). I subtyped samples by calculating the correlation
of gene expression profiles with the CRCA-38 centroids.

All 5 subtypes were identified by the assay (with 89% (159/179) of the samples be-
ing classifiable) and demonstrated distinct patterns of gene expression (Figure 2.11).
There was some expression of goblet-like and TA genes in samples classified as belong-
ing to the enterocyte subtype. Because the CRCAssigner subtypes are distinguished
by their expression of genes in normal colon cells, this could be a result of the prox-
imity of enterocyte, goblet-like and TA cells in the colon crypt (Figure 1.2), and their
overlapping phenotypic traits. There is also some expression of stem-like genes in
inflammatory subtype samples. Because stem-like genes can be expressed in stroma
(Isella et al., 2015), this could be due to higher stromal infiltration in the inflammatory
subtype.

A small proportion of samples (11%) were found to be of undetermined subtype (in
that they cannot be classified into any one of the 5 subtypes), either because they
have a mixed subtype or are of poor quality, attributes that were determined using
correlation coefficient cut-offs as discussed in the CMS publication (Guinney et al.,
2015) (Chapter 2.2.5).
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Figure 2.11: nCounter gene expression profiles of the 38-gene panel show samples expressing
the characteristic genes of each subtype Heatmap showing the expression of the 38 genes in the fresh
frozen samples, as measured by NanoCRCA (n = 179). nCounter data collected by Ms. Chanthirika
Ragulan and Dr Elisa Fontana.

I then assessed whether subtyping using the NanoCRCA assay mirrored the results
of subtyping using CMS subtypes and platforms such as microarrays and RNA-seq.
Matched microarray or RNA-seq data for the fresh frozen Montpellier, Singapore and
OriGene cohorts were generated or obtained from public repositories (Chapter 2.2.1;
n = 47). I determined samples’ subtypes by correlation of the RNA-seq/microarray
gene expression profiles with both the new CRCA-38 and original 786-gene centroids
(Sadanandam et al., 2013) (CRCA-786 ). I predicted CMS subtypes using the CMS
classifier (Guinney et al., 2015).
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Figure 2.12 shows the expression of the CRCA-38 classifier genes in these sam-
ples as measured by the NanoCRCA assay, alongside their subtypes as assigned
by: NanoCRCA; the RNA-seq/microarray platform plus the CRCA-38 classi-
fier; the RNA-seq/microarray platform plus the CRCA-786 classifier; and the
RNA-seq/microarray platform plus the CMS classifier.
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Figure 2.12: Expression as measured on the nCounter platform is concordant with the sub-
types predicted by RNA-seq or microarrays. Heatmap showing the expression of the 38 genes in the
fresh frozen samples having matched RNA-seq/microarray data, as measured by NanoCRCA (n = 47).
nCounter data collected by Ms. Chanthirika Ragulan and Dr Elisa Fontana.

To confirm that platform and gene set differences did not bias the distribution of
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subtypes assigned to the samples, I pooled the subtypes from the three cohorts with
matched RNA-seq/microarray data (n = 47) and tested for enrichment of each sub-
type in each classifier/platform combination. Figure 2.13 shows there is no significant
difference (p > 0.05, proportion test) in the distribution of each subtype across the
three CRCA assays.
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Figure 2.13: There is no significant difference in the distribution of the subtypes found using
each platform. Bar chart showing the proportion of subtypes as classified by each classifier/platform
combination (n = 47).

Additionally, when I performed pairwise comparisons between all 4 classifier/platform
combinations (including CMS, Appendix C), all assays were significantly associated
with all other assays (p < 0.001, Fisher’s exact test), whether undetermined samples
were considered or not.

2.3.4.1 Concordance of subtyping using original and reduced gene sets

Concordance was highest between the CRCA-38 and CRCA-786 classifiers (Appendix
C), demonstrating high agreement between these different gene sets on the RNA-
seq/microarray platforms (95%; 37/39; p < 2.2 × 10−16). This indicates that the
reduction of the gene set has not caused misclassification between subtypes. There
were 4 samples that were classified as undetermined by CRCA-38, but were classifiable
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by CRCA-786. Although these samples were classifiable by the 786-gene signature,
they did display expression of signature genes from multiple subtypes (Figure 2.14).
This intratumoural heterogeneity may have caused this change in classification be-
tween gene sets, and is explored extensively in Chapter 3.
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Figure 2.14: Subtypes predicted using the NanoCRCA assay align with gene expression profiles
measured using RNA-seq or microarrays. Heatmap showing the expression of the 786 genes in the
fresh frozen samples as measured by RNA-seq/microarrays (n = 47). Gene expression data collected from
various sources; see Chapter 2.2.
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2.3.4.2 Concordance of subtyping using the reduced gene set using
nCounter and RNA-seq/microarrays

NanoCRCA was concordant with the CRCA-38 RNA-seq/microarray classifications
at 87% (33/38; p = 3.3 × 10−16; Appendix C), despite the fundamental differences
between these platforms. This indicates that the 38-gene classifier used to classify
samples in both these cases is generally robust to these technical differences.

However, the largest difference between the NanoCRCA and CRCA-38 classifications
came from the increased number of samples classified as enterocyte by NanoCRCA.
The majority of samples that were classified into a different subtype by NanoCRCA
than CRCA-38, were classified by NanoCRCA as enterocyte (Figure 2.12 and Ap-
pendix C).

Figure 2.15 shows the mean measured expression of the 38 genes in samples that
were classified as enterocyte by NanoCRCA, but not by CRCA-38. This reveals an
increase in the levels of the genes CA4 and ZG16 measured by NanoCRCA. These
genes have the first and third highest weights, respectively, in the 38-gene centroids
used to classify data from both CRCA-38 and NanoCRCA. Hence, high measured
expression of these genes is likely to result in the classification of a sample as being
enterocyte. How often this technical difference between platforms occurs will need to
be assessed in a larger cohort.
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Figure 2.15: Increased measured expression of enterocyte genes CA4 and ZG16 changes the
classification of samples to enterocyte in the NanoCRCA assay. Scatter plot showing the mean
expression of the 38 genes in samples classified as enterocyte by NanoCRCA, but as other subtypes by
CRCA-38 (n = 5). Highlighted genes have expression greater than 1 standard deviation away from a
linear regression line. Gene expression data collected from various sources; see Chapter 2.2.

2.3.5 Subtyping of tumour-matched fresh frozen and FFPE tissue samples

Finally, the equivalence of subtyping using FFPE and fresh frozen tissue must be
established, for the reasons of clinical applicability set out in Chapter 1.2.1. This
analysis was performed using the INCLIVA-Valencia cohort detailed in Chapter 2.2.1.

2.3.5.1 Differential cellularity between matched samples and effects on
subtyping

Tumour cellularity (as scored by a pathologist) between the fresh frozen and FFPE
samples often differed (Figure 2.16) - in the most extreme case, by 60%. This could
have a detrimental effect on subtyping, as when normal colon tissue is classified into
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the CRCA subtypes it falls near-exclusively into the enterocyte subtype (Appendix
D), indicating that there is a high level of expression of enterocyte subtype genes in
normal colon epithelium. Indeed, when I performed subtyping of all samples regardless
of cellularity, only 45% (26/58) of samples were classified into the same subtype using
their fresh frozen and FFPE tissues.
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Figure 2.16: The same samples’ tissue preserved by freezing or FFPE can have different levels
of tumour cellularity. Heatmap showing the tumour cellularity of samples in their matched fresh frozen
and FFPE tissues (n = 58).

While there was a significant difference in cellularity between the subtypes called us-
ing fresh frozen tissues (Figure 2.17a), there was no such difference between the FFPE
tissue-derived subtypes (Figure 2.17b). As the FFPE tissues had been macrodissected
prior to RNA extraction, this indicated that cellularity was creating a bias in subtype
assignment because of the high expression of enterocyte genes in normal colon ep-
ithelium, rather than the alternative conclusion that different cancer subtypes have
inherently differing levels of cellularity due to interactions with the tumour microen-
vironment.
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Figure 2.17: Tumours classified as enterocyte by their fresh frozen tissue samples have lower
cellularity than other subtypes. Box plot showing the cellularity of samples of each subtype in (a) fresh
frozen and (b) FFPE samples (n = 58).

2.3.5.2 Subtype concordance in selected matched samples

For subsequent analysis of fresh frozen and FFPE subtyping concordance, I considered
only the 24 samples having ≥ 70% cellularity in both tissue types in order to minimise
the effect described in the previous section.

All of the samples – excluding those classified as enterocyte by their fresh frozen tissue
– had the same subtype in the fresh frozen and FFPE tissues (Figure 2.18). However,
fresh frozen enterocyte samples were classified as TA or stem-like by their FFPE
tissues. Due to the limited sample size, the reason for this misclassification cannot be
determined from this dataset (only two samples were misclassified, precluding stastical
analyses from finding significant associations with confounding variables), and further
investigation is required to conclude if this is a systematic effect by gathering a larger
cohort of matched fresh frozen and FFPE tissues. Speculatively, this could partially
be explicable by the similarity of the enterocyte and TA subtypes, that combined
together form the CMS2 subtype in the CMS classification (Guinney et al., 2015). It
is possible that the enterocyte-related genes from the 38-gene classifier are subject to
more variation between fresh frozen and FFPE tissues than genes characteristic of
other subtypes.
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Figure 2.18: Subtypes are concordant between fresh frozen and FFPE tissues for high-cellularity
samples Alluvial diagram showing the subtypes of matched fresh frozen and FFPE samples having high
cellularity (n = 14, excluding undetermined subtype samples).
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2.4 Chapter discussion and conclusions

As an analytical validation, these analyses alone cannot confirm whether there is prog-
nostic or predictive value in the subtypes. However, efforts towards testing this power
are ongoing at the Sadanandam Lab with the collection of samples from multiple
international clinical trials.

The technical reproducibility of the assay was in line with that of previously reported
nCounter cancer subtyping assays (Veldman-Jones et al., 2015). However, the major
limitation of this chapter was the analysis of the concordance between fresh-frozen and
FFPE subtyping results, due to the limited number of samples having the appropriate
level of cellularity. Collecting large matched fresh-frozen and FFPE tissue samples is
a challenge, so confirming whether subtyping using these two tissue types consistently
yields the same results could take some time. Previous work has indicated correlations
between fresh frozen and FFPE RNA profiles profiled using nCounter can reach 90%
(Kolbert et al., 2013; Norton et al., 2013; Reis et al., 2011), hence subtype concordance
can also be expected to be high.

In this work, it was not explored whether this assay is reproducible across different
laboratories. All NanoCRCA assays were performed in the Sadanandam Lab at the
Institute of Cancer Research, and hence, the level of inter-laboratory variance cannot
be assessed. Previous studies have shown that high inter-laboratory reproducibility
can be achieved using the nCounter platform (Nielsen et al., 2014). In addition, the
samples analysed in this chapter were from a variety of sources: the majority came
from prospective collections for clinical trials, but one cohort was sourced from a
commercial supplier of tumour RNA. For the purposes of the analytical development
presented here, the retrospective nature of these analyses and the use of commercially
supplied RNA is acceptable, but the future development of this assay must rely on
the prospective collection of samples using a uniform collection protocol.

Subtype prediction by the NanoCRCA assay was highly concordant with more
multiplexed platforms, and predicted subtypes show the expected association with
the CMS subtypes, highlighting the similarities between these two classification
systems. In addition, the same 38-gene signature can be applied to subtype both
whole-transcriptome data (microarrays or RNA-seq) and nCounter data, allowing for
more equivalent interpretation of results from both of these platform types.
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If this assay can be proved to be prognostic or predictive in a way that is clinically
meaningful, the question will remain as to how patients whose tumour subtype could
not be predicted should be managed. These gene expression profiles could be unclas-
sifiable for a number of reasons, including low RNA quality, normal tissue contamina-
tion, or intratumoural heterogeneity. The former can be overcome with more robust
sample collection and preparation procedures; the latter will be further explored in
Chapter 3.

In summary, this chapter showed the development and analytical validation of the
NanoCRCA biomarker assay based on a refined 38-gene classifier, and the classifica-
tion of CRC samples into molecular subtypes. Since multiple CRC clinical trials will
require low-cost, reproducible and rapid clinically implementable assays to prospec-
tively validate CRC subtypes for subtype-specific studies, the NanoCRCA assay may
potentially facilitate this process in the clinic using FFPE samples.
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Chapter 3

Comprehensive quantification of intratumoural
subtype heterogeneity in CRC using in
vitro-validated machine learning models in
large, clinically-annotated datasets

3.1 Introduction

The intratumoural genomic heterogeneity of CRC is beginning to be illuminated, as
detailed in Chapter 1.3. Early multi-regional analyses showed spatial diversity of
KRAS and TP53 mutations and the loss of heterozygosity at the APC and DCC loci
(Losi et al., 2005), as well as discordant mutation statuses between the central tumour
and the invasive front of BRAF and PIK3CA (Baldus et al., 2010). Indications that
dominant clonal mutations arise early in cancer development and are unlikely to be
overtaken by later aberrations, regardless of their fitness, have been found by more
recent statistical models (Sottoriva et al., 2015). However, it is as yet unclear how
this genomic understanding potentially translates into clinical practice.

At the intertumoural scale, transcriptomic CRC subtypes exist which are associated
with patients’ responses to both cytotoxic and targeted therapeutic regimes (Schlicker
et al., 2012; De Sousa E Melo et al., 2013; Sadanandam et al., 2013; Roepman et
al., 2013). Previous work defining the CMS subtypes indicated that a significant
proportion of tumours express the phenotype of multiple subtypes simultaneously
(Guinney et al., 2015). The hypothesis of this chapter is that this intratumoural
transcriptomic heterogeneity is important in further understanding both the biology of
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CRC and patients’ responses to therapies, in addition to known key genomic features.

Quantification of intratumoural subtype heterogeneity is ideally performed via single-
cell RNA-seq and subsequently classifying individual cells. However, this technique
is not yet feasible at large (clinical) scales due to restrictive costs, and suffers from a
lack of translatability to the clinic due to its inapplicability to FFPE-preserved tissues.
Low-cost assessment of intratumoural subpopulations could instead be achieved in a
more readily translational fashion by computational means.

This chapter introduces a machine learning approach to quantify subtype subpopu-
lations within individual tumours. This method is based on a statistical framework
as introduced by validated deconvolution tools to quantify immune cell type sub-
populations (Newman et al., 2015). I assessed the utility of intratumoural subtype
subpopulations in increasing biological understanding of CRC, alongside their power
as prognostic markers and their associations with drug responses, in multiple inde-
pendent datasets.
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3.2 Methods and data sources

3.2.1 Patient/pre-clinical cohorts and datasets

Seven publicly-available CRC cohorts were studied, as summarised in Table 3.1 and
detailed below:

TCGA: Level 3 normalised (log2(TPM+1)) tumour RNA-seq data were downloaded
from the UCSC Xena Browser (Goldman et al., 2018) for 380 CRC patients.

Single-cell RNA-seq: FPKM values from single-cell RNA-seq performed on 375 tu-
mour cells from 11 CRC patients (Li et al., 2017a) were downloaded from GEO
and converted to TPM. Deconvolution validation was performed on a “pseudo-bulk”
dataset generated by pooling reads from all cells of a given sample (downloaded from
the EGA accession EGAS00001001945), then processing these pooled files using a
standard RNA-seq gene quantification pipeline (RSEM v1.2.29, Bowtie 2 v2.2.6, Sam-
tools v1.3.1, Picard Tools 2.1.0, aligned to human transcriptome version GRCh37).
One sample (CRC11) was excluded for containing no epithelial cells.

GSE14333: Affymetrix CEL files for 290 CRC specimens (Jorissen et al., 2009) were
downloaded from GEO and RMA normalised.

FOLFIRI: RMA normalised data for 21 mCRC patients treated with FOLFIRI
chemotherapy (Del Rio et al., 2007) were downloaded from GEO.

Khambata-Ford: Affymetrix CEL files for 80 patients with mCRC treated with cetux-
imab monotherapy (Khambata-Ford et al., 2007) were downloaded from GEO and
RMA normalised.

Cell line panel: Normalised Illumina Beadchip data for 155 CRC cell lines (Medico
et al., 2015) were downloaded from GEO. “AUC index” from Supplementary Table 1
of the original publication were converted to “Cetuximab effect” from Figure 2 of the
same manuscript by the formula: Cetuximab effect = 13, 000 − AUC index.

Novartis PDX panel FPKM normalised RNA-seq data for 68 CRC PDX models (Gao
et al., 2015) were downloaded from Supplementary Table 1 of the original publication
and converted to TPM values.
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Table 3.1: Overview of patient cohorts for deconvolution analysis: sample numbers, platforms, and
clinical characteristics.

Cohort
Number of
patients Platforms

Public data
availability

Clinical
characteristics

TCGA 380 RNA-seq GDC Portal; UCSC
Xena Browser

Mixed stage
primary CRCs

Single-cell
RNA-seq

375 cells from 11
patients

Single-cell
RNA-seq

GSE81861 Stage II–IV
primary CRCs

GSE14333 290 Microarray GSE14333 Mixed stage
primary CRCs

FOLFIRI 21 Microarray GSE62080 Stage IV CRC
metastases

Khambata-
Ford

80 Microarray GSE5851 Stage IV CRC
metastases

Cell line
panel

155 Microarray GSE59857 NA

Novartis
PDX panel

68 RNA-seq Gao et al.(Gao et
al., 2015)

NA

3.2.1.1 Coculture flow cytometry and gene expression

Co-culture experiments, FACS and gene expression data were kindly performed/col-
lected by Ms Chanthirika Ragulan of the Institute of Cancer Research, UK.

The two mycoplasma-negative and STR-validated cell lines HCT116 and LS174T were
fluorescently labelled with mCherry (excitation 561nm, emission 614nm) and Venus
(excitation 488nm, emission 513nm) respectively.

Cells were first sorted using BeckmanCoulter MoFlo Astrios and Summit software (v6)
to remove unlabelled/dead cells, before being seeded at the reported starting ratios
(100:0, 75:25, 50:50, 25:75 and 0:100). After culturing for at least their doubling time,
the cells were sorted again to quantify their respective subpopulations.
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3.2.2 Data preprocessing and normalisation

For all datasets, where necessary, mapping was performed between gene- and platform-
specific gene/probe symbols and IDs using biomaRt v2.32 and human genome version
GCRh37. Multiple platform features mapping to single gene identifiers were reduced
by selection of the platform feature with the highest standard deviation across sam-
ples. In RNA-seq datasets, features having >20% zero values were removed (with the
exception of the single-cell dataset, where high zero-inflation meant a higher threshold
of 80% zeros was utilised to ensure enough genes for subtyping), and data was not
quantile normalised (as recommended by the authors of CIBERSORT (Newman et
al., 2015)).

For deconvolution into the CRCA subtypes, data were median centred (in log2 space)
prior to deconvolution and entered into the model in non-log-linear space using HGNC
symbols as feature identifiers.

3.2.3 Deconvolution model

The deconvolution model adopted from CIBERSORT (Newman et al., 2015) consists
of support vector regression (SVR — specifically, ν-SVR). The principal of SVR is
similar to simple linear regression in that it aims to calculate a coefficient that best
predicts a dependent variable/outcome from an independent variable/predictor. In
this specific context, the dependent variable is the gene expression of a given sample,
and the independent variable is the gene expression of a subtype. The coefficient can
be interpreted as the proportion of the sample’s overall gene expression attributable
to that subtype.

Simple linear regression aims to minimise the sum of the squared errors between the
data and the regression line. SVR instead fits a regression line where each data point is
a maximum distance of ϵ away (Figure 3.1), for which the magnitude of the coefficients
is minimal (to prevent overfitting). As this criterion is not always attainable, some
points can be allowed to fall a distance further than ϵ away from the regression line,
but these will be penalised (through a term in the loss function that is minimised
by the fitting procedure). ν-SVR introduces a new parameter ν to allow the user to
pre-specify what proportion of data points are allowed to fall in- and outside the ϵ

boundary.
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Figure 3.1: ν-SVR is more robust to noise than simple linear regression. Scatter plot illustrating
the ϵ boundaries in SVR (data illustrative only).

As discussed by the authors of CIBERSORT (Newman et al., 2015), SVR is more
likely to be appropriate than simple linear regression in the biological setting due to
its robustness to noise, overfitting (Cherkassky & Ma, 2004), and correlations between
subtype signatures (multicollinearity) (Wang, Zhu & Zou, 2006).

In the CIBERSORT implementation adopted here (Newman et al., 2015), ν values of
0.25, 0.5 and 0.75 are all tested, and a final value selected by the minimum RMSE.
In addition, CIBERSORT sets any negative coefficients to zero, before normalising
all the coefficients to sum to 1. It is these steps that allow the coefficients to be
interpreted as subtype subpopulations.

The subtype signatures used for deconvolution in all datasets except the co-cultured
cell lines described below are the 786-gene centroids that define the CRCAssigner
subtypes (Sadanandam et al., 2013), containing genes that are highly expressed within
each subtype.

3.2.3.1 Deconvolution of co-cultured cell lines

For deconvolution of co-cultured cell lines into their constituent subpopulations,
marker genes representative of each line had to be identified. From the cell line
dataset GSE59857, ratios of gene expression for each gene in the custom CRC
NanoString panel from Chapter 2 (Table B.1) were calculated between LS174T
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and HCT116 and scaled to the range [-1, 1]. Genes with scaled ratio > 0 or <
-0.8 were selected as markers for the two cell lines respectively (due to the higher
overall expression of these genes in LS174T than HCT116). The expression of these
marker genes from the cell line panel GSE59857 were then used as signatures for
deconvolution of the co-cultures.

3.2.4 Bulk subtype assignment

Bulk subtypes were assigned to samples using Pearson’s correlation of gene-wise
median-centred expression values to the CRCA centroids, as previously described
(Sadanandam et al., 2013).

3.2.5 Statistical methods

All statistical analysis was performed in R 3.4. Simpson’s diversity index was calcu-
lated using the vegan v2.5 package. MCR for deconvolution was calculated as the
number of samples for which the largest subpopulation was not the same as the bulk
subtype. Differences in subtype subpopulations between patient groups were calcu-
lated with the Mann-Whitney U (2 groups) or Kruskal-Wallace rank sum (>2 groups)
tests using the stats v3.4 package. Resulting p-values were corrected for multiple test-
ing in the case where multiple subtypes were being analysed simultaneously using the
Benjamin-Hochberg procedure (FDR) implemented in the stats package. Kendall’s
tau correlation coefficient was calculated to quantify correlations between subtype
subpopulations and other variables as it is non-parametric and subtype subpopula-
tions are bound between 0% and 100% (i.e. not normally distributed, an assumption
of Pearson’s correlation coefficient). Trends in anti-PD1 immunotherapy scatter plots
were visualised using a generalised linear model with binomial outcome and cauchit
link function (stats package).

3.2.5.1 Survival analysis

Kaplan-Meir curves were plotted using the survival v2.41 and survminer v0.42 pack-
ages, with p-values calculated using the survConcordance function. Patients were
dichotomised separately for each subpopulation-based survival analysis using the
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surv_cutpointf function with default parameters to calculate an optimal cutoff for
the relevant subtype to use as a threshold between high and low subtype subpop-
ulations. This function returns the cutoff providing the maximal log-rank statistic.
Cox proportional hazards regression was performed using default parameters in the
survival package. Where Cox proportional hazards survival models were compared
between bulk subtype classification and dichotomised subpopulations, the anova func-
tion from R package stats v.3.4 was input with the relevant nested models to generate
p-values from the likelihood ratio test.

3.3 Results

3.3.1 In vitro validation of deconvolution models

3.3.1.1 Quantification of CRC cell lines in co-culture via FACS and de-
convolution

I firstly aimed to test whether SVR-based computational deconvolution could be used
to estimate cell type subpopulations where gene expression data was collected from
cells kept under controlled laboratory conditions, and whose relative subpopulations
were known by robust laboratory methods. Two fluorescently labelled CRC cell lines,
HCT116 and LS174T, were seeded at different starting ratios as shown in Figure 3.2
(HCT116:LS174T starting ratios 100:0, 75:25, 50:50, 25:75 and 0:100) and co-cultured
(experimental conditions detailed in Chapter 3.2.3.1; experiments performed by Ms
Chanthirika Ragulan at the Institute of Cancer Research). After 4 days, to allow
time for intermixing of the cells, FACS was performed on each co-culture to empiri-
cally determine the subpopulation of each cell line. This provided a “ground truth”
estimate for the proportion of cells belonging to each cell line, using standard labo-
ratory techniques. RNA was extracted immediately afterwards for gene expression
profiling, providing the equivalent to a “bulk” gene expression profile of a tumour. I
then applied computational deconvolution to these profiles to estimate the cell line
subpopulations in silico (details of methodology can be found in Chapter 3.2).

When I applied computational deconvolution, it was able to estimate these proportions
with a root mean square (RMS) error of 14.1% (Figure 3.2b). While there is no
generally-applicable threshold for an acceptable RMS error, in this context being able
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to computationally estimate cell type populations to within, on average, 14.1% of the
empirical estimate justifies applying this method where no ground truth estimates are
available.

Deconvolution detected both the dominant and the minority subpopulations in two
of the three mixed conditions (50:50 and 25:75). In the third mixed condition (75:25)
it did not detect the LS174T subpopulation, a false negative result. At the time of
FACS sorting and RNA extraction, this subpopulation comprised 16% of the cells.
Conversely, a negligibly small false positive subpopulation (<1%) of HCT116 cells in
the 100% LS174T condition was reported. This result gives an initial indication that
computational deconvolution can be utilised to estimate transcriptomic phenotype
subpopulations.
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Figure 3.2: Computational deconvolution can estimate the subpopulations of two different cell
lines co-cultured at different cell count ratios. (a) Fluorescence microscopy images of co-cultures
of two CRC cell lines labelled with GFP (LS174T) and mCherry (HCT116). Percentages indicate the
starting seeding ratio of the two cell lines. (b) Bar plot and (c) scatter plot showing subpopulations of
co-cultured cell lines as quantified using FACS and computational deconvolution , demonstrating that
computational deconvolution can reconstruct the subpopulation ratios of the two cell lines. Microscopy
images, FACS and gene expression data were collected by Ms. Chanthirika Ragulan of the Institute of
Cancer Research, UK.

3.3.1.2 Quantification of CRC subtypes in tumours via single-cell RNA-
seq and deconvolution

In order to validate the computational deconvolution approach against benchmark
subpopulation data in the context of CRC subtypes, I applied it to 363 cells from 10
CRC samples previously profiled by scRNA-seq (Li et al., 2017a). The vast majority
of cells were epithelial (77%), but immune (18%), fibroblast (4%) and endothelial
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(1%) cells were also present., Pseudo-bulk RNA-seq data (generated by pooling reads
from single cells, see Chapter 3.2) was used to deconvolve the subtype subpopulations
in each sample of five CRCA subtypes; enterocyte, goblet-like, inflammatory, TA and
stem-like. The cells from the scRNA-seq data for each sample were then classified into
the same five subtypes, to estimate the ground-truth subpopulation of each subtype.
The correlation of the single cells with the CRCAssigner centroids (mean 0.18; SD
0.1) was lower than is seen in bulk datasets(Sadanandam et al., 2013), likely due
to the higher number of drop-outs in single-cell RNA-seq data (Kiselev, Andrews &
Hemberg, 2019).

Figure 3.3 shows the proportion of cells classified into each subtype for each sample by
scRNA-seq, and the estimation of the same by computational deconvolution. There
were no false positive subtype subpopulations (i.e. subpopulations that were predicted
to exist by computational deconvolution but for which there was no evidence in the
scRNA-seq data). Where deconvolution failed to report an existing subtype subpopu-
lation, the stem-like subtype was the most likely to be missed. The majority of these
false negatives fell within the range of 1-17%. However, in the sample CRC10, a sub-
population of the enterocyte subtype comprising 31% of the sample was not detected.
Nevertheless, the overall RMS error was 19% between subpopulation estimates by
scRNA-seq and bulk deconvolution, and indicates fair agreement between these two
results.

Analysis of the correlation between scRNA-seq and computational deconvolution-
based results showed that the inflammatory, TA and stem-like subtypes were all sig-
nificantly correlated between the two methods (τ > 0.8; p < 0.01). The goblet-like
and enterocyte subtypes did not correlate significantly (τ < 0.4; p > 0.05). This
could be due to the difficulty in distinguishing enterocyte tumour subtype and nor-
mal colon tissue (due to the high expression of enterocyte subtype genes in normal
colon epithelium, as discussed in Chapter 2.3.5), which could have a knock-on effect
on the estimation of the goblet-like subtype due to the similarity between these two
subtypes – the most differentiated of the CRCAssigner subtypes.
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Figure 3.3: Computational deconvolution can estimate the cellular subpopulations present in
patient tumours. (a) Bar plot and (b) scatter plot showing intratumoural subtype subpopulations as
quantified using scRNA-seq (n = 363 cells) and computational deconvolution (n = 10 tumours). Tumours
in (a) are ordered by their level of heterogeneity, calculated using Simpson’s diversity index(Schleuter et
al., 2010). RMS: root mean square. N.S.: not significant; ** p < 0.01; *** p < 0.001.

3.3.2 Prognostic power and potential drug response discrimination using
intratumoural subtype populations versus bulk subtypes

To explore intratumoural subtype heterogeneity in a larger cohort of samples, I carried
out deconvolution of 380 CRC samples from TCGA (see Chapter 3.2.1). Figure 3.4
shows the results of the deconvolution, giving the proportion of each subtype present
in each sample, as well as the “bulk subtype” assigned by the CRCAssigner classifier
(see Chapter 3.2). I computed 94% of these samples to be composed of a mixture where
the largest subtype component was the same as the bulk CRCAssigner subtype. This
aligned with the expectation that the subtype with the highest subpopulation would
dominate the gene expression profile of a sample, and hence cause its classification
into that subtype when treated as a bulk sample.

I found that there was a near-uniform distribution of subtypes in these samples: the
TA subtype was slightly dominant, being detected in 66% of samples, while stem-
like, inflammatory, enterocyte and goblet-like could be found in 65%, 65%, 63% and
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61% of samples respectively. TA had the highest mean subpopulation at 25%, while
inflammatory had the lowest at 16% (Figure 3.4). By comparison, the bulk subtype
assignments categorised 25% of samples as stem-like, 25% as TA, 20% as enterocyte,
15% as inflammatory and 14% as goblet-like.
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Figure 3.4: Patient tumours are transcriptomically heterogeneous, with the subtype as deter-
mined by bulk subtyping representing the largest transcriptomic subpopulation in the tumour.
Bar plot showing the subtype subpopulations present in each sample of the TCGA dataset (as calculated
by computational deconvolution), alongside the bulk subtype of each sample (n = 378). Each vertical
stack of bars represents the different subpopulations present in a single sample.

3.3.2.1 Stem-like subtype

3.3.2.1.1 High stem-like subpopulations are associated with advanced
stage and poor prognosis in patients. When I investigated how the sub-
populations varied with stage, I found that the stem-like subpopulation increased
significantly over the tumour stages (p < 0.005; ϵ2 = 0.0595; Figure 3.5a). This
aligned with the increasing proportion of patients whose bulk tumour was classified
as being stem-like at later stages (Figure 3.5b).

I stratified stage I-III patients into high- and low-stem-like groups based on their
stem-like subpopulations, using a subpopulation cutoff that maximises the prognostic
difference between groups (Chapter 3.2.5.1). There was significantly poorer RFS in
the high-stem-like group (p = 0.037, HR = 1.86 (1.03-3.36); Figure 3.5b) — this
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effect was not seen when stratifying patients based on their subpopulations of other
subtypes. However, stratifying the same patients into stem-like versus other subtypes
did not give a significant difference in survival (p = 0.89, HR = 1.05 (0.52-2.13);
Figure 3.5d). Including high-stem-like status in a Cox proportional hazards model of
survival significantly improved its ability to predict OS time relative to a model that
only included bulk stem-like status, as measured by a likelihood ratio test (which
tests whether high-stem-like status has a significant effect on survival, given bulk
stem-like status; p = 0.015). In contrast, bulk stem-like status did not add prognostic
information to a Cox model with high-stem-like status (p = 0.19). However, neither
high-stem-like or bulk stem-like status added significant prognostic information to
stage (p = 0.13 and p = 0.80, respectively).

I validated this finding of reduced RFS in early-stage, highly stem-like patients in
an independent cohort of 290 CRCs (GSE14333, see Chapter 3.2.1), again showing
significantly poorer prognosis in patients with a large stem-like component in their
tumours (p < 0.0001, HR = 6.98 (2.81-17.35); Figure 3.5e).

Previous analyses have shown poor prognosis in the stem-like subtype in treatment
naive patient samples (Sadanandam et al., 2013), but this result was not stratified
by stage, and as such it is possible that stem-like patients’ poor prognosis was due to
their advanced stage. The results presented here indicate that while bulk stem-like
subtype status is not prognostic in early-stage CRCs, the stem-like subpopulation
within each sample is prognostic in these patients.

Given that the poor prognoses of patients with high stem-like subpopulations seemed
to be the result of their advanced tumour stage, I wanted to investigate whether
stem-like subpopulations could have value as predictors of therapeutic responses in
metastatic cancers. One example is given in the next section.
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Figure 3.5: Dichotomising early-stage patients by stem-like subpopulations provides greater
discrimination in outcomes than dichotomising by bulk subtype, but does not add significant
value over stage information. (a) Box plot showing the subpopulations of the stem-like subtype in
patients at different stages. (b) Bar plot showing the proportion of patients whose bulk tumour falls into
the stem-like subtype at different stages. (c,d) Kaplan-Meier survival curves for patients with (c) high-
or low-stem-like tumours (as determined by computational deconvolution; cutoff 9.2% stem-like) and (d)
bulk stem-like or other bulk subtype tumours in the TCGA cohort. (e) Kaplan-Meier survival curves for
patients with high- or low-stem-like tumours in the GSE14333 cohort. As samples with undetermined
bulk subtype could not be included in KM curves for bulk stratification, they were also excluded from the
computational deconvolution stratification curves.
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3.3.2.1.2 Potential associations with FOLFIRI therapy outcomes in
highly stem-like patients. Folinic acid, fluorouracil and irinotecan (FOLFIRI)
is a chemotherapy regimen that can be used in the treatment of metastatic CRC
(Chapter 1.1.3). Increased sensitivity of the stem-like subtype to FOLFIRI has
previously been demonstrated (Sadanandam et al., 2015). Using the same dataset
as that publication (Del Rio et al., 2007) (which includes stage IV patients only; see
Chapter 3.2.1), deconvolution reveals a trend towards increased tumour shrinkage in
patients with a higher proportion of the stem-like subtype (Figure 3.6a). FOLFIRI
responders (as defined by the WHO criteria (Miller et al., 1981)) had significantly
larger stem-like subpopulations than non-responders (p = 0.03; Figure 3.6b).
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Figure 3.6: Patients with higher responses to FOLFIRI had higher subpopulations of the stem-
like subtype. (a) Bar plots showing the subpopulation of each subtype in each sample (left panel) against
the response (change in tumour volume) of each patient to FOLFIRI chemotherapy (right panel) from
GSE62080 (n = 21). Fills of each bar indicate the overall response category. (b) Scatter plot showing the
stem-like subpopulation versus the change in tumour volume of each patient. Fills of each point indicate
the overall response category. (c) Boxplot showing the stem-like subpopulation in patient responders and
non-responders to FOLFIRI therapy.

I then dichotomised patients using their stem-like subpopulations into high-stem-like
and low-stem-like groups (using a cutoff of 59% stem-like subpopulation, determined
by maximising the sum of the negative and positive predictive values). While strati-
fying patients by stem-like subpopulation did not identify FOLFIRI responders with
more sensitivity than bulk subtype status, it did do so with more specificity (Table
3.2). Given the increased side effects and cost per year of life of FOLFIRI versus
the similarly-effective oxaliplatin-based regimen FOLFOX (Neugut et al., 2019), pre-
dicting FOLFIRI responders using stem-like subpopulations could save patients from
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unnecessary toxicity and decrease the costs of care when compared to stratifying
patients using bulk subtypes.

Table 3.2: Stratifying by stem-like subpopulations increases the specificity of FOLFIRI response
prediction. Confusion matrix showing the sensitivity and specificity of bulk- and subpopulation-based
stratifications of patients in predicting response to FOLFIRI.

Non-responders Responders Sensitivity/specificity

Other bulk 8 4 0.56/0.80

Stem-like bulk 2 5

Low-stem-like 12 4 0.56/1.00

High-stem-like 0 5

Taking into account the poor prognosis of patients with advanced stage/highly stem-
like tumours (Chapter 3.3.2.1.1), a personalised therapy that could improve their
outcomes would be highly valuable. The association of tumour responses to FOLFIRI
and stem-like tumour subpopulations should be further explored to understand if this
is a reproducible effect.

3.3.2.2 TA subtype

3.3.2.2.1 TA subpopulations and responses to cetuximab in patients. It
has previously been established that a subset of patients who fall into the TA sub-
type respond to the anti-EGFR monoclonal antibody cetuximab (cetuximab-sensitive
(CS)-TA; cf. cetuximab-resistant (CR)-TA) (Sadanandam et al., 2015). When I quan-
tified TA intratumoural subtype subpopulations in 80 CRC metastases treated with
cetuximab monotherapy (see Chapter 3.2.1), I found significantly higher TA subpop-
ulations in the liver metastases of KRAS -WT patients who responded to the therapy,
versus those who did not respond (p = 0.04; n = 32; Figure 3.7).
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Figure 3.7: Responders to cetuximab have higher subpopulations of the TA subtype. Box plots
showing the intratumoural subpopulations of the TA subtype in KRAS-WT cetuximab responder and
non-responder liver metastases in the Khambata-Ford dataset (n = 32). * p < 0.5.

When I grouped these patients into high- and low-TA groups (using a cutoff of 62%
TA subpopulation, which maximises the prognostic difference between groups, see
Chapter 3.2.5.1), the p-value and hazard ratio of log-rank survival analysis decreased
when compared to grouping of TA and non-TA patients (p = 0.0099, HR = 0.27
(0.10-0.76) vs. p = 0.094, HR = 0.49 (0.21-1.13); Figure 3.8). A Cox proportional
hazards model that added high-TA status to bulk TA status was significantly better
able to predict PFS over one that included bulk TA status alone (p = 0.029), whereas
bulk TA status did not add significant prognostic information to high-TA status (p
= 0.605).
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Figure 3.8: Dichotomising patients by TA subpopulations provides greater discrimination in
predicting length of response to cetuximab than dichotomising by bulk subtype. Kaplan-Meier
survival curves for patients with (a) high- and low-TA tumours (cutoff 62% TA) and (b) bulk TA or other
bulk subtype tumours.

102



I then hypothesised that the CS-TA group originally identified in the original CRCA
publication (Sadanandam et al., 2013) could be comprised of patients who had a
particularly high subpopulation of TA in their metastases, whereas the CR-TA group
had a high subpopulation of other subtypes despite also being classified as a bulk
TA tumour. Indeed, there was a significant difference in TA subpopulation between
KRAS -WT responders versus non-responder liver metastases with bulk TA subtype
(n = 11; p = 0.04; Figure 3.9). Unfortunately, the very small sample size used to test
this hypothesis (7 responders and 4 non-responders) means that it requires extensive
further exploration.
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Figure 3.9: In tumours with bulk TA subtype, the TA subpopulation is higher in responders
to cetuximab. Box plot showing the TA subpopulation in responders and non-responders to cetuximab
having bulk TA subtype (n = 11). * p < 0.5.

3.3.2.2.2 TA subpopulations and responses to cetuximab in pre-clinical
models. When I quantified subtype subpopulations in 152 CRC cell lines (Medico et
al., 2015) (see Chapter 3.2.1), the results showed non-trivial intra-cell-line heterogene-
ity (Figure 3.10), such as has previously been reported in single-cell transcriptomic
analysis of lung ademocarcinoma (Suzuki et al., 2015) and multiple myeloma (Mitra
et al., 2016). Two possible explanations for this heterogeneity are: i) that is a true
and sustained reflection of the heterogeneity of the cells used to seed the culture; or ii)
that it is the result of non-uniform phenotypic drift between the cells, perhaps owing
to slight differences in environmental conditions between different physical locations
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in the culture. Unfortunately, it is not possible to test these hypotheses in this dataset
due to a lack of longitudinal data.
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Figure 3.10: CRC cell lines exhibit subtype-based transcriptomic heterogeneity. Bar plot showing
the proportion of subtype subpopulations in cell lines, as determined by computational deconvolution (n
= 152). Each vertical stack of bars represents the different subpopulations present in a single cell line.

Similarly to patients’ samples, there was a high subpopulation of TA in KRAS -WT
cetuximab-sensitive cell lines (p < 0.001; Figure 3.11). Resistant lines were enriched
for subpopulations of the inflammatory and stem-like subtypes (p < 0.01; Figure 3.11).
There was no significant difference in the goblet-like or enterocyte subpopulations
between resistant or sensitive cell lines (p > 0.05).
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Figure 3.11: Cell line subtype subpopulations recapitulate patterns of patients’ sensitivity to
cetuximab Boxplots showing the intra-cell line subpopulations of the CRCAssigner subtypes in RAS-WT
cetuximab-resistant and -sensitive cell lines (n = 76). N.S.: not significant; ** p < 0.01; *** p < 0.001.

Additionally, for further validation, I performed the same subtype quantification on
41 CRC patient gene expression profiles (Gao et al., 2015) that had mutation informa-
tion, and cetuximab responses from matched PDX models (see Chapter 3.2.1). This
analysis revealed a significant and strong negative correlation between patient TA
subpopulation and PDX change in tumour volume in RAS/BRAF WT models (Fig-
ure 3.12a). Examining the other subtypes present in these tumours revealed trends

105



towards higher enterocyte and goblet-like subpopulations in WT patients whose PDX
models did not respond to cetuximab (Figure 3.12b).
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Figure 3.12: PDX models show higher responses to cetuximab when their TA subpopulation
is high. (a) Scatter plot showing the TA subpopulation versus extent of cetuximab response in PDX
models (n = 15). Fills of each point indicate the overall response category. (b) Bar plots showing the
subpopulation of each subtype in each patient sample (left panel) against the response (change in tumour
volume) of each matched PDX to cetuximab treatment (right panel) from the Novartis PDX data (n =
15). Fills of each bar indicate the overall response category.

This analysis of TA subpopulations across patients, cell lines and PDX models con-
firms that there is a relationship between the TA subtype and cetuximab response,
as first proposed in the work defining the CRCA subtypes (Sadanandam et al., 2013).
Importantly, it demonstrates that this relationship is a function of intratumoural
subtype heterogeneity. In the future, sensitive tumours may be identified prior to
treatment by quantification of the TA subpopulation, likely with greater predictive
power than could be achieved using patients’ bulk subtype.
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3.4 Intratumoural subtype heterogeneity within
microsatellite (in-)stable tumours

Microsatellite instable tumours have recently been of interest as potentially targetable
with personalised therapies, as they have been shown to be more susceptible to im-
munotherapies, in particular PD1 blockade (Overman et al., 2018, 2017; Kim et al.,
2017; Le et al., 2015, 2017).

3.4.0.0.1 MSI-H tumours are enriched for inflammatory and goblet-like
subpopulations. Returning to the TCGA patient dataset (Chapters 3.3.2.1.1 and
3.2.1), I investigated the nature of intratumoural subtype heterogeneity within the
MSI-H and MSI-L/MSS groups.
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Figure 3.13: MSI-H and MSI-L/MSS patients have different distributions of subtype subpop-
ulations, with MSI-H tumours comprised of inflammatory and goblet-like subpopulations. (a)
Boxplots and (b) pairwise scatter plots showing the subtype subpopulations in MSI-H and MSI-L/MSS
patient tumours in the TCGA data (n = 368). * p < 0.05; **** p < 0.0001
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I determined that the subpopulations of all subtypes varied significantly between these
two groups (p < 0.05, Figure 3.13a). The goblet-like and inflammatory subtypes were
enriched in MSI-H tumours, whereas stem-like, enterocyte and TA subpopulations
were higher in MSI-L/MSS tumours. Together, goblet-like and inflammatory subtypes
made up the majority of MSI-H tumours’ subpopulations, to the exclusion of other
subtypes (Figure 3.13b).

3.4.0.0.2 Heterogeneous survival outcomes within MSI-H cancers by in-
flammatory and goblet-like subpopulations. Having shown that high levels of
the stem-like subtype within tumours are indicative of poor prognosis and advanced
stage (Chapter 3.3.2.1.1), I explored whether other subtype subpopulations could also
be prognostic within the MSI-H group of patients. The results showed that the MSI-H
group could be stratified into good- and poor-prognosis groups on the basis of intratu-
moural subpopulations of both the inflammatory and goblet-like subtypes (p = 0.036
and p = 0.0096 respectively; hazard ratios are incalculable for these models due to
the lack of events in the low-inflammatory and high-goblet-like groups; Figure 3.14)
– both of which are enriched in the MSI-H group. Interestingly, this analysis suggests
that high levels of the inflammatory and low levels of the goblet-like subtype indicate
poor prognosis in the MSI-H subset of patients, and vice-versa for good prognosis.

Furthermore, high-inflammatory and high-goblet-like status predicted RFS signifi-
cantly better than bulk inflammatory/goblet-like alone (p < 0.05); the bulk subtypes
did not add prognostic information to high-inflammatory/goblet-like status (p > 0.5)
in a Cox proportional hazards model.
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Figure 3.14: High inflammatory subpopulation portends a poor prognosis in MSI-H cancers,
while high goblet-like subpopulation shows the opposite trend. Kaplan-Meier survival curves for
MSI-H patients with high- and low- (a) inflammatory (cutoff 4.4% inflammatory) (b) goblet-like (cutoff
46% goblet-like) tumour subpopulations (n = 41). Hazard ratios are incalculable for these models due
to the lack of events in the low-inflammatory and high-goblet-like groups.

The Kaplan-Meir curves in Figure 3.14 appear to indicate that the same subset of
patients have high-inflammatory and low-goblet-like tumours (and a poor prognosis),
however, the patient dichotomisations did not delineate patients in exactly the same
ways. Table 3.3 shows that not all the high-inflammatory tumours were also low-
goblet-like, and not all the low-inflammatory tumours were also high-goblet-like.

Table 3.3: The poor-prognosis high-inflammatory and low-goblet-like groups do not identify iden-
tical sets of patients. Cross-table showing the number of patients falling into the low/high-inflammatory
and low/high-goblet-like groups.

Low-inflammatory High-inflammatory Total

Low-goblet-like 3 21 24

High-goblet-like 5 12 17

Total 8 33 41

Importantly, the poor-prognosis high-inflammatory and low-goblet-like groups were
not simply the tumours with the highest stage, as is shown in Table 3.4, where stage II
tumours make up a larger proportion of the poor-prognosis groups than the favourable-
prognosis groups.
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Table 3.4: The poor-prognosis groups are not disproportionately enriched for later-stage tu-
mours. Cross-table showing the number of patients from each subpopulation-based group falling into
each tumour stage. * One patient had unknown stage.

Stage I Stage II Stage III Stage IV Total*

Low-inflammatory 2 (25%) 3 (38%) 2 (25%) 1 (13%) 8

High-inflammatory 7 (22%) 19 (59%) 4 (13%) 2 (6%) 32

Low-goblet-like 3 (13%) 13 (56%) 4 (17%) 3 (13%) 23

High-goblet-like 6 (35%) 9 (53%) 2 (12%) 0 (0%) 17

Total* 9 22 6 3 40

The question of how to manage these subsets of patients having highly distinct prog-
noses within the MSI-H group must be considered in light of recent efforts to introduce
immunotherapeutic options to these patients (Overman et al., 2018, 2017; Kim et al.,
2017; Le et al., 2015, 2017).

3.4.0.0.3 Correlation with predictor for anti-PD1 immunotherapy. Next,
I investigated the implications that inflammatory subtype levels could have for pa-
tients’ potential responses to immunotherapy-based treatment regimes. Patients’
scores were calculated for a published signature of response to anti-PD1 immunother-
apy (Ayers et al., 2017). There was a significant positive correlation between the
inflammatory subtype subpopulations and the INF-γ-related signature score (τ =
0.54; p < 0.005). No significant correlation was found when calculated using the
goblet-like subpopulation (Figure 3.15).
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Figure 3.15: Only the inflammatory subtype correlated with anti-PD1 response signature scores
when MSI status was not considered. Scatter plots showing anti-PD1 signature scores versus subtype
subpopulations for the (a) inflammatory and (b) goblet-like tumour subpopulations (n = 370). Correla-
tions values were calculated using Kendall’s rank method, and the trend line was fitted using a binomial
GLM.

However, when I repeated this analysis using only the MSI-H patients, the result
for the inflammatory subtype stayed the same, whilst the goblet-like subpopulation
had a significant negative correlation with the response signature (Figure 3.16). This
suggests that even within this more homogeneous group of patients, intratumoural
subtype heterogeneity could possibly cause large discrepancies in patient outcome.
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Figure 3.16: Inflammatory and goblet-like subpopulation levels positively and negatively corre-
late with anti-PD1 response signature scores in MSI-H tumours. Scatter plots showing anti-PD1
signature scores versus subtype subpopulations for MSI-H patients only for the (a) inflammatory and (b)
goblet-like tumour subpopulations (n = 51). Correlations values were calculated using Kendall’s rank
method, and the trend line was fitted using a binomial GLM.

These results show that inflammatory subpopulations correlate with anti-PD1 scores
regardless of MSI status, but that goblet-like subpopulations are only correlated with
anti-PD1 scores in MSI-H patients. This could be due to the fact that MSI-H tumours
are primarily composed of inflammatory and goblet-like subpopulations, as opposed
to other subtype subpopulations (Figure 3.13), while MSS tumours can contain het-
erogeneous subtype subpopulations alongside the inflammatory component. Hence,
the negative correlation with goblet-like subpopulations in MSI-H patients could be
an artefact secondary to the “true” relationship between anti-PD1 score and inflam-
matory subpopulation.

It is not unexpected that high levels of inflammatory signalling would be correlated
with a score for anti-PD1 response. A high level of tumour inflammation is predic-
tive of responses to anti-PD1 therapies (extensively reviewed in previous literature
(Cogdill, Andrews & Wargo, 2017; Chen & Mellman, 2017)). The importance of this
result is therefore that it provides evidence that computational deconvolution of sub-
type subpopulations provides information on the tumours’ constituent cell phenotypes
which is accurately reflected by other metrics, and which can therefore be used for
hypothesis generation in discovering new biomarkers for precision medicine.
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3.5 Chapter discussion and conclusions

Some care should be taken when interpreting the results of analysis on public datasets
such as those used in this chapter. The survival data from TCGA that was used to
quantify the prognoses associated with high levels of the stem-like, inflammatory and
goblet-like subpopulations has a higher level of censoring than would be ideal. In the
dataset that included patients’ responses to FOLFIRI (Del Rio et al., 2007), there
were fewer patients whose tumours progressed in the course of their treatment than
might be expected. This could bias attempts to associate tumours’ shrinkage with
their stem-like subpopulations – i.e. it is unknown what the stem-like subpopulation
was in tumours that did progress. Finally, when analysing patients’ responses to
cetuximab in light of their TA subpopulations, the mutation status of RAS family
genes other than KRAS was unknown, hence some of the patients who appeared not
to respond due to low TA subpopulations, could in fact have mutations in other RAS
genes. However, the relationship of TA subpopulations with cetuximab response was
demonstrated in more recent datasets from both cell lines and PDX models where full
RAS status was known, strengthening the evidence for this association.

A further consideration should be whether additional cell types could exist in some
tumours that cannot be quantified using the methods in this chapter. Because the
CRCAssigner subtypes were derived from gene expression profiles of whole tumours,
there could be additional CRC cell types which were obfuscated by the fact that bulk
expression data is essentially an average measurement of all the cells in the tumour.
Whether further cell types exist in CRC will be elucidated as single-cell sequencing
becomes more readily accessible.

Additionally, because recent evidence has shown that there is high expression of stem-
like genes in the stromal, but not the tumour, compartment of PDX models (Isella et
al., 2015), it is possible that the prognostic effect of high stem-like subpopulations is
actually due to higher stromal infiltration in these tumours. These samples were not
macrodissected before expression profiling so it is likely that some stromal tissue is
present in some samples.

Finally, consideration must be made for how patients should be optimally partitioned
based on continuous values of subtype subpopulations. In the analyses in this chapter,
patients were dichotomised using optimal cutoffs that gave the most discrimination
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between groups. For any future work moving subtype subpopulations towards clinical
applications, standard cutoffs would need to be determined in large, well-selected
cohorts, and rigorously validated in unseen data.

However, if appropriate threshold values are determined in future work, the results
presented here could have implications on the application of CRCAssigner-based sub-
typing in the clinic. Previous work has shown FOLFIRI therapy leads to increased
side effects and cost per year of life when compared to FOLFOX, with no difference
in effectiveness (Neugut et al., 2019). Hence, using stem-like subpopulations to pre-
dict irinotecan responders could help spare patients from unnecessary toxicity and
reduce care costs versus stratifying patients using bulk subtypes. With regards to
anti-EGFR therapy, there appears to be a correlation between TA subpopulations
and heightened response, with associated lengthened PFS. This could imply that pa-
tients’ intratumoural subpopulation of the TA subtype could be used to predict their
likelihood of response to anti-EGFR therapy in the future.

In conclusion, I have demonstrated that individual CRC tumours can be comprised
of multiple co-existing transcriptomic subtypes, and that the subpopulations of these
subtypes can be systematically quantified in large datasets using an in silico approach.
These subpopulations may also be associated with various patient outcomes. This ev-
idence lays a foundation for the idea that intratumoural subpopulations could become
valuable clinical biomarkers for personalisation of CRC treatment in the future.
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Chapter 4

Integrated multiomics factor analysis of CRC
molecular profiles, interactions between
clinicopathological categories, and prognostic
implications

4.1 Introduction

Over time, high-throughput platforms have become more accessible and reliable, and
it has become more routine to profile multiple different types of “omics” data (e.g. ge-
nomics, transcriptomics, epigenomics and proteomics) simultaneously in the same
samples. As described in Chapter 1.4, often the way this data is analysed does not
fully leverage correlations between features of different omics data types (e.g. cluster-
of-cluster analysis). Alternatively, the integration of data types with clinical covariates
happens in a post-hoc fashion, using contingency tables after clusters or features of
interest have been identified separately from each data type.

Latent variable models – such as iCluster (Shen et al., 2012) for integrating different
omics data types, or phenMap (Nyamundanda, Eason & Sadanandam, 2017) for in-
tegrating omics data with clinical covariates (developed in the Sadanandam Lab, by
Dr Gift Nyamundanda) – can fully exploit correlations between omics features and/or
clinical covariates to find underlying patterns in the data. These patterns might repre-
sent biological signalling pathways that are co-regulated, and hence may help explain
some of the complexities of CRC biology, as previously examined in Chapter 1.4.
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Combining the two approaches of multiomics integration and omics/clinical integra-
tion could provide a novel tool with the power to explain biological signalling across
omics data types using clinical data. In this chapter, I utilise an extended version of
phenMap which can both integrate multiple omics data types, and model the patterns
in these data types as a function of clinical covariates. This tool, named in this thesis
as integrated sparse Bayesian factor analysis with covariates (isBFAC, also developed
by Dr Gift Nyamundanda), has not previously been applied to CRC, and so could
provide new insights into the mechanisms driving this disease.

Figure 4.1 gives an overview of isBFAC, its inputs, and its outputs, which are referred
to in this thesis as “metavariables”, due to their being representations of latent pat-
terns that incorportate information from many different data types. Full details of
the model are given in Chapter 4.2.1.
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Figure 4.1: isBFAC models multiomics data alongside clinicopathological covariates. Schematic
diagram illustrating the inputs and outputs of the isBFAC model, as well as downstream analyses that
can be performed using the outputs.
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4.2 Model, methods and data sources

4.2.1 Model structure

The isBFAC model was designed, derived and implemented by Dr Gift Nyamundanda,
Postdoctoral Fellow at the Institute of Cancer Research, London. I made alterations
to the implementation for speed and usability.

For a series of profiles from omics platforms m = 1 . . . M , a tumour n’s full multiomics
profile can be written as y

n
= (y

n,1 . . . y
n,M

)T. Each tumour’s omics profile y
n,m

consists of a number of molecular features specific to that omics type, Pm. Then,
isBFAC can be written as

y
n,m

= Wmun + ξ
n,m

(4.1)

where Wm is a Pm × Q matrix relating the features in omics type m to Q metavari-
ables, and ξ

n,m
is the error term accounting for any remaining variance in the data.

un is a vector of the Q metavariables’ weightings in patient n.

Clinicopathological information has also been collected for the patient n, for L differ-
ent variables, xn = (xn,1 . . . xn,L+1)T. The metavariables in un can subsequently be
written as a function of the clinicopathological data collected for the patient,

un = Bxn + ϵn (4.2)

Here, B denotes a Q × (L + 1) matrix relating the Q metavariables to the L clinico-
pathological variables in xn, while ϵn is the error term accounting for any remaining
variance in the metavariables not accounted for by the clinicopathological variables.

un, ξ
n,m

and ϵn all follow multivariate normal (MVN) distributions, such that

un ∼ MVNq(Bxn, Φ) (4.3)
ξ

n,m
∼ MVNPm(0, Σm) (4.4)

ϵn ∼ MVNq(0, Φ) (4.5)

where the variance matrices Φ and Σm are diagonal with elements that follow gamma
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prior distributions,

Φ = diag(ϕ2
1, ..., ϕ2

Q) ϕq ∼ Γ(a, b) (4.6)
Σm = diag(σ2

1,m, ..., σ2
Pm,m) σn,m ∼ Γ(c, d) (4.7)

and where q = 1 . . . Q. For binary omics data (i.e. mutations, omics type mmut), the
distribution of ξ

n,mmut
is truncated to lie in the interval (0, ∞) for for genes in y

n,mut

that are mutated, and to the interval (−∞, 0) for genes that are not mutated (in both
cases, the standard deviation is 1). The elements of the matrices Wm and B are made
sparse to force the effects of noisy metavariables, features and clinicopathological vari-
ables towards zero. This is achieved in different ways for the two matrices. For Wm,
there is a “spike and slab” prior that selects informative metavariables. For informa-
tive metavariables, an automatic relevance determination (ARD) prior (Engelhardt
& Stephens, 2010) on each element wn,q,m selects informative features,

p(wn,q,m|θq, λn,q,m) ∼ N(wn,q,m|0, λ−1
n,q,m)θq + (1 − θq)δ0 (4.8)

p(λn,q,m|e, f) ∼ Γ(λn,q,m|e, f) (4.9)

λj,k,m is a hyper-parameter for which high values shrink wj,k,m to zero, resulting in few
features being deemed relevant to the metavariables. θq is a latent binary indicator
that is 1 for informative metavariables and 0 for non-informative metavariables.

To induce sparcity in B, a Gaussian g-prior shrinks the elements of B for which the
clinicopathological variable is non-informative (ridge regression (Hoerl & Kennard,
1970)),

p(β
q,∗

|ϕ2
q, g) ∼ MVNL+1(βq,∗

|0, gϕ2
q) (4.10)

Here, β
q,∗

is the row of B for the metavariable q, and g is the parameter which controls
the level of shrinkage in B.

The values of all the hyperparameters specified (a, b, c, d, e, f, g, λ, θ) were set to be
non-informative.
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4.2.2 Implementation of the model

4.2.2.1 Preprocessing and initialisation

Within the software implementation of isBFAC, several normalisation steps are per-
formed prior to fitting the model. Firstly, scaling is applied to the omics data (except
mutations, which are treated differently inside the model; see Chapter 4.2.1), by di-
viding each feature by its standard deviation. Continuous clinicopathological data
is linearly scaled to lie in the range (0, 1), in order to remove scaling differences be-
tween the variables. Categorical variables are coded as seperate dummy variables
having values of 0 or 1 for each category before being input into the software. No
relationship was assumed between categories of the same variable, and each dummy
category variable was included as a seperate variable.

Next, the parameters relevant to Equation 4.1 are initialised. W is initialised as the
first Q eigenvectors of the cross-correlation of the features, and Σ as the mean of
the remaining eigenvalues, both of which can then be used to initialise U using a
maximum likelihood estimator.

Subsequently, the parameters relevent to Equation 4.2 are initialised. B and Φ are
initialised by fitting a ridge regression on the metavariables U using the clinicopatho-
logical variables X.

4.2.2.2 Fitting

The model is fit using Gibbs sampling, which is a Markov chain Monte Carlo (MCMC)
technique. The Gibbs sampler proceeds by sampling from the full conditional distri-
bution of each variable; first W, then U, Σ, Φ, B, θ and Λ. This process is repeated
for 50,000 iterations.

Gibbs sampling (and all MCMC methods) commonly requires a burn-in period during
which the samples move away from the initialisation values and towards values in
regions of the conditional distribution with higher probability. As such, the first
20,000 samples are removed from the chain. These samples are also not independent
- they are conditioned on the previous iteration. To remove this autocorrelation and
make the samples independent, only one in every 40 samples is retained (thinning).
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Finally, due to the identifiability issues associated with most factor analysis models,
each sample of W is unpredictably rotated with respect to the other samples. This
is corrected by performing Procrustes rotation to align each sample of W to lie in
the same direction as the first sample after burn-in. Each parameter can then be
estimated by taking the average of the remaining samples (after removing burn-in
and autocorrelated samples) for that parameter.

Figure 4.2 shows a random subset of the elements of the matrices U, W, B and Σ
through the course of the MCMC sampling. Minimal drift of the estimate over the
thinned iterations indicates that the model has successfully converged.
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Figure 4.2: The isBFAC model successfully converged over 50,000 iterations. Trace plots showing
the thinned samples from model parameters over the course of the isBFAC MCMC chain.
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4.2.3 Data curation

I downloaded molecular data from TCGA through the University of California Santa
Cruz (UCSC) Xena Browser for the cohorts TCGA Colon Cancer (COAD) and TCGA
Rectal Cancer (READ) on the 1st October 2018, with the exception of protein data
which was downloaded from The Cancer Proteome Atlas Portal on the 18th January
2019.

4.2.3.1 Data types, transformations and identifier mapping

4.2.3.1.1 Copy number data. The file Gistic2_CopyNumber_Gistic2
_all_data_by_genes from the UCSC Xena Browser contains GISTIC2 esti-
mates of gene-level copy number aberrations for 451 colon and 165 rectal samples
(616 total samples), for 24,776 gene identifiers as measured on the Affymetrix SNP
6.0 array. All gene identifiers had no missing data.

Data-specific transformations: None required.

Feature ID mapping: None required.

4.2.3.1.2 Gene expression data. The file HiSeqV2 from the UCSC Xena
Browser contains log2(x + 1) RNA-seq by expectation maximization (RSEM)
gene-level expression estimates for 329 colon and 105 rectal samples (434 total
samples), for 20,530 gene identifiers as measured on the Illumina HiSeq 2000 RNA
Sequencing platform. All gene identifiers had no missing data.

Data-specific transformations: None required.

Feature ID mapping: None required.

4.2.3.1.3 Methylation data. The file HumanMethylation450 from the UCSC
Xena Browser contains beta estimates of DNA methylation for 337 colon and 106
rectal samples (443 total samples), for 485,577 CpG site identifiers as measured on
the Illumina Infinium HumanMethylation450 platform. 376,065 CpG site identifiers
had no missing data.
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Data-specific transformations: Logit transformation to convert beta-values (ra-
tios) to M-values.

Feature ID mapping: Use the manufacturer-provided manifest file HumanMethyla-
tion450_ 15017482_v1-2.csv to map CpG site IDs to HGNC symbols. Use CpG site
IDs if no HGNC mapping.

4.2.3.1.4 microRNA data. The file miRNA_HiSeq_gene from the UCSC Xena
Browser contains log2(x + 1) reads per million (RPM) estimates of miRNA mature
strand expression for 261 colon and 92 rectal samples (353 total samples), for 1,952
miRNA identifiers as measured on the Illumina HiSeq 2000 RNA Sequencing platform.
324 miRNA identifiers had no missing data.

Data-specific transformations: None required.

Feature ID mapping: Use miRBaseConverter (Yu et al., 2018) to convert accessions
to names (version 22).

4.2.3.1.5 Mutation data. The file mutation_bcm_gene from the UCSC Xena
Browser contains gene-level somatic non-silent mutation calls for 217 colon and 81
rectal samples (298 total samples), for 43,916 gene identifiers as measured on the
Illumina HiSeq 2000 platform. All gene identifiers had no missing data.

Data-specific transformations: None required for pre-processing.

Feature ID mapping: None required.

4.2.3.1.6 Protein data. The files TCGA-COAD-L4 and TCGA-READ-L4 from
The Cancer Proteome Atlas Portal contains level 4 (replicate-based normalised) re-
verse phase protein array (RPPA) protein expression estimates (Li et al., 2013, 2017b)
for 327 colon and 129 rectal samples (456 total samples), for 223 protein identifiers.
All protein identifiers had no missing data.

Data-specific transformations: None required.

Feature ID mapping: Use GeneCards/UniProtKB databases to manually map
protein names to HGNC symbols.
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4.2.3.1.7 Clinicopathological data. The file clinicalMatrix from the UCSC
Xena Browser contains clinicopathological variables for 462 colon and 169 rectal
samples (737 total samples), for 115 variables:

• 10 variables were not useful as they only had one value
• 8 variables were not useful as they had completely identical information to that

included in other variables
• 32 variables were not useful as they did not have relevance to the model (e.g. file

names, sample barcodes, version codes etc.)

An additional 32 clinicopathological variables from another publication (Liu et al.,
2018) were also included, the majority of which related to quantification of immune
infiltration and various classes of genomic aberrations.

For input into the model, categorical variables were split into columns as dummy
variables, with the most common category acting as the reference.

4.2.4 Pathway analysis

Pathway analysis was carried out using single-sample GSEA (ssGSEA) v4 (Barbie et
al., 2009), as implemented by GenePattern (The GenePattern Team, 2013), applied to
the matrix of features by metavariables, and using the gene sets included in previous
analyses of CRC (Guinney et al., 2015).

4.2.5 Average copy number profiles

Genes were mapped to cytogenic bands using biomaRt v2.32.1 and human assembly
GRCh27, and average copy number was calculated at each band using thresholded
copy number data. For stratification into CIN positive and negative, samples’ clonal
deletion scores were dichotomised using the cutoff 0.0249 from the original publication
that introduced this metric (Liu et al., 2018)
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4.2.6 Prediction of sample scores in validation dataset

For prediction of the samples’ scores on the metavariables in the validation dataset
of copy number, gene expression and methylation data, these datasets were first pre-
processed and normalised exactly as the training data were (Chapter 4.2.3). They
were then unit scaled. Copy number, gene expression and methylation features were
then selected from the matrix W, which gives the weighting of the omics features
on the metavariables: W′ = (Wcopy number, Wgene expression, Wmethylation). Elements
of W′ for features belonging to data types that were not highly weighted on the
metavariables in the training data were set to be missing (NA) in order to reduce the
noisiness of the metavariables as predictors (gene expression in MV1, MV2, MV6,
MV7 and MV8; methylation in MV3, MV4, MV5, MV6, MV7 and MV8). W′

was then used to predict the omics data for these patients using linear regression
(y

validation
= W′uvalidation+ξ

validation
), with the resulting coefficients giving the weights

of the patients on each metavariable (approximately equivalent to u in Equation 4.1).

4.2.7 Survival analysis

Interactions of metavariables with clinical variables in Cox proportional hazards mod-
els were predicted and plotted using the R packages survival v1.0.3 and ggeffects
v0.11.0. Kaplan-Meir curves were plotted by dichotomising patients’ metavariable
scores using the surv_cutpoint function from the survminer package v0.4.1, with a
minimum group size of 20% of the cohort. Curves were plotted using the ggsurvplot
function, also from the survminer package, and with logrank p-values and hazard
ratios calculated from the coxph function from survival v2.41-3.

4.3 Results

4.3.1 Selection of input data

To fully model the omics landscape of CRC, matched molecular data from a large
cohort of patients is required. The TCGA collaboration has collected data on a
large number of CRC patients that encompasses the major omics types that are
measurable on high-throughput platforms (The Cancer Genome Atlas Network, 2012),
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most notably:

• Copy number aberrations
• Gene expression
• Methylation
• microRNA (miRNA) expression
• Somatic mutations
• Protein expression (from The Cancer Proteome Atlas (TCPA))

Clinicopathological and survival data has also been collected on patients during the
course of their treatment, and various additional metrics have been calculated based
on the omics data in follow-up studies (Liu et al., 2018).

4.3.1.1 Sample-wise data completeness

A total of 631 CRC primary tumour samples had some form of data available for
download from TCGA (be they omics data or clinicopathological variables; detailed
in Chapter 4.2). However, only 222 of these could be matched between data types.
Within these 222 samples, there remained a large number (approximately 40%) of
missing clinicopathological observations. All samples were missing at least one clini-
copathological observation, while 81/88 clinicopatholigical variables were missing for
at least one sample.

Because removing all the samples with missing values is not an option in this case, and
to avoid the large loss of data that would result from removing 81 clinicopathological
variables from the dataset, another approach was needed. Therefore, I removed any
clinicopathological variables with >5% missing values, before removing any samples
that still had missing clinicopathological observations. This left a set of 194 samples
and 46 clinicopathological variables having complete, matched data across all omics
and clinicopathological variables.

4.3.1.2 Pre-selection of clinicopathological variables and features

Due to the still-high number of clinicopathological variables, some of which contained
orthogonal estimations of the same value, a final set of 13 variables was selected as
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being the most independent of each other, and the most likely to be relevant to CRC:

1. Stage (Stage I-III versus Stage IV)
2. MSI (MSS and MSI-L were com-

bined into MSS/MSI-L)
3. Side (derived from anatomic loca-

tion)
4. Gender
5. Age
6. CIMP
7. CD8+ T cell fraction

8. Resting natural killer (NK) cell frac-
tion

9. M1 macrophage fraction
10. ABSOLUTE purity
11. ABSOLUTE ploidy
12. Fraction of genome with subclonal

somatic copy number aberrations
(SCNAs)

13. Clonal deletion score

The quality of the standard clinical data (stage, MSI, side, gender, and age) should
be high given the standardised process TCGA data collection centres followed. The
other variables selected can be estimated in multiple ways, which are not always so
consistent with each other (see, for example, the differences in methods immune cell
quantification in (Newman et al., 2015)), and as such, they may need to be interpreted
more carefully.

4.3.1.3 Feature selection

Due to the high dimensionality of this data set (465,834 total features from all the
molecular data types: gene-level SCNAs, gene-level mRNA expression, CpG site-
level methylation, mature miRNA expression, gene-level somatic non-synonymous
mutations, and protein-level expression), feature selection was employed to ensure
the model could run in a reasonable timeframe. The challenge of feature selection
in this dataset is the unbalanced size of the different omics datasets — there are
approximately 1,700-fold more CpG sites than proteins profiled. It would have been
possible to reduce this imbalance by selecting a fixed number of features from each
omics type, however this would have meant that only 1,338 features could be used
(223 — the number of proteins profiled — from each of 6 omics datasets), severely
limiting the potential for the model to discover novel features. Instead, I chose to
reduce the number of features from each omics data type m to a number of features
Pm proportional to the log of its original number of features P ′

m (so Pm = α log P ′
m,

unless P ′
m < Pm, in which case all the original features are retained). This strategy
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has the benefits of maintaining the order of sizes of the datasets, not reducing the
number of features of the already small datasets (i.e. protein and miRNA), while
reducing the huge magnitude of the largest datasets (in particular, methylation). The
relation between the original number of features and the selected number of features
for the omics datasets is shown in Figure 4.3 for α = 50 (note: mutations with
prevalence <5% were also excluded as they are unlikely to be informative).
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Figure 4.3: Feature selection before modelling allows the model to run faster and with features
that are more likely to be of interest in downstream analyses. Scatter plot showing the number
of features (e.g. genes, microRNAs, CpG sites) present in the full TCGA dataset, versus the number of
features selected for modelling for each data type.

The question then becomes how to select which P ′
m features should be included. Two

criteria were taken into account to determine a feature’s potential relevance, reflecting
the two broad frames of reference used in this model: the biological, and the clinical.
From the biological point of view, it was determined which features were present
in gene sets previously deemed highly relevant to CRC (those included in previous
pathway analyses of CRC (Guinney et al., 2015), and those in the KEGG pathway
Colorectal cancer), as well as which were present in the majority of omics data types
(≥ 4). From the clinical perspective, each feature was input into a univariate Cox
proportional hazards model of RFS to generate a p-value quantifying its relevance to
patients’ prognoses (for the 222 patients with complete omics data). The final features
chosen for a given omics dataset were then the P ′

m that had the lowest p-value and
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were present in the pathways of interest or multiple omics data types.∗

4.3.2 Metavariables identified from multiomics data

When I applied isBFAC to the TCGA data consisting of 194 patients’ omics and clin-
icopathological profiles (2,473 total omics features; 13 clinicopathological variables),
eight metavariables were identified (MV1-8). The weight of patients, features and
clinicopathological variables on each metavariable is shown in Figure 4.4.

These metavariables’ highest weighted features were often CNAs. However, other
types of omics features – particularly methylation and microRNAs, but also gene
expression – also had significant weighting.

∗An exception was made for the miRNA data, for which no straightforward mapping to HGNC
symbols/gene identifiers exists, making it impractical to select miRNAs based on gene sets of inter-
est/overlapping genes between omics types. Hence, for the miRNA data, only the Cox p-values were
used to select which features should be retained.
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4.3.2.1 Highly-weighted features and clinicopathological variables,
including known and novel omics features

Each metavariable was associated with molecular features, as well as clinicopatholog-
ical variables. These relationships are described below for each metavariable.

4.3.2.1.1 Metavariables 1 and 2. MV1 and MV2 are dominated by CNAs
on chromosome 1q21-44 (Figure 4.5). This region encompasses several important
members of the cluster of differentiation (CD) family of immune signalling genes,
including CD1A-E, CD46, CD48, CD55, CD84, CD244, and CD247. Their positive
association with MV1 indicates that a subset of patients have increased copy number
of these genes relative to the rest of the CRC population.
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Figure 4.5: The metavariables have different weightings of CNA features that cluster around
particular cytogenic bands. Plot showing the weights of CNA features on the metavariables, organised
by cytogenic band.
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Although not significant, CD8+ T cell infiltration had a low score on MV1, indicating
that there is a trend towards higher copy number at these loci in patients with low
cytotoxic T lymphocytes. CD1A-E are highly expressed in dendritic cells (Leslie et
al., 2008), which are involved in the generation of T regulatory cells (Maldonado &
Andrian, 2010), potentially explaining this inverse relationship between copy number
at these loci and CD8+ T cell infiltration (Figure 4.4).

In the case of MV2, these CNAs and rectal cancers both had a negative association
with MV2, implying that rectal cancers have higher copy number of these genes
relative to colon cancers. TP53 was the gene whose mutation was the most strongly
weighted on MV2.

Given that the most highly weighted features on MV1 and MV2 were copy number
aberrations that came from the same loci, I wanted to understand why both metavari-
ables were chosen by the model, when superficially it would appear that either one
alone would be sufficient. When I plotted the average copy number of tumours along
chromosome 1q based on the patients’ gender and tumour location, it was evident that
the effect that tumour location has on copy number is dependent on the patient’s gen-
der. Although the weighting of rectal tumours on MV2 implies a higher copy number
at bands 1q21-44 relative to colon tumours, this effect was larger for female patients
than for males (Figure 4.6). Therefore, the extreme low weighting of female gender
on MV1 is likely required for the model to explain the fact that women with colon
cancer (a larger group than women with rectal cancer – see Table 4.1 – and therefore
having a larger effect on the cohort as a whole) had the lowest copy number at these
loci.
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Figure 4.6: Copy number along 1q is influenced by both tumour location and patient gender.
Plots showing the average copy number change at each cytogenic band on (a) chromosome 1q and (b)
all other chromosomes for patients with colon or rectal tumours and male or female gender (n = 194).
Copy number of 0 indicates the normal diploid copy number.

Table 4.1: Women with colon cancer form a larger group than women with rectal cancer, and
therefore have a larger effect on the cohort’s overall copy number profiles. Cross-table showing
the number of female and male patients having colon and rectal tumours in the TCGA cohort.

Female Male Total

Colon 63 77 140

Rectum 27 27 54

Total 90 104 194

4.3.2.1.2 Metavariables 3 and 4. MV3 and MV4 had significant low weight-
ings for CNAs on chromosome 19p13 (Figure 4.5). This cytogenic band carries cancer-
associated genes including BRD4, CASP14, DNMT1, MUC16 and NOTCH3. MV3
was also negatively associated with tumour purity, ploidy and CIMP-L. The subset
of patients having low scores on MV3 had highly pure tumours with increased ploidy
and a CIMP-L phenotype, with relatively high copy number at 19p13 compared to
CIMP-0/H, low-ploidy/purity tumours. TP53 mutation was the mutation with the
most negative weight on MV3.

Conversely, on MV4, there was a positive association with tumour purity, and a
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strong positive weight for TP53 mutation. Additionally, there was another positive
association with CD8+ T cell infiltration, and a negative association with subclonal
SCNA fraction. The subset of patients who score highly on this metavariable then
represent those who have highly pure tumours with relatively low copy number at
19p13, compared to the rest of the CRC population.

As with MV1 and MV2, there was a strong similarity between the highly-weighted
features on MV3 and MV4. In this case, TP53 mutation switched from being anti-
correlated with MV3 scores to correlated with MV4 scores. Moreover, tumour purity
switched from being correlated with these features on MV3 to being anti-correlated
with them on MV4. This can be explained by MV3’s association with CIMP and
MV4’s association with clonal deletion score, a measure of CIN (Liu et al., 2018).
MV3’s negative association with tumour purity, CIMP-L and 19p13 implies that
highly pure, CIMP-L tumours should have high copy number at these loci. In fact,
this is only the case when the tumour is CIN as well as CIMP-L (Figure 4.7). For
the majority of patients (i.e. those who do not have both CIMP-L and CIN), high
purity is not associated with higher copy number at these loci, as represented by MV4.
Hence, MV3 and MV4 were both included by the model so that this interaction be-
tween CIMP-L, CIN and tumour purity was accounted for. In summary, the subset of
patients who have CIN, CIMP-L, high-purity tumours have the highest copy number
along chromosome 19p.
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4.3.2.1.3 Metavariable 5. MV5 had significant association with multiple clini-
copathological variables and multiple types of omics features. Positive scores on MV5
were associated with tumour purity, clonal deletion score, age and resting NK cell
infiltration. Features with positive scores included methylation of the S1PR4 gene,
whose protein expression has been shown to be significantly higher in gastric adeno-
carcinomas versus benign tissue (Wang et al., 2014). The negative end of MV5 was
associated with CIMP-H and MSI-H, and to a lesser extent CIMP-L. Features that
had negative scores included JAK2 gene expression, the key promoter of cell prolif-
eration (Ihle & Gilliland, 2007). This indicates that the minority of patients who
are CIMP-H, MSI-H, and CIN negative have high expression of JAK2 relative to the
rest of the CRC population, corroborating recent findings (Peng et al., 2018) of high
JAK2 expression in MSI-H cancers.

4.3.2.1.4 Metavariable 6. MV6 was the only metavariable that was significantly
associated with female gender (at the negative end), and also the only metavariable
whose significant features were dominated by miRNAs (at the positive end). The
highest-weighted miRNA, miR-505-3p, has been found in one study to be a tumour
suppressor in lung cancer (Tang et al., 2019), but was upregulated in synovial sarcoma
(Fricke et al., 2015). miR-484 expression has been suggested to be attenuated in stage
I-II CRC, and to increase at stages III-IV (Lu & Lu, 2015). It has also been shown to
have low expression in MSI CRC tumours, and acted as a tumour suppressor in MSI
cells in vitro and in vivo (Mei et al., 2015). miR-18a-5p expression has been associated
with better prognosis in CRC (Slattery et al., 2015). However, other miRNAs highly
weighted on MV6 have been found to have tumour enhancing effects, such as miR-
423-3p (Li et al., 2015), or correlate with poor prognosis, such as miR-345-5p (Yu
et al., 2016). miR-130b inhibits the tumour suppressor PTEN’s expression (Zhu et
al., 2014), while exosomal miR-19a-3p has been proposed as a biomarker for poor
prognosis in CRC (Matsumura et al., 2015). Therefore, no conclusion can be drawn
as to whether the microRNAs highly weighted on MV6 have a tumour-promoting or
suppressive effect overall, and they could play highly context-specific roles in different
cancer types. However, the inference that males may have higher expression of certain
cancer-associated microRNAs than females could have implications for maturing early-
detection approaches based on microRNAs (Ng et al., 2009). The small cluster of
CNAs towards the negative end of MV6 were associated with chromosome 19p13
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(Figure 4.5), similarly to MV3 and MV4.

4.3.2.1.5 Metavariable 7. The most highly weighted CNAs on MV7 had a nega-
tive association with this metavariable, and were clustered around chromosome 11p14-
15 (Figure 4.5). This cytogenic band includes several important cancer-associated
genes such as SOX6, PIK3C2A, ADM, WEE1, and HRAS, as well as several mucins,
some of which are implicated in CRC (Byrd & Bresalier, 2004) (Figure 4.8). This
metavariable was also negatively associated with ploidy. Patients who had low scores
on this metavariable therefore had high ploidy and relatively high copy number
of genes at these loci compared to other patients, and their tumours also (non-
significantly) tended towards left-sidedness.
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Figure 4.8: Patients with low scores on MV7 have the highest copy number along chromosome
11. Plot showing the average copy number change at each cytogenic band of chromosome 11 for patients
with high, medium or low MV7 scores (n = 194). Copy number of 0 indicates the normal diploid copy
number.

4.3.2.1.6 Metavariable 8. On MV8, CNAs on chromosome 12q15-24 had signif-
icant negative weightings (Figure 4.5). Key cancer-associated genes that lie in this
region include IGF1, MDM2 and POLE, a gene whose mutation is associated with
hypermutation (Palles et al., 2013) (although POLE mutation did not score highly
on any metavariable), but for which copy number aberrations have been less explored.
TP53 was the mutation with the highest positive score on MV8. Clonal deletion score
was significantly positively associated with this metavariable. Therefore, patients hav-
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ing CIN tumours (i.e., high clonal deletion score) had relatively low copy number at
these loci compared to patients who were CIN negative.

4.3.2.2 Metavariable-specific gene set enrichment and pathway analysis

To discover whether there were distinctive pathways represented by the features highly
weighted on each metavariable, I performed single-sample gene set enrichment analysis
(ssGSEA) on each data type in each metavariable. Figure 4.9 shows a summary
of the results where the scores for each data type have been summed within each
metavariable.
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On MV1, the high enrichment of wound response, IGF-1R, KRAS and FGF activa-
tion, glycerophospholipid and nucleotide metabolism points to a highly proliferative
phenotype. MV1 and MV2, which had high scores for the same copy number loci
(1q21-44), had the highest enrichment for complement activation gene sets. Den-
dritic cells, markers for which lie on 1q21-44, (Chapter 4.3.2.1.1) can express certain
complement proteins (Lubbers et al., 2017), potentially explaining this activation.

MV3 and MV4 both had negative associations with copy number at chromosome
19p13 (Figure 4.5). However, MV3 had markedly higher scores for stromal and im-
mune infiltration than MV4 (Figure 4.9), which ties in with MV3’s negative associa-
tion with tumour purity (Figure 4.4).

MV5 showed enrichment of gene sets representing mesenchymal cells and WNT ac-
tivation, which may indicate a phenotype similar to the bottom of the colon crypt.
MV6 had the highest enrichment of MYC-associated genes, and an accompanying
high score for the antioxidant glutathione’s metabolism. Hence, in patients that
score highly for this metavariable, tumours driven to proliferate through MYC sig-
nalling may protect themselves from the resulting oxidative stress through increased
glutathione metabolism, a previously reported mechanism of tumour promotion (Be-
nassi et al., 2006).

MV7 showed the highest enrichment for WNT and FGF pathway activation, suggest-
ing an important role for cancer-associated fibroblasts (CAFs) – which can trigger
WNT signalling in tumour cells (Fu et al., 2011; Aizawa et al., 2019) – in patients
who score highly on this metavariable. In MV8, there was high enrichment for genes
associated with the top of the colon crypt – where more differentiated cells lie – and
associated low enrichment of WNT signalling and mesenchymal genes. Caspase and
KRAS activation were also both highly enriched, and there is evidence that RAS can
promote caspase-mediated apoptosis (Pylayeva-Gupta, Grabocka & Bar-Sagi, 2011).
Hence, patients’ scores on MV8 could represent an axis of activation or suppression
of RAS-triggered cell death.

4.3.3 Prognostic value of the metavariables

I then sought to determine whether these metavariables – which are associated with
several distinct molecular features and biological pathways – could provide any prog-
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nostic insight. In a multivariable Cox model of patients’ RFS that included patients’
standardised scores for all the metavariables, high scores on MV1, MV2, MV3, MV5
and MV7 conferred a significantly worse hazard (Figure 4.10). Interestingly, these
were the metavariables that had the highest level of WNT activation according to
gene set enrichment analysis (Figure 4.9).
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Figure 4.10: Metavariables MV1, MV2, MV3, MV5 and MV7 have significant prognostic value.
Forest plot showing the hazard ratios for each standardised metavariable in a multivariable Cox model of
RFS in the TCGA training cohort (n = 180).

4.3.3.1 Validation of prognostic power of the metavariables

To validate this finding, I then predicted the metavariable scores of 173 patients from
TCGA who were not included the data used to fit the isBFAC model due to having
missing omics or clinicopathological data, but who had gene expression, copy number
and methylation data available (TCGA validation cohort; scores predicted using lin-
ear regression, see Chapter 4.2.6). These three data types were dominant in the highly
weighted features of the prognostic metavariables. In these patients, and using only
gene expression, copy number and methylation features from the metavariables, MV3,
MV5 and MV7 remained significantly associated with prognosis (Figure 4.11). How-
ever, the hazard ratio of MV7 flipped to indicate a favourable prognosis for patients
with high MV7 scores.
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Figure 4.11: The hazard ratio of MV7 flips sign in the validation dataset. Forest plot showing the
hazard ratios for each metavariable in a multivariable Cox model of RFS in the TCGA validation cohort
(n = 148).

To investigate why MV7 could be associated with favourable prognosis in one cohort
and unfavourable prognosis in another, I predicted prognosis of the training cohort
using a Cox model that included interaction terms between MV7 and the clinical
covariates. This revealed a near-significant interaction between MV7 and location
of the tumour in predicting survival (p = 0.059). Figure 4.12 shows the estimated
hazard ratio for patients with colon or rectal tumours at different values of MV7,
demonstrating different associations of MV7 with hazard ratio between these two
tumour locations.

When patients were dichotomised into high- and low-MV7 groups, patients with colon
cancer had worse prognosis when they had low MV7. Conversely, patients with rectal
cancer who had low MV7 had significantly better prognosis than those who had high
MV7 (Figure 4.13).
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Figure 4.12: MV7 scores have different effects on prognosis for patients with colon or rectal
tumours - training cohort. Interaction plot demonstrating the hazard ratio of RFS for TCGA training
cohort patients with colon or rectal tumours according to their scores on MV7 (n = 180). Coloured areas
designate 95% confidence intervals.

p = 0.039 HR = 0.44 (0.19 − 0.98)0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time (days)

Su
rv

iva
l p

ro
ba

bil
ity

Colon cancers

p = 0.0026 HR = 5.22 (1.58 − 17.25)0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time (days)

Su
rv

iva
l p

ro
ba

bil
ity

+
+

MV7 low

MV7 high

Rectal cancers

Figure 4.13: High MV7 scores have a positive effect on colon cancer patients’ prognosis, and a
negative effect on rectal cancer patients’ prognosis - training cohort. Kaplan-Meier curves showing
the RFS of colon (n = 73 high MV7; 59 low MV7) and rectal (n = 12 high MV7; 36 low MV7) cancer
patients with high or low scores on MV7 in the TCGA training cohort.
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When I performed the same analysis in the validation TCGA cohort, colon and rectal
cancers again experienced different hazards based on MV7 score (Figure 4.14). Pa-
tients with colon cancer had significantly worse prognosis when they had low MV7,
and those with rectal cancer fared significantly worse when they had high MV7 (Figure
4.15).
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Figure 4.14: MV7 scores have different effects on prognosis for patients with colon or rectal
tumours - validation cohort. Interaction plot demonstrating the hazard ratio of RFS for TCGA validation
cohort patients with colon or rectal tumours according to their scores on MV7 (n = 148). Coloured areas
designate 95% confidence intervals.
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Figure 4.15: High MV7 scores have a positive effect on colon cancer patients’ prognosis, and
a negative effect on rectal cancer patients’ prosnosis - validation cohort. Kaplan-Meir curves
showing the RFS of colon (n = 86 high MV7; 36 low MV7) and rectal (n = 18 high MV7; 8 low MV7)
cancer patients with high or low scores on MV7 in the TCGA validation cohort.
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Given these concordant results between the training and validation cohorts, the flip
in hazard ratio for MV7 between the cohorts is likely explained by the fact that
there were significantly fewer rectal cancers in the test cohort (Table 4.2). In the
training cohort, the negative effect that high MV7 had on the prognosis of patients
with rectal cancer was greater than the positive effect on patients with colon cancer’s.
Hence, where there were fewer patients with rectal cancer in the validation cohort,
the negative effect on the prognosis of the cohort as a whole was attenuated, leaving
only the positive effect on the prognosis of patients with colon cancer to dominate the
cohort.
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Table 4.2: Comparison of clinicopathological covariates between training and validation TCGA
datasets. For categorical variables, the number and percentage of patients in each category is shown,
with p-values calculated using a χ2 test. For continuous variables, the mean, standard deviation and
range is shown, and p-values were calculated by unpaired t-test or Mann-Whitney U test where variables
cannot be assumed to follow a normal distribution (i.e. proportions).

Variable
Multiomics training
dataset (n = 194)

Gene expression/copy
number/methylation validation
dataset (n = 173) P-value

Gender 0.63

Female 90 (46%) 75 (43%)

Male 104 (53%) 98 (56%)

Location 0.012*

Left colon 57 (29%) 42 (24%) 0.33

Right colon 83 (42%) 100 (57%) 0.0056*

Rectum 54 (27%) 31 (17%) 0.034*

Stage 0.30

Stage I-III 171 (88%) 145 (83%)

Stage IV 23 (11%) 28 (16%)

CIMP 0.45

CIMP-0 93 (47%) 91 (52%)

CIMP-L 73 (37%) 64 (37%)

CIMP-H 28 (14%) 18 (10%)

MSI 0.76

MSS/MSI-L 165 (85%) 150 (86%)

MSI-H 29 (14%) 23 (13%)

Age 65 (13, 31-90) 64 (14, 31-90) 0.39

Ploidy 3 (1, 2-6) 3 (1, 2-4) 0.19

Clonal deletion
score

9% (7%, 0-30%) 10% (8%, 0-25%) 0.36

Subclonal
SCNA fraction

22% (21%, 0-88%) 21% (20%, 0-82%) 0.64
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Variable
Multiomics training
dataset (n = 194)

Gene expression/copy
number/methylation validation
dataset (n = 173) P-value

Purity 64% (17%, 17-95%) 63% (17%, 19-94%) 0.84

CD8+ T cells 11% (8%, 0-61%) 11% (8%, 0-41%) 0.88

Resting NK
cells

2% (3%, 0-17%) 3% (3%, 0-15%) 0.15

M1
macrophages

6% (4%, 0-22%) 5% (4%, 0-19%) 0.026 *
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4.4 Chapter discussion and conclusions

In this chapter, I have shown that copy number aberrations were the most dominant
type of feature in this dataset, but that methylation, gene expression and microRNAs
also played important roles. While it could be expected that protein expression should
have the highest weighting in explaining molecular variation in cancer, proteins’ low
weightings on the metavariables might be explained by the known difficulty in properly
normalising RPPA data (Neeley et al., 2009; Akbani et al., 2014). Hence, as high-
throughput proteomics matures, the weight of proteins on the metavariables could
increase if this same model was re-run in the future.

In addition, I have evidenced that the results from latent variable models which
include clinical covariates must be interrogated to check for interactions between mul-
tiple clinical variables and particular features. Such interactions can lead to spurious
conclusions if the metavariables are interpreted separately and not in the context
of each other (e.g. MV1/MV2’s interaction with tumour location and gender, and
MV3/MV4’s interaction with tumour purity and CIMP/CIN). The decision to in-
vestigate these interactions came from the high weightings of the same molecular
features on multiple metavariables which had differently weighted clinicopathological
variables, and this highlights the value of including clinical covariates in the modelling
process; in a factor analytic model without covariates, there likely would have been
only one metavariable with these features having high weighting, and these important
interactions would not have been highlighted.

I have also provided evidence that the metavariables give significant prognostic in-
formation, but that this information needs to be interpreted carefully in the light of
clinical variables to give the full picture, such as MV7’s opposite effect on prognosis
in colon and rectal tumours. Future validation of these prognostic effects will require
the accurate prediction of the metavariables in new datasets, a process which will
require extensive validation in itself.

It is likely that the results in this chapter were heavily influenced by the particular
features that were chosen as input. Features were chosen based on their known associ-
ation with CRC, and their prognostic value. While these criteria likely increased the
interpretability and prognostic power of the metavariables, it could be preferable for
some purposes to run the model using a much broader range of features, for example
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to discover totally novel drivers in CRC.

Another criticism of this analysis could be the lack of an independent dataset to
demonstrate that the results presented are not the result of overfitting. Unfortunately,
the scale and diversity of data captured by TCGA has not yet been matched, and
so it is not currently possible to run this model on an equivalent dataset. However,
several aspects of the model are designed to prevent overfitting, such as priors applied
to the weights of features and clinical covariates on the metavariables which shrink
all but the largest weights to zero.

In summary, I have demonstrated the application of a novel multiomics and clinico-
patholigical integration tool, isBFAC, to CRC. Overall, this new approach to data
integration gives a promising avenue for more holistic explorations of tumour biology,
which take both molecular and clinical data into account.
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Chapter 5

Conclusions, discussion, and future work

5.1 Thesis conclusions and impact

In this thesis, I have presented analyses that have highlighted the extensive inter/in-
tratumoural and intermolecular heterogeneity that exists in CRC. The understanding
of CRC’s intertumoural heterogeneity that was garnered through the simultaneous
efforts of multiple teams from 2012-2013 (Budinska et al., 2013; Marisa et al., 2013;
Roepman et al., 2013; De Sousa E Melo et al., 2013; Schlicker et al., 2012; Sadanan-
dam et al., 2013) has matured to the point where standardised and practical subtyping
assays are the necessary next step for assessing the value tumour subtyping could have
in the clinic. NanoCRCA, the assay whose development is described in Chapter 2 and
has been published for use by the wider community (Ragulan et al., 2019), provides
this requisite. This assay is faster, more affordable and easier to implement for both
research and potential clinical applications, due to its clinically-approved platform
(Wallden et al., 2015; Northcott et al., 2012; Scott et al., 2014) and applicability to
widely-collected FFPE tissue. Efforts are ongoing within the Sadanandam Lab at the
Institute of Cancer Research to collect clinical trial samples to evaluate the predic-
tive potential of the subtypes, particularly the TA subtype’s sensitivity to cetuximab
(Fontana et al., 2018).

With regards to the intratumoural heterogeneity of CRC, I have demonstrated that
the tumour’s transcriptomic milieu can be deconvoluted into subpopulations of gene
expression subtypes, and that these subpopulations have prognostic and predi ctive
value beyond what can be achieved with “bulk” subtyping – labelling a tumour as
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belonging to a single subtype. In particular, I was able to show that a portion of
the previously reported variability in responses to cetuximab from tumours in the TA
subtype can be explained by these bulk-TA tumours having different intratumoural
subpopulations of TA-subtype cells. In addition, MSI-H tumours appear to be com-
posed primarily of variable proportions of goblet-like and inflammatory subpopula-
tions, which have contrasting prognostic implications and opposite associations with
transcriptomic biomarkers of response to anti-PD1 immunotherapy. This finding of
transcriptomic heterogeneity within MSI-H tumours could explain why approximately
50-60% of cancers with microsatellite instability do not respond to PD1 blockade (Le
et al., 2015, 2017).

In moving beyond transcriptomic analysis to holistic integration of multiple molecular
data types with clinicopathological covariates, I was able to demonstrate that there
exist “pan-omic” patterns of expression that are prognostic in CRC, and which include
both known drivers of cancer and biomarkers which are novel in CRC. One example
was copy number changes on chromosome 11p14-15, where the highest-weighted fea-
tures on the most prognostic metavariable, MV7, lie. Copy number aberrations at
this locus have been little-explored in the CRC literature, with reports limited to
their apparent appearance during metastasis to the liver (Stange et al., 2010). A
further important lesson learned from this analysis was that the associations between
clinicopathological variables and omics features cannot be interpreted separately for
each metavariable wherever multiple metavariables have high weightings of the same
features. Instead, overlapping features between metavariables indicates there is some
interaction present between clinicopathological variables that must be carefully eval-
uated.
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5.2 Opportunities for improvement in future work

5.2.1 Maturation of the NanoCRCA assay for clinically-practicable sub-
typing

Further efforts are needed in order to fully develop the NanoCRCA assay described in
Chapter 2 to the point where it could be used routinely for clinical decision making,
as discussed below.

One key finding of my efforts to apply the NanoCRCA assay to matched fresh frozen
and FFPE tissue was that normal tissue contamination can greatly affect subtyping
results (Chapter 2.3.5), an issue that can particularly affect non-macrodissected fresh
frozen tissue due to the similarity between normal colon tissue and the enterocyte CRC
subtype. While this should not affect the results of subtyping for patients’ clinical
samples, which are normally FFPE and which can be routinely macrodissected, it
could have implications for future work using this assay in the research setting, where
fresh frozen tissue is the gold standard. Normal tissue-like subtypes (such as the
enterocyte subtype) are not exclusive to CRC, appearing for example in breast cancer
(Perou et al., 2000), and the question remains as to whether normal-like malignant
tissue could be differentiated from truly normal tissue using gene expression alone.

Furthermore, due to the limited size and clinical annotation of cohorts available for
profiling on the NanoCRCA assay during its development, I was not able to validate
the prognostic power of the subtypes reported in the original CRCAssigner publication
(Sadanandam et al., 2013). This can be rectified with time as follow-up data for those
cohorts already profiled becomes mature, and as access becomes available to FFPE
tissue from retrospective cohorts that already have mature follow-up.

Finally, data normalisation for my NanoCRCA analysis followed previously published
work (Sadanandam et al., 2013) in that datasets were median centred gene-wise, which
has the undesirable side-effect of causing the gene expression profile (and hence the
subtype) of each sample to be dependent on the gene expression profile of the other
samples profiled in that same dataset. In the future, a new algorithm for classifi-
cation should be adopted which does not have this prerequisite, allowing for truly
independent subtyping of individual samples. Such an algorithm could depend on
normalisation to an artificial reference RNA control on each nCounter cartridge, as
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is used by the Prosigna PAM50 assay (NanoString Technologies, 2016), or it could
exploit within-sample gene ranks (Tan et al., 2005).

5.2.2 Practical considerations of using transcriptomic subtype subpopu-
lations for patient stratification of prognosis and personalised ther-
apies

While the intratumoural subpopulations of the CRCAssigner subtypes of CRC showed
both prognostic and predictive potential (Chapter 3) there are additional analyses that
must be performed to fully develop this concept for potential clinical applications.

For the analyses in Chapter 3, wherever patients were dichotomised into groups using
their estimated intratumoural subtype subpopulations, optimal cutoffs were calcu-
lated that provided the most discrimination between groups. These cutoffs differed
between subtypes, but also between cohorts. This was likely due to the differences
in platforms used to profile the patients’ gene expression, but also differences in the
clinical characteristics of the cohorts. For any future clinical applications, cutoffs
would have to be trained from large, well-selected groups of patients that have ma-
ture follow-up data, and rigorously validated in samples that were unseen during the
training step.

In addition, consideration needs to be made for which platform should be used as
standard for profiling of subtype subpopulations in a clinical setting. Whether the
same SVR algorithm presented in this thesis could be applied to, for example, the
data collected using the NanoCRCA assay in Chapter 2, should be assessed, given the
lower number of genes profiled on that platform. It has not been tested in this work
whether the full set of 786 genes that originally defined the CRCAssigner subtypes
(Sadanandam et al., 2013) is required for accurate deconvolution, or whether the
smaller 38-gene set could be sufficient for this purpose.

Lastly, the application of deconvolution to gene expression profiles from whole tu-
mours means there is potential for inaccurate results in some tumours due to the
infiltration of stromal or immune components of the microenvironment into the tu-
mour. Given the similarity of some of the CRCAssigner subtypes to normal colon
tissue (Appendix D) or stroma (Isella et al., 2015), (an issue highlighted in Chapter
2), it is possible that the estimates of the subpopulations for these subtypes could
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be influenced by low tumour purity. As mentioned in the previous section, it is not
yet clear whether these non-malignant and malignant tissue cell types can be distin-
guished in any practical way, but to do so might require the comparison of these
tissues after microdissection (and ideally, single-cell sequencing) in order to refine the
gene signatures of the malignant subtypes.

5.2.3 Refinement and further extensions of multiomics modelling of CRC
with clinicopathological variables

The results of Chapter 4 included novel muli-omics biomarkers of prognosis in CRC,
however, they required careful interrogation in the context of the interactions between
clinicopathological variables included in the model in order to provide an accurate
interpretation. This then raises the question of whether such interactions could be
included in an isBFAC-like model. The barrier to this would be the combinatorial
increase in the number of parameters that would then need to be estimated, hence
only a limited number of covariates could be used as input.

Furthermore, the prognostic power of the metavariables was likely influenced by the
feature selection process, which included univariate survival modelling of each feature
as a criterion. If this model were implemented on a computational platform with more
power, it could be preferable to instead include all the features from the original data
(numbering nearly half a million), and include prognostic data in the model itself.
Censored entries could be accounted for using a left-truncated normal distribution
extending forward in time from the date of censoring (Ahmad & Fröhlich, 2017). This
would allow the metavariables to be composed of features which aren’t individually the
most prognostically significant, but which together do have power to predict patients’
outcomes.

Chapter 3 highlighted the intratumoural transcriptomic heterogeneity of CRC, and
previous work has shown that heterogeneity exists in CRC at multiple molecular
levels (as discussed in Chapter 1.3). However, this factor was not taken into account
as part of this multiomics analysis, because datasets containing high-dimensional,
matched molecular data from multiple samples of the same tumour (be those samples
from different regions, or even different individual cells) do not yet exist. Once such
data does become available, it would be highly interesting to apply this model to
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understand intratumoural heterogeneity in a multi-omic and clinical context-aware
fashion.

Finally, it is not yet clear how the understanding of CRC gleaned from the results
from this chapter could be used to personalise therapies in the clinic. In Chapter
2, I showed how it could be possible to subtype patient samples using the nCounter
platform, which has a clinically practicable turnaround time. However, this required
the profiling of only 38 genes. While only 2,473 features were input into the isBFAC
model from the 465,834 available, they come from diverse data types (mutations,
copy number, gene and miRNA expression, methylation and protein expression) that
would require exome sequencing, RNA sequencing, bisulphite sequencing, and protein
arrays to all be performed on the sample. Unless the high-throughput profiling of mul-
tiple omics data types becomes affordable and standardised enough to be performed
routinely on biopsies and surgical samples, patients’ metavariables scores cannot be
calculated in a clinical setting. Hence, for the foreseeable future, it could be more
prudent to instead take an individual data type from the metavariables and assess if it
can act as a surrogate that provide the same or similar information to the multiomics
metavariables.
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Appendices

A Prognostic power of the iClusterPlus CRC subtypes

I took subtypes from Mo et al. (Mo et al., 2013), and plotted RFS of these patients
as a function of these subtypes in Figure A.1. This analysis indicated that there was
no significant difference in prognosis of these groups of patients (p = 0.59).
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Figure A.1: There is no significant difference in RFS between patients falling in the four iClus-
terPlus subtypes. Kaplan-Meier survival curves for patients with integrated iClusterPlus subtypes as
defined in Mo et al. (Mo et al., 2013) (n = 189).
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B Initial selection of genes for the nCounter assay

Table B.1: Initial gene selection criteria for 50 genes for the nCounter assay. “qRT-PCR marker”
refers to those proposed in Sadanandam et al. (Sadanandam et al., 2013) Genes were selected by Dr
Anguraj Sadanandam, Team Leader at the Institute of Cancer Research, UK.

50 nCounter genes Subtype Note

ACSL6 TA Top TA gene in CRCA-786

AQP8 Enterocyte Normal enterocyte marker

AREG TA Potential marker of cetuximab response

AXIN2 TA Top TA gene in CRCA-786; Wnt signalling

BHLHE41 Stem-like Potential marker of cetuximab resistance

BIRC3 Inflammatory NF-κB signalling

CA1 Enterocyte Top enterocyte gene in CRCA-786;
Normal enterocyte marker

CA4 Enterocyte Top enterocyte gene in CRCA-786

CEL TA Top TA gene in CRCA-786

CFTR TA qRT-PCR marker

CLCA4 Enterocyte Top enterocyte gene in CRCA-786

CLDN8 Enterocyte Top enterocyte gene in CRCA-786

COL10A1 Stem-like Top stem-like gene in CRCA-786

CXCL13 Inflammatory Top inflammatory gene in CRCA-786;
Chemokine signalling

CXCL9 Inflammatory Top inflammatory gene in CRCA-786;
Chemokine signalling

CYP1B1 Stem-like Top stem-like gene in CRCA-786

EREG TA Top TA gene in CRCA-786; Potential
marker of cetuximab response

FLNA Stem-like qRT-PCR marker; Potential marker of
cetuximab resistance

GZMA Inflammatory Top inflammatory gene in CRCA-786

IDO1 Inflammatory Top inflammatory gene in CRCA-786
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50 nCounter genes Subtype Note

IFIT3 Inflammatory Interferon signalling

KRT20 Enterocyte Differentiation marker

KRT23 TA Top TA gene in CRCA-786

LINC00261 NA Non-coding - not present in CRCA-786 so
excluded for CRCA-38

LY6G6D TA Top TA gene in CRCA-786

MET NA Associated with cetuximab resistance - not
present in CRCA-786 so excluded for
CRCA-38

MGP Stem-like Top stem-like gene in CRCA-786

MS4A12 Enterocyte Top enterocyte gene in CRCA-786;
Normal enterocyte marker

MSRB3 Stem-like Top stem-like gene in CRCA-786

MUC2 Enterocyte qRT-PCR marker; Normal goblet cell
marker

PCSK1 Goblet-like Top goblet-like gene in CRCA-786

PLEKHB1 TA Potential marker of cetuximab resistance

QPRT TA Top TA gene in CRCA-786

RARRES3 Inflammatory qRT-PCR marker; Top inflammatory gene
in CRCA-786

REG4 Goblet-like Top goblet-like gene in CRCA-786

SFRP2 Stem-like qRT-PCR marker; Top stem-like gene in
CRCA-786; Wnt signalling

SFRP4 Stem-like Top stem-like gene in CRCA-786; Wnt
signalling

SLC4A4 Enterocyte Top enterocyte gene in CRCA-786

SNAI2 Stem-like EMT marker

SPINK4 Goblet-like Top goblet-like gene in CRCA-786

STAT1 Inflammatory Interferon signalling

TAGLN Stem-like Myoepithelial marker
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50 nCounter genes Subtype Note

TCN1 Goblet-like Top goblet-like gene in CRCA-786

TFF1 Goblet-like Normal goblet cell marker

TFF3 Goblet-like qRT-PCR marker

TOX Goblet-like Immune differentiation regulator

TWIST1 Stem-like EMT marker

ZEB1 Stem-like qRT-PCR marker

ZEB2 Stem-like EMT marker

ZG16 Enterocyte Top enterocyte gene in CRCA-786
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C Cross tables of sample classifications from different assays

Table C.1: Confusion matrix and statistics showing the concordance in sample classifications between
NanoCRCA and CRCA-38.

NanoCRCA

Enterocyte Goblet-
like

Inflammatory Stem-
like

TA

CRCA-38 Enterocyte 11 0 0 0 0

Goblet-like 1 6 1 0 0

Inflammatory 1 0 4 1 0

Stem-like 1 0 0 6 0

TA 0 0 0 0 6

Sensitivity 100% 75% 67% 86% 100%

Specificity 89% 100% 97% 97% 100%

PPV∗ 79% 100% 80% 86% 100%

NPV∗ 100% 94% 94% 97% 100%

Balanced accuracy 94% 88% 82% 91% 100%
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Table C.2: Confusion matrix and statistics showing the concordance in sample classifications between
NanoCRCA and CRCA-786.

NanoCRCA

Enterocyte Goblet-
like

Inflammatory Stem-
like

TA

CRCA-786 Enterocyte 9 0 0 0 0

Goblet-like 1 6 0 0 0

Inflammatory 2 0 4 0 0

Stem-like 2 0 0 6 0

TA 1 0 0 0 5

Sensitivity 100% 86% 67% 75% 83%

Specificity 78% 100% 100% 100% 100%

PPV∗ 60% 100% 100% 100% 100%

NPV∗ 100% 97% 94% 93% 97%

Balanced accuracy 89% 93% 83% 88% 92%
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Table C.3: Confusion matrix and statistics showing the concordance in sample classifications between
CRCA-38 and CRCA-786.

CRCA-38

Enterocyte Goblet-
like

Inflammatory Stem-
like

TA

CRCA-786 Enterocyte 9 0 0 0 0

Goblet-like 0 6 0 0 0

Inflammatory 0 1 7 0 0

Stem-like 1 0 0 8 0

TA 0 0 0 0 7

Sensitivity 100% 100% 88% 89% 100%

Specificity 97% 97% 100% 100% 100%

PPV∗ 90% 86% 100% 100% 100%

NPV∗ 100% 100% 97% 97% 100%

Balanced Accuracy 98% 98% 94% 94% 100%
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Table C.4: Confusion matrix and statistics showing the concordance in sample classifications between
NanoCRCA and CMS.

CRCA-38

Enterocyte/TA Goblet-
like

Inflammatory Stem-
like

CRCA-786 CMS1 2 0 2 0

CMS2 15 0 0 2

CMS3 2 3 0 0

CMS4 2 0 0 4

Sensitivity 71% 100% 100% 67%

Specificity 82% 93% 93% 92%

PPV∗ 88% 60% 50% 67%

NPV∗ 60% 100% 100% 92%

Balanced Accuracy 77% 97% 97% 79%

∗PPV: positive predictive value. NPV: negative predictive value.

162



D Subtyping of normal colorectal tissue into the CRCAs-
signer subtypes

To understand how the contamination of tumour samples with normal colorectal tissue
could impact on the subtyping of samples into the CRCAssigner subtypes, I classified
gene expression profiles from normal and cancerous colorectal tissue samples from
TCGA into the five subtypes, using the same procedure as in Chapter 2.2.5 and the
786-gene signature. Rather than median centre the genes based on all the samples –
as is the usual approach when all the profiles are from cancerous samples – I instead
centred the data using the median expression of the genes in only the tumour samples.

This analysis revealed that all but one of the normal samples fall into the enterocyte
subtype, as shown in Table D.1.

Table D.1: Normal colorectal tissue is falls into the enterocyte CRCAssigner subtype. Table
showing subtyping of TCGA colorectal normal and tumour tissue samples into the CRCAssigner subtypes.

Subtype Normal samples Tumour samples

Enterocyte 50 71

Goblet-like 0 55

Inflammatory 0 67

Stem-like 1 97

TA 0 93
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