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INTRODUCTION
Whole-body MRI (WB-MRI) offers wide anatomical 
coverage and high contrast-resolution imaging for multi-
system disease evaluation. Increasing awareness of the 
hazards associated with ionising radiation1,2 coupled with 
technological advances in MRI such as parallel imaging 
for faster image acquisition and improved image signal-to-
noise ratio (SNR), have contributed to WB-MRI as a clin-
ical tool.

Emerging indications for WB-MRI include: (a) cancer 
screening in population with genetic predisposition;3 (b) 
cancer staging as a “one-stop-shop” in selected cancer 
types;4,5 (c) imaging in children,6 pregnant females7 and 
specific genetic disorders to avoid ionising radiation; (d) for 
identifying malignant bone marrow disease and response 
assessment; and detecting complications such as fractures 
or spinal cord compression;8–11 and (e) non-oncological 
inflammatory conditions such as spondyloarthropathies12 
and myopathies.13

In this review, we discuss the technical considerations 
for performing WB-MRI. We survey the application of 
WB-MRI for disease screening, both in the general popu-
lation and in higher risk populations. The expanding role 
of WB-MRI in oncological diseases and the potential for 
WB-MRI to inform non-oncological diseases are reviewed.

TECHNICAL CONSIDERATIONS AND IMAGING 
PROTOCOL
WB-MRI protocols utilize combinations of T1W, short-tau 
inversion recovery (STIR) T2W and diffusion-weighted 
(DW) sequences. T1W imaging may be performed with 
or without contrast enhancement.4–6,12–15 Variabilities in 
the imaging protocols reflect different clinical indications, 
as well as the challenges of implementing WB-MRI across 
platforms, being more challenging on older systems and at 
3T.

DWI is emerging as a core sequence in WB-MRI protocols 
as good image quality can be achieved on most modern MR 
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ABSTRACT

Whole-body MRI (WB-MRI) has evolved since its first introduction in the 1970s as an imaging technique to detect 
and survey disease across multiple sites and organ systems in the body. The development of diffusion-weighted MRI 
(DWI) has added a new dimension to the implementation of WB-MRI on modern scanners, offering excellent lesion-
to-background contrast, while achieving acceptable spatial resolution to detect focal lesions 5 to 10 mm in size. MRI 
hardware and software advances have reduced acquisition times, with studies taking 40–50 min to complete.
The rising awareness of medical radiation exposure coupled with the advantages of MRI has resulted in increased 
utilization of WB-MRI in oncology, paediatrics, rheumatological and musculoskeletal conditions and more recently in 
population screening. There is recognition that WB-MRI can be used to track disease evolution and monitor response 
heterogeneity in patients with cancer. There are also opportunities to combine WB-MRI with molecular imaging on 
PET-MRI systems to harness the strengths of hybrid imaging. The advent of artificial intelligence and machine learning 
will shorten image acquisition times and image analyses, making the technique more competitive against other imaging 
technologies.
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systems. The sequence is sensitive to tissue cellularity and cell 
viability, which shows increased signal intensity relative to back-
ground on high b-value images. Furthermore, DWI allows the 
quantification of the apparent diffusion coefficient (ADC; unit: 
µm2/s) value that aids disease characterisation and treatment 
response assessment. DWI shows higher accuracy for detecting 
bone metastases16 and muscle oedema17 compared with STIR. 
An optimized DWI protocol has high sensitivity for detecting 
lesions and can reduce the need for contrast medium adminis-
tration. This is particularly important since there is an FDA drug 
safety warning for gadolinium retention using gadolinium-based 
contrast agents, including in the brain, for months to years after 
contrast administration.18

The anatomical coverage of WB-MRI usually spans “vertex 
to upper thigh”. However, the coverage can be extended from 
the vertex to the feet and including proximal upper limbs with 
longer acquisition time where appropriate, such as in high-risk 
population screening, when evaluating diseases that frequently 
involve long bones19 or when suspecting soft tissue disease in 
melanoma patients.20 Using coronal versus axial acquisition; 
or combination of both, depends on many factors including 
scanner performance and radiologist preferences. Axial imaging 
is often preferred, acquiring images in matching slice thickness 
(5–6 mm) to facilitate lesion correlation, while sagittal spinal 
imaging provides assessment for vertebral fractures and cord 
compression in bone disease. Technical developments such 
as ultrashort echo time MRI of the lung and 3D T1 sequences 
supplemented by fat fraction images for rib imaging aim to 
improve the detection of subcentimetre lung and rib metastases 
on WB-MRI. However, these areas remain challenging, and 
in relevant clinical situations, a complementary low-dose CT 
thorax is advocated.

There is no special preparation needed for a WB-MRI examina-
tion and the study can be undertaken on 1.5T and 3T scanners,21 

although DWI image quality is more consistent at 1.5T. For 
patients with an implanted metallic endoprostheses, 1.5T is 
preferred over 3T MRI due to less artefacts. The patient is usually 
scanned supine with arms by their side and knees bent with 
support to increase comfort. Sedation or general anaesthesia 
(GA) may be required in children although alternative tech-
niques such as “feed-and-wrap” protocols or play therapy22 have 
been successfully used.

Advances in coil technology and parallel imaging reduce acqui-
sition time and increase image signal-to-noise. These allow a 
WB-MRI study from the skull vertex to mid-thigh (analogous 
coverage to a typical PET-CT examination) to be completed in 40 
to 50 min (by comparison, a complex one body part MRI protocol 
can take 30 min). Automated “set up and go” acquisition proto-
cols with in-line image composing facilitate image display and 
reading. Publications have highlighted good patient acceptance 
of the technique; with the willingness to trade slightly longer 
examination times for faster and more accurate diagnoses.23–25

The last few years have seen concerted efforts to define the core 
imaging sequences for WB-MRI (Table 1, Supplementary Mate-
rial 1) using DWI as the key sequence for disease assessment26 
(Figure  1). As with any imaging technique, implementation of 
an optimised imaging protocol, radiologists training and a high 
level of reporting, such as using consensus reporting criteria 
are crucial. Current consensus reporting criteria include MET-
RADS-P for advanced prostate cancer,9 MY-RADS for multiple 
myeloma8 and Whole-Body Score for Inflammation in Peripheral 
Joints and Entheses in Inflammatory Arthritis (MRI-WIPE).27

WB-MRI FOR DISEASE SCREENING
Healthy population
Preventive medicine plays an important role for healthier living. 
WB-MRI is an ionising radiation-free technique that can be 

Figure 1. Example of a typical WB-MRI protocol including axial DWI (3 b values and ADC map), axial T1W and T2W, CAIPIRINHA 
(Controlled Aliasing in Parallel Imaging Results in Higher Acceleration)-derived relative fat fraction and sagittal T1W and T2W 
spine images. Note the sagittal spine images were acquired without anterior saturation bands to visualise the sternum. The 
inverted coronal 3D b900 MIP and FDG-PET images show similar anatomical coverage between techniques.

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20200562/suppl_file/Supplementary Material.docx
www.birpublications.org/doi/suppl/10.1259/bjr.20200562/suppl_file/Supplementary Material.docx
https://www.birpublications.org/action/showImage?doi=10.1259/bjr.20200562&iName=master.img-000.jpg&w=425&h=184
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used to screen asymptomatic individuals for malignant/non-
malignant diseases, thus impacting on health outcomes.28,29

There is emerging data on the role of WB-MRI for screening the 
normal population. In a retrospective study of 229 patients30 
who underwent WB-MRI for routine health examination and 
cancer screening, two cases of malignancy (0.9%) were found. 
However, there was a high frequency of incidental findings such 
as disc protrusions (47%), renal and hepatic cysts/haemangioma 
(Figure 2). Critics highlight the high rate of indeterminate inci-
dental and false‐positive findings,29 which can lead to unnec-
essary additional examinations and treatments, with potential 
negative psychological impact. Hence, any attempt at under-
taking population-based screening should provide patients 
with appropriate counselling and advice, as well as clear path-
ways for managing incidental findings. A randomized trial with 
long-term follow-up is needed to establish whether WB-MRI for 
preventive health screening is beneficial.28

The complexity of dealing with incidental findings on WB-MRI 
is being explored, including within the German National Cohort 
(GNC).31 The GNC is one of the largest population-based inter-
disciplinary and multi-centre cohort studies in Europe, involving 
200,000 volunteers. The main goal is to investigate the develop-
ment of common chronic diseases including cancer, diabetes, 
cardiovascular, neurodegenerative/psychiatric, respiratory, and 
infectious diseases. A subgroup of about 30,000 will undergo 
WB-MRI, of which about 3,000 participants are expected to reveal 
significant imaging finding or require additional evaluation.

Targeted or at-risk population screening
By contrast, targeted screening based on known high-risk genetic 
mutations such as TP53 mutation in Li-Fraumeni Syndrome 
(LFS) have reportedly a higher cancer detection rate of 9.1%.32 
International LFS experts are recommending annual WB-MRI 
for cancer detection in these patients in their 2017 guidelines.33 

The SIGNIFY UK study,32 included 88 participants, with 44 
carriers of TP53 mutations and 44 matched healthy population 
controls. Four of the five identified malignancies were treated 
with curative intent (Figure  3). Similar findings were reported 
by Ballinger et al3 in a meta-analysis that included 578 partici-
pants from 13 cohorts in six countries and reported 42 cancers 
in 39 individuals, with 35 new localized cancers treated with 
curative intent. The overall estimated detection rate for new, 
localized primary cancers was 7% (95% CI, 5–9%). The authors 
concluded that baseline WB-MRI in TP53 germline mutation 
carriers may form an integral part of management in this high-
risk population. The conclusion is strengthened by Villani et al.34 
in a prospective, 11 years, observational study with biochemical 
and imaging surveillance in germline TP53 mutation carriers 
with LFS. The authors reported a 5-year overall survival of 88.8% 
(95% CI 78.7–100) in the surveillance group and 59.6% (47.2–
75.2) in the non-surveillance group (p = 0.013).

Childhood cancer predispositions syndromes
With advances in genetic testing, more families and children are 
being diagnosed with cancer predisposition syndromes. Up to 
39% of childhood malignancy present with diagnostic or rele-
vant mutations on whole-exome sequencing.35 A survey by 
the Society for Paediatric Radiology in North America in 2018 
reported 75% of the respondents using WB-MRI for cancer 
predisposition syndrome screening; majority (93%) of WB-MRI 
being performed in an academic institution, as a relatively recent 
trend in the last 6 years.36 WB-MRI is gaining widespread recog-
nition and support as an essential non-invasive, radiation-free 
diagnostic tool from paediatric oncologists, geneticists and 
families. The AACR Paediatric Working Group has recom-
mended WB-MRI for several childhood cancer predisposition 
syndromes including LFS, neurofibromatosis Type 1 and Type 2 
and schwannomatosis, hereditary retinoblastoma, constitutional 
mismatch repair deficiency syndrome and hereditary paragan-
glioma pheochromocytoma syndrome.37

Figure 2. A screening whole body-MRI in a healthy male volunteer showing incidental benign renal cysts, hepatic haemangioma 
and a right knee effusion (white arrows). The liver haemangioma was confirmed on ultrasound examination.

http://birpublications.org/bjr
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WB-MRI IN ONCOLOGY
In the symptomatic adult population, WB-MRI has found 
particular application for the evaluation of malignant bone 
marrow disease (e.g., myeloma and metastatic bone disease), 
while additionally offering information about soft tissue disease. 
Metastatic disease confined to be bone marrow is poorly evalu-
ated by conventional imaging; bone sclerotic lesions with no soft 
tissue component are considered non-evaluable by RECIST 1.138 
as osteoblastic response or osteoblastic progression could look 
similar on CT or morphological MRI. WB-MRI has also been 
applied to evaluate nodal disease in patients with lymphoma. 
More recently, WB-MRI has been prospectively evaluated as 
a “one-stop” imaging test for the initial cancer staging of a few 
common cancers (e.g., lung and colon).

Multiple Myeloma
Multiple myeloma (MM) is a haematological disorder character-
ized by the accumulation of malignant plasma cells in the bone 
marrow. Bone involvement is one example of possible end organ 
damage, resulting in osteolysis, fractures and related morbidity 
and mortality. Focal marrow lesions on MRI are associated 
with inferior outcomes39 and a positive MRI (>1 focal lesion of 
>5 mm) (Figure 4) is considered as an indication for treatment. 
WB-MRI is now included in recommendations from the Inter-
national Myeloma Working Group,40 and the National Institute 
for Clinical Excellence41 at diagnosis and relapse. WB-MRI has 
superior sensitivity and interobserver agreement compared with 
other imaging techniques such as radiographs, CT and FDG 
PET/CT and sensitivity is improved by inclusion of DWI.16 
WB-MRI provides an opportunity for early diagnosis which 
leads to improved survival and quality of life.41 Although the 
cost of WB-MRI is greater than CT, the net monetary benefits are 

roughly equivalent because of the longer term benefits afforded 
by earlier diagnosis.41

WB-MRI is also recommended for patients with suspected 
relapse and for monitoring response of non-secretory and 
oligosecretory myeloma.41,42 The recently published Myeloma 
Response Assessment and Diagnosis System, or MY-RADS,8 
proposed standardised clinical acquisition and reporting proto-
cols for WB-MRI including DWI and T1W-Dixon sequences, 
which can be performed on all major clinical MRI systems. The 
quantitative capabilities of DWI and T1W-Dixon are likely to 
increase their utility for response assessment.19,43 Despite recom-
mendations, WB-MRI adoption within the clinical community 
has been slow, due to a combination of factors including shortage 
of radiologists, lack of radiological expertise and scanner capacity 
in the wider community, which needs to be addressed. Enhanced 
software tools which can facilitate or accelerate image reading 
would also be welcomed.

Prostate cancer
As with other cancers, the presence, volume and distribution 
of metastatic disease in prostate cancer affects prognosis and 
therapy choices.The bone is the dominant site for metastatic 
disease in prostate cancer, with more than 50% of having bone-
only metastases.10

At initial diagnosis, a local bi/multi-parametric MRI of the 
prostate could be combined with a WB-MRI as a “one-stop 
shop” for local and distant tumour staging for patients at high-
risk for metastatic disease.44,45 Like CT, MRI has modest diag-
nostic accuracy for nodal evaluation,46 but has high accuracy for 
detecting bone metastases compared with bone scintigraphy. A 

Figure 3. Screening whole-body MRI in a 33-year-old female with p53 cancer predisposition syndrome. MRI of the brain including 
T1W post-contrast examination shows an asymptomatic right temporal lobe low-grade glioma. which was treated by curative 
surgery.

http://birpublications.org/bjr
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meta-analysis of 1102 metastatic prostate cancer patients found 
WB-MRI to be more sensitive (97%) than choline PET/CT (91%) 
and bone scintigraphy (78%) ford etecting skeletal metastases.47

In advanced prostate cancer, WB-MRI can be used for assessing 
treatment response in bone, nodal and visceral metastases, 
and potential complications such as malignant spinal cord 

compression, pathological fractures, hydronephrosis or local 
complications.48 WB-MRI is not confounded by the “flare 
response”49 encountered on bone scintigraphy (Figure  5) or 
prostate-specific membrane antigen (PSMA) PET, and is not 
modulated by androgen deprivation therapies, as is the case with 
PSMA PET.50

Figure 5. 99mTc-MDP Bone scan and WB-MRI images in a 60-year-old male with metastatic castrate resistant prostate carcinoma 
(mCRPC) illustrating the FLARE phenomenon. Bone scan performed in April 2018 after 12 weeks of chemotherapy showed several 
new bone lesions e.g. at T11 (arrows). Contemporaneous WB-MRI shows response with significant increase in ADC values (40%) 
of the lesion at T11 that appears “new” on bone scan. Note that the apparent new bone lesions on April 2018 in the lower thoracic 
spine bone scan were visible on the MRI from Jan 2018, but were occult/non-visible on the bone scan from Jan 2018.

Figure 4. A 51-year-old male with solitary infiltration of the posterior third rib on skeletal survey led to discussion of local radio-
therapy as primary treatment. 3D b900 inverse grey scale MIP from WB-MRI confirmed multifocal disease, resulting in a change 
to system treatment.

http://birpublications.org/bjr
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The METastasis Reporting and Data System for Prostate Cancer 
(MET-RADS-P)9 recommends the minimum image acquisition, 
interpretation and reporting of WB-MRI in prostate cancer. The 
MET-RADS-P criteria combine the principles of prostate cancer 
working group (PCWG) criteria and RECIST 1.151 together 
with DWI criteria for bone metastases. The following pros-
tate cancer patients appear to benefit most from WB-MRI: (1) 
newly diagnosed clinically high-risk/locally advanced patients 
in whom conventional imaging is equivocal; (2) non-metastatic 
(on conventional imaging) patients where the detection of meta-
static disease would promote focal therapy (oligo-metastases) or 
systemic therapy (poly-metastases); (3) metastatic disease with 
predominant/only bone involvement; (4) metastatic disease with 
discordance between clinical findings, PSA values (especially low 
PSA secretors) and conventional imaging.48,52,53

Breast cancer
In breast cancer, metastases to the54 bone, lung and liver are 
common and usually assessed by CT. As in prostate cancer, 
WB-MRI is useful for patients with predominant bone disease. In 
addition, treatment of liver metastases can lead to liver pseudo-
cirrhosis in upto 55%,55 making the disease difficult to evaluate 
on CT. Furthermore, WB-MRI can also improve the detection 
of CT occult peritoneal disease. The addition of WB-MRI to 
conventional CT alters the treatment decisions in patients with 
metastatic breast cancer as WB-MRI can diagnose progressive 
bone/liver disease or partial response of bone disease (often 
reported stable on CT)56,57 (Figure 6).

In breast cancer, WB-MRI seems most useful for1: high-risk 
presentation (inoperable locally advanced breast cancer, inflam-
matory and lobular histology cancers, heavy node positive 
disease) or pregnant females2; triple negative or HER2+ patients 
after adjuvant treatment with changing tumour biomarkers 
kinetics (CA 15–3 & CA 125)3,58 for oligometastatic disease 
detection in patients considered for metastasis directed therapy; 

4) assessing response forcutaneous or locally infiltrative disease-
where CT can be inaccurate; 5) assessing response in bone only 
or bone & infiltrative liver disease especially in the presence 
of extensive liver fibrosis (regenerative nodular hyperplasia/
pseudocirrhosis).

Lymphoma
Several studies have shown that WB-MRI using DWI has similar 
accuracy to FDG-PET CT for staging FDG-avid lymphomas59,60 
and may have better sensitivity (94.4%) than FDG-PET/CT 
(60.9%) and contrast-enhanced CT (70.7%) in subtypes with 
variable FDG avidity.61

Emerging data highlight ADC as a potential response biomarker. 
In a study of non-Hodgkin lymphoma, the ADC value differ-
entiated responders from non-responder for nodal/extra nodal 
disease with a high negative and positive predictive values.62 
WB-MRI assessment was less histology-dependent than FDG-
PET/CT and thus may be complementary to PET for reducing 
radiation exposure in young patients, especially in those who 
did not receive radiotherapy as part of their treatment. Current 
data also support WB-MRI for lymphoma surveillance, in 
lymphomas with variable/low FDG avidity and non-follicular 
indolent lymphomas63,64 (Figure 7).

Melanoma
A recent European consensus recommended whole-body exam-
inations with CT or PET-CT in combination with brain MRI 
for stage IIIb of higher disease.65 Meta-analysis and system-
atic review have found evidence for WB-MRI as an alterna-
tive to PET/CT.66,67 A recent study showed that non-enhanced 
WB-MRI with DWI is promising for detectingmelanoma 
extracranial metastases.68 More recently, Pflugfelderet al, on 
behalf of the German Dermatologic Society and the Derma-
tologic Cooperative Oncology Group, recommend WB-MR 
for imaging advanced melanoma (stage III or higher), stating 

Figure 6. Coronal 3D MIP and axial, DWI and FDG-PET images show bone marrow involvement in a 80-year-old male with large 
B-cell lymphoma. The initial PET staging was reported as Stage 1 AE with a dominant sternal mass (a) and no other lesions. WB-
MRI highlighted other focal bone lesions within T10 vertebral body (b), right acetabulum (c) and left femur (d) that were classified 
as inflammatory on PET imaging in view of the lower SUV values and their location adjacent to osteophytes and degenerative 
change. Following, tumour board discussion, the disease stage was changed to IVAE and treatment altered.

http://birpublications.org/bjr
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the equivalence of WB-MRI compared with CT and PET/CT. 
WB-MRI recommends the follow-up of patients with staged IIC 
to IV melanoma.69

Ovarian cancer
The most important prognostic factor in ovarian cancer is 
complete tumour resection at presentation or interval debulking 
surgery.70 The performance of WB-MRI with DWI is similar to 
FDG PET-CT for detecting retroperitoneal lymphadenopathy/
distant metastases but WB-MRI has higher sensitivity than 
CT and FDG-PET/CT for peritoneal staging, mesenteric root 
infiltration and bowel wall involvement by peritoneal carcino-
matosis,71–73 which better predicts the eligibility and success of 
surgery.

WB-MRI as a single modality compared with 
standard multi-modality cancer imaging 
assessments
Recently, the STREAMLINE Investigators published the results 
of two, UK multicentre studies (16 hospitals) comparing 
WB-MRI with standard NICE-approved diagnostic pathways for 
staging colorectal cancer4 and non-small cell lung cancer5 using 
WB-MRI as the initial staging test showed similar accuracy to 
standard pathways, but was associated with reduced staging time 
and costs.

The STREAMLINE C trial recruited 370 patients with newly 
diagnosed colorectal cancer, 299 of whom completed the trial. 
Pathway sensitivity was 67% for WB-MRI and 63% for standard 
pathways. Specificity did not differ between WB-MRI (95%) and 
standard pathways (93%). Agreement with the multidisciplinary 
team’s final treatment decision was 96% for WB-MRI and 95% 
for the standard pathway. Time to complete staging was shorter 
for WB-MRI (median, 8 days) than for the standard pathway (13 
days). The mean per-patient staging costs were £216 for WB-MRI 
and £285 for standard pathways.

The STREAMLINE L recruited 353 patients newly diagnosed 
NSCLC that was potentially radically treatable on diagnostic 
chest CT (defined as stage IIIb or less), 187 of whom completed 
the trial; 52 (28%) had metastasis at baseline. Pathway sensitivity 
was 50% for WB-MRI and 54% for standard pathways. Specificity 
did not differ between WB-MRI (93%) and standard pathways 
(95% [91–98](Figure 8)). Agreement with the multidisciplinary 
team’s final treatment decision was 98% for WB-MRI and 99% 
for the standard pathway. Median time to complete staging was 
shorter for WB-MRI (13 days) than for the standard pathway (19 
days). Mean per-patient costs were £317for WBI-MRI and £620 
for standard pathway.

WB-MRI IN NON-ONCOLOGICAL APPLICATIONS
Inflammatory joint disorders
MRI is the examination of choice for detecting early inflamma-
tory changes such as bone marrow oedema, disks enthesitis, and 
synovitis, as well as structural changes such as erosions, new bone 
formation, ankylosis and fractures. MRI can also offen provide 
soft tissue information such as muscle, cutaneous /subcutaneous 
tissue, viscera and nodal involvement. The Spondylo-arthritis 
International Society classification criteria for axial spondylar-
thritis (SpA) consider MRI to be of choice for detecting active 
inflammation in the subchondral bone underlying the sacroiliac 
joints.74

WB-MRI enables global assessment of active and chronic 
inflammatory changes in the axial and peripheral skeleton.12,75,76 
Consequently, there has been an increased interest in using 
WB-MRI for the comprehensive examination of systemic 
inflammatory/infective disorders, including but not limited to 
spondyloarthropathies, myopathies, sarcoidosis, Langerhans 
cell histiocytosis, chronic osteomyelitis or genetic disorders 
such as Hereditary Multiple Exostoses and metabolic storage 
disorders.

Figure 7. A 65-year-old female with history of right invasive lobular breast carcinoma presenting with raised tumour marker CA15-
345 U/ml and back pain. The tumour showed lymphovascular invasion; with ER8 PR0 Her-2 negative. WB-MRI show multiple 
vertebral and pelvic bone metastases that were occult on PET-CT without FDG tracer uptake.

http://birpublications.org/bjr
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To standardise assessment, the MRI Whole-Body Score for 
Inflammation in Peripheral Joints and Entheses in Inflamma-
tory Arthritis (MRI-WIPE) scoring system was published in 
2019.27 MRI-WIPE scoring documents separate the inflam-
mation in joints (arthritis) and at entheses (enthesitis) for soft 
tissues (synovitis at joints, soft tissue inflammation at entheses) 
and bone (osteitis). Synovitis and soft tissue inflammation are 
to be assessed on T1-post-Gd images and osteitis predomi-
nantly on STIR/T2Wfat-suppressed images. Each component is 
scored on a semi-quantitative scale of 0–3 (none/mild/moderate/
severe).27,77,78 In total, 83 peripheral joints and 33 entheses are 
assessed by adding all scores together, the total range is 0–738 
(joints 0–537; entheses 0–201). MRI-WIPE reading time was 
estimated to be ≤60 min. However, MRI-WIPE scores are semi-
quantitative and have significant interobserver variability.27,79 
The MRI-WIPE score was more reliable when averaged over 
two or three readers: the reported ICC (interclass correlation 
coefficient) of MRI-WIPE was 0.28 (−0.37–0.92) by one reader 
compared with 0.67 (0.30–0.87) for four readers.27 Even with 
these limitations, the MRI total inflammation index has been 
successfully applied in clinical trials.80–82

Recently, DWI was shown to be more sensitive than STIR12,83 
and faster to acquire.84 Together with T1W/T2W T1W-Dixon 
sequences, these should pave the way for quantitative assessment 
of bone marrow oedema and inflammation using parameters 
such as ADC12,85,86 and T1W-Dixon derived fat fractions.87

Osteomyelitis
Chronic recurrent multifocal osteomyelitis is a non-bacterial 
osteomyelitis in children and adolescents.88 WB-MRI is a valu-
able tool to assess the disease extent and for disease surveillance. 
A small retrospective study using WB-MRI identified two main 
diagnostic phenotypic: the “tibio-appendicular multifocal” 
(>50%) pattern and the “claviculo-spinal paucifocal” (24%) 
pattern.89

Gaucher disease
Gaucher disease is the most prevalent lysosomal storage disorder 
caused by lysosomal β-glucocerebrosidase deficiency, which leads 
to the accumulation of glucocerebroside in the bone marrow, 
liver, and spleen. In the skeleton, osteopenia and focal osseous 
lesions, such as bone infarctions, avascular necrosis, or osteolysis, 
are observed, as well as long bone deformities (e.g., Erlenmeyer 
flask deformities). WB-MRI is used to assess disease severity and 
several WB-MRI-based scores have been described based on 
T1W-Dixon quantitative chemical shift MRI.90 WB-MRI can be 
used to monitor the response to enzyme replacement therapy91 
as well as skeletal and visceral complications.

Familial lipodystrophy syndromes
Lipodystrophies are systemic disorders characterized by loss of 
adipose tissue at some anatomic sites, frequently accompanied 
by fat accumulation in ectopic sites, such as in the liver and 
muscle.92 WB-MRI allows an accurate depiction of the abnormal 
fat loss, as well as ectopic fat deposition.

Other emerging indications
WB-MRI is being evaluated in suspected child abuse to assess 
the integrity of the entire skeleton, brain and intra-abdominal 
viscera.93 WB-MRI is also being applied to characterize anorexia 
nervosa-induced marrow changes that may correlate with disease 
severity.94 Last but not least, WB-MRI offers excellent anatom-
ical detail and characterization of the brain, heart and abdom-
inal organs for post-mortem examinations, and can detect bone 
injury not visible on post-mortem CT. MRI can also distinguish 
between post-mortem and ante-mortem fractures, and is being 
utilised in forensic radiology.95

Summary and future developments
In 2016, the UK quantitative WB-DWI technical workgroup was 
established to provide technical guidelines, with the aim to maxi-
mise the accuracy and reproducibility of WB-DWI quantitative 

Figure 8. A 60-year-old male with lung adenocarcinoma. FDG PET-CT and WB-MRI demonstrate liver, bone and brain metastases, 
which were not visible on the staging CT (not shown). White arrows show concordant lesions detected by both FDG PET-CT and 
WB-MRI. However, WB-MRI showed additional liver and bone lesions (grey arrows), while post-contrast T1W brain images show 
cerebral metastases not visible on FDG PET-CT (not shown).
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parameters.26 The workgroup provided detailed acquisition 
parameters, optimization procedures and quality assurance when 
setting up WB-DWI, both at 3T and 1.5T for routine clinical use 
and multicentre trials, recognising that quantitative WB-MRI 
will become increasingly important.

Disease specific guidelines are emerging, such as MET-RADS-P9 
and MY-RADS,8 with recommendations for image acquisi-
tion and quantitative data analysis. For ADC quantification, a 
minimum of two diffusion-weightings (b-values) are necessary, 
with the lower b-value between 50 and 100 s/mm2 (to suppress 
vascular perfusion effects) and the higher b-value between 800 
and 1000 s/mm2. The use of three b-values with the additional 
b-value in the range of 500 to 600 s/mm2 is recommended for 
optimal ADC quantification before and after treatment. The 
ADC can be calculated at each lesion level (subjective choice 
of representative lesions in a manner similar to RECIST1.1) 
or at the whole body level – global ADC (gADC) across all 
lesions; the latter is time-consuming requiring manual or semi-
automated tumour segmentation. Another quantitative WBMRI 
parameter, total diffusion volume (tDV), is based whole-body 
tumour segmentation to summate all the disease volume. In 
addition, T1W-Dixon technique derived fat fraction is emerging 
as a potential biomarker, especially for bone marrow disease in 
myeloma.87

While the repeatability of ADC measurement is well character-
ised as around 10%,96 there is still limited data with regard to the 
percentage change in WBMRI parameters (ADC and tDV) asso-
ciated with clinically significant tumour response. In a study97 

correlating histological parameters and ADC measurements in 
patients with prostate bone metastases, bone biopsies revealed 
that areas that contained tumour cells had a significantly lower 
ADC compared with areas that showed no detectable tumour 
(0.898×103 mm2/s vs 1.617 103 mm2/s; p < .001). The use of an 
ADC threshold (1.5–1.6×10−3 mm2/s)9 above which represents 
treated disease98 has been proposed but requires further 
validation.

Undoubtedly, the indications for WB-MRI will continue to 
expand. Patients and clinicians are willing to trade attributes, 
such as faster diagnosis, improvements in diagnostic accuracy, 
reducing radiation exposure and the need for i.v. contrast, against 
the longer examination time of WB-MRI scan. Recent develop-
ments using ultra-short TE (UTE) MRI and compressed-sensing 
sequences are likely to improve lung metastasis detection using 
WB-MRI to provide a more comprehensive evaluation.

Future technological developments including the use AI to 
substantially reduce the WB-DWI acquisition time99 so that 
the technique can be performed in less than 10 min and be 
widely generalised across different vendor platforms and disease 
settings. By combining high spatial anatomical resolution with 
functional imaging (DWI), WB-MRI can also depict intra- 
and interlesional heterogeneity (Figure 9), paving the way to a 
better understanding of treatment effects in advanced disease.100 
Hybrid imaging combining WB-MRI with modern radionuclear 
tracers will allow a better characterisation of disease at staging 
and throughout the treatment pathways, by harnessing the 
synergies of these modern imaging techniques.

Figure 9. 3D MIP inverted b900 images in a 47-year-old female with advanced ovarian cancer. The different tumour sites are 
colour-coded according to the organ involved liver metastases (pink), peritoneal disease (green), pelvic lymphadenopathy (blue) 
and local relapse (orange). Pre- and post-chemotherapy images show response heterogeneity with decrease in the liver and nodal 
disease, but increase in peritoneal and local disease.
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