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Abstract 

The field of immuno-oncology has expanded rapidly over the past decade, but key questions 

remain. How does tumour-immune interaction regulate disease progression? How can we 

prospectively identify patients who will benefit from immunotherapy? Identifying measurable 

features of the tumour immune-microenvironment which have prognostic or predictive value will 

be key to making meaningful gains in these areas. Recent developments in deep learning enable a 

big-data analysis of pathological samples. Digital approaches allow data to be acquired, integrated 

and analysed far beyond what is possible with conventional techniques, and to do so efficiently 

and at scale. This has the potential to reshape what can be achieved in terms of volume, precision 

and reliability of output, enabling data for large cohorts to be summarised and compared. This 

review examines applications of Artificial intelligence (AI) to important questions in 

Immuno-oncology (IO). We discuss general considerations that need to be taken into account 

before AI can be applied in any clinical setting. We describe AI methods that have been applied to 

the field of IO to date and present several examples of their use. 
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1. Introduction 

The ability to evade immune destruction is a seminal feature of cancer (Hanahan & 

Weinberg, 2011). Agents designed to ramp up the anti-tumour immune response have had 

therapeutic traction across a range of tumour sites and histologies (Tang et al., 2018) with some 

patients experiencing durable disease control. Aside from this, traditional cytotoxic therapies have 

been shown to mediate some of their anti-tumour effects through immune mechanisms 

(Bertin-Ciftci et al., 2013). Clinical success from immunotherapy is far from universal and the 

majority of unselected patients have a poor objective response. Besides, these agents have a 

significant toxicity profile (Gibney et al., 2016). To maximise the clinical gains - and minimise 

harm - it is essential that we have robust predictive biomarkers that are able to prospectively 

discriminate between those more or less likely to benefit from IO. 

 

1.1. Predictive Assays in Current Use 

IHC markers - PD-L1 expression by tumour and/or local immune cells, as assessed by 

single marker immunohistochemistry is used across a spectrum of solid tumours to select for a 

benefit from immune checkpoint inhibitors. However, its utility as a biomarker is limited by 

intra-tumoural heterogeneity and dynamic changes in expression. We lack a standardised approach 

to scoring and significance thresholds. Reliability of scoring is affected by inter-observer variation 

as well as technical differences between the various assays in use (Balar & Weber, 2017). 

Genomic tools - Genomic tools including targeted panels to estimate tumour mutational 

burden are also used to select for likely responders. Tumour mutational burden (TMB) correlates 

with neoantigen load and has been shown to predict response to IO in lung, bladder and head and 

neck tumours (Chan et al., 2019b). Cancers with defective mismatch repair (dMMR) tend to have 

high TMB as consequence, and IO is therefore of particular benefit in this subgroup. dMMR is 

most commonly seen in cancers associated with the inherited Lynch syndrome (colorectal, 

endometrial, small intestine, urothelial, central nervous system and sebaceous gland cancers) and 

can be detected through the use of antibodies against nuclear MMR proteins, plus or minus PCR to 

identify microsatellite instability - a downstream manifestation of dMMR (Luchini et al., 2019). 

Although both are predictive biomarkers for sensitivity to immune checkpoint blockade, TMB and 

PDL1 do not necessarily select for the same patients as illustrated by the fact that dual checkpoint 

blockade for NSCLC was beneficial with high TMB, irrespective of PDL1 status (Hellmann et al., 
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2018). This underlines the fact that clinical response to IO is determined by multiple factors. A 

recent meta-analysis showed that composite biomarkers incorporating PD-L1, TMB and 

simultaneous quantification of multiple proteins via multiplex IHC/immunofluorescence 

performed better than either PD-L1 or TMB in isolation (Lu et al., 2019). However, the increased 

cost and complexity of these techniques need to be considered if aiming to implement more 

widely. 

Assays of immune reaction - The density of tumour-infiltrating immune effector cells also 

shows promise as a clinically useful biomarker. In colorectal cancer, the Immunoscore has been 

shown to be a better predictor of outcome than traditional TNM staging. This score is based on the 

density of CD3 and CD8-positive cells at the invasive margin and the centre of the tumour. 

Notably, patients who experienced disease relapse had low immune reaction irrespective of the T 

stage of the primary tumour (Mlecnik et al., 2011). A standardised system exists for the manual 

scoring of stromal tumour infiltrating lymphocytes (TILs) on H&E slides in breast cancer (Salgado 

et al., 2015). The score is a semi-quantitative assessment, expressed as an average across all 

assessable tumour stroma. The intensity of the baseline immune infiltrate has prognostic and 

predictive significance in HER2-positive and triple-negative subtypes (Denkert et al., 2018). In 

triple-negative breast cancer, TILs score predicts pathological and clinical response to checkpoint 

inhibitors in the neoadjuvant and metastatic settings respectively (Chan et al., 2020). Predictive 

power may be further increased by combining TILs scores with PDL1 assessment 

(Gonzalez-Ericsson et al., 2020). The consensus TILs scoring methodology represents a pragmatic 

approach that has shown good rates of inter-user reproducibility. However, its granularity is 

limited and it does not attempt to capture detail about how immune cells may be distributed within 

a specimen. Additionally, even a straightforward manual scoring system is time-consuming to 

implement at scale, for example, to analyse a trial cohort with thousands of samples. 

 

1.2. Opportunities 

A host of clinical trials are currently evaluating novel IO therapies and treatment 

combinations (Tang et al., 2018). Longitudinal tissue specimens collected from patients 

undergoing treatment with IO are a valuable source of potential information. Studying changes in 

the distribution and activity of immune cells with therapeutic intervention, and correlating these 

with clinical outcomes can provide mechanistic insights into treatment resistance and identify 
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candidates for predictive biomarkers. In particular, pathological analyses have the advantage of 

using material such as H&E stained tissue sections, which are widely available and retain 

information around tissue architecture and spatial organisation. Direct visual assessment of a 

prepared glass slide using a microscope remains the gold standard in the pathological assessment. 

However, these traditional manual methods are time-consuming and require a highly trained 

workforce, which is already under pressure from increasing volume and complexity of 

histopathology requests (Bainbridge et al., 2016). Use of minimally invasive procedures has 

expanded at the same time as our interest in tissue biomarkers. Therefore pathologists are being 

asked to report on ever more complex continuous variables, but with less available tissue. Even for 

an experienced practitioner, manual techniques are inherently vulnerable to inter-and 

intra-observer variability. There are natural upper limits on precision and limited scope to describe 

complex topographical features in an objective and quantifiable manner. Digital approaches offer 

a potential solution to these issues. 

 

2. Digital pathology and AI: General Principles 

In digital pathology (DP), glass-mounted specimens are captured as a whole-slide image 

(WSI) for downstream computer-based analysis. AI techniques applied to the digitised specimen 

can utilise various features to perform segmentation and classification tasks. By far the most 

common AI technique used in these papers and IO research to date is supervised classification. 

Classification is the task of predicting an output label for each input data point. 

Supervised method refers to the fact that the training model is shown example pairs of 

inputs and labels, and thereby learns the relationship between the two. The model attempts to draw 

boundaries – implicitly or explicitly – in the input space, separating data points which belong to 

different classes. Whilst being considerably easier to train than unsupervised techniques, the 

drawback of supervised methods is their reliance upon the input of large amounts of labelled 

‘ground truth’ data – information collected from the real world, for example, annotations by a 

pathologist. However, it is worth noting that considerable amounts of annotated data are already in 

existence within the public domain as well as open-source models and easy-to-use software 

packages. 

Unsupervised methods, on the other hand, usually bypass the need for labelled data 

(Yamamoto et al., 2019; Cheerla & Gevaert, 2019; Liu et al., 2020b; Ren et al., 2019; Liu et al., 
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2020a). Instead, they rely upon the machine being able to discover relevant features for tasks such 

as grouping together unlabelled data points with high similarity. There are four major types of 

unsupervised methods (Gentleman & Carey, 2008): (i) exclusive (ii) agglomerative (iii) 

overlapping and (iv) probabilistic. These models discover unknown patterns in the data, however, 

in the main, they remain experimental and computationally complex. In specific problems, it can 

be difficult for the network to converge on a globally optimal solution due to redundant feature 

representations (Chang et al., 2013) and it is likely to perform less well than supervised training 

approaches (Zhou et al., 2014). However, such methods may be the best approach for truly novel 

insights. These techniques involve a diverse set of models and algorithms but all centre around the 

concept that computers can learn from data as humans learn from experience, and can make 

decisions about novel data without the need for ongoing instruction. Of particular interest in our 

setting are deep learning (DL) models. These consist of cascades of trainable, multi-stage layers 

inspired by the organisation of neurons. A signal input into the model is propagated and modified 

in a layer-by-layer fashion along these networks to produce an output. DL models have a wide 

range of architectures themselves, the choice of which depends on the particular task being solved; 

for example, in image analysis convolutional neural networks (CNNs) (Krizhevsky et al., 2012), 

generative adversarial networks (GANs) (Goodfellow et al., 2014), fully convolutional neural 

networks (FCNNs) (Long et al., 2015) and recurrent convolutional neural networks (RCNNs) 

(Liang & Hu, 2015) are a popular choice. 

Histopathological image analysis methods can be broadly categorized into cell-level 

(identifying/segmenting single cells) or semantic region-based (patch-based; larger extracted 

patches from whole-slide images, i.e. 512pix×512pix) analysis. Cell-level analysis methods 

identify structures known as histologic primitives (e.g. nuclei). These features can be correlated 

with clinical characteristics, such as response to a specific treatment. Early studies applied DL 

approaches using small patches of manually selected regions of interest extracted from the slides 

(Raza et al., 2019). For example, object detection can be performed by training a deep CNN on 

patches centred on the objects of interest such as nuclei. These approaches consider only the 

information within these size-limited patches, which encompass the object and its immediate 

neighbourhood, and are mostly suitable for identifying small histologic primitives. Accurate 

detection of these histologic primitives serves as the basis for a larger number of tasks such as 

morphological grading, molecular profiling and IO assays. Table 1 gives an overview of small size 
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level analysis approaches. 

The semantic region-based analysis seeks certain special regions inside the whole section 

like glands, tubules, ducts, etc. These methods are most suitable for identifying meaningful 

connectives inside an image. Cell level analysis classifies the patches (often small, i.e 56x56 

pixels) of an image into different defined classes while semantic region-based analysis can be 

regarded as semantic identification of objects in a larger image (i.e. 256x256 pixels) in which a 

pixel-level classification has resulted, i.e. it classifies the pixels into its corresponding classes. 

Both approaches (cell/semantic region-based methods) can be used for different tasks including 

segmentation, detection and classification based on the type of annotation and ground truth being 

used in the methodology set-up. Table 2 gives an overview of region-based analysis approaches. 

Many reviews of digital analysis of histopathological images exist in the literature and 

address the various problems associated with the use of different types of histopathology images 

(Doyle et al., 2008; Gurcan et al., 2009; Irshad et al., 2014; Xing et al., 2017; Pichat et al., 2018; 

Hamidinekoo et al., 2018; Komura & Ishikawa, 2018; Bera et al., 2019; Niazi et al., 2019). In their 

recent review (Shimizu et al., 2020) have described numerous recent examples of the applications 

of AI in oncology and highlight resources and datasets that can help utilise AI tools in cancer 

research. Table 3 gives an overview of the variety of problems being tackled with DL techniques 

that are demonstrating promising results. 

 

3. Considerations for Use of AI in Clinical Settings 

The backbone of any effective digital pathology service includes (but is not limited to): 

capturing images using WSI; storing, analysing and archiving the digital images; performing 

quality control checks; sharing images with other institutions and integrating outputs into clinical 

decision making. Regulatory requirements and financial viability need to be considered 

throughout. Workflows require continuous adaptation to evolving demands. In this review, we 

focus on three main challenges concerning the application of AI algorithms to DP data: (i) 

generalizability of the model (ii) explainability of the model (iii) limitations on quantity or quality 

of the data which can be used by the designed model. 

Generalizability - This is a measure of how well the complexity of the model matches the 

complexity of the data. Problems arise when the model has merely memorised training samples but 

fails to form a general understanding - a problem known as over-fitting. In this case, the model will 
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perform well with training data but fail to identify relevant information in the novel data. The 

primary goal, and greatest challenge, for any ML practitioner is for the model to correctly apply 

what it has learned when unleashed on entirely new data. This is crucial for the deployment of AI 

in DP across hospitals and laboratories. Table 4 and 5, gives a summary of recent studies in the IO 

that have evaluated the generalizability of the AI-based models using a large number of internal 

and external cases. Generalizability may be improved by (i) adjusting network parameters based 

on the complexity of target data (the greater the number of parameters, the greater the chance of 

over-fitting); (ii) using dropout neurons (training multiple possible configurations of a network, 

then calculating the average of all the corresponding subset network weights, which promotes 

accumulation of independent learning); (iii) weight regularization (to avoid focusing on certain 

features in the training data, which leads to a continuous increase of weights); (iv) ensuring similar 

distribution between the training and the upcoming data when deploying the model; (v) frequent 

re-training rounds (also called fine-tuning) in order to keep up with the change in cohorts. 

Explainability - Also known as interpretability, this refers to how well we understand the 

factors influencing the model’s decision making. It is crucial that a model is explainable when 

used for healthcare purposes, in order to ensure that predictions are being made in an ethical, 

reliable and transparent manner. Inability to detect bias could have potentially dangerous 

consequences. Traditional ‘bottom-up’ ML approaches focus their analysis on specific 

fundamental characteristics and micro-attributes of a histology image. Deconvoluting the 

decision-making processes in this scenario is more intuitive and can be approached in several 

different ways including activation maps (and its derivatives) (Chan et al., 2019a), as well as 

attention methods (Fraz et al., 2019) and compensating dataset bias and scarcity (Ye et al., 2020). 

By contrast, it can be very difficult to identify the salient features being used by the model 

when using an end-to-end DL approach. For example, Courtiol et al. (2019) identified strongly 

associated features with either progression/survival; however, some of these features were 

unexpected (i.e. stromal regions with inflammation and other histological features that were not 

within the tumour microenvironment). However, progress has been made in this area and there are 

examples in the literature where DL has yielded biologically interpretable results. For example, 

Beck et al. (2011) developed a prognostic model incorporating morphometric descriptors and 

higher-level contextual image features and implicated stromal morphologic structure as a 

prognostic determinant for breast cancer. Ali et al. (2013) designed spatially aware cell cluster 
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graphs to predicting tumour outcome in Oropharyngeal p16+ and showed that combining stromal 

and epithelial nuclear architectural contributions yield superior prognostic performances. 

Yamamoto et al. (2019) extracted explainable features from histopathology images and several 

studies have addressed patient stratification by DL methods using H&E images through 

identifying specific areas of tissue strongly associated with either progression or survival (Steiner 

et al., 2018; Mobadersany et al., 2018; Liu et al., 2019). As pathologists will retain overall clinical 

supervision for conclusions drawn from patient samples, transparency is needed in order for them 

to understand when algorithms should be applied and under what circumstances the output should 

be used with caution (Huss & Coupland, 2020). 

Quantity and quality of data - Digital techniques require the pathology specimens to be 

scanned at high resolution. Investment in infrastructure is required to cope with this additional step 

in the pre-diagnostic pipeline, and also to store the colossal amounts of data (e.x, one H&E slide 

with 20x magnification has a file size of 473,869,300 bytes) with appropriate security 

considerations and inventory management capabilities. The advent of a graphics processing unit 

(GPU) based processing, in which vast amounts of data is handled in a parallel fashion has enabled 

up-scaling to extremely large neural networks which allow huge training sets to be loaded and 

processed. The quality of the acquired digital images needs to be certified and accepted both by 

pathologists and the Computer-Assisted Diagnosis system. Presence of artefacts or unintentional 

loss of information during data acquisition can have a significant influence on down-stream 

processing. Digital image artefacts may be introduced at any point along the pathway of 

histopathology slide preparation, from surgical removal through to fixation, tissue processing, 

embedding, microtomy, staining, mounting, as well as the final digitisation step (Taqi et al., 2018). 

It is important to be able to identify commonly occurring artefacts such as blurriness, 

over-straining, air bubbles and colour variation which would adversely affect the interpretation 

and cause the sample to be diagnostically useless. To address these issues, various preprocessing 

methods have been proposed to reduce noise: conversion to grayscale, colour normalization 

(Ehteshami Bejnordi et al., 2015; Ciompi et al., 2017; Khan et al., 2014; Cho et al., 2017) or 

colouraugmentation (Lafarge et al., 2017; Lin et al., 2017). 

Alternatively, Janowczyk et al. (2019) proposed an automated quality control approach to 

precisely localise artefacts on slides to be avoided during computational analysis. Steiner et al. 

(2018) have developed a novel convolutional neural network (DeepFocus) to automatically 
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identify out-of-focus regions in histopathological images. In addition, results of medical interest 

such as survival prediction are sensitively influenced by the accuracy of the designed algorithm. 

Most of these medical approaches are supervised methods relying on ‘ground truth’ information 

i.e. data collected from the real world. For most problems, the expert opinion of histopathologists 

and other medical doctors provide the gold standard for training automated decision support 

systems. However, in many settings, it may be impossible for clinicians to provide this training 

information with absolute certainty. In summary, although the performance of an algorithm is 

often measured by accuracy this is not the only feature that is required if the tool is to be of use in 

everyday applications, including in the field of IO. Training a model on diverse and noisy clinical 

cohorts will cause accuracy to decrease, but is of pivotal importance in achieving a generalizable 

algorithm. It is crucial that any model undergoes careful and rigorous validation, preferably within 

the context of a multicentre prospective trial (Banna et al., 2019). Once applied in real-world 

scenarios, a clinical team will still be required to make a final judgement on the utility of the output 

for any individual, bearing in mind the additional context and influencing factors. 

 

4. AI Methodology in the Field of IO 

In Table 4, we present some of the DP approaches that have been used to facilitate different 

pathology workflows for various immune biomarkers, some of which have characterised the TME 

through spatial analysis and multiplexing. In Table 5, we present non-comprehensive collections 

of DP approaches that have been used to facilitate different pathology and data integration 

workflows for IO. These work have characterised the TME through cell analysis, spatial analysis, 

multiplexing, and omics data integration, which will be divided into 4 sections for in-depth 

discussions. 

 

4.1. Applications in IO Research 

• Evaluating TME topography - The functionality of individual cells within the TME is 

influenced by their precise location, including proximity to other cell types and features of 

the supporting stroma. Macrophages, for example, display location-dependent phenotypic 

plasticity; behaviour varies according to whether they are located in the invasive, stromal 

or hypoxic zones of the tumour (Yang et al., 2018). Single-cell RNA-seq has also 

contributed to the discovery of functionally distinct cell subsets in the TME, which hold 
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independent prognostic and predictive value in determining response to immunotherapy 

(Bartoschek et al., 2018). Tissue sections preserve spatial information and are therefore an 

ideal substrate for computational analysis of topographical patterns. DL-based image 

analysis has been used extensively to study the spatial organisation of the immune infiltrate 

across cancer types, revealing rich and diverse patterns from routine clinical H&E 

(Failmezger et al., 2019). Effland et al. (2019) demonstrate the use of a machine learning 

algorithm which can detect immune cells in the immediate neighbourhood of tumour cells. 

The model could also be used to identify immune cells proximate to other immune cells, 

and thereby define immune-rich zones. One interesting aspect of this work was the use of 

an artificial training dataset, generated stochastically from a handful of real-life images. 

This approach avoids the requirement for extensive numbers of annotations by pathologists 

but may threaten generalizability. Fibroblasts may provide growth factors and extracellular 

matrix components providing an extrinsic mechanism of immune-escape. Using a 

combination of flow cytometry and spatial histology assessment, studies in both breast and 

pancreatic cancer independently identified specific immunosuppressive fibroblast subsets 

that localize to the boundary of tumour nests (Costa et al., 2018). The observations of 

specific spatial compartmentalization of these cell subsets are intriguing, and automated 

spatial histology analysis could help accelerate and standardize such studies. For example, 

Failmezger et al. (2019) have recently demonstrated the use of network topological 

analysis to define a physical barrier of lymphocytic infiltration formed by stromal cells 

within the TME of metastatic melanoma. In lung cancer, the fractal complexity of the 

cancer-stromal cell interface has been used to characterize the spatial arrangement of 

immune cells (AbdulJabbar et al., 2020). The box-counting algorithm, also known as the 

Minkowski–Bouligand dimension, was modified in order to capture coarse-to-fine 

geometric details of the cancer-stroma interface over a range of spatial scales determined 

by cell distributions. Using this method complex morphological patterns dictating 

cancer-stromal cell contact emerged, which were preserved over varying spatial scales. 

Fractal dimension was significantly higher in immune-cold tumour regions, and this could 

not be explained by stromal cell abundance. This supports the conclusion that 

stroma-based inhibition associated with immune cold phenotypes is a specific 

morphological pattern. Spatial measures of the immune response such as these have been 
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shown to correlate with resistance to immunotherapy and with patient outcomes, and 

therefore have the potential for clinical application as predictive biomarkers. 

• Optimisation of immune scoring - The availability of AI tools in DP has renewed 

interests in the development of immune scores for predicting prognosis and response to 

immunotherapy. Koelzer et al. (2018) demonstrated an example of computational 

quantitation of membranous PDL1 expression using multiplexed IHC and the HALO™ 

digital image analysis software. The authors then employed a supervised machine learning 

algorithm (random forest model) to classify and exclude immune cells from analysis. By 

restricting PD-L1 scoring to melanoma cells, the authors aimed to reduce apparent 

heterogeneity which would otherwise lead to artificially high scores. The checkpoint 

inhibitor ipilumimab is an antibody directed against cytotoxic T-lymphocyte antigen 

(CTLA-4). There is an unmet need for biomarkers predicting response to CTLA blockade. 

Harder et al. (2019) used an AI approach to discover novel immune-based signatures 

associated with clinical response. WSI were generated from melanoma biopsies taken prior 

to exposure to ipilumimab, slides had been stained for CD3, CD8, and FoxP. Objects of 

interest (CD4 and CD8 positive cells) stained in a similar way to melanin and therefore a 

DL classification step was used to identify the immune cells. Image-based features from 

regions of interest were then extracted and mined for correlation with patient outcomes, 

although the small sample size was limiting in this study with respect to clinically 

translatable conclusions. Successful digital approaches to TILs scoring not only enhance 

speed and precision but also permit the integration of spatial information (Amgad et al., 

2020). For example, in early-stage lung cancer, a set of spatial descriptors of 

co-localisation patterns of TILs and tumour cells were associated with recurrence 

(Corredor et al., 2019). In bronchoscopic biopsies from pre-invasive lesions, regressive 

carcinoma-in-situ lesions harbour more infiltrating immune cells, measured by AI and DP, 

than those that progress to cancer, suggesting that host immune surveillance is strongly 

implicated in regression of such lesions (Pennycuick et al., 2019). Conversely, the 

presence of a poorly-infiltrated tumour is a negative prognostic indicator in solid tumours. 

For example, in one of the first studies to investigate the immune landscape across multiple 

metastases using pathological samples, the immunoscore for the least immune-infiltrated 

metastases was found to be the strongest prognosticator in colorectal cancer (Mlecnik et 
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al., 2018). Similarly, multi-region sampling in lung cancer found a strong association 

between the number of tumour regions with diminished lymphocytic infiltration and the 

risk of disease relapse. Prognostic value was independent of tumour size and stage and 

further validated in an independent cohort of 970 patients with 4,324 multi-region tumour 

samples, representing the largest multi-region fully automated computational pathology 

analysis to date (AbdulJabbar et al., 2020). Thus, even if there is above-average immune 

infiltration across the tumour(s) as a whole, it is the presence of immune-cold regions 

which appears to drive the clinical outcome and is, therefore, the more significant feature. 

Automated techniques can enhance our ability to detect such regions. Neural networks 

enable the integration of heterogeneous data. Reiman and colleagues demonstrated a model 

which incorporated bulk RNA sequencing data and morphological features from H&E 

specimens to estimate abundance of immune cell subtypes. This enabled the identification 

of key effector immune cells without the need for more specialised laboratory techniques 

such as multiplexed immunofluorescence or single-cell RNA sequencing (Reiman et al., 

2019). The approach was flexible and the authors envisioned that additional clinical or 

molecular information could be incorporated, such as radiological features or data from 

methylation assays. Thus DP and AI could be applied to the measurement of composite, 

multi-modality biomarkers. 

• Accounting for intra-tumoural heterogeneity in biomarker development - When 

assessing the immunogenicity of a given tissue sample, pathological and molecular 

approaches may produce discordant results. Spatial heterogeneity may also account, at 

least in part, for the lack of reproducibility in molecular testing on diagnostic tumour 

samples, due to sampling bias. Indeed, up to 50% of patients from a multi-region dataset 

were vulnerable to this issue when using published prognostic signatures (Biswas et al., 

2019). Identifying genes expressed uniformly (‘clonally’) across different regions within 

the same tumour, and deriving a molecular read-out on this basis is likely to be more robust 

to which part of the tumour is biopsied than conventional methods. The ORACLE 

signature was significantly associated with mortality in a meta-analysis of 904 lung cancer 

patients sourced from five separate cohorts. In a study using multi-region sampling, DL 

pathological image analysis and RNA-sequencing data were derived from the same frozen 

tissue samples in non-small cell lung cancer (AbdulJabbar et al., 2020). Immune 
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assessment based on these two data types were in agreement in the majority of samples, 

with the exception of patients that exhibited high intra-tumoural heterogeneity of immune 

cell distribution as based on RNA-seq and exome-sequencing data. Moreover, in the 

discordant tumour regions, pathological images showed a high level of spatial 

heterogeneity in TIL distribution, measured by immune spatial clustering. Thus, spatial 

heterogeneity of lymphocyte distribution is likely to be the explanatory factor for the 

discrepancy between data types generated from adjacent tumour sections. Approaches 

such as this that consider intra-tumoural heterogeneity may help overcome the 

reproducibility problem for tumour molecular biomarkers. 

• Deciphering cancer evolution towards immune escape - The TME can be considered as 

an ecosystem made up of interacting populations of cancer cells and stroma (Merlo et al., 

2006; Weinberg, 2008). Intra-tumoural genetic diversity of cancer cells provides a 

substrate for evolution according to Darwinian principles (Greaves, 2015). The anti-cancer 

host immune response, enhanced by IO therapeutics, exerts a selective force which favours 

expansion of clonal populations that are able to resist this pressure – this is known as 

immunoediting (Rooney et al., 2015). Immune-escape may be mediated by cancer-cell 

intrinsic adaptations, such as modulation of immune checkpoint pathways, or through 

selection advantages conferred by the cancer-associated stroma (Dong et al., 2002; Vinay 

et al., 2015). By combining pathological immune scoring with sequencing efforts, it has 

been shown that immune edited tumour clones of colorectal cancer were eliminated while 

progressing clones were immune-privileged, such that branched evolution across space 

and time could be traced back to immune-escaping clones (Angelova et al., 2018). In 

high-grade serous ovarian cancer, a negative association between epithelial CD8+ TILs 

scored using AI and DP and cancer genetic diversity was found, providing evidence of 

immunological pruning of tumour clones (Zhang et al., 2018). Thus, DP coupled with 

omics data will allow the expanded application of these techniques to discover unique 

spatial signatures that signify immune regulation and evasion. 

 

5. Conclusion 

AI and DP tools, tailored for use with routine clinical samples and cutting-edge multiplex 

tissue imaging techniques have the potential to enable precise descriptions of the complex spatial 
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organization of the tumour ecosystem to emerge. Integrating this information with genomic and 

transcriptomic data could unveil mechanisms of immune escape evolving with and without 

treatment. AI could therefore drive the discovery of novel biomarkers of immune sensitivity and 

resistance, and identify novel therapeutic targets DL approaches have been popular in early 

computational pathology efforts. However, there are unavoidable challenges in their application to 

clinical data. Many current DL algorithms are regarded as ‘black box’ models, for which it is 

difficult to produce an explanation for a particular predictive outcome or identify the salient 

features upon which a decision was made. This is one reason why it has not yet yielded validated, 

comprehensive, high-level systems. A collaborative approach between data scientists and clinical 

pathologists in this field will provide the optimal conditions for the development of robust 

solutions that are sufficiently interpretable to cross into clinical use. 

 

Acknowledgements 

F.S. acknowledges funding from NIH U54 CA217376 and R01 CA185138, CDMRP 

Breast Cancer Research Program Award BC132057. A.H. acknowledges support by Children’s 

Cancer and Leukaemia Group (CCLGA201906). N.S. and R.R. acknowledge NHS funding to the 

NIHR Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and the Institute 

of Cancer Research. 

 

Declaration of interests 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

The authors declare the following financial interests/personal relationships which may be considered as 

potential competing interests: 

The funders had no role in the design of the study; the collection, analysis, or interpretation of the data; the 

writing of the manuscript; or the decision to submit the manuscript for publication. 

Yinyin: Y.Y. has received speakers bureau honoraria from Roche and is a consultant for Merck and Co Inc. 

 

 

Table 1: Overview of papers using deep learning for digital pathology at cell level for various tasks 

including detection, segmentation, and classification. 
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Reference Topic Staining Method 

(Sahiner et al., 1996) Mitosis detection H&E CNN-based pixel classifier 

(Malon & Cosatto, 2013) Mitosis detection H&E Combines shape based 

features with CNN 

(Wang et al., 2014) Mitosis detection H&E CNN and handcrafted 

features 

(Shkolyar et al., 2015) Mitosis detection - CNN-based patch classifier 

(Veta et al., 2016a) Mitosis detection - - 

(Chen et al., 2016a) Mitosis detection - convolutional neural 

network,transfer learning 

(Albarqouni et al., 2016) Mitosis detection H&E fCNN, CNN for 

segmentation 

(Mao & Yin, 2016) Mitosis detection - Hierarchical CNNs for patch 

sequence classificatio 

(Litjens et al., 2017) Mitosis detection - survey on nuclei analysis 

(Irshad et al., 2014) nuclei detection IHC review on nuclei detection 

(Sirinukunwattana et al., 2015) nuclei detection - spatially constrained 

network 

(Xie et al., 2015b) Nucleus detection H&E, Ki-67 CNN-based structured 

regression model 

(Xie et al., 2015a) Nucleus detection Ki-67 CNN model 

(Akram et al., 2016) cell detection - employed the bounding box 

for cell (nucleus) detection 

(Sirinukunwattana et al., 2016) Nucleus detection H&E CNN with 

(Kashif et al., 2016) Nucleus detection H&E Combination of CNN and 

hand-crafted features 

(Xu & Huang, 2016) Nucleus detection - General deep learning 

framework 

(Xie et al., 2016a) Nucleus detection FL, H&E fully convolutional 

regression networks 

(Romo-Bucheli et al., 2016) Tubule nuclei H&E CNN-based classification 
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detection 

(Jacobs et al.) Nucleus detection - transfer learning 

(Turkki et al., 2016) Nucleus detection H&E CNN-based classification of 

superpixels 

(Xu et al., 2016a) Nucleus detection H&E Stacked sparse 

auto-encoders (SSAE) 

(Veta et al., 2016b) Nuclear area 

measurement 

H&E CNN 

(Chen et al., 2016c) Nucleus classification IFL Deep regression network 

(DRN) 

(Han et al., 2016) Nucleus classification 

IFL 

H&E Classification with CNN 

(Mishra et al., 2016) Classification of 

mitochondria EM 

EM CNN-based patch classifier 

(Phan et al., 2016) Nucleus classification 

FL 

H&E transfer learning (pre-trained 

CNN) 

(Albarqouni et al., 2016) Nucleus classification IHC CNN framework 

(Yao et al., 2016) Nucleus classification 

H&E 

H&E - 

(Wang et al., 2016b) Subtype cell detection H&E Combination of two CNNs 

(Xing et al., 2016) Nucleus segmentation H&E, IHC CNN and selection-based 

sparse shape model 

(Gao et al., 2017) Nucleus classification 

IFL 

IFL CNN 

(Zhao et al., 2017) Classification of 

leukocytes RM 

RM CNN-based patch classifier 

(Song et al., 2015) Nuclei segmentation H&E Multi-scale CNN and 

graph-partitioning-based 

method 

(Ronneberger et al., 2015) Cell segmentation - U-Net with deformation 

augmentation 
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(Janowczyk et al., 2016) Nucleus segmentation 

H&E 

H&E deep hierarchical learning 

scheme 

(Akram et al., 2016) Nuclei segmentation - extracted bounding box 

information 

(Yang et al., 2016) Glial cell segmentation 

TPM 

TPM fCNN with an iterative 

k-terminal cut algorithm 

(Song et al., 2017) Cell segmentation 

H&E 

H&E Multi-scale CNN 

(Pennycuick et al., 2019) Cell detection H&E,IHC Deconvolving convolutional 

neural network 

(Hagos et al., 2019) Cell detection H&E,IHC Cell Detection 

(Zhou et al., 2014) Tissue classification - multispectral unsupervised 

feature learning 

 

Table 2: Overview of papers using deep learning at tissue level for various tasks including 

detection, segmentation, and classification. 

Reference Topic Staining Method 

(Ciresan et al., 2012) Segmentation of 

neuronal membranes 

EM Ensemble of several CNNs with 

different architectures 

(Kainz et al., 2015) Segmentation of colon 

glands 

H&E Used two CNNs to segment glands 

(Apou et al., 2016) Detection of lobular 

structures in breast 

IHC CNN and a texture classification 

(BenTaieb & 

Hamarneh, 2016) 

Segmentation of colon 

glands 

H&E fCNN with a loss accounting 

(BenTaieb et al., 2016) Segmentation of colon 

glands 

H&E A multi-loss fCNN 

(Chen et al., 2016d) Neuronal membrane, 

fungus segmentation 

EM Combination of bi-directional 

LSTM-RNNs and kU-Nets 

(Chen et al., 2016b) Segmentation of colon 

glands 

H&E Deep contour-aware CNN 
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(Çiçek et al., 2016) Segmentation of xenopus 

kidney 

CM 3D U-Net 

(Drozdzal et al., 2016) Segmentation of 

neuronal structures 

EM fCNN with skip connections 

(Li et al., 2016) Segmentation of colon 

glands 

H&E Compares CNN with an SVM using 

hand-crafted features 

(Wang et al., 2016a) Segmentation of messy, 

muscle regions 

H&E Conditional random field jointly 

trained with an fCNN 

(Xie et al., 2016b) Perimysium 

segmentation 

H&E 2D spatial clockwork RNN 

(Xu et al., 2016b) Segmentation of colon 

glands 

H&E Used three CNNs to predict gland and 

contour pixels 

(Xie et al., 2015a) Segmenting epithelium 

& stroma 

H&E, 

IHC 

CNNs applied to over-segmented 

image regions 

(Gecer et al., 2018) Detection and 

classification of cancer in 

whole slide breast 

H&E detection, classification and 

pixel-wise labeling of WSI 

(Rodner et al., 2019) Pixel-wise classification H&E,IHC semantic segmentation using a FCN 

 

Table 3: Overview of held challenges in the field of digital pathology. 

Name Aims tissue Dataset 

released 

Y

ea

r 

Provid

ed 

groun

d-truth 

   Staini

ng 

Trai

nin

g 

Testi

ng 

  

ICPR 

https://mitos-atypia-14.grand-challeng

e.org/ 

mitosi

s 

detecti

on, 

breast H&E 32 WSIs 2

0

1

4 

centro

ids of 

mitosi

s, 
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nuclea

r 

atypia 

score 

nuclea

r 

atypia 

score 

GlaS 

https://warwick.ac.uk/fac/sci/dcs/rese

arch/tia/glascontest/ 

gland 

segme

ntatio

n 

colon H&E 85 

imag

es 

80 

ima

ges 

2

0

1

5 

binary 

masks 

BioImaging 

http://www.bioimaging2015.ineb.up.pt/c

hallenge_overview.html 

ccanc

er 

classif

icatio

n 

breast H&E 140 

imag

es of 

2048

×153

6 

20 

ima

ges 

2

0

1

5 

labels 

TUMAC http://tupac.tue-image.nl tumor 

detecti

on 

breast H&E 573 

WSI

s 

321 

WS

Is 

2

0

1

6 

tumor 

prolife

ration 

score, 

molec

ular 

prolife

ration 

score. 

CAMELYON’16 

https://camelyon16.grand-challenge.org

/ 

detecti

on of 

cancer 

metast

asis 

breast H&E 270 

WSI

s 

130 

WS

Is 

2

0

1

6 

annota

ted 

contou

rs, 

binary 

masks 

HER2 Scoring 

https://warwick.ac.uk/fac/sci/dcs/rese

HER2 

scorin

breast IHC 100 

WSIs 

2

0

HER2 

and 
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arch/tia/her2contest g 1

6 

%age 

scores 

TMA analysis in thyroid cancer diagnosis 

http://www-o.ntust.edu.tw/~cvmi/ISBI20

17/ 

cancer 

diagn

osis 

thyroid H&E, 

IHC 

28 

TMAs, 

616 

tissue 

cores 

2

0

1

7 

- 

CAMELYON’17 

https://camelyon17.grand-challenge.org 

detecti

on of 

cancer 

metast

asis 

breast H&E 1399 

WSIs 

2

0

1

7 

metast

ases 

annota

tions 

in 

WSI, 

patient 

pN-sta

ge 

label 

BACH 

https://iciar2018-challenge.grand-chal

lenge.org/ 

classif

icatio

n and 

pixel-

wise 

labelli

ng of 

WSIs 

breast H&E 400+ 

imag

es, 

10 

WSI

s 

20 

WS

Is 

2

0

1

8 

pixel-

wise 

labels 

PatchCamelyon 

https://patchcamelyon.grand-challenge.

org 

metast

asis 

detecti

on 

lymph 

node 

 327,680 

images 

2

0

1

8 

binary 

label 

indicat

ing 

presen

ce of 
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metast

atic 

tissue 

ACDC-LungHP 

https://acdc-lunghp.grand-challenge.or

g/ 

cancer 

detecti

on, 

classif

icatio

n 

lung H&E 150 

WSI

s 

50 

WS

Is 

2

0

1

9 

annota

tion of 

cancer 

region

s 

ANHIR 

https://anhir.grand-challenge.org/Intr

o/ 

image 

registr

ation 

lesions, 

lung-lo

bes, 

mamma

ry-glan

d 

H&E, 

IHC 

50+ 

WSIs 

2

0

1

9 

- 

LYSTO 

https://lysto.grand-challenge.org/LYST

O 

assess

ment 

of 

lymph

ocytes 

breast, 

colon 

and 

prostate 

IHC 20,0

00 

patc

hes 

of 

size 

299×

299 

12,

000 

pat

che

s 

2

0

1

9 

numbe

r of 

lymph

ocytes 

for 

each 

patch 

DigestPath 

https://digestpath2019.grand-challenge

.org/Home/ 

 mucus-

secretin

g 

glands 

H&E 99 

WSI

s 

56 

WS

Is 

2

0

1

9 

cell 

bound

ing 

boxes 

PAIP 

https://paip2019.grand-challenge.org/H

ome/ 

liver 

cancer 

Segm

entati

liver H&E 60 

WSI

s 

40 

WS

Is 

2

0

1

9 

tumor 

area 

segme

ntatio
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on n, 

viable 

tumor 

area 

CodaLab 

https://competitions.codalab.org/compe

titions/20395#learn_the_details-overvi

ew 

classif

icatio

n 

norma

l cells 

blood - 73 

cases 

45 

cas

es 

2

0

1

9 

lables 

LYON 

https://lyon19.grand-challenge.org/Hom

e/ 

lymph

ocyte 

detecti

on 

breast, 

colon 

and 

prostate 

IHC no 

traini

ng 

data 

441 

regi

on 

of 

inte

rest

s 

2

0

1

9 

- 

ECDP2020 

https://ecdp2020.grand-challenge.org/H

ome/ 

identif

y 

HER2

+ from 

HER2

- 

breast H&E 360 

WSIs 

2

0

2

0 

- 

Gleason 

https://gleason2019.grand-challenge.or

g 

gleaso

n 

gradin

g 

prostate TMA

(H&E

) 

245 

cores 

88 

cor

es 

2

0

1

9 

maps 

and 

labels 

 

Table 4: Overview of different pathology workflows for various immune biomarkers that have 

been addressed by deep learning approaches. 

Reference Aims Methodology Dataset used Results 

  Task Approach Tissu Modality  
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e 

(Turkki et 

al., 2016) 

quantification 

of 

tumor-infiltrati

ng immune 

cells 

supervised 

classificatio

n of immune 

cell-rich/poo

r regions 

1-features 

extraction by 

CNN 2- binary 

classification by 

SVM 

breast H&E, CD45 F-score=0.94; 

KDL=0.79 vs 

Kmanual=078 

(Saltz et al., 

2018) 

spatial 

organization 

and molecular 

correlation of 

TIL maps with 

survival, tumor 

subtypes, and 

immune 

profiles 

1-supervised 

classificatio

n of patches 

with 

low/high 

lymphocyte 

by CNN; 2- 

Supervised 

segmentatio

n of necrosis 

regions by 

CNN 

lymphocyte and 

necrosis 

semi-supervised 

CNN 

variou

s 

H&E, 

molecular 

data 

- 

(Mezheyeus

ki et al., 

2018) 

quantification 

of immune 

infiltrates in 

situ in the 

environment of 

epithelial and 

stromal 

compartments 

- - lung TMA ( 

including: 

CD8, CD20, 

CD4, FOXP3, 

CD45RO, and 

pan-cytokerati

n) 

correlation of DL 

vs manual 

lymphocytes 

quantification for: 

CD45RO (R = 

0.52), FOXP3 (R= 

0.87), CD4 (R= 

0.79), CD20 (R= 

0.81),CD8 (R= 

0.90) 

(Turkki et 

al., 2019) 

patient 

outcome 

prediction 

supervised 

classificatio

n of samples 

1-feature 

extraction with 

a deep CNN; 2- 

breast TMA ACCautomated=0.60 

(95% CI 

0.55-0.65) vs 
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into 

low/high 

digital risk 

score 

feature pooling 

with IFV; 

3-PCA; 

4-classification 

with SVM 

ACCmanual=0.58 

(95% CI 

0.53-0.63) 

(Amgad et 

al., 2019) 

region and 

nucleus 

segmentation 

for 

characterizatio

n of TILs 

1-supervised 

classificatio

n of 

histologic 

compartmen

ts; 2- 

segmentatio

n of nucleus; 

3- calculate 

TIL scores; 

1-FCN to 

output a 

combined mask. 

2-decomposing 

output for 

region and 

nucleus 

segmentation; 

3-seed 

classifications 

from the cell 

segmentation. 

breast H&E Dice=0.78, 

ROC-AUC=0.89, 

R=0.73, p<0.001 

(Aprupe et 

al., 2019) 

quantification 

of biomarkers 

of immune 

cells 

Supervised 

binary 

classificatio

n 

1-features 

extraction by a 

CNN; 2- binary 

classification by 

softmax 

lung CD3, CD8, 

CD20 

cell count 

difference to 

humans=0.033 

cells on average 

(Koelzer et 

al., 2019) 

precision 

immunoprofili

ng, digital 

scoring of 

PD-L1 

expression 

 characterization 

of the tumor 

microenvironm

ent through 

spatial analysis 

and 

multiplexing; 

spatial analysis 

of T-cell 

colon TMA - Jo
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infiltrationn 

(Bug et al., 

2019) 

checkpoint 

inhibitor 

response 

prediction 

using patient 

derived 

xenografts in 

humanized 

mice 

tissue 

classificatio

n using 

HistoNet 

model with 

eight distinct 

classes 

automatic 

extraction of 

meta-features 

for the 

characterization 

of the tumor 

H&E lung 

(mouse-trial) 

F1-score of 83%; 

ACCtumor-response=8

4% 

 

Table 5: Overview of different collections of DP approaches that have been used to facilitate data 

integration work-flows for IO 

Reference Topics Aim Summary 

(Schmauch et al., 

2020) 

A deep learning model to 

predict RNA-Seq 

expression of tumor form 

Whole slide images 

Predict RNA-Seq profiles 

form Whole-slide images 

The developed model 

(HE2RNA) could predict 

subsets of genes 

expressed in different 

cancer types and the 

expression of a subset of 

protein-coding genes. It 

could also quantify 

immune infiltration, 

including genes involved 

in immune cell activation 

status and immune cell 

signalling 

(Gamper et al., 

2020) 

PanNuke Dataset 

Extension, Insights and 

Baselines 

release of PanNuke dataset 

for nucleus segmentation 

and classification; 

eliminate the process of 

Comparing instance 

segmentation 

performance of several 

models using the 
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verification and quality 

control by the clinical 

professionals and 

incorporating 

prepared PanNuke 

dataset. The models 

trained on PanNuke 

generalise to other inseen 

tissues. 

(Fu et al., 2020) Pan-cancer 

computational 

histopathology reveals 

mutations, tumor 

composition and 

prognosis 

pan-cancer computational 

histopathology (PC-CHiP) 

study associations between 

computational 

histopathological features 

and genomic driver 

alterations, whole 

transcriptomes and survival 

Pan-cancer 

computational 

histopathology analysis 

with deep learning 

extracts 

histopathological 

patterns and accurately 

discriminates 28 cancer 

and 14 normal tissue 

types, Computational 

histopathology predicts 

whole-genome 

duplications, focal 

amplifications and 

deletions, as well as 

driver gene mutations 

(Kather et al., 

2020) 

Pan-cancer image-based 

detection of clinically 

actionable genetic 

alterations 

deep learning can predict 

point mutations, molecular 

tumor subtypes and 

immune-related gene 

expression signatures 

directly from routine 

histological images of 

tumor tissue 

deep learning can predict 

point mutations, 

molecular tumor 

subtypes and 

immune-related gene 

expression signatures 

directly from routine 

histological images of 

tumor tissue 

(Mobadersany et Predicting cancer developed a computational Approach surpasses the 
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al., 2018) outcomes from histology 

and genomics using 

convolutional networks 

approach based on DL to 

predict the overall survival 

of patients diagnosed with 

brain tumours from 

microscopic images of 

tissue biopsies and genomic 

biomarkers, present an 

approach called survival 

convolutional neural 

networks (SCNNs), which 

provide a highly accurate 

prediction of time-to-event 

outcomes from histology 

images 

prognostic accuracy of 

human experts using the 

current clinical standard 

for classifying brain 

tumours and presents an 

innovative approach for 

the objective, accurate, 

and integrated prediction 

of patient outcomes. 

(Narayanan et al., 

2019) 

Unmasking the tissue 

microecology of ductal 

carcinoma in situ with 

deep learning 

Automate the identification 

of DCIS; quantify the 

spatial relationship of DCIS 

with TILs, providing a new 

way to study immune 

response and identify new 

markers of progression 

improving clinical 

management. 

Developed a deep 

learning pipeline that 

integrates tissue 

segmentation, DCIS 

segmentation, single cell 

classification and spatial 

analysis in routine H&E 

histology images. 

(Pantanowitz et al., 

2020) 

An artificial intelligence 

algorithm for prostate 

cancer diagnosis in WSI 

of core needle biopsies: a 

blinded clinical 

validation and 

deployment study 

Predicting slide-level 

scores for probability of 

cancer, Gleason score, 

Gleason pattern, and 

perineural invasion and 

calculation of cancer 

percentage present in CNB 

material. 

the trained model was 

tested on internal and 

external datasets 

elucitating generalisibity 

of the algorithms. 
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