
Deconvolving convolution neural network for cell
detection

Shan E Ahmed Raza1,2, Khalid AbdulJabbar1,2, Mariam Jamal-Hanjani3,
Selvaraju Veeriah3, John Le Quesne4,5, Charles Swanton3,6,7, and Yinyin

Yuan1,2

1 Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
2 Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.

3 Cancer Research UK Lung Cancer Centre of Excellence, University College London
Cancer Institute, London, UK.

4 Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
5 MRC Toxicology Unit, University of Cambridge, Leicester, UK.

6 The Francis Crick Institute, London, UK.
7 University College London Hospitals NHS Foundation Trust, London, UK.

Abstract. Automatic cell detection in histology images is a challenging
task due to varying size, shape and features of cells and stain variations
across a large cohort. Conventional deep learning methods regress the
probability of each pixel belonging to the centre of a cell followed by
detection of local maxima. We present deconvolution as an alternate ap-
proach to local maxima detection. The ground truth points are convolved
with a mapping filter to generate artifical labels. A convolutional neural
network (CNN) is modified to convolve it’s output with the same map-
ping filter and is trained for the mapped labels. Output of the trained
CNN is then deconvolved to generate points as cell detection. We com-
pare our method with state-of-the-art deep learning approaches where
the results show that the proposed approach detects cells with compar-
atively high precision and F1-score.

Keywords: cell detection · Convolutional neural network · Micro-Net ·
computational pathology · deconvolution.

1 Introduction

Cell detection/segmentation is an essential part of automated image analysis
pipelines for studying the tumour microenvironment at cell level [12, 19, 18, 17].
This is a challenging problem due to varying size, shape and morphology of cells
across the tumour landscape. Cell detection is often preferred over segmentation
as it is easier to detect the cells with weak boundaries or if the nuclei are clumped
together making it difficult to differentiate the boundary [16]. In addition, it is
easier to collect ground truth data for cell detection compared to segmentation
from pathologists who are already under pressure of high work load. In this
paper, we present a deep learning approach for cell detection in hematoxylin
and eosin (H&E) stained lung cancer images.
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Fig. 1. Sample images for various cell types at 20×. a. cartilage b. tumour c. stromal
d. lymphocytes.

The ground truth obtained for cell detection is usually in the form of dot
annotations where each dot represents the centre of a cell. It is easier to solve
cell detection as a regression problem [12] rather than binary classification of
individual pixels which involve complex voting/encoding mechanisms [25, 28].
Therefore, most of the deep learning approaches regress the probability of be-
longing to the centre of cell followed by local maxima detection [19, 24, 26]. Lo-
cal maxima detection is comparatively easier in problems like mitotis detection
where the mitotic cells are relatively far apart and probability maps are com-
paratively sharp [6]. However, when detecting cells across the tumour landscape,
the probability maps are not very sharp especially for tumour cells with broken
chromatin architecture where there can be multiple local maxima in the proba-
bility map. This is similar with other cell types such as fibroblasts and cartilage
where width of hematoxylin channel changes through the nucleus. In these cases,
a grouping distance can be defined within which there cannot be multiple de-
tections. This parameter is difficult to tune due to large variability in the size of
various cell types. Figure 1 illustrates different cell types in cases where there is
no optimal cell size to choose for grouping distance parameter.

In this paper, we propose an alternative approach to solve the above dis-
cussed problem. We 1. generate artificial mapped labels by convolving dot an-
notations with a mapping filter. 2. train a CNN for mapped labels and then
3. deconvolve the output of the trained CNN with the same mapping filter to
retreive cell coordinates. The results show that the proposed method performs
better in comparison with other state-of-the-art deep learning methods in terms
of precision and F1-Score.

1.1 Related Work

Traditional hand crafted feature based approches rely on morphological features
such as thresholding, region growing, level sets, clustering and graph cuts [21].
Cosatto et al. [7] utilised the difference of Gaussian (DoG) filter for cell detection
followed by hough transform to detect the peaks. Al-Kofahi et al. [2] employed
graph-cut based method initialised by seeds extracted from Laplacian of Gaus-
sian (LoG) filter. Kuse et al. [14] porposed local isotropic phase symmetry for
detection of beta cells in pancreas. Yuan et al. [29] proposed marker controlled
watershed with seeds detected by thresholding. Veta et al [20] use fast radial
symmetry transform to identify nuclei centres. Arteta et al. [4] utilised max-
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imally stable extremal regions for detection of nuclei. Ali et al. [3] proposed
active contours for cell detection and segmentation.

Deep learning methods have become a method of choice due to their promis-
ing results when dealing with large data sets [15]. Cires,an et al. [6] presented one
of the early methods utilising deep learning for mitosis detection in breast cancer
images. They trained a CNN to regress probability of each pixel belonging to
mitosis or non-mitosis. Cruz-Roa et al. [8] and Xu et al. [27] learn unsupervised
features using auto-encoders which are fed to a classifier for cell detection. Wang
et al. [22] extended this method by cascading CNN and hand-crafted features
for mitosis detection. Xie et al. [25] proposed to localise nuclei centres using a
voting mechanism. Sirinukunwattana et al. [19] proposed a spatially constrained
CNN (SCCNN) by appending two extra layers to the fully connected layer. The
added spatially constrained layers estimate the probabilty of a pixel being the
centre of a nucleus. Kashif et al. [13] extended this framework by adding hand-
crafted features to the input which slightly improved the F1-score and recall
at the expense of precision. Chen et al. [5] proposed a deep regression network
which learns it’s parameters for a promixity map generated by the segmentation
mask of mitotic cells. Wang et al. [23] proposed a combination of two CNNs
which perform simultaneous detection and classification of cells. Xie et al. [24]
regress a cell density map followed by local maxima detection to detect cells.
Recently, Xue et al. [28] proposed a CNN which regresses an encoded feature
vector that can be used to recover sparse cell locations. These detections are
combined to get the final detection point. Xie et al. [26] proposed structured
regression to learn proximity maps with higher values near cell centres, the local
maxima provides the centre of cell location.

2 The Proposed Method

The overview of proposed method is shown in Figure 2 and can be divided into
three parts: a) Map dot annotations, b) Train the network for mapped labels, c)
Deconvolve output of trained network to obtain cell detections.

2.1 Map dot annotations

To create a mapping filter, we observed that the average diameter of smallest
abundant cell (lymphocyte) in our data set is about 10 pixels (20×). We created
a binary image b of size 11 × 11 with centre of the image at location (6, 6) set
to 1 and the rest of pixels to 0. We defined radius r = 5 pixels to generate the
mapping filter f

f =

{
(r − dist(b))/r dist(b) ≥ r

0 otherwise
(1)

where dist(b) defines the Euclidean distance transform of the binary image. The
resulting mapping filter is similar to a probability map with the maximum value
(1) at the centre of the image, while the probability reduces as we move away
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Fig. 2. Overview of the proposed method. a. An expert pathologist annotates various
cell types using a web based interface which is translated to dot annotations for cell
detection. The binary dot labels are convolved with a mapping filter to generate arti-
ficial mapped labels. b. The output layer of Micro-Net [17] is convolved with the same
mapping filter and the modified network is trained for artificial labels from (a). c. The
output of the trained network is deconvolved and thresholded with the mapping filter
to obtain a binary mask, the centroids of the mask represent the centre of a cell.

from the centre. As a dot can be recognised as a point source in a binary image,
convolving dot annotations with the mapping filter f have a similar effect as the
point spread function (PSF) of a lens when light passes through it.

2.2 Network Training

To obtain the probability map of the same size as the input image we perform
pixel-wise regression using Micro-Net [17] (252 × 252) architecture which has
recently been shown to be efficient compared to U-Net [18] and other state of
the art pixel-wise classification approaches. Another reason for choosing this
architecture is its ability to visualise the input at multiple resolutions which
is necessary to train for various cell sizes. In addition, inspiration from U-Net
architecture in its design incorporates context information during training from
neighbouring cells which is missed by patch-based algorithms such as SCCNN.
We modify Micro-Net by adding an additional layer to the output L− 1 which
convolves L− 1 with the mapping filter as shown in Figure 2(b), where L is the
number of layers in the modified network. This mapping filter is fixed during
training which helps to force the output to match the shape of artificial labels
and the feature map at L−1 towards binary dot annotations. In addition to the
mapping filter, we use rectified linear unit (RELU) activation instead of tanh
as we need positive values at L − 1. The modified network is then trained for
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the mapped labels using Adagrad optimisation and weighted cross entropy loss
function where the positive weight was empirically chosen to be 100. [1, 9, 17].

2.3 Deconvolving the Network Output

Once trained, the output of the network can be considered as a “blurred” image
of a point source (centre of a cell) with point spread function (PSF) defined
in Equation 1. The output is refined by normalisation by the maximum value
and then deconvolved with blind deconvolution algorithm [10] with an inital
PSF provided by the mapping filter. The output is thresholded to obtain binary
regions. The centroid of each region is obtained as the centre of a detected cell
(Figure 2(c)).

3 Experiments and Results

The proposed method was implemented in tensorflow version 1.8 [1]. The data
set used in this paper is extracted from histology samples of lung cancer patients
from the TRACERx study [11]. Sample images from 55 whole slide images from
different patients were extracted to incorporate stain variation and represent
various cell types according to their populations. We used 13, 484 (∼70%) an-
notations from 99 sub-images for training and 5, 672 (∼30%) annotations from
26 sub-images for testing. Minimum width and height of each sub-image was set
to 252 with no limit on maximum size. The learning rate was empiricially set
to 0.001 and the network was trained for 200 epochs. Data augmentation was
performed using random crop, left/right and up/down flip. In addition we added
random variations for brightness, contrast, hue and saturation using tensorflow
implementation.

We compare our method with the recently proposed SCCNN [19] and Micro-
Net networks [17]. Micro-Net is a segmentation algorithm but the centroid of
each segmented cell can be used as a detection point. Qualitative results for the
proposed method are shown in Figure 3 where yellow circles represent 6 pixel
radius [19] around the ground truth and the green dots represents the output of
respective algorithm. In the first row, SCCNN produces false positives in the bot-
tom right corner but misses a few cells in the middle where tumour cells lose the
chromatin texture. This is due to its higher sensitivity to hematoxylin channel.
In addition, it detects the location of a cell at merging cell boundaries indicating
that it may not be able to differentiate between two local maxima. This problem
occurs when SCCNN is not able to incorporate context information while train-
ing and the peaks might not be very sharp. Micro-Net also misses a few cells in
the middle and top right of the image. In the second row, SCCNN shows similar
kind of problem where it detects cells at boundary of closely packed lymphocytic
cells. Compared to the proposed method, Micro-Net performs slightly better in
this case where the proposed method misses a few nuclei. The third image is a
challenging example consisting of large cartilage cells and spindle like stromal
nuclei. SCCNN and Micro-Net both struggle in this case producing quite a few
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Images SCCNN Micro-Net Proposed Method

Fig. 3. Comparison of proposed method with SCCNN [19] and Micro-Net [17] for cell
detection. Yellow boundary outlines 6 pixel radius around the ground truth annotation
and the green dots represent output. The first row represents a tumour region, second
lymphoid structure and third represents a challenging example of cartilage and stromal
region.

false positives. In summary, SCCNN is highly sensitive to hematoxylin channel,
whereas it fails to detect the centre of a cell where the nuclei are closely placed.
Micro-Net produces better results with round/oval shaped nuclei but struggles
with irregular shaped nuclei specially spindle shaped stromal cells. The pro-
posed method although misses a few nuclei in regions with closely packed cells
but overall it performs better with far less false positives.

For a quantitative comparison all detected points which fall within the 6
pixel radius [19] around the ground truth dot annotations (i.e., within the yellow
boundary in Figure 3) are considered as true positives. The quantitative results
are shown in table 1. F1-score for SCCNN was calculated to be 78.10 (80.2% in
[19]) and for Micro-Net about 83.23%, both methods’ score significantly lower
as compared the proposed network. For quantitative comparison, we used both
local maxima [26] and the deconvolution to extract the true detection points
from the proposed network. Both approaches produced an F1-score of about
∼ 86.7%. However, local maxima has lower precision and higher recall compared
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to the deconvolution approach. This means that the latter produces less false
positives (608) compared to the former (780) which is often desired. This comes
at the expense of higher false negatives with the second approach (866 compared
to 733), hence lower recall.

Table 1. Quantitave comparison with recent deep learning algorithms.

Method Precision Recall F1-Score

SCCNN [19] 72.00% 85.31% 78.10%

Micro-Net [17] 81.32% 85.24% 83.23%

Proposed (Local Maxima) 86.36% 87.08% 86.72%

Proposed Method 88.77% 84.73% 86.70%

4 Conclusions

We presented a deep learning based method for cell detection in H&E stained
cancer images. The proposed method tackles cell detection as a regression prob-
lem, generates artificial labels using a mapping filter, optimises the CNN to train
for the artificial labels and then deconvolves the mapped output of the network
to detect cells. We compare our method with two recently proposed state-of-the-
art methods as well as the conventional local maxima approach. The detection of
the deconvolution method results in higher precision and lower number of false
positives. In addition, the proposed method does not require preprocessing the
images for stain normalisation or deconvolution, thus improving the efficiency.
In future, we plan to extend this work for multi-class cell classification.
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