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Abstract. Intraoperative ultrasound is an imaging modality frequently
used to provide delineation of tissue boundaries. This paper proposes a
simulation platform that enables rehearsal of patient-specific deformable
ultrasound scanning in real-time, using preoperative CT as the data
source. The simulation platform was implemented within the GPU-accele-
rated NVIDIA FleX position-based dynamics framework. The high-resolu-
tion particle model is used to deform both surface and volume meshes.
The latter is used to compute the barycentric coordinates of each sim-
ulated ultrasound image pixel in the surrounding volume, which is then
mapped back to the original undeformed CT volume. To validate the
computation of simulated ultrasound images, a kidney phantom with
an embedded tumour was CT-scanned in the rest position and at five
different levels of probe-induced deformation. Measures of normalised
cross-correlation and similarity between features were adopted to com-
pare pairs of simulated and ground truth images. The accurate results
demonstrate the potential of this approach for clinical translation.

1 Introduction

Intraoperative imaging has been used for navigation in robotic surgical pro-
cedures as a mean to compensate for the limited access, narrowed field-of-view
and lack of tactile feedback. In the context of robot-assisted partial nephrectomy
(RAPN), intraoperative ultrasound (US) facilitates delineation of the tumour’s
borders, potentially improves the tumour dissection and minimises the risk of
positive margins. The benefit of using such an imaging modality associated with
the challenge of acquiring and understanding the data, has encouraged the devel-
opment of simulation-based environments. Depending on the specific application
of the simulator, different features are desired, from real time performance, use
of patient-specific data, a biomechanical model to account for deformation and
acoustic imaging features. Regarding the use of patient-specific data, by resort-
ing to the GPU and the use of CT volumes, Reichl et al. [1] achieved realistic US
images and acoustic features in real time. The similar principle of using imaging
volumes and wave propagation techniques has been adopted by Shams et al.
[2] and Salehi et al. [3]. The former results in accurate and realistic modelling
of acoustic phenomena while using patient-specific data. However, deformation
caused by external forces were not integrated into the simulations. Alternatively,



some effort has been focused on compensating for deformation. Pheiffer et al. [4]
defined a framework for correcting non-rigid tissue compression induced by the
probe in US scanning, to allow for a more accurate volume estimation to be used
in image guidance. Flach et al. [5] used a FEM model around the contact areas
and the known probe geometry to provide an accurate undeformed 3D volume.
Similar work was developed by Goksel et al. [6] to simulate B-mode images of
deformable tissue. These techniques depend on the use of a priori known 3D
US volumes, commonly unavailable in the context of RAPN. Techniques com-
bining 3D volumes and biomechanical modelling have been adopted to address
simultaneously deformation and the use of patient-specific data. Selmi et al. [7]
developed a method for realistic 3D deformable US image generation in real
time. A biomechanical model was combined with a 3D elastic texture in order
to re-slice the patient’s volume to achieve deformable US images. Biirger et al.
[8] developed an US simulator for medical education based on a convolution ray-
tracing approach and a deformable mesh model. Morin et al. [9] simulated US
imaging for breast cancer. MRI volumes in combination with a biomechanical
model provided the means to simulate realistic US imaging.

The framework adopted in this paper combines the use of a biomechanical
model and a 3D preoperative volume to simulate deformable US images inter-
actively. This biomechanical model was previously implemented and validated
for a patient-specific surgical simulator, as described in Camara et al. [10]. The
focus of the work is not on modelling realistic US images but rather in pro-
viding an accurate simulation platform that ultimately provides the user with
the opportunity to rehearse scanning with patient-specific data. Additionally,
it can act as a validation context for manually-operated 3D tumour acquisition
and reconstruction, and to assist further with the automation of intraopera-
tive scanning protocols. The novel aspect in this paper lays on the deformation
method implemented for a patient-specific simulation in real time, associated
with a straightforward data preparation that enables a facilitated translation
into clinical practice.

2 Methods

2.1 Development of a Partial Nephrectomy Phantom

A kidney phantom with embedded tumour was developed in a methodology sim-
ilar to the one used by Hughes-Hallett [11]. Polyvinyl alcohol (PVA), a polymer
that presents similar tensile strength and elasticity to tissue, can be used as a
surrogate for soft tissue organs. A 10% PVA by weight concentration solution
was used. Regarding mimicking tissue biomechanics, by subjecting the solution
to a certain number of freeze-defrost cycles, one can change the material rigid-
ity. A tumour is often stiffer and less elastic when compared to the surrounding
renal parenchyma. Therefore, the tumour was subjected to an initial cycle and
the overall phantom to an extra cycle to create realistic kidney properties. With
respect to CT imaging the phantom, there was a need to clearly differentiate



the boundary between tumour and kidney parenchyma. The tumour was en-
veloped in a thin layer of dense putty, as it presents an increased radiographic
attenuation coefficient and allowed the boundary to be identified. A 3D-printed
non-diseased kidney was used as the mould for phantom. The tumour mould
was a simple spherical mould with diameter of 2.3 cm.

2.2 Experimental Setup

A rig designed in SolidEdge and 3D-printed with polyamide (Materialise), was
used to induce deformation. The rig was composed of a platform designed to
support the phantom and a movable structure which represents an US probe.
Five different levels of deformation were used (total of 14.6 mm), each inducing
approximately a 2.5 mm increment. The bottom part of the kidney mould was
used to act as boundary conditions. The combination of mould and kidney was
placed within the rig and the movable structure varied its position to desired
locations for each set of acquired CT scans. CT images were acquired with
a GE Innova 4100 scanner. Initially, the entire setup was CT scanned for no
applied deformation. It was always assured that the US probe was positioned
as if scanning part of the tumour and that the probe was rigidly fixed. This
procedure was continued for the different levels of deformation, by moving the
probe to the subsequent level of deformation and CT scanning the setup. The
entire setup is showed in figure 1 (a).

(b)

Fig.1. (a) Deformation rig with phantom and support, placed on the CT scanner
table. (b) Cluster distribution within tumour (red) and kidney (yellow) meshes.

2.3 Simulation Platform and Biomechanical Model

The simulation platform was implemented within the GPU-accelerated NVIDIA
FleX position-based dynamics framework [12], in a manner similar to that re-
ported in Camara et al. [10]. All structures of interest, i.e. the kidney, tumour,
support mesh and structure representing the US probe, were segmented from



the 3DCT scans using ITK-SNAP and exported as surface mesh files. Kid-
ney and tumour meshes were imported to MeshLab, whereby smoothed (us-
ing the volume-preserving HC Laplacian smoothing algorithm) and decimated
(with the quadratic edge collapse decimation algorithm). The FleX framework
supports different forms of modelling structure and collision geometries. The tu-
mour mesh was modelled as a triangular mesh, solely used for analysis, whereas
the kidney, which embeds the tumour region, was modelled as a combination
of particles. These particles were distributed and clustered together into shape-
matching clusters, assuming two different values of stiffness coefficients. For all
the clusters where centroids were found within the tumour mesh boundaries,
the cluster stiffness coefficient modelled the tumour deformation, whereas the
remaining clusters were assigned to a different stiffness coefficient to model the
kidney deformation. This assured that the approximate regions of kidney and
tumour were modelled as different structures. The support structure was rep-
resented as a static triangular mesh and used as boundary conditions for the
kidney model. The ultrasound transducer (Aloka UST-533) was approximated
as a cuboid and modelled as a dynamic convex mesh. Both the vertices of the
tumour mesh and triangular mesh representing the kidney surface were defined
in accordance with local particle positions through a weighted matrix bending
technique, often referred as ‘skinning’ [13]. Therefore, the structures attached to
the particle system deformed in terms of the manipulated kidney parenchyma.
The representation of clusters, kidney and tumour surface meshes are showed in
figure 1 (b).

2.4 Ultrasound Simulation

The deformable US scans were simulated by using the same ‘skinning’ technique.
A tetrahedral mesh for the kidney was computed with Gmsh and imported
into the simulation. This mesh was embedded within the particle system and
deformed in accordance with its displacements. A planar discretisation, i.e. a grid
of 1x2 cm with a resolution of 0.25 mm, was registered to the US probe to display
the deformable slice, by means of an efficient interpolation method that mapped
the simulated ultrasound pixels to the undeformed voxels in the respective CT
volume. Each ultrasound image pixel was expressed by barycentric coordinates
in terms of the tetrahedral mesh vertices, and then mapped back to the voxels
of the respective undeformed CT volume. For each image pixel p = [z y 2]7, its
3D position within a tetrahedral element ¢, can be expressed as

3 3
=0 =0

where A; are the barycentric coordinates in terms of the element corners r; =
[#; y; z;]T, which represent the deformed ‘skinned’ vertices. Rearranging equation
1 and expressing it in a matrix form, results in

TA:p—’I'3 (2)

where the matrix T and the array X are defined as
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The barycentric coordinates can be found solving equation 2 for A,

A=T'p—r;3) (3)

Finally, to recover the pixel texture coordinates from the undeformed voxels, as
pixel p is defined by the same barycentric coordinates in the original configura-
tion and the deformed state, one needs to solve the following equation,

p=TA+r} (4)

where T and r? describe the undeformed state and are expressed as
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To compare the simulated slices with the respective ground truth images, the
location of pixels within the grid was registered to the respective CT volume and
saved into an image. The process was repeated for all levels of deformation. The
mapping technique to estimate both the simulated and ground truth images is
similar, but where simulated slices map the grid to the undeformed volume by
means of skinning the particle system, the ground truth slices are obtained by
mapping the grid to the volume respective of each level of deformation.

2.5 Calibration

An estimation of parameters to model soft tissue deformation of the porcine
kidney was achieved in Camara et al. [10], but a calibration is still necessary as
the model used here is a phantom presenting different material properties and
hence, different deformation behaviour. Therefore, a calibration was performed
to determine the framework parameters that allowed for the most realistic de-
formation modelling and validation of US simulation. A simple two-dimensional
search was used to determine the ideal cluster stiffness coefficient of the general
kidney parenchyma, for a given particle radius. The stiffness coefficient for clus-
ters embedded within the tumour boundary was defined as 0.95, as the tumour
is known to be stiffer than the surrounding kidney parenchyma, for this specific
phantom. The particle radius was permitted in the range [2.2, 2.5, 5.7, 3.0, 3.3]
mm and the remaining clusters with a stiffness coefficient in a range [0,1]. The
simulation sub-steps and sub-steps iterations were defined as 3 and 9, respec-
tively. The metric undergoing minimisation was the difference, in percentage, of
the average count of tumour and kidney pixels between the simulated and the
ground truth slices.



3 Results

The metric undergoing minimisation achieved a minimum of 4.5%, across all
levels of deformation, for a cluster stiffness coefficient of 0.6 and radius of 2.2mm.
The resulting US image for each level of deformation, against the ground truth, is
visible in figure 2. Normalised cross-correlation and the difference in approximate
distances of the upper and lower extends of boundaries between the simulated
and ground truth tumour meshes, are showed in figure 3. Absolute distance
between the same meshes is showed in figure 4. For no deformation, these meshes
resemble in volume by 97% compared to the 79% achieved for the 5 level of
deformation.

Simulation
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Fig. 2. US images for the increasing levels of deformation (from left to right), of the
simulated (top) and ground truth (bottom) slices. Cluster stiffness coefficient was de-
fined as 0.6 and particle radius as 2.2 mm.
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Fig. 3. The left axis represents the difference between the simulated and ground truth
slice as a function of the cumulative induced deformation, for the upper and lower ex-
tents. The right axis represents the normalised cross-correlation between both images.
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Fig. 4. Representation of the absolute distance (in mm) between the simulated and
ground truth tumour meshes. From left to right are represented the anterior, right and
inferior views. From top to bottom are represented the 0" and 5" levels of deformation.

4 Discussion and Conclusion

The normalised cross-correlation follows a decreasing trend as the induced defor-
mation increases. The same conclusion is observed in figure 2, where the tumour
to kidney boundary between the simulated and ground truth images seem to
better align for the initial levels of deformation. The tumour meshes in figure 4
show similar results, where the pair of meshes presents increasing absolute dif-
ference in surface distance for increasing levels of deformation. Regardless of the
level of deformation induced by the probe, the difference in the tumour defor-
mation represented in the US slices is smaller than to 1mm. In the context of an
overall displacement of 14.5 mm induced by the US probe, the simulation results
in an accurate deformation and visualisation of the US images. The imperfect
alignment of the scans and tumour meshes for no applied deformation can only
be caused by gravity. Therefore, there is an initial influence on the displacement
of particles that was not compensated for throughout the simulation. The use of
complex geometries for the phantom and boundary conditions might also influ-
ence on the accuracy of the simulation. A three dimensional exhaustive search
would have been ideal if accounting for the calibration of the cluster stiffness
coefficient for the clusters within the tumour boundaries. Future work will focus
on the addition of ultrasound imaging features to improve the realism of the
slices. The need for initial gravity compensation will also be addressed. To note
that the simulation is patient-specific solely regarding geometry. As described
in Miller K. et al. [14], the adoption of patient-specific tissue properties in this
family of applications is of secondary importance. Though the simulation uses
methodology-based parameters, these can be mapped to real tissue properties
in a manner similar to that described in Roberto C. et al. [15].

This paper presents a framework that accurately simulates deformable US slices
in real time using patient-specific imaging as source of data. The implemented
methodology, which provides a stable and robust real time simulation, coupled
with a feasible data preparation, enables a facilitated translation into clinical
practice and patient-specific simulation possible on a broader scale.
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