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 Abstract 
Colorectal cancer (CRC) is the third most frequently diagnosed type of cancer 

and the second leading cause of cancer death worldwide. Although extensive 

biological heterogeneity at multiple “-omics” levels has been demonstrated, a 

very limited number of biomarkers are currently taken into account to guide 

treatment decisions in the clinic. The reason for this is partially due to the lack of 

validated assays suitable for routine clinical application.  Building on gene 

expression CRC subtypes previously identified (CRCAssigner: enterocyte, 

goblet-like, transit-amplifying, stem-like, inflammatory; Consensus Molecular 

Subtypes (CMS): CMS1, CMS2, CMS3, CMS4) as potential biomarkers of 

clinical interest, the aims of the work presented in this thesis were: 

- Develop and validate assays able to stratify CRC patients into clinically 

meanigful subgroups based on the subtypes; 

- Demonstrate the potential value of the assays as companion diagnostic 

tools for predicition of benefit from epidermal growth factor receptor 

(EGFR) targeted drugs cetuximab and panitumumab. 

A total of 825 clinically annotated CRC samples were analysed. A gene 

expression assay for nCounter platform (NanoString Technologies) was 

developed to classify CRC samples into CMS. A second assay was developed 

to integrate the first CMS assay into a previously validated assay for 

CRCAssigner classification. The integrated assays enabled the simultaneous 

classification of samples into CRCAssigner and CMS subtypes. The accuracy of 

the assays was assessed in both fresh-frozen and formalin-fixed paraffin 

embedded samples. Orthogonal validation of the results was performed using 

matched RNAseq data and by confirming known subtype-specific associations 

with clinico-pathological features. Assay detection of similar biological features 

in multiple Caucasian and Asian populations was demonstrated. Finally, the 

potential of the assays as companion diagnostic for anti-EGFR benefit 

prediction was demonstrated in a retrospective cohort; the results were 

validated in samples prospectively collected from patients who received anti-

EGFR monotherapy within an international phase III clinical trial. 
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Chapter 1 Introduction 
 

 

1.1 Colorectal cancer 
 
1.1.1 Historical notes 

 

The beginning of the 20th century expanded the understanding of the aetiology 

and molecular events associated with hereditary colorectal cancer (CRC). The 

study of the “Family G” (suspected CRC family) started with Dr Aldred Warthin 

in 1895 followed by Lynch and Krush in 1971, when they reported what became 

known as the Lynch syndrome (1-3).   

In parallel with these studies, mutations in the adenomatous polyposis coli 

(APC) gene were initially associated with the familial adenomatous polyposis 

(FAP) hereditary syndrome (1930) and subsequently with the initial step of 

tumorigenesis by Fearon and Vogelstein (1,4). 

The vast majority (~75%) of CRC cases are sporadic; of the remaining 25%, 

approximately 20% of cases are considered familial in view of a positive family 

history of CRC whereas only about 5% are hereditary and linked to highly 

penetrant gene mutations (Table 1) (1). 
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Germline 
mutation 

associated 
gene(s) 

Molecular 
alteration(s) Hereditary Associated 

phenotype 
CRC 
risk  

Lynch 
Syndrome 

MLH1/ 
MSH2/ 
PMS2/ 
MSH6 

Deficit in 
mismatch 

repair 
process 

Autosomal 
dominant 

Increased risk of 
colorectal, 

endometrial, gastric, 
ovarian, ureteral and 
renal pelvis cancer 

52-
82% 

lifetime 

Familial 
Adenomatous 
Polyposis 
(FAP)  

APC 

Deregulation 
in WNT-

signalling, 
intercellular 
adhesion, 

microtubules 
assembly 

and 
stabilization 

Autosomal 
dominant 

>100 adenomatous 
polyps in young age, 

increased risk of 
CRC and duodenal 

cancer 

100% 
risk by 
age of 

50  

Attenuated 
FAP (aFAP) 

Autosomal 
dominant 

10-100 adenomatous 
polyps, CRC (later 
onset than FAP), 

upper 
gastrointestinal and 
duodenal cancer risk 

similar to FAP  

70% 
risk 

by age 
of 80 

MUTYH-
associated 
polyposis 
(MAP) 

MUTYH 

Dysfunctional  
adenine 

glycosylate 
excision 
repair 

Autosomal 
recessive 

Increased risk of 
CRC and duodenal 

cancer 

63% 
risk  

by age 
of 60 

 

1.1.2 Incidence, prevalence, mortality worldwide and in the UK 

 

Cancer is the first leading cause of death before the age of 70 years in 

developed countries. For combined male and female data, CRC is the third 

most commonly diagnosed cancer after lung and breast with more than 1.8 

million new cases per year estimated to occur in 2018 and the second most 

common cause of death for cancer after lung cancer with over 881,000 deaths 

per year (5). Incidence and mortality rates differ significantly across world 

regions. Colorectal cancer is typically associated with high or very high Human 

Development Index (HDI) countries and considered a marker of socioeconomic 

development (5). In the United Kingdom (UK), CRC was the fourth most 

common cancer in 2015 with more than 41,000 new cases and more than 

16,000 deaths (6).  

Table 1. Main hereditary syndromes associated with CRC risk (1). 
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Three different patterns in changes in trends have been recently identified: 1) 

increasing incidence and mortality (Russia, China and Brazil); 2) increasing 

incidence and decreasing mortality (UK, Canada and Singapore); 3) decreasing 

incidence and mortality (US, Japan, France) (7). While the decreased mortality 

could be associated with effective screening programs leading to early 

detection and overall improvement in global management, the increasing 

incidence especially in younger age groups is not completely understood. More 

convincing evidence of the negative impact of processed meat, alcohol intake 

and obesity in increased colon cancer risk are available; however these factors 

are not so clearly associated with the increased risk of developing a rectal 

cancer (5). 

With respect to age groups, a recent analysis of incidence patterns in the 

United States demonstrated increasing incidence of colon cancer in young 

adults (up to 2.4% per year in the very young adults age 20-29) and even 

steeper for rectal cancer (3.2%) in the same age group. Opposite trends were 

shown for patients older than 55 years of age (8).  

 

1.1.3 Diagnosis and staging 

 

In screening programmes, the detection of faecal occult blood (FOB) before the 

occurrence of clinical symptoms demonstrated a reduction in mortality from 

CRC by 15% to 30% within randomised control trials (9) and annual/biannual 

FOB test for individuals aged 50-74 is a recommended screening method in 

adjunction with a colonoscopy at the age of 50 (10). A positive test justifies 

endoscopic procedures (sigmoidoscopy or preferably total colonoscopy), which 

allow localization and biopsy of any lesions. After the diagnosis of cancer, 

clinical assessment, blood tests including the carcinoembryonic antigen (CEA) 

and a computed tomography (CT) scan are recommended to rule out metastatic 

disease. A pelvic magnetic resonance imaging (MRI) is recommended during 

the clinical staging of rectal cancer. Surgical staging includes the assessment of 

nodal and liver spreading and the extension of the primary tumour through the 

bowel wall and adjacent organs. A minimum of 12 lymph nodes yield is 
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recommended in particular to accurately distinguish between stages II and III 

(10). A thorough risk assessment is necessary to define patients’ prognosis and 

treatment approach. The TNM staging system takes into account the level of 

tumour penetration into the bowel wall (T), the presence of node metastases 

and the numbers of lymph nodes involved (N) and the presence of distant 

metastases (M). In rectal cancer, the evaluation of the circumferential resection 

margin (CRM) involvement, total mesorectal excision (TME) quality and 

extranodal extension, extramural vascular invasion, peritoneal invasion and 

tumour budding should also be evaluated (11).  After surgical resection the 5-

year survival is in the order of 85%-95% in stage I disease (T1-2, N0, M0), 60%-

80% in stage II (T3-4, N0, M0), 30%-60% in stage III (any T, N1-2, M0) and less 

than 10% in stage IV (any T, any N, M1) (6,10).  

 

1.1.4 Recommended treatment strategies by stage 

 

1.1.4.1 Early stage 

Surgical resection is the standard treatment approach in the absence of 

metastatic disease (stages I-III). Following radical resection, adjuvant 

chemotherapy is recommended in case of stage III disease while the benefit in 

stage II patients is very limited. A meta-analysis demonstrated a non-significant 

decrement in 5-year disease-free survival of about 2% (from 81.4% to 79.3%) in 

stage II patients who received adjuvant therapy (12). International guidelines do 

not recommend adjuvant therapy in unselected patients with stage II disease 

(10,13). However, adjuvant therapy should be considered in high-risk stage II 

disease. Common criteria to define the high-risk stage II disease include the 

presence of one or more of the following factors: poor differentiation; vascular, 

lymphatic or perineural invasion; obstructive tumour or colonic perforation; 

pathological T4 with tumour penetration into the surface of the visceral 

peritoneum or invasion of adjacent organs; lymph nodes yield less than 12 (10). 

Careful considerations need to be taken in the presence of tumours harbouring 

mismatch-repair-deficiency (dMMR) or high microsatellite instability (MSI-H), as 

discussed in the biomarker section. 
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The thymidylate synthase inhibitor fluorouracil (5-FU) was initially patented in 

1956 and came into clinical use in 1962 (14). Initially established in the 

metastatic setting, it entered the first adjuvant studies in CRC in the early 

1970s. In the 1980s a series of studies in the Mayo Clinic tested the activity and 

toxicity profiles of different types of schedules in combination with folinic acid. 

About 30% reduction in the risk of death was confirmed by multiple studies at 

the beginning of the 1990s (15). Its orally available pro-drug capecitabine was 

patented in 1992 and was approved for medical use six years later (14). Its 

equivalence to 5-FU in the adjuvant treatment of stage III CRC was 

demonstrated in 2005 (16).  

Oxaliplatin is the only agent that has demonstrated survival benefit when added 

to a fluoropyrimidine-based regimen in adjuvant setting. Three randomised 

phase III trials (Multicentre International Study of Oxaliplatin/5-

fluorouracil/leucovorin in the Adjuvant Treatment of Colon Cancer [MOSAIC], 

the NO16968 and The National Surgical Adjuvant Breast and Bowel project 

[NSABP-C07]) demonstrated an overall reduction in the relative risk of relapse 

between 16% and 20% with an increase in disease free survival (DFS) rates in 

the order of 5% (17-19). Two of these trials also demonstrated about 20% 

relative risk reduction in the risk of death (17,18). Subgroup analyses of the 

MOSAIC and NSABP-C07 trials demonstrated that the significant benefit of 

oxaliplatin is observed in stage III patients but not in stage II patient (17,18), 

with only a trend towards improvement in the high-risk stage II patients (17). 

Age is another factor to be considered when offering adjuvant therapy.  A 

pooled analysis of seven randomised trials of fluorouracil (with folinic acid or 

levamisole) or surgery alone demonstrated a significant effect of adjuvant 

therapy in improving overall survival (OS) and time-to-recurrence (TTR) in 

patients older than 70 years of age; this benefit was not different from what 

seen in other age groups (20). Furthermore, no significant increase of toxic 

effect compared to younger patients was observed (20). These data justify the 

consideration of adjuvant fluoropyrimidine in stage III patients independently of 

their age group. However, the use of oxaliplatin is less justifiable based on the 

fact that no significant benefit in DFS, OS and TTR was demonstrated when the 
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three oxaliplatin-based trials were pooled together in the Adjuvant Colon 

Cancer End Point (ACCENT) meta-analysis (21). 

In view of the significant neurotoxicity related to oxaliplatin (grade 3 in 12.5% of 

patients during treatment and still present at least as a grade 1 in about 15% of 

patients in the MOSAIC trial) its optimal duration according to different stages of 

risk was evaluated in the International Duration Evaluation of Adjuvant therapy 

(IDEA) pooled analysis (22). Six randomised phase 3 trials evaluating 3 versus 

6 months of oxaliplatin-based therapy in stage III patients were included. 

Although less toxic, non-inferiority of the shorter regimen was not demonstrated 

overall. However, pre-specified subgroup analyses demonstrated the non-

inferiority of 3 versus 6 months of capecitabine and oxaliplatin (CAPOX) in 

particular in stage III lower-risk patients (T1-3, N1).   

While extensively used in metastatic setting, neither irinotecan nor biological 

agents, including the anti-vascular endothelial growth factor (VEGF) and anti-

epidermal growth factor receptor (EGFR) agents, demonstrated improved 

outcomes in adjuvant setting (23-27). 

Neoadjuvant therapy (chemoradiation or radiotherapy alone) is recommended 

in case of locally advanced rectal cancer or of intermediate cases when a good 

quality mesorectal excision cannot be assured (11). The role of adjuvant 

chemotherapy after neoadjuvant treatment and surgery is less clear than in 

colon cancer in view of the fact that patients with rectal tumours were generally 

excluded from adjuvant studies. The quality of clinical staging and suboptimal 

surgery in different studies may also impact in understanding the benefit from 

adjuvant chemotherapy, which in general seemed smaller than in colon cancer 

in terms of DFS and possibly minimal in OS (11). 

Neoadjuvant chemotherapy is not recommended in operable colon cancer. A 

UK national study already demonstrated the feasibility, acceptable toxicity and 

perioperative morbidity of three cycles of preoperative oxaliplatin, fluorouracil 

and folinic acid (28). Full publication of long-term oncological outcomes is 

awaited. 
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1.1.4.2 Metastatic setting 

In presence of metastatic disease a multidisciplinary team management is 

recommended in first instance to determine whether the disease is initially 

clearly resectable or initially unresectable (29). In the presence of 

oligometastatic disease (typically confined to the liver or a few organs e.g. liver 

and lungs), a chance of cure or long-term survival exists and can be up to 20-

50% in patients who obtained a complete resection (R0) (29). Both surgical 

criteria (feasibility and chance to achieve an R0 resection maintaining an 

adequate liver function) and oncological criteria (number of lesions, suspicion of 

extrahepatic disease and in general aggressive tumour biology) need to be 

taken into account (29).  

In case of technically up-front resectable disease, surgery either with or without 

peri-operative treatment (3 months of oxaliplatin and fluoropyrimidine-based 

therapy pre-operatively and 3 months post-operatively) is a standard approach 

without a definitive consensus for one or the other strategy (29). The milestone 

EPOC trial demonstrated a significant 3-year progression-free survival (PFS) 

rate improvement using peri-operative therapy in the order of 9% in patients 

undergoing resection (30). However there was only a trend towards an overall 

survival benefit in the randomised population. Peri-operative chemotherapy 

should be considered in presence of unclear prognostic features suggestive of 

a more aggressive disease. The addition of cetuximab is not recommended in 

view of the detrimental results demonstrated in the New EPOC trial, while the 

role of bevacizumab has not yet been fully established (31). 

In presence of “not clearly resectable” disease, systemic therapy is 

recommended. The treatment strategy varies depending on the overall goal and 

patient’s fitness. More aggressive regimens with two (a fluoropyrimidine and 

irinotecan, FOLFIRI/CAPIRI, or oxaliplatin FOLFOX/CAPOX) or three 

chemotherapy agents (FOLFOXIRI) with or without a biological agent 

(cetuximab/panitumumab or bevacizumab) may be considered when the overall 

goal is to reduce the disease burden. In a pooled analysis of 11 studies, the 

four-drug regimen FOLFOXIRI-bevacizumab demonstrated a 69% objective 

response rate (ORR) with surgical conversion rate of distant metastases of 
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39.1% (32). Multiple phase II studies demonstrated the feasibility and safety of 

a doublet chemotherapy regimen and bevacizumab or cetuximab with variable 

liver resection rates ranging from 30-90% (29). Recently, FOLFOXIRI and anti-

EGFR agents demonstrated very high ORR when used as first-line approach 

reaching 90.6% using panitumumab in the phase II VOLFI study and 71.6% 

using cetuximab in the phase II MACBETH study (33,34). However, these 

studies were not intended to define the conversion rate of not upfront resectable 

disease. Furthermore, in view of the high rate of grade 3/5 toxicities related to 

these regimens (over 30%) careful consideration is required when deployed not 

within the context of a clinical trial. 

When surgery with radical intent is not feasible due to the unfavourable location 

of the disease or patients’ fitness, local ablation techniques are usually 

considered in centres with adequate expertise and after multidisciplinary team 

discussion. These techniques include thermal or radiofrequency ablation, high 

conformal radiation techniques, chemoembolization or radioembolization with 

yttrium-90 microspheres in case of parenchymal lesions (35). Cytoreductive 

surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) may be 

considered in case of metastatic disease limited to the peritoneum and in 

centres with expertise with this approach (35). Although some degree of benefit 

in terms of local disease and symptoms control may be achieved, the evidence 

of long-term benefit remains to be established.    

Finally, in presence of clearly unresectable disease with a low likelihood of 

achieving a radical resection and cure, systemic treatment or best supportive 

care are the recommended approaches. The aims are symptoms control, 

maintenance of the best possible quality of life and life prolongation. A 

fluoropyrimidine monotherapy is indicated for patients not able to tolerate a 

more aggressive treatment. A doublet with oxaliplatin or irinotecan is the most 

commonly used approach. The choice between the two agents is usually based 

on whether the patient previously received oxaliplatin in adjuvant setting, the 

time to progression from oxaliplatin and the presence of residual peripheral 

neuropathy. In chemo-naïve patients, the choice is based on patients’ 

comorbidities and preferences (the alopecia related to irinotecan is the most 

common discriminatory factor). The sequential use of oxaliplatin-based followed 
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by irinotecan-based chemotherapy at progression or the opposite sequence 

demonstrated to be equally effective (36). When used in first-line, oxaliplatin 

has the advantage of being potentially re-challenged in more advanced settings 

especially when previously interrupted in a non-refractory setting (37,38). 

Biological agents are appropriate in first-line setting unless contraindicated 

based on patients’ comorbidities and subject to countries’ specific restrictions. 

While in patients with tumours carrying a mutant Rat Sarcoma Virus (RAS) 

gene the only biological agent indicated is bevacizumab (or 

ramucirumab/aflibercept in second-line setting), in RAS wild-type patients either 

anti-angiogenic or anti-EGFR agents are possible options (35). Subgroups 

analyses of the FIRE-3 phase III clinical trial (FOLFIRI plus cetuximab versus 

FOLFIRI plus bevacizumab) demonstrated a significant survival benefit using 

the anti-EGFR agent in the RAS wild-type population (39). Similar results were 

demonstrated in the phase II PEAK study using panitumumab instead of 

cetuximab and FOLFOX as chemotherapy backbone (40). Conversely, no 

difference were demonstrated in The Cancer and Leukemia B and Southwest 

Oncology Group (CALGB/SWOG) 80405 trial, where the difference in 

chemotherapy backbones (both FOLFOX and FOLFIRI were used) and the 

longer OS in the overall population better than expected (29 months observed 

compared to 22 months expected) possibly had an impact on the final results 

(41). In patients that do not progress during treatment, discontinuation with a 

chemotherapy-free interval or maintenance therapy should be discussed. While 

oxaliplatin is more frequently interrupted after 16-24 weeks due to cumulative 

peripheral neuropathy, irinotecan may be continued until progression or until no 

longer tolerated (35).  

The choice of regimen in the second-line setting is commonly dictated by what 

received in first-line. More commonly both the chemotherapy backbone and 

biological agent (if indicated) are switched. However, different strategies are 

justified by several clinical trials. As examples, after first-line regimen including 

the anti-angiogenic agent bevacizumab, the switch to a different chemotherapy 

backbone plus bevacizumab or another anti-angiogenic agent like ramucirumab 

or aflibercept is justified by randomised phase III trial (42-44). Less evidence is 

available for the continuation of anti-EGFR therapy beyond progression. 
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Although the phase II CAPRI-GOIM study demonstrated a marginal benefit in 

PFS in RAS wild-type population, emerging evidence may support an 

intermittent rather than continuous use of anti-EGFR agents (45,46). The 

available biomarkers currently used to inform treatment decisions and evidence 

related to anti-EGFR therapy will be extensively discussed in the next 

paragraphs. 

Two further agents are available in the treatment of previously treated 

metastatic CRC based on randomised phase III trials. The small molecule 

multikinase inhibitor regorafenib demonstrated a small (in the order of 2 

months) but significant benefit in OS prolongation when compared to placebo in 

both Caucasian and Asian population (47,48). More recently, the oral cytotoxic 

agent trifluridine-tipiracil also demonstrated a significant 2-months improvement 

in OS when compared to placebo (49). The study included also patients that 

previously received regorafenib in about 20% of the cases. Therefore, both the 

drugs represent evidence-based treatment options after second-line therapies. 

The choice of one agent over the other is usually based on residual toxicities 

and organ function, in particular limited bone-marrow reserve (regorafenib 

preferred) and limited hepatic reserve (trifluridine-tipiracil preferred). 

Although recommended by international guidelines, the access to and 

reimbursement of biological agents differ from country to country. In the UK, 

none of the anti-angiogenic agents including regorafenib is available outside the 

context of a clinical trial and anti-EGFR therapies are recommended only as 

first-line therapy in conjunction with doublet chemotherapy (50). 

 
1.1.5 Molecular mechanisms of action of approved drugs for CRC 
 

Table 2 summarises the drug agents commonly used in metastatic CRC and 

their mechanisms of actions. 
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1.1.5.1 Chemotherapy agents 

Multiple fluorinated antimetabolites demonstrated anticancer activity by 

interfering with DNA synthesis in proliferating cells. The inhibition of the activity 

of the thymidilate synthase enzyme results in reduced availability of 

deoxythymidine triphosphate and 5,10-methylentetrahydrofolate, both essential 

for thymidine synthesis (51). Fluorouracil and deoxyfluorouracil triphosphate 

could also be directly incorporated into RNA and DNA, respectively, because of 

their analogy with the naturally occurring uracil base. Different schedules of 

administration of fluoropyrimidines were developed in order to modulate their 

different mechanisms of action in different phases of the cell cycle to ultimately 

increase their cytotoxic effect (51). The most commonly adopted regimens for 5-

FU is as a bolus followed by continuous infusion (instead of pulse administration 

Table 2. Chemotherapy, targeted agents and monoclonal antibodies 
frequently used as systemic treatment of CRC. 
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over 5 days) after intravenous load of folinic acid (5-FU modulator by increasing 

the intracellular pool of folates which stabilises the inhibition of thymidilate 

synthase) (51). 

Oxaliplatin, a third generation platinum compound, is the only platinum salt that 

demonstrated activity in CRC (53). Although differences in the type of DNA 

adducts platinum-induced have been clearly documented, the reason behind 

this selective sensitivity to oxaliplatin in CRC but not to carboplatin or cisplatin 

(both also active in other cancers including gastric cancer) are not completely 

understood (53). Different DNA-repair mechanisms are involved in the 

interaction with cisplatin or oxaliplatin-induced adducts which partially justify this 

differential tissue-sensitivity (68). 

Irinotecan is a semisynthetic derivative of camptothecin, a natural alkaloid 

produced by the Camptotheca acuminate Chinese tree (54). After enzymatic 

conversion, the active metabolite SN-38 stabilises the DNA-Topoisomerase I 

complex during cell replication, leading to cell death (54). 

Both oxaliplatin and irinotecan demonstrated modest single agent activity (in the 

order of 20% in terms of response rate) and well-tolerated toxicity profiles, 

making both these agents suitable for combination regimens with 

fluoropyrimidines (69).  

DNA alkylating agents including temozolamide and mitomycin C demonstrated 

very modest activity in CRC and they are currently not considered in clinical 

practice, especially after more effective regimens with oxaliplatin and irinotecan 

were developed (56,57,70). 

 

1.1.5.2 Anti-angiogenic agents 

The high metabolic rate of cancer cells with consequent high demand of oxygen 

frequently exposes the tumoural bed to hypoxic conditions. Hypoxia is one of 

the drivers of neo-angiogenesis (71). The overexpression of elements of the 

VEGF gene family induced by the hypoxia-inducible factor-1alpha made these 

elements attractive targets for anti-cancer therapies (59).  Four anti-cancer 

agents are approved in CRC (Table 2). The three monoclonal antibodies 
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selectively bind the ligands (bevacizumab and ziv-aflibercept) or the receptor 

(ramucirumab) of the VEGF gene products. None of them demonstrated 

significant single agent activity but synergistic effect when added to 

chemotherapy regimens (72-74). Multiple mechanisms of action of these agents 

have been described and include the inhibition of new vessels formation and 

the regression of newly formed vessels, vasoconstriction via the activation of 

endothelial cell-derived nitric oxide with consequent reduced blood supply to 

cancer cells; normalization of vasculature with increased delivery and uptake of 

chemotherapy agents (synergistic effect); potential direct effect on cancer cells 

with inhibition of invasion and migration induced by VEGFR-1 (75). While these 

functions are mediated by the antigen-binding fragment (Fab) of these 

antibodies, the fragment crystallisable (Fc), or tail region, mediates the 

antibody-dependent cell-mediated cytotoxicity (ADCC) activity of these 

antibodies. Via ADCC, innate and adoptive immune responses are triggered 

and have been frequently reported as further effect of monoclonal antibodies 

(76). 

 

1.1.5.3 Anti-EGFR agents 

Currently two monoclonal antibodies, cetuximab and panitumumab, are 

approved for the treatment of CRC (Table 2). For both agents the mechanisms 

of actions are initiated by the selective binding of the extracellular portion of the 

EGFR. An in-depth description of the molecular events following EGFR 

blockade, mechanisms of resistance and different activity based on cancer 

molecular characteristics are discussed in Chapter 4.  

 

1.1.5.4 Immunotherapy agents 

Historically, CRC has been considered not immunogenic based on numerous 

observations including no reported cases of spontaneous tumour regression 

(opposite to melanomas or renal cell cancers), controversial reports on the 

presence and prognostic meaning of tumour-infiltrated lymphocytes and no 

response demonstrated in first generation immunotherapy studies (77).   



	

	 34	

However, the subgroup of patients with tumours harbouring genetic 

(microsatellite) instability due to defective mismatch repair mechanisms showed 

presence of intraepithelial T-cytotoxic lymphocytes and, clinically, a better 

prognosis (77). Mismatch repair deficient (MMRd) CRCs have up to 100 times 

more somatic mutations than proficient tumours (78). Using whole-exome 

sequencing, Le et al. found a mean of 1782 somatic mutations per tumour 

versus only 73 in patients with proficient tumours (78). More than 30% of these 

mutations were potentially immunogenic, as associated with peptides with high 

affinity for Major Histocompatibility Complex (MHC) class I (neoantigens), able 

to activate a T-cell response (78-79). These findings explain why MMRd CRC 

have a better prognosis, possibly due to their enhanced host immune response 

(80). When treated with an immunotherapy checkpoint inhibitor 

(pembrolizumab), MMRd tumours responded, while no responses where 

observed in MMR proficient tumours (78). Conversely, the presence of MMRd is 

associated with resistance to fluoropyrimidines (80). In line with pre-clinical 

studies in cell lines showing resistance to 5FU in MMRd lineages, the use of 

adjuvant 5-FU did not demonstrate significant benefit in early stage disease 

(81). The immune suppressive effect of chemotherapy may potentially justify the 

detrimental effect observed in 5-FU treated MMRd CRC (80).  

 

1.1.6 Mechanisms of therapy response and resistance in CRC   
 

The majority of chemotherapy agents active in CRC interfere with DNA 

synthesis or replication (Table 2). Their preferential effect on cancer rather than 

normal cells is explained by the higher proliferation rate of cancer cells, 

requiring higher DNA synthesis/replication activities. However, not all CRCs 

respond to chemotherapy at the same way. Table 3 describes the most 

commonly used regimens and their expected response rates. 
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One of the most intuitive answers justifying these different behaviours is the 

potential diversity in proliferation rates. However, controversial results related to 

the role of the expression of the antigen KI-67 (proliferation marker) have been 

published (94). Some studies identified increased benefit from adjuvant 

treatment in highly proliferating tumours compared to low proliferating one, and 

a recent meta-analysis demonstrated the overall poor prognostic value of high 

KI67 expression  (95). However, no convincing evidence is currently available to 

justify the routine assessment of this marker. 

Multiple enzymatic reactions are involved in the activation of chemotherapy 

agents and in their metabolism. Hence, diverse levels of activity and expression 

of these enzymes may affect the anti-tumour effect and the toxicities caused by 

drugs. As example, fluoropyrimidines are metabolised by the dihydropyrimidine 

dehydrogenase (DPD) enzyme, which demonstrated a variable level of activity 

based on inherited polymorphisms of the gene (96). Heterozygosis for mutant 

DPD alleles is estimated in about 5% of the population, with increased risk to 

suffer from severe toxicities during fluoropyrimidine treatment, therefore testing 

for DPD deficiency is now recommended to guide treatment dose adjustments 

(29). When measured in the tumour, low levels of DPD expression were 

Table 3. Regimens commonly used for the treatment of metastatic CRC and 
their expected response rates. 



	

	 36	

significantly associated with increased response to 5-FU (96). Conversely, 

altered activities of enzymes related to pro-drug activation as in the case of 

irinotecan (activated by the carboxylesterase or the uridine diphosphate-

glucuronyl transferase) may lead to reduced drug response (54). Synergistic 

effect between fluoropyrimidines and irinotecan is also related to a more 

prolonged enzymatic inhibition, of the thymidilate synthase in this case, leading 

to enhanced cytotoxic effect (54). 

Overall, both tumour intrinsic characteristics and enzymatic activity in normal 

tissues play a role in modulating the drug exposure and ultimately efficacy. 

However, the definition of normal, enhanced or reduced activity of enzymes in 

their more common variants or in mutant forms is challenging, extremely 

variable according to physiological statuses and external factors. The activity of 

the cytochrome p450 is an example: this cytochrome is involved in the 

metabolism of multiple chemotherapy drugs; its activity is modulated by age, 

intake of certain foods and polypharmacy (especially in the elderly) and 

environmental factors like exposure to smoking (97). Similarly, the presence of 

germ line polymorphisms in genes related to the chemotherapy drugs 

pharmacodynamics, as example the methylentetrahydrofolate reductase 

(MTHFR) or the Excision Repair Cross-Complementing group 1 (ERCC1) 

genes, has been associated with different response to treatments (98, 99). 

 

1.1.7 Recent successes and failures in the treatment of colorectal cancer 
 

Following the success in melanoma and lung cancer, treatment with immune 

checkpoint inhibitors also reached a subset of CRC patients. Pembrolizumab 

and nivolumab, both inhibiting the programmed cell death 1 (PD1) receptor 

predominantly expressed on cytotoxic T lymphocytes, received Food and Drug 

Administration (FDA) approval in 2017 for previously treated CRC patients with 

tumours harbouring mismatch-repair-deficiency (dMMR) or high microsatellite 

instability (MSI-H). The approval was based upon phase II studies 

demonstrating response rates up to 50% in dMMR/MSI-H patients with more 

than 70% of them still alive after one year (100,101). Multiple promising studies 
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testing immunotherapy agents in non-chemorefractory setting are on-going 

(102). Recently, the combination of nivolumab and ipilimumab (targeting the 

cytotoxic T lymphocyte antigen 4 or CTLA4) demonstrated an ORR of 60% and 

a disease control rate (DCR) of 84% in 45 previously untreated dMMR/MSI-H 

CRC patients enrolled in the phase II study Checkmate 142 (103). The same 

combination demonstrated promising results in a small cohort of stage III 

dMMR/MSI-H CRC patients with 4 out of 7 patients reaching complete tumour 

response (104). Although very encouraging, none of these drugs is currently 

available as standard treatment option in Europe. The results of phase III trials 

are largely awaited for potential European Medicines Agency (EMA) approval. 

Other encouraging signals are coming from studies targeting the human 

epidermal growth factor receptor 2 (HER2) in chemorefractory CRC patients. 

The Italian HERACLES phase II trial demonstrated the activity of the 

combination of transtuzumab and lapatinib in HER2-positive tumours with 30% 

of ORR (105). Similarly, the combination of pertuzumab and transtuzumab in 

HER2-amplified CRC patients demonstrated the same level of activity (32% 

ORR) (106). Although exciting, both dMMR/MSI-H and HER2 positive tumours 

represent 5% of the metastatic CRC population. 

Sadly, the number of recent failures seems overwhelmingly higher than 

successes. Firstly, no response to immunotherapy has been seen in MMR 

proficient patients who represent the vast majority of metastatic CRC. Multiple 

trials are evaluating potential strategies to overcome this immune resistance 

(102). 

Secondly, a number of phase III trials unfortunately missed the primary end-

point in both early (as previously discussed in the adjuvant setting paragraph) 

and metastatic setting, leading to a very limited OS improvement in CRC over 

the last decade in comparison with other tumour types. Examples are the stem-

cell inhibitor napabucasin and the multikinase inhibitor nintedanib, both tested in 

the chemorefractory setting (107,108). Other disappointing results were 

presented at The European Society of Medical Oncology (ESMO) World GI 

Conference 2018 by Bendell et al. The combination of the anti-PD-L1 agent 

atezolizumab with the MEK1/MEK2 inhibitor cobimetinib did not improve OS 

when compared to regorafenib in a phase III study in previously treated CRC 
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patients with microsatellite stable (MSS) tumours or low MSI tumours (109). 

This disappointment came after preclinical studies and the phase Ib study 

demonstrated a synergistic effect in increasing the T cytotoxic activity 

(110,111). Atezolizumab added to 5FU and bevacizumab also failed to improve 

PFS as switch-maintenance strategy after induction chemotherapy compared to 

5-FU plus bevacizumab alone (112).   

 

1.1.8 Potential reasons for treatments failure 

 

Multiple reasons are frequently considered as potential justification for these 

failures, including tumour heterogeneity, tumour evolution and lack of 

reproducible biomarkers able to identify different tumour biology more or less 

likely to respond to different treatment (CRC biomarkers will be discussed in the 

next sub-chapter). 

  

1.1.8.1 Tumour heterogeneity 

Tumour heterogeneity is defined by the existence of cancer cells genotypically 

and phenotypically different that may consequently have distinctive biological 

behaviours within the same tumoural mass (intra-tumoural heterogeneity), 

between tumours with same histological type (inter-tumoural heterogeneity) or 

between the primary tumour and metastatic sites (113).   

Colorectal cancer is a very heterogeneous disease at multiple “omics” levels 

(114). Inter-tumoural heterogeneity was demonstrated in The Cancer Genome 

Atlas where 276 primary tumour samples were analysed at multi-dimensional 

levels. Although all histologically classified as adenocarcinomas, different 

subgroups of cancers could be identified using unsupervised analyses (114). 

These groups represent inter-tumoural heterogeneity. Other authors 

demonstrated how multiple biopsies from the same bulky tumoural mass 

expressed different types of genes with different phenotypes expressed by the 

central region of the tumour and the invasive front (115). This study represented 
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an example of intra-tumoural heterogeneity in CRC. Higher heterogeneity 

estimated as number of subclones using whole-exome sequencing data has 

been associated with poorer survival and higher tendency to metastasize to the 

liver (116).  

Conversely, remarkably high concordance between the type of mutations found 

in the primary tumour and in matched metastatic sites has been demonstrated 

in multiple studies (117). This suggests a less degree of heterogeneity in space 

(different sites of disease) and time (in case of metachronous metastases) 

within the same patient. However, from a gene expression point of view a lesser 

degree of concordance between primary and metastases has been 

demonstrated, with up to 5 different clusters of tumours in the primary tumours 

but only 2 clusters in liver metastases (118). These differences may be 

potentially justified by the pattern of tumour evolution in CRC. 

 

1.1.8.2 Tumour evolution 

Tumour evolution is a field that studies the changes of tumour cell populations 

under selective pressures (119). Selection and persistency of certain clones 

over others can be secondary to the fitness of each clone and ability to survive 

in different conditions, as for example in presence of hypoxia in the tissue (119). 

The natural evolution of CRC has been demonstrated to be punctuated, where 

a high number of genomic aberrations occur in a short time-period at a very 

early stage with only few dominant clones expanding (119, 120). This 

evolutionary model is characterised by high intratumoural heterogeneity at 

baseline with expansion of stable clones that minimally modify during tumour 

progression (119). 

Similarly, chemotherapy selective pressure or the ability of the immune system 

to recognise and destroy specific clones may also affect tumour composition 

and evolution (121, 122).  

While heterogeneity may be responsible for primary treatment resistance (the 

up-front lack of response to therapy), tumour evolution may justify secondary 

resistance to therapies (the lack of response in tumours that previously 
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responded to the therapy). The emergence of RAS mutant clones during 

treatment with anti-EGFR therapy is an example of clonal selection under 

therapy pressure and will be discussed further in Chapter 4 (46).   

Furthermore, the vast majority of new agents are tested in a chemorefractory 

setting, when the level of heterogeneity has possibly exponentially increased 

and the only notions of tumour molecular biology available are from archival 

tissue samples collected before the deployment of multiple lines of therapy. 

Robust biomarkers to guide personalised medicine and a more successful 

development and implementation of new drugs in CRC are eagerly awaited. 

 

1.2 Biomarkers in colorectal cancer 
 

1.2.1 Genomic biomarkers 

 

According to the National Cancer Institute Dictionary of Cancer Terms, a 

biomarker is “a biological molecule found in blood, other body fluids or tissue 

that is a sign of a normal or abnormal process or of a condition or disease”. 

Based on the capacity to provide certain evidence, a biomarker is commonly 

classified as pharmacodynamic (evidence about a direct pharmacological drug 

effect), prognostic (evidence about patients’ outcomes independent of any 

intervention), predictive (evidence about the probability of benefit/toxicity from a 

specific intervention) and surrogate (substitute for a clinically meaningful 

endpoint) (123).  

A PubMed search for “biomarker” and “colorectal cancer” identified more than 

3500 articles in May 2019. However, only three biomarkers [MMR/MSI status, 

RAS mutational status and B-Raf and v-Raf murin sarcoma viral oncogene 

homolog B (BRAF) mutational status] are recommended by international 

guidelines in routine clinical practice (13, 35). 

The MMR/MSI status plays multiple roles in different settings. In stage II 

disease, dMMR is present in about 10-15% of the patients and has a positive 
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prognostic value (10). Therefore, even in the presence of high-risk features, 

adjuvant chemotherapy should be omitted. Moreover, multiple studies 

suggested the lack of benefit (negative predictive value) from adjuvant 

fluorouracil regimens (124). A possible explanation for the better prognosis of 

MSI-High tumours compared to MSS tumours is the presence of mutation-

associated neoantigens (MANAs) due to defective mismatch-repair 

mechanisms in MSI-High cancers; the MANAs can be recognised by the 

immune system, which reacts against tumours, contributing to long-term control 

(121). 

In stage III disease, the prognostic role is unclear and no definitive conclusions 

related to effect of oxaliplatin are available. Consequently, the MMR status 

should not be taken into account in the risk assessment and in the decision for 

adjuvant treatment of stage III cancers outside the context of a clinical trial (13). 

In metastatic setting, the presence of dMMR status (about 5% of metastatic 

population) has a dual biomarker role: it has a negative prognostic value 

(shorter PFS and OS compared to pMMR) and a positive predictive value for 

benefit from immunotherapy as discussed previously (100, 101, 125).  

The negative predictive value of RAS and BRAF mutations for anti-EGFR 

agents will be discussed in chapter 4. From a prognostic perspective, the 

negative value of BRAF mutation is well established (126). The aggressive 

behaviour of BRAF mutant tumours led clinicians to approach these patients 

with intensified regimens associated with higher response rates (as example 

FOLFOXIRI with or without bevacizumab) (32). The BRAF mutation has a well 

established positive predictive role in melanoma where BRAF targeted agents 

are successfully deployed (127). The same success was not replicated in CRC, 

potentially in view of the feedback activation of the MAPK signalling pathway 

driven by EGFR in epithelial cells (but not in melanoma cells) (128,129). These 

evidence lead to triplet targeted therapy combinations, simultaneously targeting 

BRAF and possible feedback loops via EGFR and MEK. These combinations 

are feasible; the outcome of the randomised BEACON trial is largely awaited 

and may potentially benchmark a new standard of care for these aggressive 

tumours (130). 
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The prognostic value of RAS mutation is less clear and possibly confounded by 

the different clinical features associated with mutations in different exons of the 

three RAS human genes, KRAS, NRAS and HRAS (131). These mutations are 

still widely considered undruggable; however multiple trials of new agents 

targeting RAS downstream effectors are on-going (132).  

Some other genomic markers including HER2 and MET amplification and 

kinase gene rearrangements involving ALK and NTRK1 recently raised interest 

because these are potentially actionable with exceptional responses reported; 

however their frequency is less than 5% in the overall CRC population (133). 

 

1.2.2 Gene expression biomarkers 

 

A multitude of single gene biomarkers have been investigated as prognostic or 

predictive markers in both early and metastatic settings of CRC with 

inconsistent results (134). The development of high-throughput technologies, 

e.g. microarray technology, allowed the simultaneous measurement of a large 

number of genes. Hence, new molecular classifications of cancer exclusively 

based on gene expression became more and more popular (135). Several 

multi-gene assays have been developed and validated in independent CRC 

clinical trial cohorts. The majority of these aimed to classify early stage CRC 

patients into different risk classes for disease relapse: of these, ColoPrint, 

Oncotype DX and ColDx are the most extensively studied (136-138). Their 

major characteristics are summarized in Table 4. Although all these tests were 

validated in independent cohorts and demonstrated to identify different risk 

groups, their use is not recommended (13). Reasons for this are mainly related 

to the limited value in predicting benefit from adjuvant therapy and therefore to 

the limited impact on any treatment decisions. Moreover, whether the different 

signatures are representative of existing biological entities is unclear. 
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In an effort to identify potential differences in biology, prognosis and response 

to different treatments, Sadanandam et al. previously defined five gene 

expression subtypes of CRC using unsupervised clustering methods and a 786-

gene signature (CRCAssigner-786) (139). The subtypes were named based on 

their similarities with different regions of the normal colonic crypt: (i) goblet-like, 

characterised by increased expression of MUC2 and TFF3 genes, typically 

associated with normal goblet cells; (ii) enterocyte, resembling the highly 

differentiated enterocyte cells of the upper crypt; (iii) transit-amplifying (TA), an 

heterogeneous group representing the highly proliferative TA compartment in 

differentiation from the stem niche to specialised epithelium; (iv) stem-like, with 

high expression of genes of the Wnt signalling pathway, stem-ness signatures 

and mesenchymal cells; and (v) inflammatory, associated with increased 

expression of chemokines and interferon-related genes and enriched for MSI 

tumours. The subtypes were associated with distinctive prognostic value in the 

early disease setting, with TA and goblet-like demonstrating very good 

prognosis after curative surgery, inflammatory and enterocyte associated with 

intermediate prognosis and the stem-like, expressing epithelial-to-mesenchymal 

(EMT) features, associated with the worse prognosis. In terms of treatment 

prediction, the stem-like subtype was associated with increased likelihood of 

response to FOLFIRI regimen, while the TA subtype demonstrated enrichment 

for tumours sensitive to anti-EGFR agents. Distinctive association between 

subtypes and genomic features were demonstrated. These included the 

association between KRAS mutations and the goblet-like, dMMR/MSI-H and 

Table 4. Multi-gene assays previously developed as potential prognostic 
tools in CRC. 
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BRAF mutations and the inflammatory subtype (and with the goblet-like to a 

lesser extent). Cell lines of CRC were also classified according to the subtypes, 

demonstrating that the subtypes retain their identity even under culture 

conditions (139,140). 

Five other independent groups identified gene expression subtypes with 

different algorithms. De Sousa E Melo et al. identified three CRC groups: CCS1, 

associated with KRAS mutations, CCS2 enriched for dMMR/MSI-H tumours and 

CCS3, characterised by poor prognosis (141). The three subtypes were 

subsequently reconciled with the CRCAssigner subtypes (142). At the same 

time, Marisa and colleagues identified six CRC subtypes; Roepman et al. 

identified three subtypes while both Schliker et al. and Budinska et al. identified 

five subtypes (143-146). In a review article we extensively described differences 

and similarities of the different subtypes identified by each group (147). Taken 

together these studies underlined the heterogeneity of CRC: a subtype 

associated with dMMR/MSI-H status and one associated with mesenchymal 

signatures were consistently identified as distinctive entities across all the 

different classification systems. The rest of the tumours were grouped all 

together in one classifier or further subdivided in two, three or four entities in 

others.  

In 2015, the six independent groups formed the Colorectal Cancer Subtyping 

Consortium (CRCSC) lead by the SAGE Bionetworks, with the aim of 

reconciling the six classifiers and providing a joint classification system that 

could unify the communication across the entire research and clinical 

community (148). By analysing more than 3000 patient samples, four 

consensus molecular subtypes (CMS) were defined: CMS1 (MSI immune), 

characterized by microsatellite instability and strong immune activation; CMS2 

(canonical), with an epithelial profile, chromosomally unstable, with marked 

WNT and MYC signalling activation; CMS3 (metabolic), epithelial with evident 

metabolic dysregulation; and CMS4 (mesenchymal) with transforming growth 

factor beta (TGF-β) activation, prominent angiogenesis, stromal invasion and 

poor prognosis. Up to 13% of the samples were unclassified, possibly due to 

the co-existence of more than one subtype within each sample (mixed subtype).  
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The CRCAssigner and CMS classifications were highly associated. The 

inflammatory subtype was represented by CMS1; TA and enterocyte were 

merged together in the CMS2; goblet-like and stem-like were represented by 

CMS3 and CMS4, respectively (Figure 1). Similarly to the CRCAssigner, the 

CMS classification demonstrated to be highly prognostic: the outcomes of 

CMS1 tumours were comparable to what previously described in dMMR/MSI-H 

tumours (excellent prognosis after surgery but worse survival after relapse); 

CMS2 and CMS3 demonstrated intermediate outcomes while CMS4 was 

associated with worse relapse-free survival.  

The prognostic role of the CMS classification was subsequently validated in 

multiple correlative analyses of clinical trial samples in both early stage and 

metastatic setting (149-152). Conflicting results were shown when the CMS 

subtypes were assessed as predictive factors of benefit from standard 

treatment options. In a perspective article we recently analysed potential 

strengths and weaknesses of the CMS classification as clinically useful 

biomarker (153). Though using the classifier to prospectively stratify patients in 

biomarker-enriched clinical trials is very appealing, multiple contexts and 

possible equivocal factors need to be further clarified; these have been 

analysed in the review article (153). The type of sample analysed from each 

patient, the number of genes and the algorithm used to identify the subtypes 

are critical and may make the comparison across different studies difficult to 

interpret. Also, a robust assay with optimal characteristics for routine application 

is mandatory to successfully use a biomarker in the clinic. The lack of such an 

assay to implement gene expression subtypes from bench to bedside is the 

main driver of this project. 
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Figure 1. Associations between CRCAssigner and CMS subtypes and 
their prognostic and cellular characteristics (modified from Fontana et al.  
(147). Although highly associated, the two classifications are not 
completely overlapping, particularly in the case of CMS4 disease 
(including stem-like but also a non-negligible proportion of inflammatory 
subtypes). 
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1.3 Aims and significance of the thesis 
 

The lack of low-cost, easy-to-use assays with a turn-around time suitable for 

clinical application is a major limiting factor to prospectively validate the 

potential prognostic and predictive value of the subtypes. Previous subtype data 

were generated using microarray, which is expensive, time-consuming and 

requires high bioinformatics input. This platform has been gradually replaced by 

RNAseq, which is in addition less suitable for formalin-fixed paraffin-embedded 

(FFPE) samples (outside research settings), limiting further its applicability.  

Based on the original CRCAssigner-786, a small gene panel assay for 

nCounter platform (NanoString Technologies) has been recently developed in 

The Sadanandam lab and validated using fresh frozen samples 

(NanoCRCAssigner). A low-cost protocol was optimised (154). 

 

In this project, I aimed to test the clinical utility of this assay using FFPE 

samples, to further develop it to concurrently identify CMS subtypes and to 

assess the potential prognostic and predictive values. Overall, confirming that 

these assays are able to identify clinically meaningful subgroups may facilitate 

patient stratification and the assessment of new drugs in biomarker-selected 

trials for precision medicine.  

 

In doing that, I developed wet-lab and basic bioinformatics skills thank to the 

multidisciplinary nature of The Sadanandam lab. What described in this thesis 

was performed by myself, unless otherwise specified. 
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Aim 1: Assays development for CRC subtypes identification 

 

Develop low-cost and robust gene expression subtype assays for nCounter 

platform (NanoString Technologies) to classify CRC samples (fresh frozen and 

FFPE) and validate the results using data generated with alternative platforms 

(microarrays, RNAseq). 

 

Aim 2: Assays validation using clinico-pathological features in Caucasian 

population and comparison with Asian population 

Assess whether the newly developed assays are able to capture the known 

subtype-related features in the Caucasian population as indirect validation; then 

assess for the first time whether similar clinical and molecular characteristics 

are present in the Asian population. 

 

Aim 3: Assays as tools to predict treatment response  

Assess the potential predictive value of the newly developed assays and the 

biomarkers therein in predicting anti-EGFR therapy response.  
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Chapter 2 Development of biomarker assays 
to define CRC subtypes 
 

2.1 Introduction 
 
As described in the chapter 1 and section 1.2.2, it is essential to develop 

biomarker assay(s) to predict prognosis and drug responses in early and/or 

metastatic CRC. While multiple assays failed to show its utility in the clinic as 

those in Table 4, here I have attempted to develop a biomarker assay using the 

published gene expression subtypes.  

 

2.1.1 Steps for assay development: choice of the platform 

 

With the view of developing a multiplexed assay suitable for routine clinical 

application, the nCounter platform (NanoString Technologies) was chosen. 

Customized assays for this platform have been previously developed for 

subtyping purposes in other cancer types. Specifically, the Prosigna® Breast 

Cancer Prognostic Gene Signature Assay for nCounter platform received 

United States and European approvals to predict the risk of relapse in patients 

with breast cancer, based on the intrinsic gene expression subtypes previously 

identified by Perou et al. (155,156). Other assays were developed to classify 

lymphoma and medulloblastoma subtypes (157,158). These studies 

demonstrated the feasibility of subtypes assessment using FFPE samples. In 

fact the lack of pre-amplification and complementary DNA conversion steps is 

particularly effective in avoiding potential biases in the presence of degraded 

RNA (as is typical of FFPE preparations). The user-friendly protocol with short 

hands-on (about 15 minutes in total) and quick turn-around times (2 days) 

makes the platform attractive for clinical application. 
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2.1.2 NanoString Technologies 

 

The nCounter platform is a barcoding technology for multiplexed single 

molecule digital counting, which allows the detection and quantification of up to 

800 different RNA, DNA or protein targets (159).  The workflow is divided into 

three main steps: 1. Hybridization; 2. Purification and immobilization; 3. Count 

(detailed in Methods, section 2.3.7). Two different protocols for RNA are 

available: the standard protocol for pre-made gene panels curated and pre-

formatted by the company as well as for customized gene panels; the Elements 

chemistry protocol, for customized panels only. For the Standard protocol, pre-

built biotin-labelled capture probes (for pre-selected genes) and fluorescently 

colour coded reporter probes are pre-mixed in the so-called CodeSet 

formulation. For the Elements protocol, only capture and reporter tags are pre-

mixed in the nCounter Elements TagSet formulation; custom-designed target-

specific oligonucleotide probe pairs (reporter and capture probes can be 

obtained separately [from Integrated DNA Technologies, Inc., Leuven, Belgium 

in our case)]. Figure 2 shows a schematic of the hybridization product using the 

Elements protocol. 

The Elements protocol includes a few initial extra-steps compared to the 

standard protocol (described in Methods, section 2.3.4). With the exception of 

hybridization times and final volume, the workflows of Standard and Elements 

protocols are the same.  
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2.1.3 On-going development of a customized assay for nCounter platform 

 

When I joined the lab, the development of a customised panel for the detection 

of the CRCAssigner subtypes was on-going using the modified protocol for 

Elements chemistry. Briefly, a limited panel of 50 genes were initially selected 

based on the original CRCAssigner-786 publication (139). These included 7 

genes originally proposed as subtype biomarkers for quantitative Reverse 

Transcription Polymerase chain Reaction (qRT-PCR) and 

immunohistochemistry (IHC); among the top 2 to 9 highest scoring genes for 

each subtype from predictive analysis of microarrays (PAM) centroids (160), 

three genes differentially expressed between the cetuximab-sensitive and 

cetuximab-resistant TA sub-subtypes and other genes representing subtype-

specific pathways like epithelial-to-mesenchymal transition (EMT), MET tyrosine 

kinase signaling and NFkB signaling. Ten housekeeping genes were added to 

the customised panel to enable expression normalization. Hence, a 60-gene 

assay was developed as per Elements protocol (NanoCRCA) (154). 

Figure 2. Schematic of the hybridization product (Elements protocol). Each 
target RNA hybridises with probes A and B. Probe B includes a sequence 
to hybridize with the universal capture Tag (the same for all genes). The 
Universal capture Tag will bind the product to the cartridge in the Prep 
Station, avoiding the product being washed away. Probe A binds the target 
RNA and the Reported Tag (unique colour code for each gene) that will be 
counted in the Digital Analyser. 
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Six CRC cohorts of primary tumour samples were collected: three derived from 

fresh-frozen samples with microarrays or RNA-seq data available for 

comparison; two derived from FFPE samples and one with matched FFPE and 

fresh-frozen samples. 

I contributed to this project with the identification of samples (match FFPE/fresh-

frozen cohort), generating part of the data with the Elements protocol and with 

the manuscript writing, gaining a co-first authorship (154). 

Using an in-house published machine-learning pipeline (intPredict: available at: 

https://rdrr.io/github/syspremed/intPredict/), the number of genes to robustly 

classify samples into subtypes was further reduced to 38 and new centroids 

(average expression of each gene in each subtype) were developed. Hence the 

CRCAssigner subtypes will be from now on called CRCA-38 subtypes. High 

correlations (>0.88) between Standard and Elements protocol and between 

technical replicates (>0.96) were demonstrated (154). 

 

This study established the feasibility of customized assay development for CRC 

subtypes classification and the background for this thesis. 

 

 

2.2 Specific aims 
 

1. Develop a gene expression subtype assay for molecular classification of 

CRC samples into CMS subtypes (NanoCMS); 

2. Implement the NanoCMS assay into the previously developed NanoCRC 

for simultaneous classification of CRC samples into CMS and CRCA-38 

subtypes; 

3. Evaluate the newly developed assays in FFPE and fresh-frozen samples. 
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2.3 Methods 
 

2.3.1 Subtypes classification methods 
 
In order to understand the performance of a new classification system, different 

classifiers were deployed in this chapter. A summary of the most commonly 

deployed methods is provided below: 

a) Network-based method: the CMS subtypes were originally identified 

using a network-based method by the CRC Subtyping Consortium 

(CRCSC) (148). In the CRCSC, the newly built gene expression 

database of primary CRC (from public and private databases) was 

deployed to classify the samples into subtypes according to the six 

different pre-consensus classification systems available (for a total of 27 

different subtypes labels). Markov Cluster (MCL) algorithm (unsupervised 

method based on finding natural grouping of items using graphs and 

weighted connector lines) was used to identify recurrent subtypes 

patterns and consolidate the 27 different labels into 4 consensus labels 

(and one undetermined category) (148,161). Each sample included in 

the CRCSC study has a “Network label”; hence, this classification is not 

reproducible outside the CRCSC database. The “Network label” of 

samples included in one of the CRCSC databases (E-MTAB-990) was 

downloaded and used in this chapter (as per following sections). 

b) Random Forest classifier: unsupervised clustering method based on 

multiple decision-trees; each sample is classified multiple times 

according to the multiple decision–trees built within the algorithm; the 

final classification for each sample is the class that was assigned to that 

sample for the highest number of times (162). 

c) Prediction of Microarray Method (PAM)-centroids correlation: this method 

was originally developed to identify gene expression subtypes using 

microarrays data. It uses subsets of genes that best characterise each 

subtypes (centroids) and compares each expression profile with the 

centroids. Each sample is assigned to the subtype of the centroid with 

higher correlation (160).  
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d) CMS single-sample prediction (SSP) classifier: this classifier was 

developed by the CRCSC and used a similar-to-centroids method (148). 

By definition, a SSP method requires that the output for each sample 

remains the same independently by the composition of series that the 

sample is analysed within. Twenty different centroids were built using 

693 genes and five datasets included in the consortium paper; only 

datasets that were previously normalised without median-centering 

(where the expression level of each gene is not affected by the 

expression of that gene in the other samples of the series) were included 

to define the centroids. Using this method, the similarity between 

expression profiles of each sample and the 20 centroids is calculated.  

e) Rank classifier: rank-based classifiers of highly dimensional data are 

based on the transformation of the real expression values with their rank 

(163). Here we adopted a rank-based method to compare the ranked 

value of genes in each CMS centroids with the rank value of the 

corresponding gene in each sample (further details are explained in the 

following sections). 

 
2.3.2 Gene selection for a custom NanoCMS assay 

 

In line with the NanoCRCA development, the initial step for the development of 

an assay for CMS subtypes prediction included the selection of subtype-specific 

genes from the previously developed CMS centroids (148). The original CMS 

classifier was developed based on a random-forest-based network algorithm 

and definition of multiple centroids using different datasets derived from distinct 

platforms (Agilent versus Affymetrix versus RNAseq) and tissue preservation 

methods (FFPE versus fresh-frozen). With the view to deploying the assay in a 

clinical setting where FFPE is the most commonly available type of tissue (and 

assuming to work in all the platforms), the centroids derived from the only 

available FFPE dataset within the consortium were chosen (E-MTAB-990 from 

the PETACC-3 trial (23), described in section 2.3.3).  
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The following steps were performed by Ms Katherine Eason (PhD student, The 

Sadanandam lab):  

1. Data download:  

a. The CMS centroids were retrieved form the CMSclassifier R 

package (https://github.com/Sage-Bionetworks/CMSclassifier); 

b. Subtypes labels and expression data were downloaded from the 

CRCSC Synapse page (labels:	

https://www.synapse.org/#!Synapse:syn4978511; gene 

expression: https://www.synapse.org/#!Synapse:syn4983432); 

2. Gene selection: The 10 highly expressed genes for each of the four CMS 

subtypes were selected. Two genes (AGR3 and REG4) were in common 

between the CMS1 and CMS3, resulting in a 38-gene panel (Figure 3). 
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2.3.3 Gene pair rank-based subtyping algorithm 
 

A novel classifier was developed by Ms Katherine Eason (PhD Student, The 

Sadanandam Lab). This was based on ranking the expression of pairs of 

genes. The ranking was firstly performed in the PETACC-3 centroids; then in 

each samples’ gene expression profile: 

Figure 3. Heatmap including the top 10 highly expressed genes in each of 
the subtypes selected from the PETACC-3 dataset (23) included in the final 
custom 38-gene panel for the CMS assay.    
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1. A list of all the pairs of genes included in the 38-gene panel is created; 

2. For each pair (e.g. gene A and gene B), the gene which has the higher 

weight is recorded (e.g. gene A > gene B); 

3. The number of times that every gene pair has the same ranking in both 

the PETACC-3 centroids and the sample (e.g. gene A > gene B in both 

the centroids and sample) is counted; 

4. This count is normalised to the number of gene pairs; 

5.  A percentage of concordant gene pairs between the sample and each 

subtype centroid is obtained.  

6. The subtype centroid which has the highest percentage of gene pairs 

concordance is assigned as the subtype of that sample.  

 

2.3.4 Publicly available data 
 

As described above, gene selection and classifier development were based on 

the E-MTAB-990 dataset from the PETACC-3 trial (23) because the gene 

expression was derived from FFPE material; the classifier was subsequently 

validated in the TCGA dataset. Major characteristics of these datasets are here 

described: 

1. E-MTAB-990 datasets: microarrays gene expression data derived from 

688 FFPE primary tumour samples from patients with stage III CRC 

enrolled in the adjuvant PETACC-3 clinical trial; in this trial patients were 

randomised to receive adjuvant 5-FU alone or in combination with 

irinotecan (23); 

2. TCGA dataset: RNAseq gene expression data derived from prospective 

series of 603 fresh-frozen primary tumour samples from patients with 

stage I to IV CRC (114). 
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2.3.5 Biomarker assay development for CMS subtypes 

 

The selected 38 subtype-specific genes for CMS subtypes and the 10 

housekeeping genes previously included in the NanoCRCA assay were shared 

with the NanoString Bioinformatics Team. Specific oligonucleotide sequences in 

the region of 100 base pairs were designed to target each gene. Half of the 

sequence was extended at the terminal end with the complementary sequence 

of the universal capture probe. This sequence represented the Probe B. The 

other half was extended with a pre-codified sequence unique for each gene 

able to hybridize with a pre-defined reporter tag. This sequence represented the 

Probe A.  Probe A and B sequences were assessed with The Basic Local 

Alignment Search Tool (BLAST, available at: https://blast.ncbi.nlm.nih.gov/) to 

confirm the identity and coverage of each gene variant (this step was performed 

by the NanoString Bioinformatics Team and crossed-checked by myself and 

other members in The Sadanandam Lab). With the view to integrating the 38 

new gene-assays into the previously developed NanoCRCA, each sequence 

was also crossed-checked with the sequences of the pre-existing probes for the 

50 genes included in the NanoCRCA assay; this to avoid possible dimerization 

and artefacts. 

Each probe was built from Integrated DNA Technologies, Inc., based on the 

developed sequences produced by NanoString. Upon receipt, the oligos were 

pooled and diluted as per Elements protocol: firstly, all the target-specific 

reporter codes are pooled-together and diluted in TE buffer (Pool A, final 

dilution: 20 pM); similarly, all capture probes are pooled together and diluted in 

TE buffer (Pool B, final dilution: 100 pM). Then, an aliquot of each set of pools 

is emulsified in a TE-Tween 20 solution (working pools). Working pools and 

hybridization buffer are then added to the TagSet. The obtained solution is the 

equivalent of the pre-made CodeSet formulation for Standard protocol.  
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2.3.6 Samples collection 

 

Four CRC cohorts of primary tumour samples collected prior to any treatment 

were investigated: 

1. The RETRO-C cohort: FFPE samples were collected within a 

retrospective study at the Royal Marsden Hospital (ethic committee 

reference: 10/H0308/28): A retrospective translational study: 

characterisation of molecular predictors of response to cetuximab or 

panitumumab in patients with colorectal cancer (Principal Investigator, 

PI: Professor David Cunningham). Full details of this study and patients’ 

characteristics are provided in Chapter 4; 

2. The Singapore fresh frozen cohort (SG-FF): fresh-frozen samples of a 

consecutive series of CRC patients who consented to an approved 

research protocol at the Singapore General Hospital, Singapore 

(SingHealth Institutional Review Board: 2013/110/B; named collaborator: 

Dr Iain Beehuat Tan); 

3. The Singapore FFPE (SG-FFPE): FFPE samples of consecutive CRC 

patients enrolled in the same study described above (SG-FF); 

4. The INCLIVA-Valencia match cohort: prospectively collected samples of 

CRC patients who received surgery for stage I, II or III disease at the 

Research Institute INCLIVA, Valencia, Spain (Comité Etico de 

Investigacion Clinica del Clìnico Universitario de Valencia: F-CE-GEva-

15; named collaborators: Prof. Andrés Cervantes and Dr. Noelia 

Tarazona). 

 

2.3.7 Nucleic acid extraction and quality control steps 

 

For the RETRO-C cohort, nucleic acids were extracted by myself; for the 

INCLIVA cohort, the extraction was performed by Dr Tarazona in Spain using 

the same protocol and kit suggested by us. For both the Singapore cohorts, the 
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extraction was performed in Singapore using the QIAGEN RNAeasyTM FFPE 

kit.  

After initial training from Ms Chanthirika Ragulan (High Scientific Officer, The 

Sadanandam Lab), I proceeded with the extraction independently. Firstly, the 

blocks were evaluated by trained pathologists (from the different institutions, 

RMH, Singapore and Valencia) and only those with at least 30% of tumour 

content were selected; areas with high tumour cellularity were marked on 

haematoxylin and eosin slides and macrodissected in unstained slides (7-10 μm 

thickness, up to 10 slides for each block depending on the dimensions of the 

area available for macrodissection). Following deparaffinization with xylene, 

graded washes in ethanol and rehydration in pure water, total RNA and DNA 

were simultaneously isolated using the Ambion RecoverAllTM kit and quantified 

with NanoDropTM 2000 Spectrophotometer (Thermo Fisher) according to 

manufactures’ instructions. 

During year one, before the optimization of the in-house protocol was 

completed, the level of RNA fragmentation (RNA Integrity Number, RIN) and 

smear analysis (percentage of fragments below 300 base pairs) of a few 

samples from the RETRO-C cohort were analyzed using the Bioanalyzer 6000 

Nano assayTM from Thermo Fisher (subsequently dropped after technical 

replicates assessment, described below). 

 

2.3.8 Gene expression analysis 

 

The expression level of the 38 subtype-specific genes (or 86 genes after 

integration of the two assays) and the 10 housekeeping genes was measured 

using the nCounter Max Analysis System (nCounter Prep Station plus nCounter 

Digital Analyzer) from NanoString Technologies and the Element XT protocol 

following the three-step workflow:  

1. In the hybridization step, the CodeSet (or the equivalent solution for the 

Elements protocol) are mixed with up to 100 ng of RNA. Hybridization 

reactions are prepared as per manufactures’ instructions for 18 hours at 
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65°C. A modification of the Elements protocol was optimized in our lab, 

with hybridization time extended to 20 hours at a temperature of 67°C. 

2. In the purification and immobilization step, the hybridized products are 

pipetted using the nCounter Prep Station (NanoString Technologies) and 

immobilized on a sample cartridge with streptavidin-coated imaging 

surface; then all oriented in the same direction using an electromagnetic 

field. This automated step takes about 3.5 hours. 

3. In the final step, the cartridge is placed in the nCounter Digital Analyzer 

where each fluorescent barcode is counted in about 5 hours. The data 

are collected in a Reporter Code Count (RCC) file for quality control and 

downstream analyses.  

 

Hybridization temperature and duration were modified to 67°C and 20 hours as 

per the previously optimised protocol (154). In the nCounter Max Analysis 

System samples are processed in batches of 12. 

 

In order to understand whether increased RNA input was necessary when using 

degraded RNA extracted from FFPE samples, a small pilot study was designed. 

Technical replicates were generated using 50 ng, 100 ng, 150 ng and an 

adjusted input based on the smear analysis and calculated according to the 

following formula:   

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐼𝑛𝑝𝑢𝑡 = 	
𝑇𝑎𝑟𝑔𝑒𝑡	𝐼𝑛𝑝𝑢𝑡

100 − [%𝑏𝑒𝑡𝑤𝑒𝑒𝑛	50 − 300𝑛𝑡] ∗ 100 

 

In view of the high Pearson correlation demonstrated using 100 ng, 150 ng and 

the adjusted input of RNA (slightly dropping when using 50 ng), 100 ng was 

chosen as target input for all the subsequent analyses performed in this thesis 

(Figure 4). 
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2.3.9 Quality control steps using nSolver Analysis System 

 

The RCC files generated by the nCounter Digital Analyser (DA) were uploaded 

into the nSolver analysis software version 3.0 from NanoString Technologies.  

Here, four parameters with standardised cut-offs are systematically analysed:  

1. Imaging quality control (QC): the percentage of field of views (FOVs) 

successfully counted by the DA; 

Figure 4. Sample input titration study. Heatmap showing the gene 
expression of five samples (in four replicates) clustered by expression 
similarities (left). Table with Pearson correlation coefficient for each pairs of 
RNA input (right). SM (smear) represents the input calculated based on the 
different degrees of RNA integrity.    
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2. Binding density QC: assessing whether too many of too few probes are 

present within the FOVs; 

3. Positive control linearity: assessing the correlation of spikes-in probes 

targeting positive control molecules in pre-defined and escalating 

concentrations added by NanoString into any of the CodSets or TagSets; 

4. Positive control limit of detection: assessing the metrics of positive and 

negative controls, with the positive control with lower concentration 

expected to produce a raw count higher than the mean of 8 negative 

controls (targeting non-human genes). 

 

If any of the standard QC parameters is out of range, the sample is flagged with 

a red flag and should be excluded from any downstream analyses. Once all the 

RCC files are generated, those that have passed the first QC control step (no 

red flags) are selected in a new nSolver experiment and read with the 

appropriate Reporter Library File (RLF). The RLF file is produced by the 

NanoString Bioinformatics Team and contains information required to match 

each barcode with the assigned gene (either target or housekeeping). Both raw 

counts and normalised counts are automatically produced. In details, the 

normalised counts are generated after subtraction of the geometric mean of the 

8 negative controls, followed by normalization based on the geometric mean of 

6 positive controls (to account for difference in TagSet input due to pipetting 

errors) and geometric mean of the 10 housekeeping genes. Samples are 

flagged if the computed normalization factor is between 0.3 and 3 (for positive 

controls) and between 0.1 and 10 (for housekeeping genes).  

 

In order to evaluate the performance of the 10 selected housekeeping genes in 

each sample cohort and consequently select only those suitable for the 

analysis, the nCounter Advanced Analysis version 2.0 plugin for nSolver 

Software was used.  

To perform this analysis another file from NanoString is required: the Probe 

Annotation File specific for each assay. This file contains functional and cell 

profiling annotations for each gene of the panel. However, in the case of our 
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newly developed custom assays this file was required exclusively to be able to 

proceed in the analysis with built-in R libraries. The raw count data are 

assessed using the geNorm algorithm integrated in the analysis protocol; only 

housekeeping genes selected by the algorithm are used for data normalization. 

The program also provides Principal Component Analysis (PCA) plots to assess 

for the presence of batch effect and possible outlier samples. 

Once the housekeeping genes to use are established a new experiment is 

generated: the normalised data can now be exported in a log2 scale for 

downstream analysis. 
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2.4 Results 
 

2.4.1 Assessment of the need for a new algorithm for subtype prediction 
using the PETACC-3 on-line dataset 

As discussed in Chapter 1 and in a recently published perspective manuscript 

(153), the number and type of genes and the type of algorithm used to predict 

gene expression subtypes may significantly affect the classification. In recent 

studies post-CRCSC publication, the CMS subtypes were determined using 

unselected sets of genes included in the CMS centroids and the publicly 

available CMS algorithms (Random Forest classifier, RF; single-sample 

prediction classifier, SSP). 

Once the 38 genes were selected from the PETACC-3 centroids (methods) two 

main points required clarification:  

1. Which classification (whether that one obtained with the RF or SSP 

algorithm) should be considered as the reference; 

2. Whether either the RF or SSP algorithms could be maintained or whether 

a new algorithm was required when using the reduced set of genes in 

order to minimise the misclassification error. 

 

With the help of Ms Eason, we aimed to demonstrate that a minimal 

discordance between network classification (available on-line for the PETACC-3 

samples and derived from a network-based approached described in the 

original publication (148)), RF and SSP algorithms exists using the entire sets of 

genes available within the PETACC-3 datasets (Figure 5). Up to 4% (19/526) of 

samples were unclassified when switching from network to RF algorithm; 

similarly 21% (109/526) of samples were unclassified using the SSP algorithm 

and another 2% (8/526) switched subtype.  

We then selected the 38-gene panel and applied the RF algorithm: compared to 

the RF classification obtained with the entire set of genes, 97% (491/507) of the 

previously classified samples were re-classified as CMS2. Similarly, when using 

the SSP algorithm and 38-gene panel and the standard SSP labels, 62% 
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(260/417) of samples switched to another subtype and 12% (52/417) were 

unclassified.  

 

With this exercise we demonstrated that the algorithm used affects the 

classification; furthermore, using a reduced number of genes without modifying 

the algorithm leads to a high percentage of misclassified samples.  
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Figure 5. Sample misclassification due to different algorithms and sets of 
genes (PETACC-3 dataset) (Sankey plot). Classification derived from the 
network analysis, available on-line (central column).  

From centre to the left: 

• Comparison A shows the concordance between Network 
classification and SSP (extensive signature) classification: 21% of 
samples originally classified becomes unclassified using the SSP 
algorithm and further 2% of samples switch subtype;  

• Comparison B shows the concordance between SSP algorithm 
(extensive signature) and SSP using only 38 genes: 12% of samples 
become unclassified while 62% of samples switch subtype; 

From the centre to the right: 

• Comparison C shows the concordance between Network 
classification and Random Forest (RF) algorithm (extensive 
signature): 4% of the samples become unclassified; 

• Comparison D shows the concordance between RF extensive 
signature and RF using only 38 genes: 3.5% of samples become 
unclassified and 51% of samples switch subtype. 
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2.4.2 Performance of a newly developed algorithm for CMS subtypes 
prediction: rankCMS-38 
 

After the rankCMS-38 classifier was developed (Ms K. Eason), its performance 

was assessed using the RF classification as a reference. The overall accuracy 

was 0.82 (95% Confidence Interval 0.78-0.86). The accuracy was considered 

satisfactory given this was similar to 0.86, which is the accuracy of a similar 

assay developed by Genentech Inc. using the NanoString platform and more 

than 300 genes (described in Chapter 5) (164). 

In Figure 6 the confusion matrix and the overall performance of the classifier in 

the PETACC-3 dataset are presented.  

 

Figure 6. Overall performance of the newly developed rankCMS-38 algorithm 
when compared to RF classification (PETACC-3 dataset). The upper table 
represents a confusion matrix; the lower table summarises the results of the 
accuracy analysis for each subtype.  
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A Receiver Operating Characteristic (ROC) curve measuring the Area Under 

the Curve (AUC) for each subtype was built (Figure 7). 

 

   

 

 
 
 
 
 
 

	  

Figure 7. Receiver Operating Characteristic curve evaluating the Area Under 
the Curve for each subtype and overall accuracy of the rankCMS-38 in the 
PETACC-3 dataset 
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2.4.3 Performance of the newly developed NanoString assay for 
RankCMS-38 classification 

 

Following the selection of the 38 genes and assay assembly (methods), the first 

cohort of 48 FFPE samples (RETRO-C cohort) was processed in batches of 12 

samples. Data pre-processing pipeline is describes in Figure 8.  

 

 

 

 

Figure 8. Pipeline for nSolver analysis. QC: quality control; PCA: principal 
component analysis.  
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The following results relative to the first RETRO-C cohort (n: 48 samples) are 

described according to the pipeline: 

1. Standard QC assessment: there were no technical red flags, raising no 

concerns on the technical performance of the newly developed assay.  

2. Advanced analysis of raw data: Figure 9 represents the heatmap of the 

raw data including endogenous, housekeeping and both positive and 

negative controls. Positive and negative controls were easily visualised 

due to the homogeneous expression across all samples. Negative 

controls were all red, representing a level less than 25 barcodes counted 

for each of them. Only one endogenous gene (RARRES3) had less than 

25 barcodes counted in all the samples. This may reflect a poor 

performance of the probe in hybridizing with its target RNA. However, 

due to the fact that the same probe was used in the previously 

developed NanoCRCA assay without significant impact on the overall 

assay performance, the probe was not replaced. 

3. Principal Component Analysis (PCA) plot and outliers assessment 

(Figure 10): the samples appeared to be randomly distributed in the plot 

with none of the samples from the same cartridge clearly separated in 

distinct clusters from the others. This step is usually performed as a 

visualization procedure for early recognition of technical artefacts (fine 

batch effect assessment and correction may be performed in each study 

with different tools using normalised data). If present, outliers and their 

association with a certain component are automatically highlighted by the 

software at this point. In the pipeline, we established to discard only 

outliers associated with the first principal component. 

4. Selection of housekeeping genes: only the most stably expressed 

(housekeeping) genes across all samples being tested are selected 

during normalization using the geNorm algorithm built-in the software as 

R package. In this case, all the 10 housekeeping genes were selected 

(Table 5). 

5. Lastly, log2 transformed data normalised using the 10 housekeeping 

genes were exported from the nSolverTM Analysis Software as a “.txt” 

file. 
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Overall, no technical issues were raised from this first pilot study using the 

newly developed custom assay. Figure 9-10 and Table 5 were generated using 

the nSolverTM Analysis Software. 

 

 

 

Figure 9. Heatmap of the first 48 RETRO-C samples assessed with the 
NanoCMS assay (raw data). The range of gene expression is shown in the 
legend. 
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Figure 10. Principal Component Analysis plot generated with nSolver 
Analysis Software to assess batch or technical effect between experiments. 
Each dot represents a sample; each dozen processed in the same cartridge 
has the same colour.  
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Table 5. Housekeeping genes selected using the geNorm algorithm 
integrated in the nSolver Analysis software. The order of the genes and 
the standard deviation are shown. 
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2.4.4 RankCMS-38 classification 

 

Once log2-transformed gene expression data were generated, they were used 

as input file for a fit-for-purpose R package. In the output .txt file each sample is 

assigned to the CMS class. The pie chart in Figure 11A represents the 

distribution of the CMS subtypes within the pilot study. All 4 subtypes were 

identified. The samples were collected within a retrospective tissue collection of 

patients who developed metastatic disease and received at least 3 lines of 

treatment. Hence, to understand whether the low percentages of CMS1 and 

CMS3 subtypes were due to biology or technical artefact, the distribution was 

compared with the only available cohort of samples in a similar setting 

(chemorefractory) from a correlative analysis of the phase III CORRECT trial 

(regorafenib or placebo after progression on standard chemotherapy) (47, 165). 

The subtype distribution of the RETRO-C cohort was similar to the subtype 

distribution in the CORRECT analysis (Fisher’s Exact Test, p-value=0.06) 

(Figure 11B). The lower proportion of CMS3 in favour of CMS4 subtypes was 

expected due to the limited number of RAS mutant samples in the RETRO-C 

cohort (including patients who received anti-EGFR therapy; details in chapter 

4). 

 

Figure 11. Subtype distribution in the RETRO-C cohort (48 samples) (A) 
and in the correlative analysis of the CORRECT phase III clinical trial (B); 
Fisher’s Exact Test p-value= 0.06.  
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2.4.5 Development of a custom NanoString assay for simultaneous 
detection of CRCA-38 and CMS subtypes  

 

Using the same protocol for Elements chemistry described in methods, a new 

biomarker assay was developed: this included the 50 endogenous genes and 

10 housekeeping genes of the previously developed NanoCRCA assay (for 

CRCA-38 classification) plus the new set of genes for rankCMS-38 

classification to form a 96-gene assay (including 7 genes in common between 

the two signatures). A summary of the final assay is presented in Appendix 1; 

10 genes included in the assay were no longer used after refinement of CRCA-

38 signature; 7 non subtype-specific genes were also included as genes of 

interest in CRC but not used for subtyping purposes (inclusion of these genes 

was due to the technical requirements of reaching multiple a of 12 for assay 

assemble).  

 

A new cohort of FFPE samples of primary tumours was analysed in 

collaboration with Dr Iain Tan, Singapore (SG-FFPE cohort). The same pipeline 

described in Figure 8 was deployed; no standard QC flags were observed. A 

total 108 samples were analysed; 2 samples were removed after normalization 

due to normalization flags. Figure 12 demonstrates the subtype distribution 

according to both CRCA-38 and rankCMS-38 subtypes. Given the known 

association between CRCAssigner and CMS subtypes (described in Chapter 1), 

a hypergeometric test was used to understand whether this association was 

maintained using the new classifiers. As expected, strong association was 

demonstrated for the two more prevalent subtypes (CMS2-TA; CMS4-Stem-

like). Only weak association was observed for the others possibly due to the low 

frequency of CMS1 and CMS3 in this cohort (Figure 13). 
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Figure 12. RankCMS-38 subtype distribution (A) and CRCA-38 subtype 
distribution (B) in the SG-FFPE cohort (n: 106) 
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Figure 13. Hypergeometric test assessing the association between 
rankCMS-38 and CRCA-38 subtypes in the SG-FFPE cohort. Each 
square represents the degree of association (in terms of adjusted p-
value) between a pair of subtypes: blue colour means no association; 
red colour means highly significant association. The legend shows the 
range of colours and their equivalent adjusted p-value.   

Overall p-value  = 2.659e-11 
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2.4.6 Assessment of the performance of the rankCMS-38 classifier in 
fresh-frozen samples 

 

Although FFPE samples are the most commonly available samples for clinical 

use, fresh-frozen samples are increasingly used in research especially for high 

throughput analyses. Hence, the performance of the new rank algorithm was 

assessed using public data from the TCGA CRC cohort; then algorithm and 

NanoString assay results were validated in the SG-FF cohort. 

Using TCGA gene expression data, the rankCMS-38 classification was 

compared to the RF classification. The performance of the classifier was 

comparable with that demonstrated in the PETACC-3 cohort. The confusion 

matrix and the overall performance are presented in Figure 14. Although the 

overall accuracy was lower than that one demonstrated in the PETACC-3 

dataset, the four subtypes identified maintained their expected prognostic 

characteristics: the two Kaplan Meir (KM) survival curves in Figure 15 

demonstrate the overall survival by CMS groups with the CMS4 associated with 

the poorest prognosis. While the relapse-free survival (RFS) of the reference 

CMS subtypes (using RF algorithm) was not significantly different, statistical 

significance was demonstrated using the new rankCMS-38 classification. 
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Figure 14. Overall performance of the rankCMS-38 classifier in the 
TCGA cohort (fresh frozen samples). Upper table: confusion matrix; 
lower table: summary of accuracy analysis for each subtype. 
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Next, a cohort of FF primary tumour samples (SG-FF) was tested using the 

newly developed NanoString assay. Of 164 primary tumour samples, 145 had 

available RNAseq data and CMS classification (Random Forest). Twenty-nine 

samples unclassified were removed. Hence, 116 samples with known CMS 

subtype assignment were deployed to further validate the performance of the 

rankCMS-38 classifier in FF samples (Figure 16). The overall accuracy of 89% 

was in line with the performance demonstrated in FFPE samples. 

In summary, when using on-line data from FFPE and FF samples the accuracy 

of the new rankCMS-38 algorithm was 82% and 79% with overlapping 

confidence intervals, suggesting the overall performance is comparable across 

sample-preservation methods. When using the same RNA derived from FF 

samples and two different platforms (RNAseq and NanoString), the 

performance of the rankCMS-38 algorithm was 89%; the confidence intervals 

were overlapping with the on-line data experiments. The numerically higher 

value may be justified by the smaller number of samples included in the SG-FF 

dataset (n= 116) compared to the two on-line datasets (n= 454 and n= 494). 

Figure 15. Relapse-free survival according to CMS subtypes (Random-
Forest) (A) and rankCMS-38 subtypes (B) in the TCGA cohort (114). 
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Figure 16. Overall performance of the rankCMS-38 classifier in the SG-
FF cohort. Upper table: confusion matrix; lower table: summary of 
accuracy analysis for each subtype. 
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2.4.7 Assessment of the subtype concordance in matched fresh-frozen 
and FFPE samples 

 

Sample preservation and nucleic acids extraction methods may affect the RNA 

integrity and consequently subtype classification. In order to evaluate the 

subtype concordance and the performance of each probe included in the assay, 

a cohort of samples with RNA extracted from matched FF and FFPE primary 

tumours was assessed. The matched samples belong to contiguous tumour 

regions; 58 matched samples were available for the analysis. 

As demonstrated in Figure 17A in this experiment the overall accuracy in 

detecting the same subtype dropped to 0.53. Macrodissection of tumour-

enriched areas was performed during the extraction from FFPE blocks, while 

this is not possible in case of FF blocks. Hence, a higher degree of normal 

tissue contamination is expected in FF-derived RNA samples. As previously 

demonstrated using the CRCA-38 classifier, in cases of higher normal tissue 

contamination the classification is slightly biased towards subtypes with 

expression profiles similar to normal colon epithelium (the enterocyte subtype) 

(154). Similarly, using the rankCMS-38 a possible over-representation of one of 

the differentiated subtypes (CMS3) was observed. In Figure 18 the 

overexpression (>10) of CMS3 genes in FF samples compared to the matched 

FFPE (<5) is demonstrated, leading to a Persons’ correlation of 0.46 within the 

CMS3 genes. This bias was previously reported also in the original CMS 

manuscript, where the vast majority of samples derived from FF cohorts: the 

CMS3 subtype appeared more “normal-like” from gene expression profiles in 

the absence of clear greater contamination from normal tissue compared to the 

other CMS subtypes (148). When selecting for samples with tumour cellularity 

>70% (in the attempt to reduce the normal tissue contamination) the overall 

accuracy slightly improved (0.67, Figure 17B). 
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Figure 17. Overall performance in matched FF and FFPE samples (n: 58) 
(A) and in selected samples with high cellularity (n: 24) (B). 
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Figure 18. Gene-gene correlation in matched FF and FFPE samples. 
Each dot represents a gene in each sample and it is coloured based on 
the subtype the gene belongs to. Four best-fit lines (one for each 
subtype) are plotted based of the expression of subtype-specific genes 
in all samples. 
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2.5 Discussion 
 

In this chapter I have described the development of two new custom assays for 

NanoString Technologies: one assay, dubbed NanoCMS, formed by 48 genes 

(38 endogenous and 10 housekeeping) to classify CRC samples into CMS 

subtypes (rankCMS-38); the second one, formed by 96 genes and created by 

joining the NanoCMS with the previously developed NanoCRCA, to 

simultaneously classify samples into CMS (rankCMS-38) and CRCAssigner 

subtypes (CRCA-38).  

 

After the selection of 38 subtype-specific genes and with the help of Ms Eason, 

we demonstrated that an ad-hoc algorithm is required when using a reduced 

panel of genes. We then validated the newly developed algorithm using public 

microarray and RNAseq data and the standard classification method as a 

reference. 

The signature was used to build new custom biomarker assays for nCounter 

platform: no technical problems were encountered. The optimal RNA input was 

established at 100 ng in a titration experiment: this amount was the minimum 

required to maintain high correlation with higher inputs and allowing us to spare 

precious tumour material.  

A pipeline for data analysis was created to perform quality control assessment 

and data normalization using the nSolver analysis Software (NanoString 

Technologies). Each sample was assigned to CRC subtypes using a newly 

developed algorithm (rankCMS-38) and a previously developed tool (CRCA-38). 

The CMS subtype distribution was then compared and found to be in line with a 

cohort from the literature within a similar clinical setting. The CMS subtypes 

were also compared with the previously validated CRCAssigner subtypes as 

orthogonal validation: association between the two more prevalent subtypes 

(CMS2 and CMS4) and their CRCAssigner equivalent was demonstrated. 

Weaker association between CMS3 and enterocyte plus goblet-like was also 

demonstrated even if the prevalence of this CMS subtype was as low as 7%. 
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Lastly, weaker association between the CMS1 subtype and goblet-like was 

demonstrated: although this subtype was expected to be strongly associated 

with the inflammatory one, the low prevalence (5%) and also the nature of the 

sample collection (chemorefractory setting) justifies the possible correlation with 

the goblet-like. 

High overall accuracy of 82% using the selected 38 genes and the rankCMS 

method was demonstrated using the PETACC-3 dataset (23); similar results 

were reproduced in the TCGA dataset (114). As expected, in the TCGA dataset 

the accuracy slightly dropped to 79% in view of the different type of platform 

(RNAseq) and source of sample (fresh-frozen) compared to PETACC-3. 

However, the prognostic value of the subtypes was not lost but actually 

improved. A new RNAseq cohort was then assessed and an aliquot of the same 

RNA was used for both sequencing and NanoString technologies: also in this 

case, the overall accuracy between rankCMS-38 and reference RF method was 

very high, with 89% of the samples correctly classified. 

Of note, the source of sample used is very relevant. We demonstrated that the 

use of RNA extracted from FF or FFPE samples could affect the classification. 

This may be related to interference with preservation substances or different 

fragmentation of target RNAs. The exclusion of samples with low cellularity can 

partially improve performance. However, it is unlikely that selecting for high 

cellularity could completely address this issue: the RNA extracted from matched 

FF and FFPE samples derives from different areas of the tumours (although 

contiguous). These areas may be biologically different because of intra-

tumoural heterogeneity. 

 

Once developed, the subtypes defined with the newly developed NanoString 

assays were studied in more details in different cohorts of samples and 

correlated with clinicopathological features and outcomes. This was done in 

order to understand whether the known clinical and prognostic associations 

originally described in the CMS Subtyping Consortium and in the CRCAssigner 

manuscripts were equally captured and to also understand the potential clinical 

utility of the assays. These findings are described in the next chapters.  
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Chapter 3  

Biomarker assay validation using clinico-
pathological features  
 

3.1 Introduction 
 

3.1.1 Clinico-pathological features of CMS subtypes 

 

In the original Colorectal Cancer Subtyping Consortium (CRCSC) extensive 

biological characterization of the CMS subtypes was provided (148). The 

clearest associations demonstrated were as follows:  

• CMS1: hypermutation and hypermethylation, low prevalence of somatic 

copy number alterations (SCNA); microsatellite instability (MSI) in 75% of 

cases and overexpression of DNA damage repair proteins; BRAF 

mutation; higher prevalence in the right colon (31%) compared to left 

(7%) and only 3% of rectal tumours. 

• CMS3: KRAS mutation; hypermutation and MSI (30% of cases); low 

SCNA; 

• CMS2 and CMS4: high chromosomal instability. 

 

Although enrichment for genomic aberrations in certain subtypes was observed, 

no genomic alteration was unique to a subtype. In particular, a proportion of 

CMS1 and CMS3 were very similar in genomic profile as were CMS2 and 

CMS4. Major differences were explained by gene set enrichment analyses: 

CMS1 was associated with high immune infiltration, CMS2 with epithelial 

differentiation and WNT pathway activation, CMS3 with metabolic deregulation 

and CMS4 with epithelial-to-mesenchymal (EMT) upregulation and 

angiogenesis and complement-mediated inflammation. This analysis 
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highlighted the fact that the four subtypes summarise distinctive biological 

entities with differentially active pathways potentially targetable with subtype-

specific therapies, hence, supporting the need of a suitable assay for clinical 

exploitation. 

 

3.1.2 Challenges due to technical differences in subtype assessment 

 

After the publication of the CRCSC paper, the scientific community used the 

CMS classification to perform multiple retrospective analyses of clinical trial 

cohorts to further investigate the potential role of the CMS subtypes as 

biomarkers for treatment decisions. Unfortunately, inconsistent results across 

studies created some confusion instead of clarification; we recently published a 

review article explaining how technical factors need to be taken into account 

when applying the classification to trial data (153).  

In particular, the context of application of the CMS classification matters and the 

expected proportion of the different subtypes can vary in at least four different 

contexts:  

1. Stage: the classification was developed in early stage disease, hence 

its application in the metastatic setting may not be optimal; 

2. Sample source: only primary tumour samples collected before any 

treatment were originally analysed, limiting the potential application of 

the classifier to samples of metastatic lesions or samples collected 

after chemotherapy or radiotherapy; 

3. Trial versus off-trial sample collections: given the clinical trial inclusion 

criteria usually excluding patients with poor performance status or 

heavily symptomatic, patients with high disease burden and 

aggressive biology may be underrepresented; 

4. In case of enrichment by genomic or clinical variables: in view of 

expected associations between certain subtypes and genomic 

variables as example RAS mutational status, the distribution of CMS 
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subtypes may vary and be enriched of a particular subtype because 

of genomic selection. 

Beyond different contexts, confounding factors may affect the classification, as 

example, intra-tumoural heterogeneity with more than one subtype within the 

same tumour, technical factors like the algorithm used to predict the subtypes, 

different gene sets and assays. Some concrete examples from recent post-hoc 

analyses of clinical trials are described below.   

Gene expression datasets derived from multiple types of platforms (Affymetrix, 

Agilent microarrays and RNAseq) were included in the CRCSC analysis (148). 

The portability of the CMS classifier across different platforms was 

demonstrated; hence the type of platform used is unlikely to affect the 

classification. Conversely, the number of genes and the algorithm may affect 

the classification. For example, two correlative analyses of first-line clinical trials 

both assessing the effect of bevacizumab or cetuximab together with 

chemotherapy were recently performed (CALGB 80405, FIRE-3) (149,150). 

Discordant results were described, with CMS2 in one study and CMS4 in the 

other one as potential predictive biomarkers of response to cetuximab. In the 

FIRE-3 study the CMS subtypes were assessed using microarray technology, 

more than 600 genes and Random Forest classifier, in line with the CRCSC 

analysis. Conversely, in the CALGB 80405 study the CMS classification was 

performed with NanoString Technologies: because of the lack of overlapping 

genes analysed in the original CRCSC analysis, the CMS classifier was 

retrained based on the available genes (number unspecified) and a logistic 

regression model used as an algorithm (149). This may at least partially explain 

these discordant results. Similarly, in 2014 the CMS analysis of an adjuvant 

study (NSAPB-C07) suggested that adding oxaliplatin to fluorouracil was 

particularly beneficial in the CMS2-enterocyte subtype (166). The CMS analysis 

was performed using NanoString Technologies and gene panels developed 

before the publication of the CRCSC analysis. Thirty-seven genes were 

overlapping with the CRCSC signature (without specific selection criteria 

established). Recently, the same authors could not replicate the same results in 

another adjuvant study (MOSAIC); the assay deployed was altered since the 
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previous analysis without demonstrating the concordance with that one used in 

the first study (166,167). 

This evidence supports once again the need for technical consistency in the 

evaluation of the subtypes in order to obtain reproducible and comparable 

results across studies.  

 

3.1.3 Possible biological variation across different populations 

 

The CRCSC included primarily Caucasian patient samples. Hence, the 

applicability of the classifier in non-Caucasian populations remained to be 

established. Recently a Japanese study evaluated the CMS distribution within 

samples from Japanese patients with metastatic disease (168). Technically, no 

major flaws were described in the CMS classification: the source of samples 

was the primary tumour from FFPE blocks; data were generated using the 

Agilent microarray platform and the algorithm was the single-sample-prediction 

one from the original CRCSC manuscript. The authors found enrichment for 

CMS3 tumours (69 out of 193 cases representing 35.8%) compared to the 

CRCSC population, in which the CMS3 subtype represented 13% of the cases. 

This suggests a potential diversity of subtype distribution in different ethnic 

groups.  

Ethnicity is an important factor in gastrointestinal cancers. Significantly different 

prognosis (better in Asian patients) is well known in gastric cancer: this was 

historically attributed to early diagnosis and more extensive surgical approaches 

in Asian versus non-Asian populations (169). However, recent studies 

demonstrated how biological factors play a major role in pathogenesis and 

molecular characteristics. As an example, different strains of Helicobacter pylori 

with different carcinogenesis capacity or different incidence of Ebstein-Barr 

virus infections across countries have an impact on the distribution of the 

genomic subtypes of gastric cancer (170, 171). Similarly, a recent gene 

expression study demonstrated differentially expressed gene signatures 
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between Asian and non-Asian patients with gastric cancer, in particular 

signatures related to immune functions and inflammation (171). 

In order to identify potential subtype difference across populations it is important 

to deploy the same assay, thus minimising any technical artefacts. 

Understanding potential differences or similarities across populations has 

particular relevance in the context of biomarker-driven clinical trials, which are 

frequently developed on a global scale. This knowledge may help rationalising 

screening efforts and expected outcomes from new drugs. 

 

3.2 Specific aims 
 

1. Evaluate the existing associations between clinico-pathological features 

and CMS subtypes as orthogonal validation of the rankCMS-38 assay in 

FFPE samples 

2. Compare the association between rankCMS-38 subtypes and clinico-

pathological features in Caucasian and Asian populations 
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3.3 Methods 
 

3.3.1 Patient samples 

 

Two clinically annotated cohorts of patient samples were analysed in this 

chapter: 

1. The INCLIVA-Valencia cohort: FFPE samples and patients’ data were 

prospectively collected at the Research Institute INCLIVA, Valencia, Spain 

(Comité Etico de Investigacion Clinica del Clìnico Universitario de 

Valencia: F-CE-GEva-15; named collaborators: Prof. Andrés Cervantes 

and Dr. Noelia Tarazona). 

2. The Singapore FFPE (SG-FFPE) cohort: previously described in chapter 2 

(section 2.3.6). 

All samples were processed with the same assay for simultaneous classification 

into rankCMS-38/CRCA-38 subtypes (NanoCRC) as described in chapter 2 

(section 2.3.8). 

 

3.3.2 Statistical analyses  

 

Clinico-pathological features of each cohort were analysed using descriptive 

statistic. Fisher’s exact or ANOVA tests were used to assess the association 

between subtypes and categorical or continuous variables, respectively.  
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3.4 Results 
 

3.4.1 RankCMS-38 subtypes’ distribution in a Caucasian population 

 

The INCLIVA-Valencia cohort was firstly analysed: this cohort included patients 

with early stage disease prospectively enrolled in an observational study at the 

time of surgery. Out of 144 samples tested with the NanoCRC assay, 132 

passed all the quality control steps. The subtype distribution is presented in 

Figure 19A: the proportion of CMS1 and CMS3 were 7% and 8%, respectively.  

 

  

Figure 19. Subtypes’ distribution is the INCLIVA-Valencia cohort; overall (A) 
and by stage at diagnosis (B, C, D). 
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Based on the CRCSC (including primarily retrospective sample collections), the 

expected proportion of CMS1 and CMS3 subtypes in early stage is 16% and 

15%, respectively (Figure 20) (148). To understand whether the lower 

proportions observed in the INCLIVA cohort was truly related to cohort’ 

characteristics or possibly due to technical misclassification, the subtype 

proportions were analysed by stage of disease (Figure 19 B-D). Of note, in 

stage III tumours, CMS1 and CMS3 represented 12% and 2% of the subgroup: 

this was similar to the recently presented PETACC-8 study (CMS1: 17%; 

CMS3: 4%; Fisher’s Exact Test p-value= 0.47), in which patients were 

prospectively enrolled and the subtypes were assessed with a NanoString 

panel, hence more similar to the INCLIVA-Valencia cohort than the CRCSC 

cohort (172). Interestingly, CMS3 tumours were predominantly present in stage 

I disease: as discussed in chapter 2 and in the CRCSC paper, the expression 

profile of the CMS3 subtype is the most “normal-like”; the higher proportion 

observed was in stage I tumours also in the CRCSC work (Figure 20) (148). 

Furthermore, in a recent publication in which adenomas were stratified 

according to the CMS classification, the proportion of CMS3 was the highest 

ever observed, with 45 out of 62 adenomas (73%), reinforcing the evidence of 

association between very early stage disease and “normal-like” CMS3 subtype 

(173). Overall, the subtype distribution in the INCLIVA cohort was as expected 

given the available literature. 
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Figure 20. Subtypes’ distribution according to stage at diagnosis within the 
CRCSC cohort (redrawn from supplementary data from Guinney et al. 
(148)). 
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3.4.2 Associations with clinical features 

 

The next step in the validation of the subtyping results in FFPE samples was to 

assess whether the known associations between clinico-pathological features 

and subtypes were present. Given the small number of CMS1 and CMS3 

subtypes (expected to be associated with relevant features), the two cohorts 

(INCLIVA and Singapore SG-FFPE) were analysed together. Firstly, clinical and 

molecular characteristics of the cohorts were compared to understand whether 

any significant differences were present (Table 6). 

 

As expected, the stage distribution was significantly different; in fact only the 

Singapore cohort included cancers diagnosed in stage IV disease. Furthermore, 

a smaller number of stage I disease were included compared to the INCLIVA 

cohort. Interestingly, patients in the Singapore cohort were ten years younger 

than those in the Spanish cohort. The proportion of MSI high patients was also 

Table 6. Characteristics of patients included in the INCLIVA-Valencia and 
Singapore FFPE cohorts. NA: not available. 
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significantly smaller in the Singapore cohort, although the number of samples 

with not-available data was higher. There were no differences in the distribution 

of both CRCA-38 subtypes and ramkCMS-38 subtypes; also RAS and BRAF 

mutational statuses were comparable. Given the stage imbalance, a further 

comparison including exclusively stage II-III cancers in the two groups was 

performed (Table 7).  

 

 

No significant genomic or transcriptional differences were present between the 

two cohorts considering the same stages of disease. Hence, in view of the 

apparently similar molecular characteristics the two datasets were merged to 

evaluate the association between rankCMS-38 subtypes and features 

minimising possible sample-size issues. 

Multiple significant associations were demonstrated (Figure 21). CMS1 tumours 

were associated with MSI-high status, right side and BRAF mutations; CMS3 

were associated with KRAS mutations; stage IV disease were predominantly 

represented by CMS2 and CMS4, while CMS3 was associated with early stage 

disease.   

Table 7. Comparisons of the characteristics of the INCLIVA-Valencia and 
Singapore FFPE cohorts in patients with stage II-III cancers 
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Figure 21. Associations between clinico-pathological features and rank-
CMS-38 subtypes in a cohort of 238 primary CRC samples preserved in 
FFPE blocks. 
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Figure 22 represents the proportions of subtypes according to the tumour 

location: as expected CMS1 tumours were predominantly located in the caecum 

and ascending colon, while only one CMS1 tumour was located in the rectum.  

 

 

 

	  

Figure 22. Distribution of the rankCMS-38 subtypes according to tumour 
location. 
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3.4.3 Comparison between Caucasian and Asian populations 

In the previously presented Table 7, the Caucasian and Asian populations with 

similar stage of disease at diagnosis were directly compared. No significant 

differences between molecular characteristics were identified. 

Associations between clinico-pathological features and rankCMS-38 subtypes 

were evaluated in the two cohorts, separately (Table 8). This to understand 

whether the molecular features of rankCMS-38 subtypes were similar in both 

populations. 

In both cohorts, sidedness and BRAF mutation were significantly associated 

with the subtypes; similarly, gender, age and RAS mutation were not 

significantly associated with the subtypes in both cohorts. The only difference 

observed was related to the highly significant association between MSI status 

and CMS1 subtype in the Caucasian population, but not in the Asian one. This 

was likely due to the low incidence of MSI-high tumours (n: 2) in the Asian 

cohort.  
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Table 8. Associations between clinico-pathological characteristics and 
rankCMS-38 in Singapore-FFPE (A) and INCLIVA-Valencia cohort (B). 
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3.5 Discussion 

 

In this chapter the validity of the rankCMS-38 assay was evaluated in FFPE 

samples. In the absence of an alternative method to assess the expression of 

the signature, clinico-pathological features were used to determine whether 

known subtype-specific associations could be reproduced using the new assay. 

The rankCMS-38 subtypes maintained the subtype-specific features, supporting 

the robustness of the assay. 

Although in line with recent literature, the evaluation of subtype distributions 

demonstrated the presence of a small number of samples belonging to CMS1 

and CMS3 subtypes in both the cohorts. It is possible that a small proportion of 

these subtypes is misclassified as CMS4 by the assay given the reduced 

sensitivity of the CMS4 group (chapter 2, section 2.4.2). However, this may not 

be completely related to assay performance but rather to the CMS classifier 

itself. In fact, recently Dunne et al. demonstrated how the performance of the 

CMS classification is challenged by intra-tumoural heterogeneity, with 

discordant subtyping results from different areas of the same tumour (115). In 

particular, the presence of stromal/fibrotic areas may interfere with the 

classification with consequent overestimation of the CMS4 (mesenchymal, 

fibroblast-enriched) subtype. Other classifiers primarily based on cancer-

intrinsic genes/epithelial genes have been developed, though their robustness 

has still not been tested on a large scale (174,175). Furthermore, the expected 

subtype distribution in different settings is difficult to define: the vast majority of 

the published studies so far reported the results of the Random-Forest classifier 

(148,153). The classification derived from this algorithm is partially affected by 

intra-cohort normalization and therefore by the type of cohort analysed. 

Conversely, using a single-sample predictor (SSP) algorithm each sample is 

classified independently of the context. The rankCMS-38 classifier was 

developed as SSP, possibly representing a more realistic distribution of the 

CMS subtypes. Nevertheless, biologically and clinically distinctive subgroups of 

patients can be identified, supporting its further prospective evaluation. 
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When assessing potential biological differences between Caucasian and Asian 

CRC, no significant differences were demonstrated in terms of subtypes’ 

distribution and subtype-specific characteristics. Interestingly, Asian patients 

were much younger than Caucasians. When considering stage II and III 

tumours only, a significantly higher proportion of Asian patients were diagnosed 

with a stage III CRC: it is possible that this association could be due to selection 

biases or reflection of delayed diagnosis (in view of the younger median age 

possibly outside screening programs). However, this may also be an indicator of 

a more aggressive disease, in line with the lower incidence of MSI-high tumours 

(typically associated with stage II and favourable prognosis in Caucasian 

population).  

Interestingly, a previous systematic study of a Singaporean population fulfilling 

the Amsterdam clinical criteria for Lynch Syndrome highlighted how all 

pathogenic defects were confined to two MMR genes, MLH1 and MSH2, but not 

to MSH6 and PMS2 (176). Furthermore, out of 15 pathogenic variants in MLH1 

and MSH6, 6 were novel. This study demonstrated the molecular heterogeneity 

of Lynch Syndrome and how both Amsterdam and Bethesda criteria (developed 

in Caucasian populations) may not completely apply to Asian populations (177-

178). In view of the increasingly recognised role of MSI and defective mismatch-

repair mechanisms as predictive biomarker of response to immunotherapy, a 

thorough assessment of these biomarkers in different populations is essential 

(179). Given the similar phenotypic profile of Caucasian and Asian population 

identified in the current analysis despite the difference in MSI status, assessing 

the association between subtypes and response to immunotherapy across 

populations is worth noting. 
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Chapter 4 Assessment of NanoCRC 
biomarker assay to predict treatment 
response in CRC 
 

4.1 Introduction 
 

4.1.1 The epidermal growth factor receptor (EGFR) signalling pathway 

 

Located on the chromosome 7p, the EGFR (or ErbB-1) gene encodes for a 

transmembrane tyrosine kinase receptor protein (180). Similarly to the other 3 

members of the family (ERBB2, ERBB3 and ERBB4), the receptor undergoes a 

conformational change after the interaction with its ligands (including the 

epidermal growth factor (EGF), amphiregulin (AREG) and heregulin (EREG)), 

with activation of downstream signalling pathways involved in cellular survival, 

proliferation, differentiation and migration (180). In some cancers the activation 

of the receptor is ligand-independent as a result of alterations of the 

extracellular domain with consequent constitutive receptor activation or as 

consequence of cellular stresses such as radiation (181). Upon activation, key 

tyrosine residues of the intracellular domain are phosphorylated, becoming 

docking sites for intracellular proteins (Grb2 and Sos). These proteins form a 

complex able to activate at least two intracellular cascades, one is the 

RAS/RAF/MAPK pathway and the other is the PIK3CA/AKT/mTOR pathway. 

Both pathways lead to the translocation of transcriptional factors into the 

nucleus with activation of proliferation, survival and invasion genes (181). 

The EGFR pathway plays a critical physiological role during embryogenesis of 

vertebrates (182). The members of the family are expressed in the vast majority 

of cells with the exception of hematopoietic cells (182). In animal models, gene 

knock out results in embryonic or perinatal lethality due to abnormal brain, lung, 

skin and gastrointestinal development. The four family members are very similar 
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in structure but associated with slightly different body distribution and 

mechanism of activation and signalling. As example, while EGFR activation is 

crucial for the central nervous system and mammary glands maturation, ERBB2 

and ERBB3 are active in the cardiac formation (182). EGFR is also crucial in 

skin maturation, hair follicles and hair cycling development. These functions 

explain typical side effects of anti-EGFR drugs (skin toxicities) or anti-HER2 

agents (cardio-toxicity). 

Hot-spot mutations of the EGFR gene may result in aberrant domains of the 

receptor, which becomes constitutionally active; in glioblastomas, the 

extracellular domain is the portion more frequently mutated while in lung cancer 

the aberrant domain is typically the intracellular one, with consequent activation 

of the tyrosine kinase domain (182). The L585R point mutation and the exon 19 

in-frame deletion are the most commonly activation mutations observed in lung 

cancer which became positive predictive biomarker of response to tyrosine 

kinase inhibitors (TKIs) like gefinitib or erlotinib (183). Conversely, the presence 

of the T790M mutation has been associated with resistance to TKIs (183). 

Activating mutations are rarely found in CRC, where the wild type gene is 

overexpressed in 25% to 80% of cases (184). Gene amplification has been 

reported inconsistently in CRC: in some studies the amplification is uncommon 

while in other reports a moderately increased copy number may be present in 

up to 50% of the cases (184). Recently, an integrated genomic analysis of CRC 

development and progression highlighted how epigenetic modifications may 

play a key role in up-regulating the EGFR signalling pathway:  during the 

progression from adenoma to carcinoma increased expression of the EGFR 

ligand EREG was demonstrated following demethylation of two sites of the 

EREG promoter (185).  
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4.1.2 Targeting EGFR in colorectal cancer  

 

The EGFR pathway was the first one recognised as oncogenic driver in human 

epithelial cancer. In 1984 John Mendelsohn and Gordon Sato described for the 

first time how monoclonal antibodies against EGFR were able to inhibit the 

growth of human tumour cells implanted in athymic mice (186). These studies 

led to the development of monoclonal antibodies and tyrosine kinase inhibitors 

in human cancers. Cetuximab is a human-murine chimeric antibody with high 

affinity for the EGFR external domain. It works as competitive antagonist of 

EGFR ligands. Following ligand binding, the complex is internalized and 

degraded with consequent down-regulation of EGFR on the cell surface. In this 

way, the intracellular signal is down-regulated and arrests in the G1 phase of 

the cell cycle is triggered with initiation of the apoptotic cascade (187). As 

immunoglobulin (Ig) G1, cetuximab is able to promote antibody-dependent cell-

mediated cytotoxicity (ADCC): after binding EGFR on the cancer cell surface, its 

Fc region is recognised by the Fcy receptor (R) of Natural Killer and 

macrophages (187). Polymorphisms in FcyR have been associated with 

different activity of the drug leading to distinctive patient outcomes, although 

controversial results have been reported in multiple retrospective studies in 

CRC (187). 

Another monoclonal antibody targeting EGFR, panitumumab, has a similar 

mechanism of action with the advantage of a minor immunogenicity in view of 

its fully humanised structure (188). This property reduces the risks of allergic 

reactions during the infusion of the antibody, however, as IgG2 the cytotoxic 

activity due to ADCC mechanisms is unlikely trigger, opposite to cetuximab 

(187).  

Both cetuximab and panitumumab were initially compared to best supportive 

care in patients with metastatic disease after progression to standard 

chemotherapy options (189-190). Both drugs demonstrated activity in 

molecularly unselected populations, with objective responses in about 10% of 

the patients and survival prolongation of about 1.5 months (from about 4.5 to 6 

months) (189-190) (Table 9). The two drugs were also compared in a non-
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inferiority phase III trial, demonstrating overlapping efficacy results and minor 

differences in the toxicity profiles (191). Subsequent studies aimed to determine 

the effect of anti-EGFR agents in earlier settings in combination with different 

chemotherapy backbones (Table 9). Although an increase in response rate was 

observed in some of the studies, the majority of the patients still did not benefit 

from these expensive drugs. Therefore, the identification of biomarkers of 

response became crucial. 

 

	  

Table 9. Summary of multicentre randomised clinical trials assessing the 
benefit of anti-EGFR therapy as a single agent compared to best supportive 
care (BSC) or placebo or in combination with standard chemotherapy 
regimens in first and second-line setting in CRC. Overall response rates 
(ORR) and survival outcomes are presented based on treatment arm. NR: 
not reported. 
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4.1.3 Molecular biomarkers to predict benefit from anti-EGFR agents 

 

In view of the mechanism of action of the antibodies, binding the receptor on 

the cell surface, EGFR expression level was the first biomarker investigated as 

potential indicator of activity. Unfortunately, multiple studies failed to 

demonstrate any correlation between EGFR expression measured by IHC and 

cetuximab or panitumumab benefit (180). 

The high level of expression of the ligands EREG and AREG has been 

associated with increased response to cetuximab in retrospective analyses of 

clinical trials (205,206). However, the lack of validated assays to systematically 

assess the expression of the ligands halted their potential clinical application. 

Similarly, high EGFR copy number gain was associated with better outcomes in 

CRC patients treated with anti-EGFR therapy in retrospective studies mainly 

lacking of control groups and of standardized and reproducible methods to 

evaluate the biomarker (207).  

In 2006 Lievre and colleagues reported for the first time that mutations in K-

RAS gene were associated with primary resistance to anti-EGFR therapy (208). 

This gene is part of the EGFR downstream signalling pathway; when mutated, 

KRAS is constitutively active, leading to cell proliferation independently from the 

EGFR signal (208). Hence, blocking the EGFR receptor becomes futile. The 

anti-EGFR therapy was initially restricted to KRAS exon 2 wild-type population 

(29). Further retrospective analyses demonstrated that other mutations in KRAS 

(exons 3 and 4) and NRAS (Neuroblastoma RAS Viral oncogene homolog) 

gene (exons 2, 3 and 4) were equally effective in preventing the effect of anti-

EGFR therapies (188). In 2013, both the Food and Drug Administration (FDA) 

and The European Medicine Agency (EMA) restricted the use of anti-EGFR 

monoclonal antibodies to patients with metastatic CRC with extended RAS 

(KRAS and NRAS exons 2,3 and 4) wild type tumours (188). 

Increasing evidence suggest that the V600E mutation in the BRAF gene 

(present in about 12% of metastatic CRC patients) is not only a prognostic 

factor of poor prognosis, but also negatively predicts the benefit from anti-EGFR 

therapy in late lines of therapy (29). However, conflicting evidence from meta-
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analyses of first and second line studies have been reported (29). Hence, the 

presence of BRAF mutation is not an absolute contraindication to cetuximab or 

panitumumab. Increased activity has been reported when these agents are 

combined with BRAF and MEK1 (Mitogen Activating Protein Kinase) inhibitors 

(130). 

Multiple less frequent molecular events have been indicated as mechanisms of 

primary resistance to anti-EGFR therapy. These include HER2 alterations, MET 

amplification, PIK3CA mutations and rare rearrangement of NTRK, ROS, ALK 

or RET genes (209). Cremolini et al. recently used a panel of genomic 

alterations to demonstrate how the presence of any of the selected alterations 

are significantly more frequent in patients showing primary resistance than 

among patients who benefitted from anti-EGFR therapy. The study included 47 

patients with RAS/BRAF wild-type tumour resistant to therapy in a 

chemorefractory setting and further 47 patients who responded to the treatment 

in the same setting (209).  

 

4.1.4 Gene expression subtypes to predict benefit from anti-EGFR 
targeted agents 

 

Following the identification of the five CRCAssigner subtypes, Sadanandam et 

al. asked whether increased anti-EGFR benefit was associated with any of the 

subtypes using publicly available data from the Khambata-Ford dataset 

(139,205). Microarray data generated from metastatic CRC lesions (the majority 

from liver metastases) collected from patients prior to cetuximab therapy were 

analysed. Three (TA, stem-like and goblet-like) out of five subtypes were 

identified using an unsupervised method (Non-negative Matrix Factorizations) 

and the 786 CRCAssigner gene signature (139, 210). Only 23% of patients with 

stem-like and goblet-like benefitted (complete, partial or stable disease) from 

cetuximab. In contrast, 54% of the TA subtype benefitted. This TA partition was 

confirmed in cell lines and xenograft models, leading to the functional sub-

classification of the TA subtype into cetuximab sensitive (CS-TA) and cetuximab 

resistant (CR-TA) (139). Although not significant, KRAS wild-type tumours were 
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numerically higher in the CS-TA group compared with CR-TA. Whether these 

two sub-subtypes were significantly associated with extended RAS mutational 

profiles is unknown, given that the only KRAS exon 2 mutational status was 

available. 
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4.2 Hypotheses and aims 
 

Hypotheses 

The CRC subtypes identified with the newly developed assay (NanoCRC) and 

algorithm (chapter 2) are clinically meaningful because they are associated with 

distinctive prognosis and differential response to anti-EGFR therapies. In view 

of its potential clinical applicability, the NanoCRC assay may serve as a 

stratification tool for prospective patient selection for anti-EGFR therapy. 

Specific aims 

1. Evaluate (a) the CRCA-38 subtypes and (b) a derivative biomarker (lately 

dubbed TA classes) identified using the NanoCRC assay in patients 

samples and in experimental cohorts (cell lines and patient-derived 

xenografts) to understand their clinical relevance and whether an 

association with response to anti-EGFR therapy exists; 

2. Evaluate the rankCMS-38 subtypes identified using the NanoCRC assay 

to understand their clinical relevance and potential association with anti-

EGFR benefit. 
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4.3 Methods 
 

4.3.1 Sample collection 

 

A first cohort of patients’ samples was identified within two different ethically 

approved translational studies at The Royal Marsden Hospital (RMH) (The 

RETRO-C and FOrMAT, described below); three further cohorts were identified, 

two via Italian collaborators and one via the Canadian Cancer Trial Group. 

These were the details of the studies and cohorts: 

1. The RETRO-C study (ethic committee reference: 10/H0308/28): A 

retrospective translational study: characterisation of molecular predictors 

of response to cetuximab or panitumumab in patients with colorectal 

cancer (Principal Investigator, PI: Professor David Cunningham). In this 

study, formalin-fixed paraffin embedded (FFPE) samples from patients 

who received cetuximab or panitumumab at the RMH between January 

2004 and January 2014 were retrospectively collected. Link-anonymised 

clinical data were reviewed (initially by Dr Francesco Sclafani, clinical 

research fellow in the Gastrointestinal Unit, RMH, and then by myself). 

Only patients who received anti-EGFR therapy as a single agent or in an 

irinotecan-refractory (chemorefractory) setting were included. Patients 

were considered chemorefractory if they progressed during or within 3 

months from the last dose of irinotecan. All patients must have received 

at least one cycle of anti-EGFR therapy. This cohort included a 

proportion of patients with RAS or BRAF mutant tumour. This is because 

some of the patients were treated before the UK implementation of 

KRAS testing (August 2009) and extended RAS testing (December 

2011) (211,212). In April 2017, I amended the protocol in order to include 

the current analysis, which was approved by the Trial Management 

Group. 

2. The FOrMAT feasibility study (ethic committee reference: 

13/LO/1274RM): Feasibility of a Molecular characterisation Approach to 

Treatment (Principal Investigator: Dr Naureen Starling). In this study, 
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FFPE samples from patients with gastrointestinal cancer who received 

(or were about to receive) at least one line of therapy in the advanced 

setting were prospectively collected (213). Patients with metastatic CRC 

treated with single agent anti-EGFR therapy between January 2014 and 

January 2016 were identified. Clinical data were collected in a link-

anonymised fashion and merged to the RETRO-C clinical data. 

3. The PRESSING case-control study (ethic committee reference: 1333/17 

Area Vasta Nord Ovest): the design and results of this study were 

previously described (209). I successfully established a collaboration and 

material transfer agreements between The Institute of Cancer Research 

and The National Institute of Cancer (PI Dr Filippo Pietrantonio, Medical 

Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 

Milan, Italy). A cohort of patients with extended RAS wild-type CRC 

previously included in the PRESSING study and with available FFPE 

samples were identified. The FFPE blocks and link-anonymised clinical 

information were transferred to our lab. After review of the clinical 

information, only patients who received anti-EGFR therapy as a single 

agent or in combination with chemotherapy but in a chemorefractory 

setting were included. 

4. The CO.20 clinical trial cohort (ClinicalTrials.gov identifier 

NCT00640471): In this clinical trial, patients with metastatic CRC 

received single agent cetuximab or cetuximab in combination with the 

anti-angiogenic agent brivanib after progression from standard 

chemotherapy (193). Here, I successfully developed a research proposal 

submitted to the Canadian Cancer Trial Group and Australasian 

Gastrointestinal Trial Group (CCTG/AGITG) Gastrointestinal Correlative 

Science and Tumour Biology Committee. The research proposal was 

approved by the Committee in May 2017. Material transfer and 

collaboration agreements were established. In collaboration with the 

CCTG statistician (Dr Dongsheng Tu) and the CCTG Pathology 

coordinator (Dr Shakeel Virk), FFPE cancer samples of patients who 

received at least one cycle of treatment in the control arm of the trial 

(cetuximab only) were selected for further analysis. 
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5. The “Cases” cohort: in this cohort, RNA extracted from KRAS, NRAS, 

BRAF and PIK3CA wild type CRC liver metastases (pre-implantation 

samples) and correlated patient-derived xenografts (PDXs; six mice 

treated with cetuximab and six mice treated with placebo) was collected 

from a well-established biobank of patient samples with matched 

xenograft lines (214-215). Each pre-implantation sample and the two 

linked PDXs cohorts together were considered as a “case”, as per 

previous publications (214-215). Xenopatients’ tumour volume variation 

data at 3 weeks after cetuximab treatment initiation were collected. The 

RNA and response data were provided by Dr Livio Trusolino 

(Department of Oncology, University of Torino Medical School and 

Translational Cancer Medicine, Candiolo Cancer Institute, Candiolo, 

Torino, Italy). 

 

For cohorts 1,2,3 and 4, the FFPE block of the primary tumour sample collected 

prior to any treatment was retrieved whenever available. If the primary tumour 

block was not available, any other available block containing metastatic lesions 

was retrieved. The information related the type of sample and whether pre- or 

post-treatment was carefully reviewed in the patient notes and taken into 

account for downstream analyses.   

 

4.3.2 Publicly available data 

1. Affymetrix Human Genome U133A 2.0 Array gene expression files 

(.CEL) of metastatic biopsies from 80 CRC patients who received single 

agent cetuximab within a phase II study were downloaded from Gene 

Expression Omnibus (GEO, accession number GSE5851) and Robust 

Multiarray Averaging (RMA) normalised (this step was performed by Ms 

Katherine Eason) (205). Clinical data, mutational status, response to 

treatment and PFS data were downloaded from the on-line 

supplementary Table1 of the same publication (205). 

2. Illumina array-based mRNA expression profiles for 155 CRC cell lines 

were downloaded from GEO (accession GSE59857) (Ms Katherine 
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Eason)(216). The mutational status, “AUX index” and the percentage of 

growth inhibition with different cetuximab concentrations were recovered 

from the on-line Supplementary Data 1 of the same manuscript (216). 

 

4.3.3 Nucleic acid extraction 

All FFPE blocks from the different cohorts were processed by myself with the 

same protocol described in Chapter 2.  

The RNA received from cohort 5 (the cases) was extracted in Italy with 

protocols previously published (214,215). For the CO.20 cohort, nucleic acids 

from about half of the samples were extracted in Canada using an automated 

extractor and shipped in dry ice. The samples not suitable for automated 

extraction due to small dimensions were extracted by myself (with the help of Dr 

Patrick Lawrence, Scientific Officer) with the same methods (chapter 2, section 

2.3.7). Technical difference between different extraction batches were taken 

into account and corrected if required (see batch effect assessment section 

4.3.9).     

 

4.3.4 Mutational profiling 

• For cohort 1 (RETRO-C), the assessment of the mutational status of 5 

frequently mutated genes in CRC was an on-going project described in 

the RETRO-C protocol; the project was lead by Dr Francesco Sclafani 

(GI unit). The mutational analysis was performed by Ms Sanna Hullki 

(High Scientific Officer) in the Department of Molecular Pathology, RMH. 

I shadowed Ms Hullki during the analysis and recovered the data for the 

relevant samples.  

KRAS, NRAS, BRAF, PIK3CA and TP53 mutational status were 

evaluated with a TruSeq custom panel amplicon next generation 

sequencing (TSCA NGS) previously validated for routine clinical use in 

the Department of Molecular Pathology (accredited laboratory). Up to 20 

ng of DNA were processed using TSCA NGS including 35 amplicons 

optimised for DNA extracted from FFPE (following extensive internal 
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validation with over 200 specimens, unpublished data). Hotspot regions 

for KRAS (exons 2-4), NRAS (exons 2-4), PIK3CA (exons 2, 10 and 21) 

and BRAF (exon 15) and all the coding exons of TP53 (exons 2-10) were 

targeted with >3% allele frequency as limit of detection. Amplicons of 60-

130bp were obtained. A positive control quantitative multiplex DNA 

reference standard (Horizon Discovery) and a no template control (NTC) 

were used as internal controls. The TSCA NGS products were 

sequenced using MiSeq (Illumina Inc.) according to manufacturer’s 

instructions. For data analysis, two separate pools were combined into a 

single output file and annotated for the variants using Variant Studio 

(Illumina Inc.). Variant results from BAM files and amplicon coverage 

were visualised and assessed in Integrative Genomic Viewer (Broad 

Institute).  

• The mutational status of KRAS, NRAS, BRAF and PIK3CA of the 

samples in the FOrMAT cohort was already available as part of the main 

project (213).  

• For the Italian cohort, oncogenic mutations of 50 cancer-related genes 

were previously published in the PRESSING case-control study (209). 

Only KRAS, NRAS, BRAF and PIK3CA (quadruple wild type) samples 

with available FFPE material were selected for the current study. 

• For the CO.20 cohort, high sensitivity mutational profile data were 

generated in an on-going project using nested polymerase chain reaction 

(PCR) (this analysis was performed by Prof. Paul Waring’s group at the 

University of Melbourne, Australia).  Methods were provided by our 

collaborators and included a DNA repair step (New England Biolabs 

PreCR repair mix) and an in-house customised protocol for nested ICE 

COLD PCR kit (Precipio ICEme). Sequencing was performed with 

Illumina MiSeq platform. In view of the high sensitivity of this protocol 

each sample was analysed in triplicate and considered mutant only if: a) 

the mutation appeared in all the replicates at approximately equal 

frequency, b) the mutational signal was significantly stronger than the 

baseline or the ICE COLD PCR induced and with strong signal compared 

to baseline. 
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4.3.5 Gene expression analysis 

 

In this project I used the 96-genes assay (NanoCRC assay – Appendix 1), 

which was developed as previously described in chapter 2. RNA in the region of 

100 ng were hybridized with the custom probes of the NanoCRC assay using 

the Elements XT protocol for NanoString Technologies as manufacturer’ 

instructions. Hybridization temperature and duration was in line with the protocol 

previously optimised in the lab (154). The hybridized products were immobilised 

on a cartridge; each barcode was counted and recorded in an “.RCC file” using 

the Max Analysis System from NanoString Technologies as described in 

chapter 2, section 2.3.8. 

 

4.3.6 Data quality control and batch effect assessment 

 

Each “.RCC” file download from the Digital Analyzer was then up-loaded in the 

nSolverTM 3.0 Analysis Software provided by NanoString Technologies. After 

standard quality control steps (as per chapter 2, section 2.3.9), normalization of 

the raw data was performed using 8 negative and 6 positive controls. The 

performance of the 10 housekeeping genes included in the panel was 

evaluated with the geNorm algorithm integrated in the nCounter Advance 

Analysis protocol version 2.0. Only housekeeping genes selected by the 

algorithm were used for data normalization. The possible batch effect in each 

cohort was visually assessed using Principal Component Analysis (PCA). The 

PCA plots were generated directly using the Advance Analysis Software. In 

view of the expected presence of significant batch effect in the CO.20 cohort 

(where the nucleic acid extraction was performed partially in Canada and 

partially in our Lab), batch correction was performed with the exploBatch 

method, previously developed and published by Dr Gift Nyamundanda 

(Bioinformatics Postdoctoral Fellow in The Sadanandam Lab) (217). Log2 

transformed normalised data were exported in .txt file for downstream analyses.  
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4.3.7 Biomarkers prediction 

 

Log2 normalised data for each cohort were used to classify each sample 

according to three possible classifications: 

1. CRCA-38 subtypes, using the published CRCA-38 classifier (154); 

2. RankCMS-38 subtypes, using the new classifier described in chapter 2; 

3. Transit-Amplifying (TA) class-1 and TA class-2, using the CRCA-38 

classifier with a modification in sample assignment described in details in 

the results section.  

 

4.3.8 Study design 

 

1. Objective: to identify whether CRC gene expression subtypes (or the 

newly defined biomarkers TA class-1 and TA class-2) are associated 

with distinctive outcomes in CRC patients who received anti-EGFR 

therapy as single agent or in combination with chemotherapy in a 

chemorefractory setting. 

 

2. Endpoints: 

a. Primary: progression-free survival (PFS) between patients with the 

candidate molecular subtype (TA or CMS2 or TA class-1) and 

those with other subtype. The PFS was defined as the time 

measured from the date of the first cycle of anti-EGFR therapy to 

the date of radiological or clinically documented progression of 

disease or death from any cause. Patients with no documented 

progression and alive at the time of analysis were censored at the 

last follow-up. 

  

b. Secondary: 

i. Overall survival (OS), defined as the time measured from 

date of the first cycle of anti-EGFR therapy to date of death 
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from any cause. Patients alive at the time of analysis were 

censored at the last follow-up. 

ii. Disease control rate (DCR), defined as complete, partial or 

stable disease according to RECIST (Response Evaluation 

Criteria In Solid Tumours) criteria version 1.1; 

iii. Overall response rate (ORR), defined as complete or partial 

response according to RECIST criteria version 1.1. 

 

c. Exploratory endpoints: 

i. To measure the distribution of the biomarkers in the 

different cohorts of patients; 

ii. To examine the association between biomarkers and 

clinical and pathological characteristics; 

iii. To further confirm that the assessment of the proposed 

classifications using the established NanoCRC assay is 

feasible; 

  

3. Study populations 

Three main cohorts analysed for the first time in this work were defined: a 

test cohort, formed by all patients whom tumour was collected between 

retrospective, non-trial protocols (RETRO-C, FOrMAT and PRESSING); a 

validation cohort, represented by the CO.20 clinical trial cohort; an 

experimental cohort, represented by “the cases” cohort, where both patients 

liver metastatic samples and preclinical models were profiled (details in 

section 4.3.1).  

 

4. Statistical analyses 

The analyses related to the test and “the cases” cohorts were performed by 

me or by Dr Gift Nyamundanda under my guidance. The analyses related to 

the CO.20 cohort were performed by Dr Dongsheng Tu (senior 

biostatistician at The Canadian Cancer Trial Group) under my guidance and 

as per the analysis protocol submitted to the CCTG Committee. Clinical 

characteristics were analysed according to biomarker of interest using 
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descriptive statistics. Within the CO.20 cohort, patients’ characteristics were 

compared to those of the original trial population to identify whether 

selection biases were present. To test the association between categorical 

variables Fisher’s exact test was used, whilst for continuous variables T-test 

or non-parametric equivalent were deployed. Pearson’s correlation was also 

used where appropriate. 

For the survival endpoints, the Kaplan-Meier method was used to 

summarise the survival estimate, while Cox proportional hazards models 

were used to compare the survival rate between the biomarkers adjusted for 

the effect of known prognostic variables. Hazard ratios along with 95% 

confidence intervals (CI) were reported. The DCR and ORR were calculated 

and presented according to molecular subtypes. Logistic regression was 

used to assess the effect of different biomarkers adjusted for the effect of 

known prognostic variables. Odds ratio were presented with 95% CI. To 

assess the accuracy of the biomarkers in defining DCR a receiver operating 

characteristic (ROC) curve was built. 

 

5. Analysis of publicly available data 

To further validate the findings, two publicly available data (previously 

described in section 4.3.2) were downloaded. Biomarker prediction using the 

same methods described above in section 4.3.7 was performed. 
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4.4 Results 
 

4.4.1 Sample identification, nucleic acid extraction and NanoString 
analysis 

 

Within the retrospective tissue collections (RETRO-C, FOrMAT and PRESSING 

studies), up to 132 tumour blocks were retrieved and reviewed by different 

pathologists (at the Royal Marsden and at The National Institute of Cancer in 

Milan). Due to low tumour content in the block or low RNA yields after 

attempted extraction, 25 samples were excluded. In the PRESSING study, 17 

patients were excluded after review of the clinical information; those patients 

received anti-EGFR therapy in both first-line and after progression following 

irinotecan within a re-challenge strategy, and were therefore not suitable for the 

current analysis.  

The RCC files from Royal Marsden (RETRO-C and FOrMAT) and Italian 

samples (PRESSING) were analysed separately with the nSolver Analysis 

Software. This was in line with previously published multi-cohorts studies, for 

example the Consensus Molecular Subtype Consortium analysis (148). For all 

cohorts, the 10 housekeeping were selected for normalization by the geNorm 

algorithm. No evident batch effect was observed in these cohorts (Figure 23). 

After normalization, 6 Royal Marsden samples were excluded because of a 

“content normalization” flag. Hence, 84 samples passed all the quality control 

steps and were included in the test cohort.  
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For the validation cohort, 163 patients who received at lest one cycle of 

cetuximab and with sample available in the Canadian Cancer Trial Group 

Biobank were identified. Seventeen samples were excluded because of 

insufficient RNA after extraction. After NanoString analysis, 146 samples were 

analysed with the nSolver Analysis Software. All 10 housekeeping genes were 

selected; 123 samples passed the quality control analysis; 23 were excluded 

because of “content normalization” flag. Figure 24 represents a consort 

diagram summarizing the samples identified and selected within each cohort. 

Figure 23. Principal component analysis performed to rule out potential batch 
effect due to different run of NanoString in the RMH cohort (left) and Italian 
cohort (right) from the PRESSING case-control study. Each dot represents a 
sample and each colour a batch. Samples with the same colour were 
processed in the same NanoString batch. No batch was separated from the 
others, excluding the present of potential technical effect. 
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Figure 24. Consort diagram of samples included in the Test (retrospective 
samples from the RMH and Italian cohort) and Validation (from CO.20 trial 
sample collection) cohorts. 



	

	 125	

Because of the different protocols used for RNA extraction in this cohort, with 

the risk of introducing technical variation, the normalised data were assessed 

with exploBatch (Dr Nyamundanda) (217). Significant batch effect was 

demonstrated and therefore corrected (Figure 25). After the sample identifiers 

were cross-checked with the clinical data (Dr Dongsheng Tu), two further 

samples (with the same subtype class) were excluded because belonging to the 

same patient. Hence, 121 patients were finally included in the validation cohort.  

 

 

4.4.2 Patients’ characteristics, response and survival data  

 

1. Test cohort: Table 10 summarises the main characteristics of patients of 

this cohort. The majority of the patients were male; the median age at 

diagnosis was 59. This was slightly lower than the median age for colon 

Figure 25. Batch effect assessment and correction using exploBatch 
method for gene expression data from the test cohort. X-axis represents 
regression co-efficients from the method and Y-axis represents different 
probabilistic principal components (pPC) for the Validation cohort data. 
The 95% confidence interval for each of the pPC has been shown. If the 
95% confidence interval touches zero, then there is no batch effect. The 
left side figure shows the existence of batch effect, whereas the right side 
figure shows no batch effect after correction. 
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cancer (72 in men, 68 in women); however, patients with rectal cancer 

were also included (median age around 63 for both sexes according to 

literature) (218). In the majority of cases the primary tumour sample was 

available for the analysis; in 74% of patients the sample was collected 

before any type of systemic or radiation therapy. Of note, nearly 26% of 

the patients carried a mutation in RAS or BRAF genes. Overall response 

rate was 26%; disease control rate was 61%; median PFS and OS were 

5.30 (95%CI, 3.13 - 6.37) and 10.40 (95%CI, 8.17 - 15.03) months, 

respectively. 

 

 

  
Table 10. Characteristics of patients included in the Test cohort. 



	

	 127	

2. Validation cohort: Table 11 summarises the main characteristics of this 

cohort. Statistical comparison with the characteristics of the entire CO.20 

trial population was performed (Dr Tu) in order to exclude any potential 

selection biases. With the exception of sex, enriched for female patient in 

the current study, no significant differences with the entire population 

enrolled in the CO.20 study were found.  

 

 Table 11. Characteristics of patients in the validation cohort and 
comparison with the CO.20 clinical trial population (129). 
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Overall, test and validation cohorts included a similar population in terms of 

clinical characteristics (although slight variation in the type of data collected 

does not allow a perfect comparison). The major differences between the 

cohorts included the mutational status of KRAS (all wild-type in the validation 

cohort, although a few mutations were subsequently identified using high 

sensitivity techniques) and the fact that all the patients in the validation cohort 

received anti-EGFR as single agent. Conversely, 55% of the patients in the test 

cohort received anti-EGFR in combination with chemotherapy. This difference 

may explain the fact that a higher response rate was observed in the test cohort 

compared to the validation cohort (ORR: 26% test; ORR: 5% validation).  

 

4.4.3 Analysis of CRCA-38 subtypes  

 

4.4.3.1 Subtypes assignment  

Following quality control assessment of the gene expression data, the log2-

normalised file generated using the nSolver Analysis Software was used to 

predict the CRCA-38 subtypes according to the published method (154). The 

algorithm was applied using RStudio and a user-friendly R code. This was 

specifically developed by Dr Sadanandam to serve the purpose. The algorithm 

consists of Pearson’s correlation of gene-wise median-centred expression 

profiles for each sample with the recently developed CRCA-38 centroids for 

each subtype. The subtype with highest correlation is assigned to the sample.  

Caution is required in interpreting the associations found between subtypes and 

clinical characteristics and outcomes; in fact both test and validation cohorts 

included non-primary samples or samples collected after treatment, while the 

subtypes were originally developed in primary untreated tumours.  

 

4.4.3.2 Test cohort: clinical characteristics 

The pie chart in Figure 26 represents the distribution of the CRCA-38 subtypes 

in the test cohort, while Table 12 summarises the associations between 



	

	 129	

subtypes and clinical characteristics. With the limitation of the small numbers in 

each group, no association between subtypes and sex was demonstrated; the 

median age at diagnosis for TA, stem-like and inflammatory was lower than that 

in the differentiated subtypes (enterocyte and goblet-like). Right-sided tumours 

were enriched for goblet-like and inflammatory subtypes. As expected, 

mutations in RAS genes were mainly found in goblet-like and enterocyte, while 

BRAF mutations were distributed between goblet-like and inflammatory. Of note 

and not surprisingly, a significant association with the type of sample was 

demonstrated: the highly differentiated subtypes (enterocyte and goblet-like) 

were predominantly found when the primary tumour was profiled but very rarely 

in metastatic samples. The expression profiles of these two subtypes are very 

similar to normal colonic tissue. Either over-estimation in primary tumour 

samples exists due to normal tissue contamination or whether this is due to 

biological switch-off of their differentiated signature during metastasization 

(epithelial-to-mesenchymal transition) may be plausible explanations. Although 

not readily discernable in the current study, the type of sample deployed in the 

analysis is an important variable to be taken into account.   

 

Figure 26. Pie chart showing the CRCA-38 subtype distribution in the 
Test cohort (N: 84) 
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4.4.3.3 Test cohort: treatment outcomes 

A significant association between subtypes and type of response to treatment 

was demonstrated. Treatment response and disease stability were 

predominantly seen in the TA, stem-like and enterocyte (Figure 27). 

Conversely, the majority of the goblet-like and inflammatory tumours 

progressed to anti-EGFR treatment. In view of the association between 

subtypes and RAS/BRAF mutational status (with goblet-like and inflammatory 

enriched for mutant tumours and TA and stem-like enriched for wild-type), these 

types of response were expected.  

Table 12. Characteristics of the CRCA-38 subtypes in the Test cohort.  
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After 80 events for PFS and 74 for OS, significantly different survival outcomes 

were demonstrated (Figure 28). The risk of progression for inflammatory and 

goblet-like tumours was 3.96 and 1.70 significantly higher compared to TA 

tumours, respectively (Table 13). Similarly, the risk of death was 2.27 and 4.45 

significantly higher for the same comparison. Of note, no significant difference 

in outcomes was observed between TA and stem-like subtypes.    

  

Figure 27. Stacked columns showing the percentage of type of response to 
anti-EGFR therapy according to CRCA-38 subtypes in the Test cohort. 
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Figure 28. Kaplan Meir curves for progression-free survival (A) and overall 
survival (B) according to CRCA-38 subtypes – Test cohort 
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4.4.3.4 Validation cohort: clinical characteristics 

The 121 patient samples available for validation within the CO.20 clinical trial 

cohort were analysed; a summary of the patients’ characteristics was previously 

presented in Table 11.  

The distribution of the subtypes was in line with the test cohort; a smaller 

proportion of goblet-like subtype was present possibly explained by the fact that 

this was a KRAS exon 2 wild type cohort. In Table 14 the clinical characteristics 

of the different subtypes are described. 

 

 

Table 13. Hazard ratios for progression and death of the different CRCA-38 
subtypes compared to the TA subtype (Test cohort). HR: Hazard Ratio; CI: 
Confidence Interval. 
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4.4.3.5 Validation cohort: treatment outcomes 

As demonstrated in the test cohort, the subtypes were associated with a 

significantly different PFS (overall p-value 0.04); this difference was mainly due 

to the short PFS of the goblet-like subtype of less than 2 months compared to 

the others where the PFS was at least 3.5 months (Figure 29). Significantly 

different OS was also demonstrated, with TA and stem-like subtypes showing 

the longest median OS of 13.4 and 12.3 months, respectively. As expected the 

response rate was low with single agent cetuximab, ranging from 0% in goblet-

like and 11% in the enterocyte and with overlapping confidence intervals.  

 

Table 14. CRCA-38 subtypes’ characteristics in the Validation cohort.   
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A borderline significance for PFS, but not for OS, was observed after 

adjustment for multiple variables in Cox regression models (Table 15). 

 

 

Figure 29. Kaplan Meier curves for progression-free survival (A) and overall 
survival (B) according to CRCA-38 subtypes (Validation cohort). 

Table 15. Uni and multi-variate prognostic analyses (Validation cohort) 
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The highest DCR was observed in TA tumours (82%), significantly better 

compared to goblet-like tumours (26%). Enterocyte and stem-like subtypes also 

showed high DCRs (57%). Overall, the DCR was not significantly different 

across the subtypes; however, as expected, the TA subtype maintained a 

significantly higher DCR after adjusting form multiple variables when compared 

to the goblet-like (Table 16). No significant difference was observed in response 

rate; the response rate observed in the enterocyte subtype was numerically 

higher (11.5%) followed by inflammatory (6.25%), TA (4.35%), stem-like (3.03) 

and lastly, goblet-like subtype (0%). 

 

 

 

  

Table 16. Logistic regression models for disease control rate (DCR) and 
response rate (Validation cohort).  
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4.4.4 Analysis of TA classes 

 

4.4.4.1 Background 

Although the CRCA-38 subtypes identified significantly different prognostic 

groups, only a trend towards significance was identified when the TA subtype 

was compared to the non-TA group (HR 0.61[95%CI, 0.34-1.09], p: 0.09) 

(Figure 30).  

 

 

This was possibly due to the small sample size of the TA group. However, as 

previously shown in Figure 28, response and disease stability were observed 

also in non-TA subtypes. Interestingly, in patients with non-TA tumour, which 

responded to anti-EGFR therapy, the correlation with the TA centroid was high, 

although not the highest one (in fact these samples belonged to other 

subtypes). Conversely, the correlation with the TA centroid was low in samples 

of patients that did not benefit from the treatment. Hence, we hypothesised that 

not only tumours strictly assigned to the TA subtype but also those belonging to 

different subtypes but with high correlation with the TA centroid may benefit 

from anti-EGFR therapy. This may potentially reflect the intra-tumoural 

heterogeneity of CRC with more than one subtype co-existing in the same 

tumour.  

Figure 30. Kaplan Meier curve for progression-free survival comparing the 
TA subtype versus other non-TA subtypes (Test cohort). 
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4.4.4.2 Correlation between centroids and PFS 

Positive linear correlation was demonstrated when the TA-centroid correlation 

values of each sample were correlated with PFS (Figure 31A). Conversely, no 

linear correlation was demonstrated using the correlation values with 

inflammatory, enterocyte or stem-like centroids. Not surprisingly, negative linear 

relationship was demonstrated using the goblet-like-centroid correlation values 

(Figure 31B). This subtype is enriched for RAS mutant tumours. When only 

RAS/BRAF wild-type samples were considered for the same analysis, the TA-

centroid and goblet-like-centroid correlations maintained significance (Figure 
31C-D). 
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Figure 31. Correlation between centroids and progression-free survival:  
(A) TA-centroid correlation values of each sample (Y-axis) and PFS 
associated with the same sample (X-axis); the line of best-fit and the 
correlation value demonstrate direct correlation between the two 
continues variables. (B) The four correlation plots demonstrate the 
correlation between PFS (X-axis) and the other non-TA centroids. Test 
cohort (A-B); and RAS/BRAF wild-type subgroup within the Test cohort 
(C-D). 
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Although interesting, the use of the TA-centroid correlation values to potentially 

predict anti-EGFR benefit posed some challenges in terms of reproducibility due 

to: a) the values are affected by the number and type of samples 

simultaneously analysed; and b) cut-off optimization (being the correlation a 

continuous variable). Furthermore, these findings suggested that the TA 

signature is prognostic; however, whether the better prognosis is an intrinsic 

characteristic of samples with high TA-centroid correlation or whether this is due 

to the effect of anti-EGFR therapy could not be demonstrated in the absence of 

a control group. 

Hence, the next steps aimed to dichotomise the TA-centroid correlation values 

into categorical variables, dubbed TA class-1 and TA class-2, and demonstrate 

whether these were associated with response to anti-EGFR therapy. 

 

4.4.4.3 Association between rank of the TA-centroid correlation value and 
type of response to anti-EGFR therapy 

By using the CRCA-38 assigner algorithm, each sample profile is correlated 

with the five different CRCA-38 centroids. The 5 correlation values are then 

ordered from the highest to the lowest value. The rank of the TA-centroid 

correlation values compared to the other subtype centroids were graphically 

visualised using a tile plot (Figure 32).  
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Figure 32. Tile plot showing the rank of the TA-centroid correlation 
compared with the correlation value with non-TA centroids. This plot also 
shows RAS/BRAF mutational status. 
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Samples were ordered based on the rank and type of response to anti-EGFR. 

Of note, the majority of tumours in which the TA-centroid correlation value was 

the highest, or second or third highest responded or had disease stability with 

anti-EGFR therapy. Conversely, when the value was the lowest or second-last, 

tumours progressed throughout the treatment. With the help of Dr 

Nyamundanda, an ROC curve was built to identify the best cut-off associated 

with disease control (response and disease stability). As demonstrated in 

Figure 33, the higher area under the curve (AUC) was demonstrated by 

dichotomising the cohort into two classes:  TA class-1 (rank= 1°, 2°, 3°), which 

included the TA tumours (rank = 1°) and non-TA tumours expressing the TA 

genes (rank= 2°, 3°); and to TA class-2 (rank = 4°, 5°), representing tumours 

with no or very low expression of the TA genes.  

 

 

Figure 33. Receiver operating characteristic curve demonstrating the 
accuracy of different cut-offs in defining disease control. 
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4.4.4.4 Association between TA classes, patients’ characteristics and 
treatment outcomes  

Fifty-two out of 84 (62%) samples in the test cohort were classified as TA class-

1 tumours. In this retrospective cohort (possibly subject to selection biases), TA 

class-1 tumours were significantly associated with male, age<65 and left 

sidedness when compared to TA class-2. Significant association between the 

TA classes and RAS/BRAF mutational status was demonstrated: TA class-1 

was enriched for wild-type tumours (Table 17). Importantly, no association with 

the type of sample profiled (whether primary tumour or metastatic lesion) and 

whether the sample was collected before or after any treatment (other that anti-

EGFR, since all samples were collected before anti-EGFR therapy) was 

present.   

 

 

 

  

Table 17. Characteristics of patients in the Test cohort according 
to TA classes. 
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As expected since the cut-off for the two classes was determined using disease 

control as outcome, significant association with type of response to treatment 

was also demonstrated and graphically presented in the hypergeometric test in 

Figure 34. 

 

 

A significant association between TA class-1 and PFS was observed [HR: 0.4 

(95%CI, 0.25-0.64), p<0.001] (Figure 35A). Similarly, significant association 

with OS was demonstrated [HR: 0.48 (95%CI, 0.29-0.79), p: 0.003] (Figure 
35B). The TA class-1 group was associated with higher DCR [OR: 14.8 (95%CI, 

4.30-59.54), p<0.001]. Importantly, the association between TA class-1 and 

both PFS and DCR remained significant after adjusting for multiple variables 

including age, sex, sidedness and mutational status (Table 15). Cox and logistic 

regression models were performed with the help of Dr Nyamundanda. 

 

  

Figure 34. Hypergeometric test demonstrating significant association 
between TA classes and type of response to anti-EGFR therapy.  

Overall p-value = 2.033e-06 
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Figure 35. Progression-free survival (A) and overall survival (B) according to 
TA classes in the Test cohort 

Table 18. Univariate analyses and Cox/Logistic regression models 
(Test cohort) 
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For a subset of patients (n: 33), serial computed tomography scan 

measurements were reviewed with the help of a consultant radiologist (Dr Maria 

Bali): significant association with the depth of response and TA classes was 

demonstrated (Wilcoxon test p<0.001) and graphically shown with a waterfall 

plot (Figure 36).   

 

 

The cut-off for TA class definition was determined based on sample and 

response of patients included in the test cohort. Therefore, the validation of 

these results in an independent cohort was essential.  

  

Figure 36. Waterfall plot demonstrating the association between TA 
classes and RECIST (Response Evaluation Criteria In Solid Tumours) in 
a subgroup of the Test cohort. The tile plot at the bottom of the figure 
shows the RAS/BRAF mutational status and tumour sidedness for each 
patient. 
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4.4.4.5 Validation of the TA classes in the CO.20 trial cohort 

The 121 patient samples were now classified into the two TA classes: 66 (55%) 

and 55 (45%) samples were classified as TA class-1 and TA class-2, 

respectively. As per CRCA-38 analysis, the TA class data were transferred to 

Dr Dongsheng Tu who performed the rest of the analyses blinded to the results 

of the Test cohort.  In line with this cohort, PFS and DCR were significantly 

associated with TA classes: HR for PFS 0.65 (95%CI, 0.45-0.93), p: 0.018 

(Figure 37); OR for DCR 4.35 (95%CI, 2.00-9.09), p<0.001. The significance 

was maintained after adjusting for multiple variables (Table 19). Longer OS for 

TA class-1 patients was also observed [HR 0.67 (95%CI, 0.46-0.98), p: 0.04; as 

expected, only a trend was maintained after multivariate analysis.  

 

 

Figure 37. Progression-free survival (A) and overall survival (B) (Validation 
cohort). 
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In view of the well-defined value of RAS/BRAF wild-type status and left 

sidedness in predicting benefit form anti-EGFR therapy, I sought to test whether 

the TA classes could further refine the selection of patients beyond these 

established markers. Firstly, 71 patients with extended RAS/BRAF wild-type 

tumour were identified between Test and Validation cohorts. Fifty-five patients 

had a left-sided tumour: 42 (76%) belong to TA class-1 and 13 (24%) to TA 

class-2. Although the number of patients was small, longer PFS for TA class-1 

patients was demonstrated [HR 0.53 (95%CI, 0.28-1.00), p: 0.049] (Figure 38). 

The significance was lost after correction for age and sex; however, neither age 

nor sex were previously associated with PFS, making the correction of 

Table 19. Univariate analyses and Cox/Logistic regression models 
(Validation cohort) 
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questionable value (Table 20). Only 16 cases were found to be wild-type and 

right-sided, limiting any powerful statistical comparison. However, the accuracy 

of the TA classes was compared to sidedness using an ROC curve in 71 wild-

type patients (Figure 39): the TA classes demonstrated a higher accuracy 

compared to sidedness, although not statistically significant (AUC 0.70 versus 

0.59, p: 0.2). 

 

 

 

  

Figure 39. Receiver 
operating 
characteristic curve 
comparing the 
accuracy of the TA 
classes and 
sidedness in 
defining disease 
control rate (N: 71 
cases with 
RAS/BRAF wild-type 
tumours). 

Figure 38. 
Progression-
free survival in 
55 patients with 
RAS/BRAF 
wild-type and 
left-sided 
tumour. 
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Table 20. Univariate and multi-variate analyses in 71 cases with 
RAS/BRAF wild-type tumours. 
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4.4.4.6 Validation of the TA classes in RAS/BRAF wild-type cohorts 

To further validate the potential role of the TA classes in an independent 

experimental setting including RAS/BRAF wild-type tumours, the “Cases” cohort 

(patients liver metastases and mouse-propagated tumours treated with vehicle 

or cetuximab, described in Methods section) was deployed. Thirty liver 

metastases (pre-implantation samples) were classified into TA class-1 (n: 16) 

and TA class-2 (n: 14). The depth of response to cetuximab in the mouse-

propagated tumours of each case was plotted in a waterfall plot (Figure 40). 

Significant association between TA classes and depth of response was 

demonstrated using Wilcoxon test (p: 0.042). The mouse-propagated samples 

were also classified into TA classes and graphically visualised on the waterfall 

plot: interestingly, out of 11 responders, 10 (91%) belonged to TA class-1. In 7 

(70%) out of 10 responders the TA class-1 signature was lost upon treatment. 

 

 

 

  

Figure 40. Waterfall plot demonstrated the association between the TA 
class profile of the liver metastatic samples and the response observed 
in the mouse-propagated tumour. The tile plot at the bottom shows the 
TA class profile in matched control and treatment xenografts.   
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4.4.4.7 Validation of TA classes in publicly available data 

As described in Methods, two public gene expression datasets were 

downloaded and deployed to further validate the TA classes.   

 

Forty-eight of the 155 CRC cell lines available from the GSE59857 gene 

expression dataset were wild-type for RAS/BRAS status. After the TA classes 

were assigned, significant association with growth inhibition from cetuximab (at 

a range of concentrations) was demonstrated (Wilcoxon test p: 0.007 with 

minimal concentration of cetuximab of 0.001 µg/ml and p: 0.042 with maximum 

concentration of 100 µg/ml) (Figure 41). 

 

 

Lastly, the TA classes were assessed in the Khambata-Ford dataset (205). This 

dataset was generated by profiling CRC metastatic lesions (the majority being 

liver) using microarrays. Samples were collected with a biopsy before the 

Figure 41. Growth inhibition using different concentrations of cetuximab in 
RAS/BRAF wild-type cell lines of CRC classified into TA classes. TA class 
1 cell lines are more sensitive to cetuximab compared to TA class 2 cell 
lines.  
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beginning of cetuximab treatment and after progression to standard 

chemotherapy options.  Significant association between TA class-1 and longer 

PFS was demonstrated [HR for PFS 0.36 (95%CI, 0.22-0.56), p<0.001] (Figure 
42). This analysis demonstrated that:  

1. The significant association is retained also using a sample different from 

the primary tumour collected after different treatments. These results are 

in line with those in the Test cohort, where a proportion of samples were 

from metastatic lesions. 

2. The results obtained using the newly developed NanoString assay are 

reproducible using a different platform. This confirmed the existence of 

non-TA tumours sensitive to anti-EGFR therapy, excluding the possibility 

that the results demonstrated in the Test and Validation cohorts were 

due to misclassification of TA tumours into other subtypes by the new 

assay. 

 

  

Figure 42. Progression-free survival in the Khambata-Ford dataset (N: 
80) according to TA classes.  



	

	 155	

4.4.5 Analysis of CMS subtypes  

 

4.4.5.1 Biomarkers associations 

The 96-gene NanoCRC assay was developed to simultaneously identify CRCA-

38 subtypes and rankCMS-38 subtypes, this to provide a better understanding 

of the subtypes results to the international community (familiar with CMS 

classification after the Consortium manuscript (148)). In the meantime, the CMS 

analysis, which deploys a mostly non-overlapping set of genes with CRCA-38, 

may be considered as an orthogonal validation of the newly developed assays. 

Greater anti-EGFR benefit was demonstrated in TA class-1 tumours, which are 

significantly associated with TA and stem-like tumours and to a lesser extent to 

enterocyte. Conversely, no benefit was demonstrated in TA class-2 tumours, 

which are significantly associated with goblet-like and inflammatory subtypes 

(Figure 43).  

 

 

  

Figure 43. Hypergeometric test demonstrating the associations 
between CRCA-38 subtypes and TA classes in the Test cohort. 

Overall p-value = 5.683e-11 
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Therefore, based on the previously demonstrated associations between 

CRCAssigner and CMS subtypes in the consortium manuscript 

(inflammatory/CMS1, enterocyte and TA/CMS2, goblet-like/CMS3, stem-

like/CMS4) (91), the expectation was to demonstrate anti-EGFR benefit in 

CMS2/CMS4 tumours and no benefit in CMS1/CMS3 tumours. 

 

4.4.5.2 Subtypes assignment 

Using the gene-set and algorithm developed in chapter 2, section 2.3.2, each 

sample of the Test cohort was assigned to the rankCMS-38 subtype. The vast 

majority of the samples belonged to CMS4 (54%) and CMS2 (32%), with only 

8% and 6% of the samples belonging to CMS1 and CMS3, respectively. This 

distribution is similar to the only known distribution of CMS subtypes in a 

chemorefractory cohort from the CORRECT clinical trial (Fisher’s Exact Test p-

value= 0.006) (Figure 44 and Figure 11B, chapter 2). 

 

 

4.4.5.3 Test cohort: clinical characteristics 

As per CRCA-38 subtypes, the association between CMS subtypes and clinical 

characteristics need to be interpreted with caution in view of the fact that 36% of 

the samples were not primary tumours collected pre-treatment. 

In line with the CRCSC paper, no association with sex and age was found in the 

test cohort. Although not significant, enrichment for left-side tumours was 

Figure 44. 
RankCMS-38 
subtypes in 
the Test 
cohort (n: 79) 
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observed in the CMS2 subtype, which was also enriched for RAS/BRAF wild-

type tumours (Table 21). 

 

 

4.4.5.4 Test cohort: treatment outcomes 

In Figure 45 PFS and OS Kaplan Meier curves are presented. As expected, 

CMS2 and CMS4 tumours demonstrated a significantly longer PFS compared 

to CMS1 and CMS3 tumours. The risk of progression in CMS1/CMS3 tumours 

was >3 times compared to CMS2 (Table 22). A trend for longer OS in CMS2 

patients was observed.  

Response to treatment was observed in patients with CMS2, CMS3 and CMS4 

tumours. The majority of patients with CMS2 and CMS4 tumours experienced a 

clinical benefit while the majority of patients with CMS1 and CMS3 tumours 

progressed (Figure 46).  

Table 21. Patients’ characteristics in the Test cohort according to rankCMS-
38 subtypes 
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Figure 45. Progression-free survival (A) and overall survival (B) according 
to rankCMS-38 subtypes in the Test cohort. 

Table 22. Hazard ratios for progression (top) and death (bottom) in the 
Test cohort. 
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Figure 46. Stacked columns showing the type of response to anti-
EGFR therapy according to rankCMS-38 subtypes (Test cohort). 
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4.4.5.4 Validation cohort: clinical characteristics 

Similar to CRCA-38 and TA classes, the CO.20 cohort was deployed as a 

validation cohort. The distribution of the subtypes once again demonstrated the 

high prevalence of CMS2 and CMS4 subtypes and low prevalence of CMS3 

and CMS1. In particular, CMS2 represented the vast majority of the samples 

(67%) possibly justified by the enrichment for KRAS exon 2 wild type tumours 

(Figure 47). In Table 23 the main patients’ characteristics are presented. As 

expected the CMS2 tumours were predominantly left-sided.  

 

Figure 47. 
RankCMS-38 
subtypes in the 
Validation cohort. 
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Table 23. Patients’ characteristics according to rankCMS-38 subtypes 
(Validation cohort). 
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4.4.5.5 Validation cohort: treatment outcomes 

Similar to the test cohort, CMS1 and CMS3 tumours were associated with very 

short PFS (Figure 48). The CMS2 subtype was confirmed to be associated with 

longer PFS, OS and higher disease control rate. Conversely, the CMS4 subtype 

demonstrated worse outcomes compared to the Test cohort (Table 24). This 

difference may be related to the effect of chemotherapy (used in combination 

with anti-EGFR agents) in the Test cohort and not present in the Validation 

cohort (cetuximab single agent).  

 

 

 

A multi-variate analysis directly comparing CMS2 over CMS4 subtypes 

demonstrated that the significantly longer PFS and higher DCR of the CMS2 

subtype were independent from multiple co-variates used for correction (Table 
25). A trend for longer OS was also observed, highlighting once again the 

favourable prognosis of CMS2 tumours. 

  

Figure 48. Progression-free survival (A) and overall survival (B) 
according to rankCMS-38 subtypes (Validation cohort). 
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Table 24. Univariate and multivariate prognostic analyses (Validation 
cohort) 
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4.4.5.6 Further results validation using publicly available data 

The Validation cohort suggested increased outcomes in patients with CMS2 

subtype tumour over the CMS4. This was different from what was observed in 

the Test cohort, possibly due to the confounding effect from chemotherapy in 

the Test cohort and its retrospective patient selection. Hence, the Khambata-

Ford dataset was ideal to further validate the prognostic effect of rankCMS-38 

subtypes within the context of a phase II study where patients received single-

agent cetuximab, in line with the CO.20 clinical trial cohort (193). 

As observed in the validation cohort, CMS2 was associated with better 

prognosis compared to the other subtypes (Figure 49). The missing statistical 

significance was possibly due to the small sample size (n. 80). However, the 

trend remained the same. 

 

Table 25. Uni- and multivariate analyses comparing CMS2 and CMS4 
subtypes in the Validation cohort. 
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  Figure 49. Progression-free survival to single-agent cetuximab 

according to rankCMS-38 subtypes in the Khambata-Ford dataset. 
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4.5 Discussion 
 

The primary aims of this chapter were to demonstrate that the subtypes 

identified with the NanoCRC assay were able to define clinically meaningful 

subgroups of patients. Both CRCA-38 and rankCMS-38 subtypes demonstrated 

significantly different outcomes in terms of PFS and OS in three cohorts of 

patients who progressed after standard chemotherapy treatments for metastatic 

disease. Hence, one potential clinical utility of the assay was established.  

 

From a technical viewpoint, based on previous evidence (139), the TA subtype 

of the CRCA-38 classifier was expected to be associated with benefit from anti-

EGFR therapy. This was confirmed in both Test and Validation cohorts, 

conferring further evidence of the validity of the assay. Similarly, CMS2 and 

CMS4 subtypes were expected to be associated with anti-EGFR benefit based 

on the subtype analysis of two retrospective analyses of randomised trials in 

first line setting (149,150). The results of the rankCMS-38 classifier were in line 

with these studies, once again reinforcing the robustness of the assay and new 

classifier. 

 

From a clinical viewpoint, these results need to be interpreted with caution. 

Firstly because not all samples analysed in both test and validation cohorts 

were from the primary tumour. The concordance between primary tumour and 

metastatic sites is not completely established. This is difficult to assess 

especially because it is very common that patients receive chemotherapy 

between the resection of the primary tumour and metastases. Hence, the 

expression profiles may be modified by treatments and consequently confound 

the expected concordance between sources. Also, the tissue available from 

metastatic samples may have been collected with a biopsy instead of a full 

resection. Recently, Alderdice et al. questioned the robustness of the CMS 

classification in tissue biopsies, demonstrating a high proportion of unclassified 

samples (219). The same group demonstrated discordant CMS subtyping 
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results from different tumour areas within the same sample, possibly due to 

intratumoural heterogeneity (115).  

 

Nevertheless, three CRCA-38 subtypes (TA, stem-like and enterocyte) and their 

correlated CMS subtypes (CMS2 and CMS4) demonstrated higher clinical 

benefit compared to the other two CRCA-38 subtypes (goblet-like and 

inflammatory) and correlated CMS subtypes (CMS3 and CMS1). However, 

heterogeneous responses were demonstrated especially in the non-TA 

subtypes. 

 

To improve the clinical applicability of these classifiers in potentially predicting 

the benefit from anti-EGFR agents, a new classifier able to dichotomise patient 

samples into two groups was established. Two different gene expression 

profiles were identifiable in patient samples based on TA signature: TA class 1 

and TA class 2. This TA class assignment has the advantage of providing a 

qualitative assessment of the TA signature in all the samples, including the non-

TA subtypes, overcoming the limitations posed by intra-tumoural heterogeneity 

in assessing benefit from anti-EGFR therapy. TA class 1 tumours were 

significantly associated with clinical benefit in patients treated with anti-EGFR 

therapy; this was validated in a KRAS exon 2 wild-type trial cohort, which has 

the advantage of properly assessing the prognostic value in a homogeneously 

treated population and in the absence of the confounding effect of 

chemotherapy. The significant prognostic role of TA class 1 was retained in the 

RAS and BRAF left-sided subgroup. Moreover, TA class 2 assignment was 

enriched for RAS/BRAF-mutant tumours, providing a potential alternative 

method to estimate benefit from anti-EGFR therapy when the mutational status 

is missing. TA class assignment was also associated with responses in pre-

clinical models. Finally, the TA classes retained significance when assessed in 

either primary tumours or metastatic samples. This is highly clinically relevant, 

since it means that the signature can be assessed in metastatic lesions when 

the primary tumour sample is not available; however, intra-patient concordance 

was not assessed so further validation is required. 
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Several studies have now evaluated the association between single genes or 

microRNAs (EREG/AREG, HER2, HER3, EPHA2, or mir-31-3p) and responses 

to anti-EGFR therapy (220). However, establishing single gene assays requires 

the optimisation of cut-off values for each gene, an approach burdened by 

several analytical and methodological drawbacks. In contrast, we evaluated a 

previously derived gene expression signature to identify biologically different 

CRC subtypes with distinct cellular phenotypes (154). The subtypes summarize 

a complex network of pathways potentially associated with therapeutic 

responses, simplifying multiple levels of information derived from 

heterogeneous samples. Hence, the deployment of subtypes and their 

signatures, instead of single genes, has the advantage of reducing the 

dimension of complexity without losing biological information.  

 

With respect to the assessment of the real clinical value of the TA classes, this 

study has some limitations. First, there were only a small number of extended 

wild-type patient samples. Second, the study was retrospectively designed on 

pre-existing tissue collections of patients who had received anti-EGFR therapy. 

Although association with depth of response was identified in a subgroup of 

patients and in pre-clinical models, biomarker evaluation in a group of patients 

who did not receive anti-EGFR therapy may further clarify its prognostic and/or 

predictive value. The analysis of more contemporary clinical trial cohorts in 

which patients were upfront selected based on extended RAS/BRAF status and 

with both treatment and control arms available for the analysis may clarify the 

added value of the TA classes beyond current patient selection in the clinic. 

Given the robustness of the assay in clinically relevant samples, a prospective 

assessment would be ideal. 

Lastly, the role of CMS subtypes in potentially predicting benefit from anti-EGFR 

therapy was assessed here for the very first time in patients who received single 

agent cetuximab. The CMS2 subtype was associated with longer survival and 

higher disease control rate. The response rate was numerically higher in the 

CMS2 compared to the CMS4 subtype. However, in view of the low overall 
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response rate to single agent anti-EGFR therapy, it is challenging to take 

definitive conclusions. Although interesting, it is not possible to clarify whether 

the better outcomes observed in the CMS2 subtype are due to its less 

aggressive biological nature or because of the effect of cetuximab, in the 

absence of a control group. Future assessment of controlled-studies may clarify 

this issue. 
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Chapter 5 Conclusions and future directions 
 

Colorectal cancer is a highly heterogeneous disease at multiple levels (114). In 

the metastatic setting, limited treatment options are available. A number of 

clinical trials testing new drugs failed: the lack of biomarkers predictive of 

response and able to select patients with similar disease biology may have 

contributed to these failures. To date, genomic biomarkers, namely 

microsatellite instability and RAS/BRAF mutational status, are the only 

molecular features routinely tested in the clinic (29). The recently established 

gene expression subtypes of CRC helped demonstrating further heterogeneity 

beyond genomic markers and showed real promise for patient stratification and 

potential to guide new biomarker-enriched clinical trials (153). However, a 

number of flaws and challenges are currently holding their prospective 

evaluation: firstly, the lack of suitable assays for FFPE samples and for routine 

testing; secondly, the lack of clear value in predicting treatment benefit. 

 

The work presented here aimed to overcome the technical challenges of gene 

expression subtypes application through the development of new assays similar 

to others already adopted in the clinic (in breast cancer); then to demonstrate 

that the established biomarkers have clear clinical utility in defining the 

likelihood of benefit from one of the most widely used and highly expensive 

targeted therapy (anti-EGFR) over current risk stratification factors.   

 

Two gene expression assays for nCounter platform (NanoString Technologies) 

were developed: one assay for the classification of CRC samples into CMS 

subtypes and one assay for simultaneous classification of CRC samples into 

CMS and CRCAssigner subtypes. A pipeline for data analysis and quality 

control assessment was established. Two new algorithms were developed, one 

(based on a previously validated subtyping method for CRCAssigner subtypes) 

able to dichotomise samples into two classes with differential sensitivity to anti-

EGFR therapy; the other one to classify samples in CMS subtypes using a 
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limited set of genes, which improved the misclassification error compared to 

publicly available CMS algorithms. 

The subtyping results were validated using various methods: firstly, using 

publicly available data to test the accuracy of the new algorithms; secondly, 

using fresh-frozen samples with matched RNAseq data available to use as a 

reference; and lastly, via orthogonal validation using genomic and clinical data 

to confirm the presence of known subtype-specific associations. 

In chapter 2 I described the technical steps followed to develop the new 

biomarker assays. Recently, other groups developed similar gene expression 

assays, as a further evidence of how such assays represent an unmet need for 

the research community. Piskol and colleagues, all current or former employees 

of Genentech Inc., developed a CMS classifier using the NanoString 

Technologies platform and FFPE retrospective tissue collections (164). Similarly 

to our approach, they used custom designed panels to measure the expression 

of key genes for CRC biology. The panels included more than 800 genes 

including 3 housekeeping genes and the analysis required more than 250 ng of 

total RNA for each sample. A new NanoString-based algorithm to classify 

samples based on 322 CMS genes included in the custom panels was 

optimised using publicly available data.  The algorithm demonstrated a 

concordance between 90.5% and 93.8% with the gold-standard CMS 

classification. To assess the performance of the new algorithm and the 

NanoString assay 46 high-quality FFPE samples were identified. The 

classification derived from NanoString platform and from RNAseq data was 

compared: 35 out of 41 (85.3%) samples successfully profiled with both 

platforms were assigned to the same CMS subtype. The association between 

subtypes and mutational and clinical features was also assessed to 

demonstrate the robustness of the assay results (164). 

Given the similarities with our work, the Genentech Inc. study indirectly 

validates the methodology used in this thesis work. The main differences 

include the fact that we used a modified protocol for the NanoString platform. 

This has two significant advantages as direct consequence of using a 

significantly lower number of genes: firstly, the costs of profiling more than 800 
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genes versus only 96 genes are significantly cheaper; secondly, the amount of 

RNA required is 2.5 times lower using our method. This is particularly important 

in the context of archival FFPE samples where the quality of the RNA may be 

suboptimal and in presence of a limited tumour content within the sample in 

case of biopsies or highly fibrotic tumours. In terms of performance, their newly- 

developed classifier compared favourably with our rankCMS classifier when 

using public data. Similarly, when the new classifier was coupled with the 

custom NanoString assay and tested on matched NanoString and RNAseq data 

their concordance with the gold-standard CMS classification was 85%, which is 

very similar to what demonstrated by us using fresh-frozen matched data 

(89%).  

Although this high concordance observed in both studies, a recent publication 

challenged the inter-platform reproducibility of the CMS classification (221). 

Platform-specific biases were investigated using microarrays and RNAseq 

approaches in a cohort of 126 primary CRC samples. Of note, systematic 

technical biases were demonstrated in the presence of short (less than 2000 

nucleotides) sequences and lowly expressed genes using RNAseq as well as 

over-saturation biases in presence of highly expressed genes using 

microarrays. This study suggests that the selection of the optimal set of genes 

may require platform-optimization and also justifies the nearly 10% 

misclassification observed in our study using RNAseq and NanoString 

platforms.    

A further difference between our and the Genentech Inc. assays is related to 

the number of housekeeping genes, 3 out of 322 (1%) in the Genentech Inc. 

assay versus 10 out of 96 (10%) in our assay: although a direct comparison of 

the performance of these two assays has not been done, the higher number of 

housekeeping genes may be helpful in case of poor quality RNA when a 

successful measure of all the genes is not warranted (164).  

Using a cohort of unmatched primary and metastatic samples the authors 

wanted to assess the stability of the CMS subtypes during the metastatic 

process. All the fours subtypes were identified. However, in line with our results 

(Figure 49 – rankCMS classification in the Khambata-Ford dataset) a 
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significantly low number of CMS3 tumours were identified in metastatic 

samples. Once again this supports our subtyping results and suggest a 

potentially different tropism of CMS3 tumours or a potential misclassification of 

metastatic samples due to technical effect. 

In support of the hypothesis that distinct subtypes may have a preferential 

tissue tropism, a recent study demonstrated how unsupervised clustering of 

metastatic liver lesions from CRC identified only two main subtypes in these 

samples, which recapitulate the CMS2 and CMS4 subtypes (118). This finding 

once again supports the low prevalence of CMS1 and CMS3 tumours according 

to rankCMS classification described in this thesis. 

These findings have profound clinical implications. While the mutational status 

of primary tumour and metastatic sites unlikely changes during the metastatic 

process, the transcriptional profile is possibly more affected. In clinical practice, 

the RAS mutational status is commonly tested independently of the type of 

tissue profiled, given the high concordance demonstrated of up to 93% (117). 

Conversely, the potential discordance between different types of samples from 

the same patient could highly reduce the applicability of gene expression 

subtypes in clinical practice where not always the primary tumour sample is 

available for biomarker analysis. This discordance needs to be systematically 

assessed and ad-hoc classifiers based on the type of sample may be required. 

A dedicated study of matched primary and metastatic samples is on-going in 

our lab and will possibly clarify the stability of the rankCMS classification during 

metastatization. 

Concomitantly with the technical validation, the potential clinical utility of the 

assays was evaluated in this thesis: assays and signatures identified subgroup 

of patients with significantly different prognosis and with different likelihood of 

benefit from anti-EGFR therapy. The association between subtypes and anti-

EGFR benefit was initially demonstrated in a retrospective cohort. To validate 

the results a new collaboration with an international clinical trial group 

(Canadian Cancer Trial Group) was established. The signatures were validated 

in a clinical trial sample collection from patients who received anti-EGFR 

therapy as a single agent (193). This study was able to assess the role of the 
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CMS classification for the very first time in the absence of confounding effect 

due to chemotherapy. Given the lack of positive predictive biomarkers of 

response to these drugs, the biomarker assays and the newly defined TA-like 

signature and rankCMS biomarkers may represent potential companion 

diagnostic tools for patient selection and precision medicine. 

Lastly, for the first time the CMS assay and the rank classifier (which is a single-

sample-prediction classifier) were used to study difference and similarities 

between populations with different ethnicity, overcoming any potential technical 

artefact. Confirming that the assay is able to capture similar groups across 

populations justifies its potential application in future international studies. 

 

Overall, these assays have multiple potential implications for clinical practice 

that may continue to evolve in the near future. The subtypes represent 

distinctive biological entities, which have been associated with different 

prognostic values in different stages of disease. Hence, the first clinical use is 

the possibility to recognise patients with potentially more aggressive disease (as 

example in presence of stem-like or CMS4 subtype). Secondly, as described in 

chapter 3, the selection of patients likely to benefit from anti-EGFR therapy can 

be improved: with further validation some patients may be spared from toxicities 

of the treatment in case of low likelihood to response; conversely, anti-EGFR 

therapy could be offered to a proportion of patients with right-sided tumour for 

whom this treatment is currently not indicated.  

Anti-EGFR therapy is one of the most important drugs available for the 

treatment of CRC patients with metastatic RAS/BRAF wild-type disease. Recent 

evidence suggests a role for the re-challenge in later lines of treatment of 

cetuximab or panitumumab after progression to these agents. This strategy is 

supported by the study of Siravegna and colleagues exploiting the dynamic 

changes of circulating tumour DNA (ctDNA) during anti-EGFR therapy (46). The 

authors demonstrated how mutant RAS clones rise in the blood of patients 

during anti-EGFR therapy as possible mechanism of acquired resistance. The 

RAS mutant closes decay upon treatment withdrawal and sensitivity to the drug 

is potentially regained. In this PhD work I demonstrated how gene expression 
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profiles could help refining the identification of patients with primary resistance 

to anti-EGFR therapy. In the experimental cohort including xenograft models 

(Figure 40) the TA-like signature was lost upon treatment, suggesting that 

dynamic changes are also identifiable using gene expression. While not 

explored in this current work, whole blood gene expression profiling techniques 

are rapidly moving into the circulating biomarker space, opening the opportunity 

to translate our currently tissue-based biomarker into a circulating biomarker 

(222).  

 

Multiple other projects are on-going in the lab as well as in other institutions. 

The assays are currently being deployed to assess whether association 

between subtypes and the intensified chemotherapy regimen FOLFOXIRI plus 

bevacizumab exists within the context of two randomised clinical trials (TRIBE 

and TRIBE2) in collaborations with Italian investigators (91,223). Furthermore a 

new collaboration was recently established to evaluate the subtypes in liver 

metastatic samples collected within a randomised trial: the aim of the trial was 

to assess the utility of an antigen-specific cancer vaccine against mucin-1 

(MUC-1) as adjuvant therapy after complete hepatic metastasectomy (224). 

These ancillary analyses of randomised controlled studies have the possibility 

to further explore the potential predictive value of the subtypes. Similarly, a new 

trial investigating a first-in-class bifunctional fusion protein against programmed-

death ligand 1 (PD-L1) and the transforming growth factor receptor beta (TGF-

beta) in CMS4 tumours is on-going (225). The results of this study may lead to 

the validation of a subtype-specific treatment, indirectly expanding the clinical 

utility of the rank-CMS subtypes developed in this project. 

In chapter 3, the assays were tested in liver metastatic samples and matched 

patient-derived xenografts. With the caveat of a small sample size, high 

concordance between pre and post-implantation samples and association with 

anti-EGFR benefit were observed. On-going studies in our lab are testing the 

subtyping results of the assays in patient-derived organoids. The results of 

these studies may facilitate the future application of the assays as potential 

research tools for drug screening. 
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Finally, in view of the characteristics of the assays with potential for 

commercialization, an accelerator program (The MedTech SuperConnector) 

was successfully completed and a project for a spin-out company is on-going. 

This may expedite the future validation of the assays in an accredited laboratory 

certified for clinical use.  
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Appendix 1. Summary of the 96-gene assay 
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