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Abstract
Background  Endogenous retroviruses (ERVs) play a role in a 
variety of biological processes, including embryogenesis and 
cancer. DNA methyltransferase inhibitors (DNMTi)-induced 
ERV expression triggers interferon responses in ovarian cancer 
cells via the viral sensing machinery. Baseline expression of 
ERVs also occurs in cancer cells, though this process is poorly 
understood and previously unexplored in epithelial ovarian 
cancer (EOC). Here, the prognostic and immunomodulatory 
consequences of baseline ERV expression was assessed in 
EOC.
Methods  ERV expression was assessed using EOC 
transcriptional data from The Cancer Genome Atlas (TCGA) 
and from an independent cohort (Hammersmith Hospital, 
HH), as well as from untreated or DNMTi-treated EOC cell 
lines. Least absolute shrinkage and selection operator 
(LASSO) logistic regression defined an ERV expression 
score to predict patient prognosis. Immunohistochemistry 
(IHC) was conducted on the HH cohort. Combination of 
DNMTi treatment with γδ T cells was tested in vitro, using 
EOC cell lines and patient-derived tumor cells.
Results  ERV expression was found to define clinically 
relevant subsets of EOC patients. An ERV prognostic score 
was successfully generated in TCGA and validated in the 
independent cohort. In EOC patients from this cohort, a high 
ERV score was associated with better survival (log-rank 
p=0.0009) and correlated with infiltration of CD8+PD1+T 
cells (r=0.46, p=0.0001). In the TCGA dataset, a higher ERV 
score was found in BRCA1/2 mutant tumors, compared to wild 
type (p=0.015), while a lower ERV score was found in CCNE1 
amplified tumors, compared to wild type (p=0.019). In vitro, 
baseline ERV expression dictates the level of ERV induction 
in response to DNMTi. Manipulation of an ERV expression 
threshold by DNMTi resulted in improved EOC cell killing by 
cytotoxic immune cells.
Conclusions  These findings uncover the potential for 
baseline ERV expression to robustly inform EOC patient 
prognosis, influence tumor immune infiltration and affect 
antitumor immunity.

Background
About 40% of the human genome consists 
of repetitive sequences. Among these, 

endogenous retroviruses (ERVs) are a class 
of transposable elements (TE) that derive 
from ancient exogenous retroviral infections 
resulting in incorporation of the viral genome 
into the host.1

Though ERVs are usually silenced by heavy 
DNA and histone methylation, ERV tran-
scripts seem to play a role in early mamma-
lian development, with high transcriptional 
activity of distinct ERV families being 
observed in human embryos during pre-
implantation development2 while, in cancer, 
aberrant expression of TE has been hypothe-
sized to drive tumorigenic mutations.3

DNA methyltransferase 1-deficient mice 
develop T cell leukemia in the absence of 
functional Toll-Like Receptors, partly via ERV 
hypomethylation and deregulation,4 while 
in human colon cancer samples, RNA in situ 
hybridisation demonstrated a correlation 
between HERV-H expression and localisation 
of suppressive infiltrating Tregs.5

High levels of expression of specific ERVs 
were identified in clear cell renal cell carci-
noma, breast, colon, and head and neck 
cancers from TCGA, and correlated with 
increased immune infiltration, particularly 
a high CD8+ T cell fraction as well as check-
point pathway upregulation.6

Interestingly, treatment with the DNA 
methyltransferase inhibitor (DNMTi) decit-
abine can induce transcription of ERVs into 
double-stranded RNA (dsRNA) and mimic a 
viral infection, triggering an interferon (IFN) 
response.7 8

This literature highlights a role of TEs, 
including ERVs, in cancer and immunity 
which is not fully clarified or understood, 
with their expression being linked to tumor 
initiation and evolution, as well as stimulation 
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of antitumoral innate immunity and recruitment of 
both Tregs and cytotoxic T lymphocytes to the tumor 
microenvironment.

Importantly, a strong correlation exists between the 
presence of intratumoral T cells and improved clinical 
outcome in advanced ovarian carcinomas.9 Epithelial 
ovarian cancer (EOC) is usually diagnosed at an advanced 
stage and carries a poor prognosis and it is therefore 
crucial to find new tools to stratify patients and design 
effective therapeutic interventions.

Pretreatment with epigenetic therapy has emerged as 
a potential strategy to stimulate immunologically cold 
tumors, including EOC, toward a less immunosuppressive 
and immune ‘evasive’ phenotype.10 11

Here, for the first time, we investigated the significance 
of ERV expression at basal level in high-grade serous 
ovarian tumors and again in the context of DNMTi treat-
ment of EOC cell lines. Our findings demonstrate the 
influence of baseline ERV expression on patient survival 
and on immune cell infiltration into EOC tumors and 
confirm the potential for manipulation of an ERV expres-
sion threshold by DNMTi treatment.

Results
Baseline ERV expression defines subsets of EOC patients and 
informs patient survival
Given the dual role of ERV expression in cancer, and the 
importance of immune infiltration for OC prognosis, 
we first investigated baseline ERV expression in ovarian 
tumor expression data from TCGA.

A total of 25 207 ERV repeats were found expressed in 
all primary OC samples (n=373) and consensus clustering 
analysis identified four main clusters, defined by ERV 
expression. This indicates that different patterns of ERV 
expression define subgroups of EOC patients (figure 1A 
and online supplemental figure S1).

Next, we generated multivariable Cox models—
adjusted for age, stage, grade and residual disease—to 
determine whether the expression of each single ERV 
repeat in the TCGA dataset (n=25 207) was associated 
with overall survival (OS). For each ERV, samples with 
complete clinical data (n=328) were allocated to groups 
(high or low) using the ERV repeat’s median expression 
level as cut-off. Of the 25 207 ERVs tested, 632 had a favor-
able association with OS (Cox p<0.05) and 1187 an unfa-
vorable association (Cox p<0.05) (figure 1B).

Interestingly, some ERV families, that is groups of ERV 
repeats with the same sequence but at different genomic 
loci, were associated with both favorable and unfavorable 
OS (online supplemental table S1), suggesting that the 
repeat location, rather than the family or sequence, may 
have a predominant role in affecting OS.

The ERV families that were exclusively associated with 
either favorable (n=58) or unfavorable OS were identified 
(n=76) and those with more than one ERV repeat associ-
ated with OS, are shown in figure  1C. The ERV repeat 
ERV_3328078 belonging to the ERV family MER4-int 

was found to have the lowest HR, ie, high expression 
of this ERV was significantly associated with the highest 
survival advantage (HR 0.69, p=0.001). Similarly, ERV 
repeat ERV_3224702 (HERVL-int family) presented the 
second lowest HR (figure 1D, top). Instead, ERV repeats 
ERV_0122156 (LOR1-int family) and ERV_0786197 
(HERVP71A-int family) presented the top and second 
highest HRs, indicating that patients presenting low (ie, 
below median) expression of these repeats are more 
likely to survive for longer (figure 1D, bottom).

An ERV expression score predicts good prognosis in EOC 
patients
A total of 226 ERV repeats were found to be significantly 
associated exclusively with an improved OS and further 
filtered using least absolute shrinkage and selection oper-
ator (LASSO12) to compute a prognostic score. Figure 2A 
shows a schematic representation of the steps and data-
sets used in developing the ERV score.

We first generated the model on a training set, consisting 
of 75% of the EOC TCGA samples with complete clinical 
data (n=246). Features (ERVs) were selected by a penal-
isation system, and weights were calculated for filtered 
features. The weighted sums of 32 selected ERVs resulted 
in a numerical score for each TCGA OC sample analyzed, 
which was named ERV score.

The 32 ERVs were annotated with ERV family and 
LASSO coefficients (online supplemental table S2). 
Online supplemental figure S2 shows each feature’s 
coefficient against the calculated LASSO parameter 
lambda and the optimal lambda value, indicating optimal 
number of features to be combined into the predictor 
score, obtained by 10-fold cross-validation using ​cv.​glmnet 
within the glmnet package in R.

Multivariable Cox proportional hazards models, 
adjusted for age, stage, grade and residual disease, 
showed a significant difference in OS (figure 2B left) and 
progression-free survival (PFS) (online supplemental 
figure S3A) depending on a high (above first quartile) or 
low (below first quartile) ERV prognostic score. Figure 2B 
(left) shows the Kaplan-Meier survival curve for EOC 
patients in the training set (n=246), illustrating improved 
OS for patients with high (ie, above threshold) ERV 
prognostic score (log rank p<2e-16, HR=0.03405, 95% CI 
0.0178 to 0.06513).

Next we validated the model in a testing set, consisting 
of the remaining 25%°C TCGA samples with complete 
survival data (n=82). In the testing set, similarly as in the 
training set, improved OS was significantly associated 
with a high ERV prognostic score (log rank p=0.04, HR 
0.4239, 95% CI 0.1878 to 0.9567). The Kaplan-Meier plot 
for the testing set is shown in figure 2B (right). A similar 
effect was observed when calculating PFS on the testing 
test (online supplemental figure S3B).

In order to better interpret their biological significance, 
the ERV prognostic scores for each sample in TCGA 
(both training and testing sets) were correlated with the 
median ERV expression values of the 32 LASSO selected 
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Figure 1  Baseline ERV expression defines subsets of OC patients and informs patient survival. (A) Heatmap showing the ERVs 
(n=1000) used for consensus clustering analysis and the TCGA OC samples (n=373), grouped using the dendrogram resulting 
from k=4 clustering. The colors show the z-scaled log10 of the ERV expression and are defined in the color scale. (B) Volcano 
plot showing the calculated multivariate Cox regression models between each ERV repeat’s expression and OS in TCGA OC 
dataset. HRs were plotted against the negative log10 of the adjusted cox p value for the 25 207 ERV repeats found expressed 
in TCGA OC samples. Multivariable Cox models were adjusted for age, stage, grade, histology and residual disease, using ERV 
expression values as continuous variables. Significant HRs (p<0.05) are colored. HR <1 indicates association between ERV 
expression and improved OS (n ERVs=632 for Cox p<0.05); HR >1 indicates association between ERV expression and worse 
OS (n ERVs=1187, Cox p<0.05). (C) ERV families with more than one ERV repeat, exclusively associated with better (left) or 
worse (right) survival in TCGA OC dataset, annotated with name of the family and number of entities (ie, repeats). (D) Kaplan-
Meier plots of OS according to above median (high) or below median (low) expression (ie, RPKM) of selected ERV repeats. 
The ERV family is indicated in brackets. The HR was estimated by a multivariable Cox model adjusted for age, stage, grade, 
histology and residual disease. The CI is indicated, in brackets. ERV, endogenous retrovirus; OC, ovarian cancer.
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Figure 2  An ERV expression score predicts good prognosis in OC patients. (A) Schematic representation of the steps and 
datasets used in generating the ERV prognostic score. (B) Overall survival (OS) of OC patients by high (above first quartile) or 
low (below first quartile) ERV prognostic score in the training (left; n samples=246) and testing (right; n samples=82) sets from 
TCGA. The HR was estimated by a multivariable Cox model adjusted for age, stage, grade, histology and residual disease 
(log-rank p values as well as CI are indicated). (C) Pearson’s product-moment correlation between the median ERV RPKM 
of the 32 ERV components of the ERV prognostic score and the prognostic score in OC TCGA samples (n=328); the shaded 
area indicates the confidence interval (0.58, 0.70) (D) Progression-free survival (PFS) of high-grade serous ovarian cancer 
(HGSOC) patients by high (above first quartile) or low (below first quartile) ERV prognostic score in Hammersmith Hospital 
(HH) validation dataset (n samples=58). The HR was estimated by a multivariable Cox model adjusted for age, stage, grade, 
histology and residual disease (log-rank p values are indicated). The CI is indicated, in brackets. (E) Left: boxplots showing the 
ERV score in BRCA 1/2 mutant tumors (n=21; including all types of somatic mutations except silent mutations), compared with 
wild-type tumors (n=307) from the TCGA dataset. Right: boxplots showing the ERV score in tumors with CCNE1 amplification 
(n=101), compared with tumors without CCNE1 amplification (n=227) from the TCGA dataset. P values were obtained using the 
Wilcoxon rank-sum test with continuity correction. EOC, epithelial ovarian cancer; ERV, endogenous retrovirus; LASSO, least 
absolute shrinkage and selection operator; OC, ovarian cancer.
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features. There was a Pearson’s product-moment correla-
tion of 0.65 (p<2.2e-16), suggesting that higher levels of 
expression of the selected 32 ERVs may be associated with 
improved survival (figure 2C).

Importantly, the ERV prognostic score was success-
fully validated on an independent dataset, consisting 
of 58 samples from high-grade serous ovarian cancer 
(HGSOC) patients from Hammersmith Hospital London 
(HH dataset). The ERV score was calculated here by 
applying the previously generated LASSO weights to the 
expression of 23 ERV features shared by the TCGA and 
HH datasets. A high ERV score was significantly associ-
ated with improved PFS in the HH samples (log rank 
p=0.009, Cox model adjusted as above; figure 2D). It was 
not possible to calculate OS for these samples as the clin-
ical information was too recent.

Given the impact that BRCA1/2 aberrations and 
CCNE1 amplification have on HGSOC prognosis,13 14 we 
next investigated whether there may be any association 
between the ERV score and these aberrations in the TCGA 
dataset. Strikingly, the ERV score was found to be signifi-
cantly higher (Wilcoxon p=0.015) in BRCA 1/2 mutant 
tumors (n=21; including all types of somatic mutations 
except silent mutations), compared to wild-type tumors 
(n=307) and significantly lower (Wilcoxon p=0.019) in 
tumors with CCNE1 amplification (n=101), compared to 
tumors without CCNE1 amplification (n=227; figure 2E). 
Due to the fact that BRCA mutant tumors present better 
patient prognosis,13 14 while tumors with CCNE1 ampli-
fication present worse patient prognosis,14 15 these data 
support the prognostic value of the ERV score, with a 
high ERV score being associated with improved survival 
in HGSOC.

The ERV score correlates with infiltration of effector immune 
cells in EOC
In order to investigate whether higher baseline ERV 
expression may affect immune cell infiltration of ovarian 
tumors, we calculated Pearson’s correlation coefficients 
between the expression of each of the 25 207 ERV repeats 
from the OC TCGA analysis and the expression of genes 
for T cell markers CD8, CD4, CD25, and activated or 
exhausted T cell markers LAG3 and PD-1, within the 
same samples.

Figure  3A shows the number of significantly posi-
tively correlated ERV repeats (false discovery rate (FDR) 
adjusted p<0.05, correlation coefficient r>0) for each of 
the immune genes of interest.

Five ERV repeats were found to be strongly correlated 
with all the immune genes of interest (figure 3B), indi-
cating that these five ERVs may be translated into immu-
nogenic antigens and attract effector T cells to the 
tumors. High individual expression of each of these five 
ERVs was also found to be associated with better survival 
in the TCGA dataset, though their prognostic value was 
limited compared to the combined ERV score (online 
supplemental figure S4).

Furthermore, significant positive correlations (p<0.05, 
r>0) were found between the ERV score and the expres-
sion of PD-1 (Pdcd1) and LAG3 (Lag3) (online supple-
mental figure S5, top), both normally found expressed 
on activated or exhausted T lymphocytes, in the EOC 
TCGA samples (n=328).

Moreover, the ERV score was found significantly posi-
tively correlated (p=0.01, r=0.14; online supplemental 
figure S5, bottom left) with the expression of the gene for 
viral recognition protein RIG-I (Ddx58), within the TCGA 
EOC samples (n=328), indicating that a high ERV score 
may result in higher expression of viral response genes. 
Similarly, a significant positive correlation was found 
between the ERV score and the expression of IFNβ (Ifnb1; 
p=0.03, r=0.11; online supplemental figure S5, bottom 
right). Since these associations did not present a strong 
correlation coefficient and in order to better validate the 
biological significance of the ERV score, we conducted 
multiplex IHC, staining for common markers of tumor 
infiltrating lymphocytes (TILs), on EOC samples from 
the HH dataset (n=47). Figure 3C (left) shows a represen-
tative immune-enriched EOC sample. Strikingly, a signif-
icant positive correlation (r=0.46, p=0.0001) was found 
between the ERV score and expression of CD8+PD1+ 
double positive cytotoxic T cells (figure  3C, right), 
strongly suggesting that a higher expression of these ERVs 
may increase immunogenicity and therefore recruitment 
or activation of effector immune cells.

Baseline ERV expression in HGSOC cell lines
In an effort to better understand the significance of base-
line ERV expression in EOC and how this can be manip-
ulated, we conducted RNA-sequencing of the Kuramochi 
and Ovsaho HGSOC cell lines. As expected, we found a 
clear separation between the cell lines, based on expres-
sion of all ERVs. Differentially expressed (DE) ERV 
repeats between the two cell lines (absolute log2FC>±2; 
FDR adjusted p<0.05) were then identified; 2775 DE 
ERV repeats were found to be DE (figure 4A); 1763 ERV 
repeats were upregulated in Kuramochi, compared with 
Ovsaho, while 1012 were downregulated (figure 4B).

Interestingly, the median ERV expression values, a 
surrogate measure of overall ERV expression, were signifi-
cantly higher in the Kuramochi samples, compared with 
Ovsaho (figure 4C). When the gene expression profiles 
of the two cell lines were compared, genes for viral sensor 
protein RIG-I (ie, Ddx58, logFC 5.421 FDR adjusted p 
value 1.53–12) and MDA5 (ie, Ifih1, logFC 2.546, FDR 
adjusted p 2.84–08) were found upregulated in Kura-
mochi cells, compared with Ovsaho cells. Accordingly, 
ingenuity pathway analysis (IPA) revealed an enrichment 
for IFN signaling in Kuramochi cells, compared with 
Ovsaho cells (figure  4D). This enrichment was further 
confirmed by testing a specific IFN response gene list 
from the Molecular Signatures Database16 against all the 
genes in the analysis (figure 4E).

Altogether these data demonstrate the existence of 
distinct patterns of ERV expression in different HGSOC 

https://dx.doi.org/10.1136/jitc-2020-001519
https://dx.doi.org/10.1136/jitc-2020-001519
https://dx.doi.org/10.1136/jitc-2020-001519
https://dx.doi.org/10.1136/jitc-2020-001519
https://dx.doi.org/10.1136/jitc-2020-001519
https://dx.doi.org/10.1136/jitc-2020-001519
https://dx.doi.org/10.1136/jitc-2020-001519


6 Natoli M, et al. J Immunother Cancer 2021;0:e001519. doi:10.1136/jitc-2020-001519

Open access�

cell lines and confirms that a higher spontaneous expres-
sion of ERVs may determine increased expression of 
genes for antiviral mediators RIG-I and MDA5 and conse-
quential IFN type I induction.

Baseline ERV expression dictates magnitude of response to 
DNMTi and immune cell combination treatment in HGSOC cell 
lines
Viral mimicry via induced expression of ERVs has been 
described as a key consequence of epigenetic modifica-
tion in cancer cells.7 8 Here, for the first time, genome-
wide changes in ERV expression were investigated 
following 1 µM guadecitabine—a DNMTi—treatment of 
Kuramochi and Ovsaho cell lines.

As expected, treatment with guadecitabine resulted 
in a significant dose-dependent decrease in global DNA 

methylation, as measured by bisulfite pyrosequencing 
of Long Interspersed Nuclear Element-1, as a surrogate 
measure of global DNA methylation (online supple-
mental figure S6).

ERV expression status drove a clear separation between 
guadecitabine-treated and vehicle-treated Ovsaho cells, 
but not between 1 µM guadecitabine-treated and vehicle-
treated Kuramochi cells (figure 5A). This indicates that 
only subtle changes in ERV expression may occur in 
the Kuramochi cell line—which presents higher levels 
of ERV expression at the baseline—at a 1 µM guadecit-
abine treatment. Seventy-one ERV repeats were found 
DE in the guadecitabine-treated Kuramochi samples at 
either early or late time point, while more than double, 
183, in guadecitabine-treated Ovsaho cells (figure  5B). 

Figure 3  Immunomodulatory consequences of ERV expression in OC. (A) Summary of significant and positive (FDR adjusted 
p<0.05, r>0) Pearson’s correlations between the expression of ERV repeats and selected immune genes in TCGA OC samples 
with complete clinical data (n=328). (B) Correlation matrix of ERV repeats and T lymphocytes surface markers. Pearson’s 
product-moment correlations were calculated between each ERV repeat analyzed in TCGA OC dataset (n=25 207) and immune 
genes of interest CD25, CD4, CD8, PD1 and LAG3. Significant correlations (FDR adjusted p<0.05) were filtered by correlation 
coefficient (cut-off r>0.3) and only non-intragenic ERVs were retained. The color scale indicates the correlation coefficient and 
the size of the dot indicates the p value. (C) Correlation between ERV prognostic score and multiplex IHC CD8+PD1+scores 
in HH samples (n=47). A representative immune-rich sample from the HH cohort, stained by multiple IHC for CD4, CD8, 
PD1 and FOXP3 is shown on the left: colors are indicated in the legend (bottom) as well as representative scoring (top right). 
The CD8+PD1+double positive cells were scored and normalized by the total number of immune cells, generating an IHC 
PD1+CD8+score for each sample (n=47). The IHC PD1+CD8+score was correlated to the ERV score and plotted in R (right). 
ERV, endogenous retrovirus; HH, Hammersmith hospital; IHC, immunohistochemistry; OC, ovarian cancer.
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Figure 4  Baseline ERV expression in HGSOC cell lines. (A) Spearman’s correlation coefficients were calculated between 
experimental replicates in Kuramochi and Ovsaho cell lines for all ERV repeats analyzed. The dendrograms were generated by 
unsupervised hierarchical clustering and show the relationship between samples. The colors in each sample are indicative of the 
correlation coefficient and are defined in the color scale. (KURA=Kuramochi; OVS=Ovsaho; V=vehicle; DAY5=early timepoint; 
DAY8=late timepoint; R=replicate). (B) Top: Volcano plot showing the log2 fold change in expression against the –log10 FDR 
adjusted p value for each ERV repeat analyzed in vehicle-treated Kuramochi or Ovsaho HGSOC cell lines. Significantly DE ERV 
repeats (absolute logFC >2 and FDR adjusted p<0.05) are colored. Bottom: Summary of total number of ERV repeats analyzed 
in the Kuramochi versus Ovsaho comparison, including number and direction of change of each DE ERV repeat. (C) Median 
ERV expression in baseline Kuramochi and Ovsaho HGSOC cell lines. Median of RPKM values from all ERV repeats analyzed 
in each vehicle-treated sample for Kuramochi and Ovsaho. The median value for each sample is shown together with the 
mean±SEM (***p<0.001, t-test). (D) IPA was used to identify pathways positively or negatively regulated in Kuramochi compared 
with Ovsaho. A p value threshold of 0.01 was applied. The pathways were identified in IPA and visualized in R, annotated with 
negative log10 p value (blue color scale), gene ratio (number of DE genes in each pathway/total genes in the pathway; defined 
by the size of dot) and IPA-calculated activation z-score (indicative of upregulation or downregulation of genes; x axis). (E) 
Enrichment for interferon response genes in HGSOC cell line Kuramochi compared with Ovsaho. Mean-rank gene set tests were 
conducted to assess whether the genes from the cell lines’ analysis were highly ranked relative to an interferon response gene 
list, in terms of their logFC. P value was obtained from a Wilcoxon test. Each black line represents a gene in the interferon gene 
list, obtained from the Molecular Signatures Database (down=downregulated, up=upregulated). DE, differentially expressed; 
ERV, endogenous retrovirus; IPA, ingenuity pathway analysis.
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Figure 5  Manipulation of ERV expression threshold by DNMTi increases HGSOC cell lines immunogenicity. (A) Heatmaps 
of Spearman’s correlation coefficients between guadecitabine and vehicle treated samples from RNA-seq for all ERV repeats 
analyzed in Kuramochi and Ovsaho. Spearman’s correlation coefficients were calculated between experimental replicates 
in Kuramochi (A) and Ovsaho (B). Samples are annotated by timepoint and treatment condition. The dendrograms were 
generated by unsupervised hierarchical clustering and show the relationship between samples. The colors in each sample are 
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The overall change in ERV expression, measured as the 
median ERV expression value between all samples, was 
significant in Ovsaho but not in Kuramochi (figure 5C). 
This may indicate again that the baseline ERV expression 
profile dictates the potential for ERV upregulation in 
response to DNMTi treatment.

On classification of the DE ERVs, there was no specific 
ERV class that was enriched following guadecitabine 
treatment and the class representation profile in the DE 
ERVs differed between the two cell lines. ERVK was the 
class with the most ERV expression changes in Ovsaho 
(figure  5D); of note ERVK is one of the evolutionary 
youngest ERV classes.17 Indeed, analysis of the CpG 
density within each DE ERV sequence revealed that, in 
the guadecitabine-treated Kuramochi samples, most of 
the DE changes occurred at CpG densities between 0% 
and 2% (figure 5E); in the guadecitabine-treated Ovsaho 
samples the DE changes spread past 2% CpG density 
(figure  5E). As methylated cytosine within CpG islands 
are prone to deaminate to thymine over time,18 older 
repetitive elements present less CpG density.19

These data indicate that in different cell lines, or distinct 
ovarian tumors, the mechanisms regulating baseline ERV 
repression, and therefore their epigenetic-driven re-ex-
pression, may vary.

Additionally, we found an increase in IFNα mRNA 
expression in Ovsaho with increasing doses of guadecit-
abine. In Kuramochi cells, a significant increase in IFNα 
mRNA expression was observed only at 5 µM guadecit-
abine, compared to the vehicle, potentially due to the 

enhanced ERV and IFN enrichment at the baseline in this 
cell line (figure 5F).

Next, we cocultured guadecitabine-treated cell lines 
Kuramochi, Ovsaho or ascitic primary ovarian tumor 
cells with cytotoxic γδ T cells from healthy donors (1:1 or 
5:1 T cell:tumor ratio, using over 85% γδ TCR+ T cells). 
Using IncuCyte live cell imaging, we measured a signifi-
cant increase in Caspase 3/7+ cells, when guadecitabine-
pretreated Kuramochi and Ovsaho cells were cocultured 
with γδ T cells at 1:1 or 5:1 T cell:tumor ratio (figure 5G). 
This effect was similarly reproduced using OC primary 
cell cultures derived from the ascites of a treatment-naïve 
patient (figure 5G). Importantly, the significant increase 
in tumor cell death in the presence of combination 
guadecitabine and γδ T cell treatment was higher in Kura-
mochi, compared to Ovsaho.

Altogether these data suggest that distinct baseline ERV 
expression profiles may significantly influence baseline 
immunogenicity and efficacy of DNMTi-driven immuno-
modulation in OC.

Discussion
Immune infiltration is known to significantly affect patient 
survival in EOC.9 Recent evidence has shown a role for ERV 
expression in influencing antitumor immunity and conse-
quential immune cell recruitment. In this work, we first 
investigated the expression of ERVs in OC and their rela-
tionship with patient survival and immune infiltration. Using 
an adapted RNA-seq analysis method, in which a reference 

indicative of the correlation coefficient and are defined in the color scale. KURA=Kuramochi; OVS=Ovsaho; V=vehicle; 1=1 µM 
guadecitabine; DAY5=early timepoint; DAY8=late timepoint; R=replicate). (B) Guadecitabine-induced ERV expression changes 
in HGSOC cell lines; Left (Kuramochi - top and Ovsaho - bottom) Volcano plots showing the log2 fold change in expression 
against the –log10 FDR adjusted p value for each ERV repeat analyzed at the early and late time points. Significantly DE ERV 
repeats (absolute logFC>1.5 and FDR adjusted p<0.05) are colored. Right (top and bottom): Heatmaps of DE ERV repeats in 
guadecitabine-treated Kuramochi and Ovsaho. Each line represents the RPKM values for each DE ERV repeat in each sample 
from Kuramochi and Ovsaho. Samples are annotated with treatment condition. The dendograms show hierarchical clustering 
of samples and genes. The colors indicate intensity of expression as annotated in the color scales (top left). (C) Median ERV 
expression in baseline vs guadecitabine-treated Kuramochi and Ovsaho OC cell lines. Median of RPKM values from all ERV 
repeats analyzed in each sample for Kuramochi and Ovsaho. The median value for each sample is shown together with the 
mean±SEM (***p<0.001, t-test). (D) Classification of DE ERVs from guadecitabine-treated Kuramochi and Ovsaho DE ERVs 
from each cell line’s dataset were assigned to ERV classes according to the annotation database HERVd; the number of 
DE repeats in each class was normalized to the total number of ERV repeats in each class within the HERVs annotation. (E) 
Evolutionary age of DE ERV repeats in guadecitabine-treated OC cell lines. LogFC of each DE ERV plotted against its CpG 
density, normalized by bp size of the element, at the late time point. The DE ERVs were filtered with a percentage CpG density 
threshold of less than 5. The plot is annotated for evolutionary age, as defined in the work by Ohtani et al. CpG densities were 
calculated using a publicly available annotation of bisulfate sequenced human genome from the Repitools R package. (F) mRNA 
expression of IFNα in Kuramochi and Ovsaho cell lines treated with increasing doses of guadecitabine. Increasing doses of 
guadecitabine were used to treat Kuramochi (left) and Ovsaho (right) cell lines before mRNA expression analysis by qPCR. Data 
is shown as mean±SEM from three biological replicates (**p<0.01, t-test). (G) Real time quantification of Caspase 3/7 expression 
in guadecitabine-treated HGSOC cell lines or patient ascites-derived primary OC cells in coculture with ex vivo activated γδ T 
cells. Guadecitabine-treated ascites-derived primary OC cells or cell lines were cocultured with γδ T cells from healthy donors 
at a 1:1 or 5:1 tumor cell to T cell ratio. Apoptosis was quantified in real time using a caspase 3/7 green dye in IncuCyte. Data 
are presented as mean±SD based on three technical replicates. Statistical differences were analyzed using wilcoxon matched 
pairs signed ranks test. DE, differentially expressed; DNMTi, DNA methyltransferase inhibitor; ERV, endogenous retrovirus; IFN, 
interferon; OC, ovarian cancer; qPCR, quantitative PCR.

Figure 5  (Continued)
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ERV annotation is used instead of canonical gene anno-
tation, it was possible to find ERVs expressed in >350 high 
grade serous EOC samples from TCGA.

The expression of ERVs was found to separate the samples 
into four main clusters; even though each of these clusters 
was not associated with a differential OS benefit (data not 
shown), these data show that different patterns of ERV 
expression define subgroups of EOC tumors.

In normal cells, epigenetic mechanisms prevent the 
expression of ERVs.20 Altered epigenetic states have 
been reported in EOC, governing tumorigenesis and 
driving resistance to platinum-based chemotherapy.21 22 
The differential ERV expression observed in the TCGA 
dataset may be a consequence of the different epigenetic 
landscapes of the tumors.

When looking into each ERV repeat’s association with 
patient survival, ERVs were found to be associated with 
both improved or worse OS depending on their genomic 
location, which may explain why the expression clusters 
are not associated with survival. This suggests that ERV 
repeats, belonging to the same family, may affect survival 
differently, once transcribed, in a yet unknown mecha-
nism. One potential mechanism could be recruitment of 
transcription factors and regulation of gene expression; 
indeed, ERV long terminal repeats can act as promoters 
or enhancers for nearby genes.23 Alternatively, the expres-
sion of a given ERV at a particular locus may be the result 
of an either permissive or repressive epigenetic state of 
the region and therefore a passenger effect of the epigen-
etic modifications present in their vicinity.

Similarly, a group of ERVs expressed in other cancer 
datasets from TCGA were shown to have both negative 
and positive associations with immune signatures,24 
confirming the dichotomous effects of ERV expression 
within the same cancer type.

Our analysis has identified the existence of ERV fami-
lies that are exclusively associated with either a survival 
advantage or a disadvantage across independent cohorts, 
robustly indicating that some families of ERVs may specif-
ically affect survival, potentially via their translation into 
immunogenic ERV antigens. Indeed, some ERVs, partic-
ularly evolutionary young ERVs such as HERVK, have 
retained open-reading frames within their gag and pol 
genes25 and envelope proteins derived from ERVK have 
been shown to trigger immune responses in an Indian 
rhesus macaque model.26 Similarly, the existence of ERV-
derived immunogenic antigens, capable of triggering 
adaptive immune responses has been previously demon-
strated in renal cancer.27 28

Using LASSO logistic regression, it was possible to derive 
and validate a numerical prognostic score for each TCGA 
EOC patient in the analysis, based on the expression of 
32 ERV repeats, with a high prognostic score being asso-
ciated with improved prognosis in these patients. Though 
the prognostic power of the score was more limited in 
the testing set—particularly for the PFS and potentially 
due to the reduced number of samples—it strongly vali-
dated in a completely independent dataset (HH). Using 

the TCGA dataset, the ERV prognostic score was strongly 
positively correlated with the median expression of the 
32 ERV features. This indicates that a high expression of 
these repeats is significantly associated with survival.

The study by Smith et al24 showed that high average 
overall ERV expression in a number of tumors (no OC 
data were included) was associated with worse survival. In 
our study, unlike the overall median ERV expression, the 
expression of 32 specific ERVs was found to be positively 
associated with OS and PFS in EOC. This indicates a qual-
itative nature, rather than quantitative, of the effect of 
ERV expression on survival in EOC and potentially other 
cancers.

Another factor influencing the association between 
ERVs and survival may be the transcription of the specific 
ERVs into ERV-derived dsRNAs, able to trigger a RIG-I/
MDA5-mediated antiviral response.7 8 In our study, 
the prognostic score was found to positively, although 
weakly, correlate with the expression of RIG-I, using 
bioinformatics tools, suggesting that dsRNAs, derived 
from some or all of the 32 ERV features of the score, may 
potentially trigger a RIG-I mediated immune response 
and IFN type I induction. Indeed, a significant positive 
correlation was also found between the ERV prognostic 
score and expression of IFNβ. Confirmation of these 
findings by quantitative PCR (qPCR) in other cohorts 
is warranted.

BRCA1/2 mutations and CCNE1 amplification are 
known prognostic factors for OC patients, with BRCA1/2 
mutations being predictive of better patient prognosis, 
while CCNE1 amplification being predictive of worse 
outcome.13 15 It was, therefore, intriguing to find that 
tumors presenting mutations in BRCA1/2 and those 
without CCNE1 amplification present a higher ERV 
score. It has been shown that tumors with defects in DNA 
repair pathways present a high mutational burden and 
higher levels of neoantigens.29 30 Furthermore, BRCA1/2-
mutated HGS ovarian tumors have been shown to exhibit 
significantly increased CD3+ and CD8+ TILs.31 It is 
possible that the high genomic instability due to defects 
in BRCA1/2 may determine higher levels of transcription 
of antigenic ERVs, supporting a link between DNA repair 
defects, spontaneous expression of ERVs, immunoge-
nicity, and ultimately, survival—though this relationship 
remains to be further investigated.

Furthermore, we investigated the relationship between 
ERV expression and immune cell infiltration using 
computational methods and validating our findings using 
multiplex IHC. The expression of five non-intragenic 
ERVs was shown to correlate with that of five known 
surface markers of activated or exhausted T lymphocytes 
within EOC tumor tissue. Though this may indicate that 
these five ERVs could be translated into immunogenic 
antigens and attract effector T cells to the tumors, confir-
mation by mass spectroscopy or immunopeptidomics 
would be ideally used to support this hypothesis further.

Similarly, the ERV score was found to correlate posi-
tively, with activated/exhausted T lymphocytes markers 
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PD-1 and LAG3. Importantly, this finding was validated by 
multiplex IHC in the HH dataset, in which the ERV score 
correlates with the infiltration of CD8+PD1+ double posi-
tive T cells. To our knowledge, this is the first time that an 
ERV expression signature predicts immune infiltration in 
ovarian tumors.

In order to further investigate the significance of base-
line ERV expression in OC, we compared the transcrip-
tional profiles of EOC cell lines Kuramochi and Ovsaho 
as well as the ERV transcriptional changes induced by 
treatment with guadecitabine in the same cell lines, which 
were chosen as previously defined as best representative 
of HGSOC from patients.32 At the baseline, an enrich-
ment for IFN response genes was found in Kuramochi, 
compared to Ovsaho, including upregulation of genes for 
viral response proteins MDA5 and RIG-I, the key actors in 
recognition of ERV dsRNA during viral mimicry.

A higher level of endogenous expression of MDA5 
and RIG-I in Kuramochi may be due to a higher base-
line spontaneous transcription of ERV; indeed, when 
the basal ERV expression profile of the two cell lines was 
compared, a higher median ERV expression was found in 
Kuramochi, compared to Ovsaho and, accordingly, there 
were more ERV repeats upregulated than downregulated 
in Kuramochi cells, compared to the Ovsaho cell line.

Aberrant baseline expression of ERVs has been shown 
to occur in cancer cells due to functional inactivation of 
tumor suppressor proteins, often by loss of DNA meth-
ylation, during oncogenesis.33 These tumor suppressors 
are physiologically involved in regulating ERV expression 
and repression. DNA demethylation using DNMTi has 
been hypothesized to push ERV expression past a ‘toler-
ance’ threshold and therefore to enhance of immune 
responses and therapy.33

When the ERV expression profile of the guadecitabine-
treated cell lines was examined here, more ERV expres-
sion changes, particularly upregulation of ERVs, were 
found in Ovsaho cells, compared to Kuramochi cells; this 
may be partly due to the observed higher baseline expres-
sion of ERVs in Kuramochi.

Upon DNA demethylation using guadecitabine, an 
enrichment in IFN response genes was found in the 
Ovsaho cells. This is in accordance with the hypothesis of 
a threshold of tolerance of ERV expression, past which an 
IFN response occurs. Indeed, there was a dose-dependent 
increase in the expression of IFNα on guadecitabine 
treatment of Ovsaho cells, compared to the vehicle, 
as measured by qPCR. In guadecitabine-treated Kura-
mochi cells, an increase in IFNα was only observed at 
5 µM guadecitabine. This indicates a dose dependent 
effect in that higher doses of DNMTi may induce higher 
ERV expression and consequential higher IFN type I 
expression.

The fact that Kuramochi cells were shown to express 
higher levels of ERVs and IFNα at the baseline, compared 
to Ovsaho cells, may explain why a differential response 
could not be measured at lower doses of guadecitabine 
treatment, by qPCR (ie, at 0.1 and 1 µM doses) and 

transcriptomics analysis (ie, at 1 µM dose); these doses 
may only determine subtle changes in ERV and IFNα 
expression, compared to the baseline. As previously 
hypothesized,33 upon treatment with guadecitabine, there 
may be an increase in ERV expression, past a ‘tolerance 
threshold’, which together with changes in gene expres-
sion, may push EOC cells towards a more immunogenic 
profile and higher sensitivity to T cell killing.

Importantly, upon coculture with healthy donor 
expanded γδ T cells, which are innate-adaptive cytotoxic 
immune cells, Kuramochi cells with a higher baseline 
expression of ERVs appeared to be more sensitive to 
immune killing. In both cell lines, treatment with DNMTi 
could increase tumor cell death in the presence of γδ T 
cells.

In keeping with our data, γδ T cell and NK cell ligands 
MICA, MICB and ULBP1-3 have all been shown to be 
repressed mainly by histone deacetylation and partly by 
DNA methylation.34 Treatment of cancer cell lines with 
DNMTi alone or in combination with HDACi resulted 
in upregulation of MICA and MICB, which resensitized 
tumor cells to NK cell attack in vitro.35–37 Furthermore, we 
and others have previously shown DNMTi-induced upreg-
ulation of immunoregulatory genes, including HLA and 
PD-L110 38; such upregulation is likely another key factor, 
beside ERV and IFN I induction, governing the observed 
enhanced immune cell killing of DNMTi-treated tumor 
cell lines in vitro.

A recent report has shown an ‘epigenetic switch’ in the 
regulation of evolutionary young and old ERVs, defined 
by their CpG density.17 The age of the DE ERVs found 
in the guadecitabine treatment analysis was assessed 
here; the majority of the DE ERVs, in both cell lines, 
presented a percentage CpG density of less than 5, which 
indicates that low CpG densities are more amenable to 
hypomethylation by DNMTi and consequential re-ex-
pression of associated ERVs. Besides DNA methylation, 
histone methylation has been demonstrated to regulate 
ERV repression, particularly of evolutionary ‘old’ ERVs17; 
when classifying the DE ERVs found in the guadecitabine 
treatment analysis, there was little overlap in ERV class 
and evolutionary age of the DE elements between Kura-
mochi cells and Ovsaho cells. This also led to our hypoth-
esis that different cell lines or ovarian tumors may rely 
on different epigenetic mechanisms of ERV repression. 
Ohtani et al found very little overlap in the numbers and 
types of ERVs re-expressed following DNMTi treatment 
of four mixed cancer cell lines,17 supporting the hypoth-
esis that the mechanisms governing ERV repression and 
re-expression may be tumor cell specific.

Conclusion
In this study, we have shown that an ERV expression signa-
ture predicts good prognosis in high-grade serous OC 
and correlates with immune infiltration of effector T cells 
in these tumors. Accordingly, we have shown, in vitro, that 
a higher baseline ERV expression may determine higher 
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immunogenicity and dictate the response to DNMTi. 
Further work may be aimed at using the ERV score to 
identify those patients which may benefit from manipula-
tion of ERV expression using demethylating agents.

Methods
Cell lines, primary ascitic tumor cells and immune cells
Kuramochi and Ovsaho cell lines were purchased from 
the Japanese Collection of Research Bioresources (JCRB) 
Cell bank and genetically authenticated by STR profiling 
conducted by Eurofins Genomics. Cell lines were main-
tained in RPMI-1640 culture media (Sigma-Aldrich) 
supplemented with 10% Fetal Bovine Serum (Sigma-
Aldrich) and L-glutamine 200 mM, penicillin 10 000 
units, streptomycin 10 mg/mL solution (Sigma-Aldrich).

Peripheral blood mononuclear cells (PBMCs) were 
isolated by Ficoll (Sigma-Aldrich) separation. PBMCs were 
treated with Recombinant Human Interleukin 2 (IL-2, 
Peprotech) and 1 µg/mL zoledronic acid (ZA) (Zometa, 
Novartis) for γδ T cell isolation and supplemented with 
IL-2 every 48 hours. Human primary immune cells were 
cultured in RPMI-1640 media (Sigma-Aldrich) with 10% 
Human AP Serum (Sigma-Aldrich) and L-glutamine 
200 mM, penicillin 10 000 units, streptomycin 10 mg/mL 
solution (Sigma-Aldrich).

Primary EOC cells were isolated from ascites by Ficoll 
(Sigma-Aldrich) separation and maintained in RPMI-
1640 culture media (Sigma-Aldrich) with 20% FBS 
(Sigma-Aldrich), L-glutamine 200 mM, penicillin 10 000 
units, streptomycin 10 mg/mL solution (Sigma-Aldrich), 
34 ng/mL insulin (Sigma-Aldrich) and 2.2 mM Sodium 
Pyruvate (Sigma-Aldrich). Data from the ascites sample 
used in this study was previously published10 and showed 
that the sample was enriched for cells expressing EOC 
cell markers WT-1, CA-125 and epithelial cell marker 
EpCAM, used broadly as a tumor cell marker. All cells 
were cultured at 37°C with 5% CO2.

Treatment with guadecitabine and co-culture with γδ T cells
Guadecitabine was provided by Astex Pharmaceuti-
cals, Inc. and reconstituted in its clinical diluent (65% 
Propylene Glycol, 25% Glycerin, 10% Dehydrated 
Ethanol) which was also used as vehicle control. OC cell 
lines and primary tumor cells were treated with 0.1, 1 and 
5 µM guadecitabine or vehicle on day 1 and day 3. Cell 
culture medium was replaced with fresh medium on day 5. 
Cell pellets from each condition, to be further processed 
for RNA-sequencing and qPCR analyses, were taken on 
day 5 (referred to as early timepoint) or day 8 (referred 
to as late timepoint). In co-culture experiments, on day 
8, tumor cells in each treatment condition were seeded 
in triplicates onto 96-well plates at a density of 7×103 cells 
per well and incubated at 37°C with 5% CO2 for 24 hours, 
before addition of immune cells.

In γδ T cell coculture experiments, 24 hours after 
seeding of tumor cell lines or primary cells onto 96 

well plates (described above), ZA was added to increase 
isopentelyl-pyrophosphate expression (for higher γδ T 
cell recognition, as described39) on tumor cells and extra 
wells were kept ZA-untreated as controls. After further 
24 hours, γδ T cells were added at various T cell:tumor cell 
ratios and co-cultured for 24 hours before readout exper-
iments described below. Extra wells were maintained 
without γδ T cells, as controls.

IncuCyte live cell imaging
For real-time monitoring of tumor cell killing, γδ T cell 
co-culture experiments were set up in the presence of 
1 µM Green Caspase-3/7 Cell Apoptosis Reagent (Essen 
Bioscience/Sartorius) and imaged every 45 min using an 
IncuCyte ZOOM instrument with ×10 magnification for 
up to 55 hours.

Quantitative real-time PCR
Total RNA from guadecitabine or vehicle-treated tumor 
cells was extracted and purified using the RNeasy kit 
(Qiagen). After quantification of the yield on a Nano-
drop instrument, total RNA was converted to cDNA 
using the High Capacity cDNA Reverse Transcription kit 
(Applied Biosystems). Real Time PCR was performed 
using SYBR Green Master Mix (Applied Biosystems) in 
a 7900HT Real-Time PCR System (Applied Biosystems, 
Paisley, UK) with standard FAST settings on an SDS 2.4 
software (Applied Biosystems) and analyzed using the 2 
(-delta delta C(T)) method.40 qPCR primers were vali-
dated by producing a standard curve with serially diluted 
(1:4) cDNA inputs. PPIA was used as housekeeping 
gene. Primer sequences were as follows: PPIA Forward: 
5’- ​GTCCTGGCATCTTGTCCATG −3’, PPIA Reverse: 
5’- ​CTTGCCATCCAACCACTCAG −3’; IFNα Forward: 
5′-GACTCCATCTTGGCTGTGA-3′, IFNα Reverse: 5′- ​
TGAT​TTCT​GCTC​TGAC​AACCT-3′.

HH patient cohort
All procedures involving human participants were done 
in accordance with the ethical standards of the institu-
tional and/or national research committee and with 
the principles of the 1964 Declaration of Helsinki and 
its later amendments or comparable ethical standards. 
58 EOC patients made up the HH cohort and were 
treated at the HH, Imperial College London NHS Trust 
between 2004 and 2019. Data related to part of this 
cohort was used in a previous study.41 Written consent 
was obtained from all patients included in this study 
who provided tumor tissue for research. Reporting 
recommendations for tumor marker criteria were 
followed throughout this study. Patient demographics, 
surgical and tumor related data were collected retro-
spectively from medical records. Staging was defined 
according to FIGO-criteria for ovarian epithelial carci-
noma and optimal debulking was defined by postoper-
ative residual disease <10 mm.
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Immunohistochemistry
IHC was conducted on 2-micron FFPE sections using 
multi-color immune cell phenotyping for PD-1 (clone 
NAT 105/E3), CD4 (clone SP35), CD8 (clone SP239) 
and FOXP3 (clone 346/E7) as previously published42 for 
47 patient samples from the HH dataset.

We analyzed number of immuno-positive cells/mm2 
of tissue following independent review of specificity of 
staining by two scorers (FAM, DP) as described.43

RNA sequencing
Samples for RNA sequencing were taken from Kuramochi 
and Ovsaho cell lines, treated with 1 µM guadecitabine or 
vehicle, each at day 5 and day 8 timepoints. Each sample 
was collected in either two (Ovsaho) or three (Kura-
mochi) biological replicates. Total RNA was extracted 
using the RNeasy Plus Mini Kit (Qiagen). RNA samples 
were then quantified using a Nanodrop machine and 
RNA integrity was assessed by TapeStation. Only samples 
with RNA integrity score >8 were used for library prepa-
ration. Libraries were prepared using the NEBNext Ultra 
Directional Library Preparation kit II (NEB), with rRNA 
depletion, following the manufacturer’s instructions.

Sequencing was conducted on an Illumina HiSeq 2500 
instrument with 100 bp, paired end reads, at Imperial 
College LMS Genomics facility. Around 50–60 million 
aligned reads were obtained for each replicate.

For HH tissue samples, RNA extraction, library prepa-
ration and sequencing were conducted at the Institute of 
Cancer Research London following standard protocols 
and using an Illumina NovaSeq 6000 instrument.

Adapter sequences were trimmed by BBDuK (US Dept. 
of Energy Joint Genomics Institute) and reads were 
aligned to hg19 using TopHat2. Quality of trimmed reads 
was assessed using FastQC. A hg19 annotation for human 
ERVs was obtained from the HERVd database.44 Filtered 
reads were assigned to HERV features using feature-
Count from the RSubread package allowing reads to be 
multimapping but with the ‘primary only’ option, which 
takes primary alignments only into account, similarly as 
described.45 ERVs were filtered by a cut-off of >10 RPKM 
per ERV in at least two samples. Linear models to iden-
tify DE ERVs between samples were generated using the 
limma package in R. ERVs were considered DE if the abso-
lute log2 fold change in expression was >1.5 and with an 
FDR adjusted p<0.05. ERVs were annotated into repeats 
and families using the HERVd as reference.

To generate CpG density plots, the DE ERV logFC 
values found in the RNA-seq analysis were plotted against 
the percentage CpG density within each ERV sequence, 
derived using the Repitools R package.

Gene expression analysis was conducted similarly using 
the biomaRt package to annotate genes.

Gene set and pathways enrichment analysis
Gene set and pathway enrichment analysis were performed 
using genesettest and goana functions from the limma 
package in R, which use the Wilcox mean rank test on a 

given statistic, here log fold change values, to test whether 
a set of genes is highly ranked or enriched relatively to 
other genes. The Molecular Signatures Database was used 
to source IFN response gene sets. Further pathway enrich-
ment analysis was run using IPA software237 (QIAGEN), 
using the pre-calculated RPKM as input. For IPA analysis, 
the cut-off for DE genes was lowered to an absolute log2 
fold change in expression of >0.6.

Analysis of TCGA transcriptional data and survival analysis
Authorization to download EOC TCGA raw RNA-
sequencing data was obtained following an application to 
the National Cancer Institute Genomic Data Commons 
(NCI GDC). The GDC Data Transfer Tool Client was used 
to download ​379.​bam files on Imperial College High 
performance computing system, on which the files were 
analyzed similarly as previously described, to define RPKM 
values for ERVs within each sample. Matched clinical, 
mutational and gene expression data was also obtained 
from the NCI GDC. The ConsensusClusterPlus package 
in R was used to identify robust clusters of OC patients 
based on tumor ERV expression, by filtering the 1000 
ERVs with the most variable expression across samples 
and median centering their expression values. We then 
used the ConsensusClusterPlus to identify robust clusters 
of OC patients based on tumor ERV expression. OS and 
PFS were determined using multi-variable Cox propor-
tional hazards adjusting for age, stage, grade, histology 
and residual disease, using the ERV expression or ERV 
score as continuous variable. The first quartile of the ERV 
prognostic score was used as a threshold to define high or 
low groups in the TCGA and HH cohort. All analyses were 
performed in R using the survival and survminer pack-
ages. Pearson’s product moment correlations between 
gene expression and ERV prognostic scores were calcu-
lated and visualized in R.

LASSO logistic regression
ERVs that were exclusively associated with OS in TCGA 
samples with complete clinical data (n=328) were filtered 
by applying two Cox proportional hazard models, one in 
which ERV expression values were continuous variables 
and one in which they were non-continuous. 226 candi-
date ERVs, exclusively associated with better survival, were 
obtained and used as input for LASSO) analysis, which 
performs feature selection by a penalisation system. The 
LASSO model was built on a training set, made up of 
246 randomly selected OC samples from TCGA, using 
the glmnet package in R with ‘cox’ selected as family 
and with 10-fold cross-validation. This allowed selection 
of a Lambda coefficient at which the minimum number 
of ERV features could be found. 32 ERV features were 
selected, the weighed sum of which gave a numerical 
value, named ‘ERV score’. TCGA samples of 82°C were 
used as testing set. ERV score was similarly calculated 
using the weighed sum of the ERV features within this 
set. The ERV prognostic scores were subsequentially used 
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in multi-variable Cox proportional hazards performed as 
previously described.

Twenty-three out of 32 LASSO-selected ERV features 
were found expressed in the HH validation dataset (n 
samples=58) and the ERV score was similarly computed 
using each feature’s LASSO weight and the expression 
values (RPKM) within each sample.

Data visualisation and statistical analysis
Statistical analyses and data visualization were carried out 
using Prism GraphPad V.5 software, Microsoft Excel and 
R V.3.6.0. All the packages used in R are listed in online 
supplemental table S3.
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