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Abstract	

The	temporal	dynamics	of	cancer	evolution	remain	elusive	because	it	is	impractical	to	

longitudinally	observe	cancers	unperturbed	by	treatment.		Consequently,	our	knowledge	of	

how	cancers	grow	largely	derives	from	inferences	made	from	a	single	point	in	time	–	the	

end	point	in	the	cancer’s	evolution	when	it	is	removed	from	the	body	and	studied	in	the	lab.		

Fortuitously	however,	the	cancer	genome,	by	virtue	of	on-going	mutations	that	uniquely	

mark	clonal	lineages	within	the	tumour,	provides	a	rich	yet	surreptitious	record	of	cancer	

development.		In	this	review,	we	describe	how	a	cancer’s	genome	can	be	analysed	to	reveal	

the	temporal	history	of	mutation	and	selection,	and	discuss	why	both	selective	and	neutral	

evolution	feature	prominently	in	carcinogenesis.		We	argue	that	selection	in	cancer	can	only	



be	properly	studied	once	we	have	a	handle	on	what	the	absence	of	selection	looks	like.		We	

review	the	data	describing	punctuated	evolution	in	cancer,	and	reason	that	punctuated	

phenotype	evolution	is	consistent	with	both	gradual	and	punctuated	genome	evolution.		We	

conclude	that	to	map	and	predict	evolutionary	trajectories	during	carcinogenesis	it	is	

critical	to	better	understand	the	relationship	between	genotype	change	and	phenotype	

change.		

	

Introduction	

How	do	cancers	grow?		This	basic	question	continues	to	be	difficult	to	answer	for	the	

obvious	reason	that	longitudinal	observation	of	tumour	growth	is	nearly	always	

impractical,	both	in	human	and	also	in	model	systems.			Consequently	our	understanding	of	

tumour	formation	relies	on	historical	inference	based	on	the	composition	of	excised	

tumours.	In	other	words,	our	understanding	of	the	temporal	process	of	tumour	evolution	is	

largely	derived	from	data	collected	at	a	single	time	point:	the	time	point	at	the	end	of	the	

process	when	the	tumour	ends	up	on	the	specimen	table.	But	this	state	of	affairs	is	not	as	

sorry	as	it	may	sound,	as	fortunately	the	tumour	genome	(or	more	accurately	genomes	of	all	

the	cells	in	the	tumour)	provides	a	surreptitious	yet	rich	record	of	a	tumour’s	growth.		

	

Each	time	a	cell	divides,	errors	during	DNA	replication	mean	that	new	mutations	are	

introduced	into	the	genomes	of	the	daughter	cells[1-3].	Epigenetic	marks	(e.g.	DNA	

methylation)	are	also	copied	with	limited	fidelity[4].		Larger-scale	chromosomal	or	part-

chromosomes	losses	or	amplifications	(somatic	copy	number	alteration	–	SCNA)	and	other	

structural	rearrangements	also	occur	at	an	appreciable	frequency	in	many	cancers[5,	6].	It	

is	these	naturally	occurring	(epi)genetic	alterations	that	record	the	ancestry	of	the	cells	in	

the	tumour	and	because	tumours	are	clonally	derived,	all	of	the	cells	in	the	tumour	will	

carry	the	mutations	in	the	first	cancer	cell,	whereas	later	arising	subclones	are	identifiable	

by	their	sharing	of	a	particular	unique	set	of	variants,	and	so	the	order	of	clone	development	

can	be	inferred	by	comparing	the	sets	of	mutations	present	in	different	cells	of	the	tumour.	

The	logic	of	this	kind	of	analysis	is	at	the	heart	of	phylogenetics	methods	as	applied	to	

cancer[7].	Moreover,	if	a	particular	type	of	mutation	accrues	at	a	constant	rate	(e.g.	the	

same	number	of	new	mutations	are	introduced	in	each	cell	division;	this	appears	to	be	the	

case	for	C>T	transitions	within	specific	3-base	pair	motifs	for	example[1]),	then	counting	

the	number	of	mutations	of	the	type	that	are	unique	to	a	particular	lineage	gives	an	estimate	



of	the	relative	time	that	the	lineage	arose.	A	constant	mutation	rate	is	referred	to	as	a	

molecular	clock,	and	if	the	rate	at	which	the	molecular	clock	‘ticks’	is	known,	then	the	

absolute	time	of	events	(where	time	is	measured	in	cell	divisions	elapsed)	can	also	be	

determined[8].		These	methods	have	been	applied	to	a	wide	variety	of	cancers	and	revealed	

new	insight	into	the	order	and	timing	of	mutation	accumulation	(for	some	examples	see	refs	

[9-25]).	

	

But	mutation	is	not	the	only	force	shaping	the	cancer	genome:	evolutionary	selection	also	

plays	a	critical	role.		Selection	describes	that	the	situation	where	one	group	of	cells	within	

the	tumour	is	evolutionary	‘favoured’	over	another,	such	that	the	favoured	cells	have	more	

offspring	than	the	not-favoured	cells.		The	favour	is	a	result	of	the	cell	evolving	a	new	

phenotypic	trait	that	gives	it	an	advantage	in	the	current	microenvironment	(context)	of	the	

tumour;	the	trait	is	referred	to	as	adaptive.	For	example,	a	cell	with	a	low	metabolic	demand	

might	grow	faster	than	a	cell	with	high	metabolic	need	when	both	cells	are	together	in	a	

nutrient-poor	microenvironment.		The	result	of	selection	is	that	any	mutation	in	the	

selected	(favoured)	population	become	more	common	in	the	tumour	population	as	a	whole,	

whereas	negatively	selected	clones	(not-favoured)	become	relatively	less	common.		

Consequently,	selection	plays	a	central	role	in	shaping	the	frequency	distribution	of	

mutations	within	a	tumour.	

	

To	understand	how	a	tumour	has	grown	from	its	genome,	we	therefore	need	to	understand	

both	mutation	and	selection,	and	critically	how	these	two	processes	together	shape	the	

pattern	and	frequency	of	mutations	in	the	genome.			Mutation	and	selection	are	deeply	

intertwined,	since	a	new	mutation	may	produce	a	new	adaptive	trait	and	therefore	drive	

selection,	and	conversely	a	new	microenvironmental	selective	pressure	(such	as	targeted	

therapy,	for	instance)	may	mean	that	a	pre-existing	mutation	becomes	adaptive	and	so	

increases	in	frequency[26].		In	general,	mutation	is	considered	a	random	process;	any	

mutation	may	occur	at	any	time	with	some	(low	and/or	fluctuating)	probability,	whereas	

selection	is	non-random;	only	particular	mutations	are	adaptive	in	a	given	context[27,	28].	

For	example,	loss	of	normal	function	of	the	APC	gene	provides	a	clear	selective	advantage	to	

cells	in	the	intestine[29-31],	but	not,	say,	in	the	lung,	even	though	presumably	APC	mutation	

occurs	at	a	comparable	rate	in	both	tissues.		Thus,	the	frequency	at	which	particular	

mutations	are	observed	across	tumour	is	a	function	both	of	the	rate	at	which	the	mutations	



occur,	and	also	of	the	likelihood	the	mutation	has	being	adaptive	and	driving	a	clonal	

expansion	to	a	detectable	level.	

	

Tissue	architecture	–which	we	can	broadly	think	of	as	the	‘mechanical	microenvironment’	-	

provides	additional	selective	constraints	on	tumour	evolution.		Many	epithelia	have	

glandular	architecture	(eg	the	crypts	in	the	colon,	and	ducts	in	the	prostate	and	breast),	and	

it	is	the	abnormal	growth	of	these	glands	(rather	than	the	cells	within	them	per	se)	that	

underlies	neoplastic	growth.		Thus,	cancer	development	requires	evolution	to	at	multiple	

levels	in	epithelial	tissues[32]:	in	the	example	of	the	colon,	first	a	mutated	cell	must	

repopulate	the	crypt,	and	then	the	mutant	crypt	itself	must	divide	to	form	a	glandular	

adenoma[33].		Computational	modelling	suggests	that	these	tissue	architectures	have	(at	

least	in	part)	evolved	to	suppress	clonal	evolution[34].		Tissue	architecture	means	that	in	

solid	tumours	clonal	expansions	are	spatially	delineated,	and	so	the	indicators	of	mutation	

and	selection	within	the	genome	are	likely	to	show	intra-tumour	heterogeneity.	

	

It	is	clear	that	cancer	formation	requires	the	acquisition	of	a	number	of	key	driver	

alterations	(mutations	and	epigenetic	changes	in	cancer	cells)	[35,	36].		The	precise	number	

of	drivers	per	cancer	is	uncertain	–	and	indeed	given	the	inherently	contextual	nature	of	

selection	a	comprehensive	list	of	cancer-specific	drivers	is	unlikely	to	exist	in	reality.	It	

serves	our	purposes	here	to	think	of	driver	mutations	as	mutations	that	are	positively	

selected	in	their	(changing)	microenvironmental	context	within	the	tumour.	A	central	

question	in	tumour	evolution	is:	what	is	the	temporal	pattern	of	driver	alteration	

acquisition?		The	competing	theories	are	gradualism	and	punctuation	(see	Box	for	definition	

of	terms).		The	gradualist	theory	proposes	that	cancer	evolution	happens	via	a	steady	

accumulation	of	driver	mutations	and	a	concomitant	steady	series	of	selective	clonal	

outgrowths,	whereas	the	punctuated	theory	proposes	that	the	evolution	of	cancer	occurs	in	

fits	and	starts.			

	

In	this	review,	we	address	how	mutation	and	selection	together	shape	the	cancer	genome,	

with	particular	reference	to	the	manifestations	of	graduated	and	punctuated	evolution.			

	

Detecting	selection	and	neutrality	from	the	cancer	genome	



Clonal	selection,	whatever	the	biological	mechanism	driving	it,	ultimately	results	in	the	

relative	outgrowth	of	the	selected	clone	within	the	tumour.		The	clonal	outgrowth	appears	

in	the	cancer’s	genome	as	an	‘over-representation’	of	the	mutations	in	the	selected	clone,	as	

compared	to	the	‘null’	case	where	the	genome	evolved	in	the	absence	of	selection	(Figure	1).		

In	principle	then,	detecting	selection	just	requires	spotting	the	characteristic	‘clonal	

outgrowths’,	and	many	different	bioinformatics	tools	have	been	developed	to	spot	the	

‘clusters’	of	mutations	at	similar	frequency	in	tumour	next	generation	sequencing	data	that	

are	characteristic	of	these	outgrowths[22,	37-39].		Its	important	to	note	here	that	the	

evolutionary	dynamics	of	the	selected	clone	are	largely	revealed	by	the	passenger	mutations	

in	that	clone,	not	the	drivers	themselves:	as	the	selected	clone	grows	out,	all	of	the	many	

passenger	mutations	in	the	clone	are	carried	along	to	higher	frequency,	making	the	selected	

clone	visible	against	the	mileau	of	unselected	mutations	in	the	tumour.	Therefore,	both	

driver	and	passenger	mutations	in	the	clone	are	affected	by	selection,	but	passenger	

mutations	are	generally	more	informative	as	they	are	more	numerous[40].	This	is	just	

because,	as	evolution	is	a	blind	force,	for	every	‘successful’	driver	mutation,	many	

‘unsuccessful’	mutations	have	occurred	in	a	genome	as	large	as	the	human	one.		

Moreover,	this	means	that	clonal	selection	is	always	visible	in	the	frequency	distribution	of	

mutations	in	cancer	irrespective	of	the	biological	mechanism	that	provides	the	selective	

advantage.		For	example,	suppose	that	rather	than	the	acquisition	of	a	new	driver	mutation,	

a	clone	becomes	a	selective	advantage	because	of	a	sudden	change	in	microenvironmental	

context	(such	as	a	new	non-cell	autonomous	interaction	within	the	tumour[41]);	even	

though	the	clone’s	advantage	is	cell-extrinsically	driven,	its	passenger	mutations	will	still	

become	overrepresented.	

	

However,	we	argue	that	to	be	able	to	reliably	spot	clonal	outgrowths	in	a	cancer’s	genome,	

we	first	require	an	understanding	of	what	the	‘null	case’	–	evolution	in	the	absence	of	clonal	

selection	-	looks	like.		The	absence	of	clonal	selection	is	referred	to	as	neutral	evolution,	and	

by	definition	neutral	evolution	(in	a	growing	population	like	a	tumour)	is	the	case	when	all	

cells	grow	at	the	same	rate	as	one	another.		The	definition	of	neutral	evolution	also	

encompasses	stochastic	drift.		In	a	drifting	population,	all	cells	growth	at	the	same	average	

rate,	but	at	any	single	point	in	time	any	one	lineage	might,	because	of	random	effects,	grow	

or	shrink	slightly	faster	than	another.		We	note	that	if	a	‘lucky’	clone	happens	to	drift	to	

proportionally	high	frequency	in	a	neutrally	evolving	asexual	population	like	cancer,	it	



could	appear	indistinguishable	from	a	selected	clone.	

	

Mathematical	modelling	(or	perhaps	more	accurately	put:	population	genetics	theory)	

provides	a	formal	description	of	the	frequency	of	subclonal	mutations	within	a	neutrally	

growing	tumour[42-44].		Under	neutrality	the	cumulative	number	of	mutations	at	

frequency	f	follows	a	‘1/f’	distribution:	this	means	that	the	number	of	mutations	at	a	

particular	frequency	in	the	tumour	will	double	each	time	the	frequency	halves,	or	more	

loosely,	when	a	tumour	is	growing	neutrally	there	will	be	ever	more	mutations	at	ever	

lower	frequencies.		This	mathematical	result	can	be	understood	intuitively:	because	a	small	

number	of	new	mutations	are	expected	to	accrue	each	time	a	cell	divides,	then	as	the	

tumour	population	increases	in	size,	more	and	more	new	mutations	are	accrued	by	the	

population	as	a	whole,	and	the	‘1/f’	distribution	is	reached	because	precisely	twice	as	many	

new	mutations	are	expected	each	time	the	population	doubles	in	size.	To	test	for	selection	

in	a	growing	cancer,	it	suffices	therefore	to	ask	whether	or	not	the	distribution	of	mutation	

frequencies	observed	in	the	cancer	(as	measured	by	next	generation	sequencing)	follows	a	

1/f	distribution:	in	the	case	where	they	do	not,	we	can	reject	the	null	hypothesis	of	

neutrality	in	favour	of	recent	selection.	

	

This	‘1/f	test’	must	be	applied	with	caution.		Limited	depth	sequencing	can	blur	the	signal	

from	the	evolutionary	dynamics	(the	signal	of	both	selection	and	neutrality	alike)	[42].		It	is	

conceivable	that	a	particular	‘just-right’	combination	of	subclones	could	produce	a	VAF	

distribution	that	masquerades	as	a	1/f	distribution	(if	the	selected	subclones	happened	to	

reach	a	particular	set	of	sizes	and	the	‘noise’	in	the	sequencing	data	blurred	their	passenger	

mutation	VAFs	appropriately).		While	the	allele	frequencies	alone	cannot	discount	this	

possibility,	nevertheless	neutral	evolution	provides	a	much	more	parsimonious	explanation	

of	a	1/f	–like	VAF	distribution.		Moreover,	we	note	that	the	1/f	test	provides	an	objective	

indication	of	the	presence	of	absence	of	subclonal	selection,	that	does	not	rely	of	prior	

knowledge	of	the	identity	of	subclonal	drivers.	

	

The	ratio	of	non-synonymous	(NS)	mutations	(that	are	likely	to	alter	fitness	by	changing	

protein	structure	and	function)	to	synonymous	(S)	mutations	(that	are	likely	neutral)	at	a	

particular	locus	is	another	popular	test	for	selection[45,	46].		Typically,	the	NS/S	ratio	is	

normalised	by	the	number	of	possible	NS	and	S	mutations	that	can	occur	at	the	locus	of	



interest	(the	normalised	ratio	is	referred	to	as	dN/dS),	and	then	deviations	in	the	

normalised	ratio	above	1	indicate	positive	selection	(more	NS	mutations	than	expected	by	

chance)	whereas	deviations	below	1	indicate	negative	selection	(fewer	NS	mutations	than	

expected	by	chance).		Applying	the	dN/dS	ratio	to	cancer	is	complicated	by	the	differential	

and	evolving	mutation	rates	of	3-basepair	motifs[47],	that	can	potentially	skew	the	dN/dS	

values,	but	nevertheless	corrected	dN/dS	ratios	within	large	cohorts	of	tumours	has	reveal	

evidence	of	positive	selection	in	cancer	on	particular	gene	sets,	such	as	the	kinases[48].			We	

note	that	applying	dN/dS	to	detect	subclonal	selection	within	a	tumour	is	extremely	

challenging,	because	if	the	selection	is	caused	by	a	single	base-pair	change	(e.g.	the	common	

KRAS	c.35G>T	mutation)	then	the	signal	from	this	locus	will	be	‘drowned	out’	by	all	the	

other	passenger	mutations	within	the	clone,	and	applying	dN/dS	on	a	on	a	gene	by	gene	

basis	in	individual	tumours	is	not	possible	because	of	the	relatively	low	numbers	of	

detected	somatic	mutations	in	any	individual	cancer.	

	

How	often	does	selection	occur?	

We	recently	looked	for	evidence	of	clonal	selection	across	cancer	types	using	the	‘1/f’	test	

described	above.		Remarkably,	our	analysis	showed	that	in	approximately	30%	of	cancers	of	

14	different	solid	cancer	types	we	were	unable	to	reject	the	null	hypothesis	of	neutral	

evolution[42].		In	cancer	model	systems,	neutral	drift	of	tumour	cells	is	also	observed[49].	

Therefore,	the	signature	of	selection	appears	to	be	somewhat	rarer	than	we	might	naively	

have	expected	from	a	gradualistic	evolutionary	perspective.			

	

How	often	should	we	expect	to	see	selection	manifested	in	the	cancer	genome?			

	

First,	we	only	expect	to	see	a	clonal	outgrowth	if	the	clone	is	‘caught	in	the	act’	of	growing	

out	–	e.g.	if	the	clone	had	already	expanded	to	at	least	a	minimal	detectable	size	at	the	time	

the	tumour	was	sampled,	but	before	it	has	expanded	to	repopulate	the	entire	tumour[50].		

The	latter	point	is	because	once	a	selected	clone	has	taken	over	the	whole	tumour	then	all	

the	cells	within	the	clone	are	the	same	as	one	another	–	and	so	the	population	then	again	

evolves	neutrally.		The	duration	of	time	where	a	clone	can	be	‘caught	in	the	act’	of	expanding	

is	determined	by	the	selective	advantage	of	the	clone	(relative	to	the	residual	‘host’	cells	in	

the	tumour):	fitter	clones	will	grow	out	quicker.		Unfortunately,	empirical	measurements	of	

selective	advantages	of	clones	in	growing	tumours	are	lacking,	so	our	expectations	of	the	



likelihood	of	detecting	a	selected	clone	mid-expansion	are	largely	guesswork.		Within	the	

intestinal	crypt	(a	constant	population	size)	empirical	measurement	of	the	selective	

advantages	of	the	tumour	suppressor	gene	APC	and	the	proto-oncogene	KRAS	reveal	almost	

two-fold	increases	in	the	probability	of	stem	cell	replacement[29].		If	tumour	subclones	

experienced	similarly	large	selective	advantages,	we	might	expect	to	only	rarely	see	

partially-expanded	clones.		Intriguingly	though	abstract	mathematical	modelling	of	

mutation	accumulation	in	growing	tumours	suggests	very	low	selective	advantages	for	new	

driver	mutations	(of	the	order	of	less	than	1%)	lead	to	reasonable	waiting	times	to	cancer	

(in	the	models	cancer	is	defined	by	a	subclone	having	accumulated	a	critical	driver	mutation	

burden)	[51,	52].		In	addition,	our	own	computational	modelling	shows	that	even	sizeable	

selective	advantages	produces	only	slight	changes	in	clone	frequency	in	a	growing	

population,	and	this	result	is	exacerbated	when	a	new	clone	is	formed	in	an	already	large	

tumour[14].		Together	these	results	would	predict	partially	expanded	subclones	would	be	

commonplace,	if	they	were	initiated	at	sufficiently	high	rate.		Clearly	empirical	

measurement	of	the	differential	fitness	of	tumour	subclones	is	required.	

	

Second,	the	likelihood	of	seeing	selection	is	also	determined	by	the	rate	at	which	new	

selected	clones	are	generated,	either	by	clone-intrinsic	mutation	or	the	creation	of	a	

favourable	microenvironment.		This	rate	is	directly	related	to	the	number	of	potential	

driver	alterations	a	clone	can	acquire:	if	there	are	many	potential	drivers	then	new	driver	

mutations	are	likely	to	occur	frequently.		Interestingly,	genome	sequencing	studies	on	large	

cohorts	(such	as	the	Cancer	Genome	Atlas	-	http://cancergenome.nih.gov/)	consistently	

reveal	a	fairly	short	lists	of	recurrently	mutated	genes	in	each	cancer	type:	for	example	in	a	

cohort	of	276	colorectal	cancers	only	24	genes	were	mutated	at	significantly	greater	than	

background	frequency[53].		These	studies	suggest	that	the	number	of	drivers	may	actually	

be	quite	limited,	and	hence	neutral	dynamics	may	be	relatively	common	in	cancers	because	

of	the	low	rate	of	driver	mutation	accrual.	

	

Third,	our	ability	to	detect	selection	is,	of	course,	limited	by	the	resolution	of	our	tools	to	

look	for	it.		The	current	standard	of	moderate	depth	exome	sequencing	is	100X	coverage	

facilitating	reasonably	reliable	detection	of	mutations	at	about	5%	frequency.		This	means	

that	low	selective	advantages	that	cause	only	slight	changes	in	clone	frequency	are	largely	

indistinguishable	from	the	background	neutral	evolution.	The	‘mini-driver’	hypothesis,	



which	postulates	that	there	are	many	mutations	each	causing	small	fitness	effects	in	

cancers[54],	would	clearly	be	challenging	to	confirm	or	refute	from	moderate	depth	

sequencing	data.		Moreover,	as	a	tumour	grows,	newly	generated	clones	form	ever	lower	

proportions	of	the	tumour	cell	population	and	so	detecting	them	because	ever	more	

challenging	as	the	tumour	becomes	larger:	thus	the	~5%	sensitivity	of	sequencing	provides	

a	window	to	detect	only	those	clones	that	form	very	early	in	a	cancer’s	grow,	or	those	which	

rapidly	(e.g.	within	a	small	proportion	of	the	lifetime	of	the	cancer)	grow	to	a	detectable	

size.		

	

	

Evolutionary	dynamics	and	tumour	progression		

Manifest	on-going	selection	in	cancers	appears	to	be	associated	with	a	worse	prognosis	

because	across	cancer	types,	tumours	with	three	or	more	large	clones	have	a	worse	

prognosis	than	tumours	with	fewer	clones[55,	56],	and	putative	subclonal	driver	mutations	

are	also	associated	with	a	worse	prognosis[55].		

	

However,	neutral	evolution	has	a	potential	‘dark	side’	for	prognosis,	by	virtue	of	it	allowing	

huge	variation	to	be	generated	and	persist	in	a	tumour.		Whilst	by	definition	the	diversity	in	

a	neutrally	evolving	tumour	is	non-adaptive	to	the	current	microenvironment,	if	the	

microenvironment	were	to	change	–	through	the	application	of	therapy	for	instance	–	then	

variants	within	this	reservoir	of	pre-existing	variation	could	suddenly	become	adaptive.			

Thus	neutrally	evolving	tumours	may	be	particularly	prone	to	develop	therapy	resistance.		

The	relationship	between	neutral	and	selective	evolutionary	dynamics	and	tumour	

progression	should	be	the	focus	of	future	work.	

	

Our	recent	analysis	of	the	evolution	of	colorectal	cancer	led	us	to	put	forward	the	“Big	Bang”	

model	of	cancer	growth,	whereby	the	tumour	mass	grows	as	a	single	clonal	expansion	

wherein	differential	clonal	selection	within	the	tumour	has	little	influence	on	the	subclonal	

composition	of	the	tumour,	and	instead	clonal	mosacism	is	determined	largely	by	the	time	

of	clone	generation[14].		Since	the	clonal	composition	of	a	Big	Bang	tumour	is	determined	

simply	by	which	clones	were	generated	at	the	beginning	of	cancer	growth,	we	speculated	

that	a	tumour’s	prognosis	is	similarly	predetermined.		In	other	words,	in	the	absence	of	

clonal	selection,	the	phenotype	of	the	‘first’	cancer	cells	should	determine	the	cancer’s	



behaviour	thereafter.		Consequently,	we	speculate	that	reading	these	‘initial	phenotypes’	in	

the	grown	cancer	may	be	prognostic,	for	example	by	looking	for	the	degree	of	clonal	mixing	

as	a	read-out	of	cell	migration	ability,	or	the	degree	to	which	a	clone	coexists	in	multiple	

different	microenvironments	as	a	readout	of	plasticity.	

	

Punctuated	evolution	

In	the	evolutionary	biology	literature,	punctuated	evolution	is	(loosely)	defined	as	an	

apparently	abrupt	change	in	phenotype,	and	was	originally	suggested	by	Eldredge	and	Gould	

to	explain	the	large	morphological	differences	between	species	that	appeared	to	occur	

without	the	presence	of	intermediate	morphotypes	in	the	fossil	record[57].		The	original	

descriptions	of	punctuated	evolution	put	forward	that	an	ancestral	species	became	

subdivided	into	(spatially)	isolated	distinct	niches	where	each	subpopulation	independently	

(and	gradually)	evolved	until	the	point	that	one	of	those	sub-species	–	by	now	grossly	

altered	compared	to	the	ancestor	–	was	able	to	escape	the	niche	and	expanded	its	

population	significantly	(Figure	2A).		Because	the	isolating	niche	was	small,	the	

intermediate	forms	were	lost	to	the	fossil	record,	and	only	the	widespread	ancestral	and	

then	the	new	grossly-altered	populations	were	captured.		The	result	was	an	apparently	

punctuated	evolution	of	species	–	interspersed	by	long	periods	of	time	where	apparently	no	

‘important	evolution’	happened.		This	pattern	of	events	was	described	as	punctuated	

equilibrium.	

	

Punctuated	equilibrium	has	frequently	been	conflated	with	saltation	theory,	though	the	two	

theories	are	distinct.	The	difference	is	that	the	two	theories	describe	punctuated	phenotype	

change	and	punctuated	genotype	change	respectively.		Saltation	theory	suggests	new	

species	can	be	generated	rapidly	because	of	sudden	large-scale	mutation(s)	-	in	other	words	

the	underlying	genetic	evolution	causing	the	speciation	event	is	itself	punctuated	(Figure	

2B).		Punctuated	equilibrium	on	the	other	hand	proposes	that	gross	phenotypic	change	is	

the	consequence	of	gradual	(though	perhaps	rapid)	genetic	evolution	in	an	isolated	

population.	Richard	Goldschmidt	described	the	gross	mutations	as	hopeful	monsters	–	

striving	for	‘perfection’	in	one	big	jump[58],	however	it	is	more	likely	that	most	gross	

genetic	rearrangements	will	be	maladaptive.	

	

It	is	increasingly	clear	that	the	punctuated	evolution	of	both	phenotypes	and	genotypes	



occurs	during	cancer	development.			

	

Punctuated	phenotype	change	is	clearly	seen	in	the	development	of	neoplasia:	typically	a	

neoplastic	lesion	(such	as	a	colorectal	adenoma)–	with	a	grossly	different	phenotype	to	the	

normal	cells	–	arises	‘abruptly’	without	intermediate	partial	neoplastic	forms	(although	we	

acknowledge	that	one	could	argue	that	crypt	hyperplasia	may	sometimes	be	an	

intermediate	form	in	the	intestine).		It	is	important	to	recognise	that	such	punctuated	

phenotype	change	(normal	to	malignant	cells)	may	be	underpinned	by	gradual	genotype	

evolution.		In	the	example	of	intestinal	neoplasia,	it	is	clear	that	loss	of	the	normal	function	

of	the	APC	gene	is	sufficient	to	generate	adenomas[30,	31].		Loss	of	normal	APC	function	can	

be	caused	by	the	‘gradual’	accumulation	of	the	two	mutational	hits	on	each	of	the	APC	

alleles[59],	and	is	clear	that	the	gross	changes	in	phenotype	(normal	to	neoplastic)	need	not	

be	accompanied	by	large	scale	genetic	alteration[60].		In	leukaemia,	‘intermediate’	clone	

genotypes	are	present	at	only	very	low	frequency,	potentially	indicating	punctuated	

equilibrium-like	evolutionary	dynamics[61].		In	follicular	lymphoma,	disease	

transformation	is	associated	with	an	increased	mutation	burden	and	often	also	the	

acquisition	of	mutations	in	key	‘driver’	genes,	though	the	underlying	temporal	pattern	of	

mutation	accumulation	remains	undetermined[21].	

	

The	genotype-phenotype	map	describes	the	relationship	between	genetic	change	and	

phenotypic	traits.	APC-loss	in	the	intestine	demonstrates	how	slight	changes	in	genotype	

(eg	single	base-pair	changes)	can	cause	large	changes	in	phenotype:	this	is	an	example	

where	mapping	between	the	space	of	possible	genotypes	and	phenotypes	is	not	smooth.		

Moreover,	phenotypic	change	may	not	occur	until	multiple	independent	mutations	in	a	

number	of	key	genes	have	accumulated	and	act	in	tandem	to	cause	phenotypic	alteration	

(this	is	called	epistasis).		Epistasis	can	underlie	punctuated	equilibrium	in	cancer	–	an	

individual	lineage	may	steadily	acquire	individual	driver	mutations	but	not	clonally	expand	

until	it	has	the	full	complement	of	drivers	necessary	to	enhance	its	fitness.	Intriguingly	in	

colorectal[62,	63]	and	lung[20]	cancers	the	majority	of	the	driver	mutations	often	appear	

clonal	throughout	the	cancer,	perhaps	implying	that	the	growth	of	these	cancers	could	be	

initiated	only	when	a	complete	epistatically-interacting	complement	of	drivers	are	

obtained.	Epistasis	clearly	adds	much	complexity	to	the	relationship	between	genotypes	

and	phenotypes.		Resolving	the	genotype-phenotype	map	is	key	to	understanding	



evolutionary	trajectories	in	cancer,	though	given	the	inherently	contextual	definition	of	

phenotypes	and	the	near	infinite	space	of	possible	genotypes,	the	resolution	will	be	

extremely	challenging	to	achieve.	

	

It	is	increasingly	clear	that	Goldschmidt’s	hopeful	monsters	–punctuated	changes	in	

genotype	–	are	frequently	found	in	cancer	(Figure	3).		Chromothripsis	–	chromosome	

shattering	and	reassembly	in	an	aberrant	manner	-	has	now	been	reported	in	many	

different	cancer	types[64-66]	and	this	saltatory	mutation	occurs	following	a	single	

‘catastrophic’	mitosis[67].		Chromoplexy	–	the	interleaving	of	different	chromosomal	

regions	into	one	aberrant	block	–	has	been	reported	in	prostate	cancer	and	is	likely	to	occur	

in	a	single	cell	division[68].		More	generally,	genome	doubling	is	a	relatively	common	

saltatory	mutation	type	observed	across	cancer	types[69],	and	furthermore	the	tolerance	of	

genome	doubling	facilitates	subsequent	chromosomal	instability[70].		In	breast	cancer,	

sequencing	of	individual	nuclei	detects	clones	with	dramatic	copy	number	deviation	from	

the	diploid	genome	and	no	evidence	of	cells	with	intermediate	patterns	of	copy	number	

alteration[71,	72]	(Figure	3).		Similarly	relative	homogenous	intra-tumour	patterns	of	

grossly	deviant	copy	number	alterations	are	observed	in	many	cancer	types	including	

colorectal[62]	and	ovarian[17]	and	the	premalignant	disease	Barrett’s	Oesophagus[25,	73]	

suggesting	underlying	saltatory	mutational	mechanisms.	

	

How	often	are	these	hopeful	monsters	formed?		The	monsters	we	sample	in	cancer	are	the	

ones	that	have	fortuitously	stumbled	upon	an	adaptive	genotype-phenotype	combination.	

But	presumably	many	saltatory	mutations	lead	to	alters	maladapted	phenotypes,	or	

phenotypes	that	are	lethal	–	indeed	this	is	often	the	case	for	chromosomal	instability[74].		

Logically	therefore,	this	means	that	for	every	saltatory	mutation	that	produces	an	adaptive	

phenotype,	there	are	likely	to	many	more	saltatory	mutations	that	produces	maladapted	

phenotypes.		This	likely	abundance	of	‘maladapted	monsters’	in	cancers	types	(or	their	

premalignant	precursors)	that	frequently	show	saltatory	mutation	is	a	testable	prediction,	

and	furthermore	the	detection	of	maladapted	monsters	could	prove	to	be	a	useful	

prognostic	biomarker	in	premalignant	diseases	such	as	Barrett’s	Oesophagus	where	large-

scale	genome	alteration	appears	to	be	a	key	punctuated	event	in	cancer	formation[25,	73].	

	

An	important	aside	is	the	potential	for	punctuated	evolution	of	the	rate	of	single	nucleotide	



alterations	(SNAs).		SNAs	accumulate	according	to	a	relatively	small	number	of	underlying	

mutational	processes	associated	with	natural	replication	errors,	defective	DNA	replication	

and	repair	machinery	and	mutagen	exposures[47].			Although	the	accumulation	of	SNAs	is	a	

clearly	a	gradual	process	(though	as	noted	above,	individual	SNAs	can	cause	punctuated	

change	in	phenotype),	we	note	that	the	abrupt	‘switching	on’	of	a	new	mutational	process	

can	cause	punctuated	changes	in	the	SNA	mutation	rate.		For	example,	mutation	of	the	

mismatch	repair	machinery	(MMR)	causes	a	sudden	increase	in	a	cell’s	point	mutation	

rate[75].			

	

Conclusion:	neutrality	and	selection,	and	punctuation	and	gradualism	are	each	two	

sides	of	the	same	coin	

Cancer	genomes	reveal	frequent	evidence	of	both	neutral	evolution	and	clonal	selection.		

Since	neutral	evolution	is	just	the	evolution	that	happens	between	selection	events	–	e.g.	the	

evolution	that	happens	within	a	clone	–	the	frequent	detection	of	neutral	evolution	in	

cancer	should	come	as	no	surprise.		It	is	our	opinion	that	in	fact	it	would	be	more	surprising	

if	a	signature	of	neutral	evolution	was	never	seen	in	cancer,	because	this	would	mean	that	

new	‘driver’	mutations	accrued	all	the	time	in	our	cells	–	an	implication	that	appears	at	odds	

with	the	relatively	low	age-dependent	incidence	of	cancer[76]	and	the	small	number	of	

drivers	with	respect	to	passengers[40].				

	

At	a	molecular	level,	cancers	unquestionably	show	both	gradual	(the	steady	accumulation	of	

single	nucleotide	variants)	and	punctuated	(large	scale	copy	number	alterations)	genotype	

change.		But	whether	or	not	phenotype	change	is	similarly	punctuated	depends	upon	the	

relationship	between	the	genotype	and	phenotype,	and	also	the	microenvironment	context.		

Thus	to	be	able	to	predict	and	manipulate	the	evolutionary	trajectories	of	cancer	for	

respective	prognostic	and	therapeutic	benefits,	it	is	critical	that	we	understand	the	

genotype-phenotype	map	and	the	associated	transitions	around	genotype-phenotype	space.		

To	achieve	this,	we	critically	need	to	understand	exactly	which	phenotypes	in	cancer	are	

selected	and	why	–	genetics	help	us	to	understand	the	accessibility	of	the	space	of	different	

phenotypes,	but	alone	genetics	cannot	give	us	the	full	picture	of	cancer	evolution.	

Finally,	a	word	of	caution.		Studies	show	that	treatment	frequently	selects	for	rare	subclones	

in	a	tumour	–	and	sometimes	subclones	that	were	so	rare	they	went	undetected	in	the	pre-

treatment	samples[26,	77-80].		Thus	while	the	evolutionary	dynamics	of	large	tumour	



subclones	–	the	focus	of	this	review	-	are	clearly	of	much	interest	to	understanding	of	the	

basic	biology	of	cancer	evolution,	we	must	ask	ourselves	if	these	dynamics	directly	relate	to	

a	patient’s	prognosis.			It	is	our	conviction	is	that	these	evolutionary	dynamics	are	clinically	

relevant,	since	only	by	learning	the	‘rules	of	cancer	evolution’	can	we	hope	to	effectively	

intervene	and	change	the	evolutionary	course.	
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Figures	

Figure	1:	The	influence	of	selection	in	the	cancer	genome.		A:	A	simulated	distribution	

of	variant	allele	frequencies	(VAF)	in	a	cancer	that	is	evolving	neutrally.		These	VAF	

distributions	are	naturally	produced	by	next	generation	genome	sequencing.			The	

distribution	has	a	peak	around	0.5	–	these	are	the	clonal	variants	present	in	all	cancer	cells.		

The	distribution	of	subclonal	variants	(those	at	lower	frequencies)	follows	a	‘1/f’	

distribution	whereby	there	are	ever	many	more	mutations	at	ever-lower	frequency.		

Neutral	cancer	evolution	can	be	detected	by	comparing	the	observed	distribution	of	

mutation	frequencies	in	a	cancer	to	this	expected	theoretical	distribution.		B:	VAF	

distribution	for	an	in	silico	model	of	a	cancer	where	a	fitter	subclone	has	clonally	expanded	

within	the	tumour.		The	cluster	of	mutations	within	the	subclone	are	‘passenger’	mutations	

dragged	along	to	higher	frequency	within	the	tumour	during	the	clonal	expansion.		Even	

though	there	is	selection,	there	is	still	a	‘background’	of	neutral	evolution	–	this	is	the	

neutral	evolution	within	the	selected	subclone	and	in	the	residual	tumour	cells.	

	

Figure	2:	Punctuated	equilibrium	and	hopeful	monsters.		A:	Mutations	accumulate	

within	small	spatially	isolated	niches	(here	an	intestinal	crypt	is	depicted)	and	only	after	a	

sufficient	number	of	adaptive	mutations	are	acquired	is	a	clonal	expansion	initiated.		From	a	

macroscopic	perspective,	the	evolution	of	the	neoplasia	appears	punctuated,	even	though	

the	driver	mutations	were	acquired	gradually	within	the	crypt.		B:	The	generation	of	a	

hopeful	monster	–	a	clone	with	a	grossly	altered	genotype	–	in	a	single	cell	division	

produces	a	neoplastic	in	a	single	‘catastrophic’	step.	

	

Figure	3:	Primary	data	indicating	punctuated	copy	number	evolution.	Copy-number	

profiles	of	individual	breast	cancer	cells	from	a	single	breast	cancer	case	showing	the	same	

grossly	altered	genomes	are	observed	in	all	cells	sampled,	and	no	intermediate	forms	are	

detected.		Image	scaled,	cropped	and	reprinted	with	permission	from	ref.	[72].		

	

	 	



Box:	Definition	of	terms	

Neutral	evolution–	evolution	where	all	individuals	in	the	population	have	equal	fitness.		In	

a	growing	population	(like	a	newly	formed	tumour)	this	means	that	all	cells	grow	at	the	

same	rate.	

	

Drift	–	stochastic	effects	(e.g.	random	cell	death	in	a	tumour)	can	cause	some	‘lucky’	

individuals	in	a	population	to	have	more	offspring	than	another,	and	so	the	‘lucky	lineage’	

increases	in	size.		Consequently	drift	can	cause	fluctuations	in	subclone	size	in	the	absence	

of	selection.	

	

Selection	–	the	process	that	results	in	one	individual	in	a	population,	because	of	its	

particular	well-adapted	traits,	having	more	offspring	than	another	less	well-adapted	

individual.	

	

Fitness	–	the	relative	ability	of	an	individual	to	produce	surviving	offspring	in	a	population.		

	

Punctuated	equilibrium	–	the	process	whereby	apparently	abrupt	changes	in	phenotype	

of	the	population	at	large	occur	because	of	gradual	evolution	in	small	spatially	isolated	

niches.	

	

Hopeful	monster/saltation	–	the	process	whereby	abrupt	changes	in	phenotype	are	cause	

by	underlying	(large	scale)	punctuated	changes	in	the	genome.		In	cancer,	massive	genome	

alterations	occurring	in	a	single	cell	division	are	examples	of	saltatory	genome	evolution.	
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