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Abstract 
The cancer genome is shaped by three components of the evolutionary process: mutation, 
selection and drift. While many studies have focused on the first two of these evolutionary 
components, the role of drift in cancer evolution has received little attention. Drift occurs 
when all individuals in the population have the same likelihood of producing surviving 
offspring, and so by definition a drifting population is one that is evolving neutrally. Here 
we focus on how neutral evolution is manifested in the cancer genome. We discuss how 
neutral passenger mutations provide a magnifying glass that reveals the evolutionary 
dynamics underpinning cancer development, and outline how statistical inference can be 
used to quantify these dynamics from sequencing data. We argue that only after we 
understand the impact of neutral drift on the genome can we begin to make full sense of 
clonal selection. 
 
The power of free riders 
Cancer development is an evolutionary process whereby the expansion of a clone can be 
caused by the acquisition of a new ‘driver’ mutation that causes the mutant cells to have 
an advantageous phenotype (e.g. increased survival) in their current microenvironment 
[1,2]. But for every new driver mutation, there are many more ‘passenger’ mutations that 
have no effect on a cell’s phenotype [3].  A clone that is ‘driven’ to higher relative 
frequency in the population by the driver mutation also ‘drags along’ all the passenger 
mutations that it has previously acquired. A commuter train provides a convenient 
metaphor here; much like a selected cell lineage in a cancer, a commuter train has many 
passengers and only one driver. This makes sense in terms of the apparent scarcity of 
driver mutations in cancer [4], as it takes a lot of cell divisions and a lot of random DNA 
mutations that come with them (i.e. the formation of a lot of passengers), before a specific 
tumour suppressor gene or oncogene is ‘hit’ (i.e. until a driver mutation occurs). We might 
think passenger mutations are the ‘baggage’ of somatic evolution: therefore since 
passengers do not influence the course of events in tumour evolution, why do they matter? 
Surely they are just ‘noise’?  
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That passengers are irrelevant to cancer evolution is a big misconception. Passengers are 
‘free riders’ that hitchhike in a genome that carries a driver mutation, following the driver 
wherever it goes. But by following the passengers, in turn we can follow the drivers too: 
returning to the commuter train metaphor, the GPS positions of the phones of passengers 
in a train shows us where the train is going. On our metaphoric train, the advantage of 
looking at the passengers is that they are overwhelmingly more abundant than the drivers, 
and so their GPS signals are much easier to detect. In cancer it is challenging to 
determine if a mutation is a driver or not, and needs both bioinformatics approaches to 
determine the statistical distribution of the putative driver mutation across samples, and 
functional assays to demonstrate that indeed the mutation changes the phenotype of 
cancer cells. On the contrary, finding passengers is much easier because the genome is 
huge and, even for the coding part, is mostly not utilised by any given somatic cell (i.e. 
many mutations are synonymous, non-coding, or in a gene that is not expressed). 
Exploiting genetic hitchhiking to understand how a population changes over time is a very 
old concept, first coined by Maynard Smith in 1974 [5] and officially formalised by Gillespie 
in 2000 [6]. Hence, passengers are not just the ‘noise’ of evolution, but they are a rich 
source of information on how a population has changed over time. Passengers are signal, 
and the signal is loud! 
 
What’s a clone? 
Tumours are thought to be ‘clonal’ because they start from a single cell. However, 
evolution does not stop when the tumour is initiated, but continues throughout the life-
history of the malignancy. Indeed, extensive intra-tumour heterogeneity has been 
demonstrated across different tumour types [7,8], which corroborates the tumour evolution 
paradigm [2,9]. In cancer, the concept of ‘clone’ has been used to describe the different 
sub-populations of cells present in the same malignancy. This is a very useful concept that 
is paralleled by the concept of ‘sub-species’ in evolutionary biology. However, there’s a 
catch. In evolutionary biology, species are defined by their phenotype, and in evolutionary 
biology it is usually relatively easy to measure phenotypes. For example, the anatomy of 
extinct species is revealed by the bone structure of fossils, or other phenotypic 
characteristics such as body shape of extant animals, are measurable. Importantly, most 
of these characteristics – relatively large phenotypic differences – represent heritable traits 
that get passed to the next generation, so the observable differences in phenotype are 
largely matched by underlying differences in genotype, which we know is the basic 
mechanism of inheritance.  
 
However, molecular evolution, the study of the change of the genome in time under 
evolutionary pressures [10], teaches us that phenotypes and genotypes do not always 
change together, and their relationship is often complex and counterintuitive. In cancer 
genomics, we measure genotypes but not directly phenotypes, which makes the 
interpretation of cancer genomic data somewhat challenging. For example, although the 
concept of clone is very useful, it is problematic to define formally. So what’s a clone? 
Here are some possible definitions: 
 
1. A group of cells that share the same (driver) mutation. 
2. A group of cells with the same genome. 
3. A group of cells that share the same common ancestor. 
4. A group of cells that have the same phenotype (as far as we can measure). 
 
Clearly, the first definition is somewhat ambiguous, as depending on what mutation we 
pick, we will identify different groups of cells. In particular, the presence of nested clones 
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makes this definition hard to work with. The second definition is also problematic as the 
mutation rate is sufficiently high [11] such that we should expect a few somatic mutations 
to occur with each cell division, and hence that each cell should be genetically unique, so 
every cell in the tumour would be its own clone according to this definition. The third 
definition is really bad, as any two cells in a cancer share a common ancestor in the 
founder cell of the tumour, and in fact any two cells on earth also share a common 
ancestor! The fourth is a bit more useful as it is a functional definition of a clone. However, 
as Swanton and colleagues have shown, convergent evolution is not uncommon in 
cancer, and hence two subpopulations may have the same phenotype, without being 
closely related [12], much like the way that fish and whales have the same body shape, 
but they are not close relatives. Importantly however, definition #3 is usually considered 
the ‘standard’ in cancer biology. 
 
A possibly more useful, yet far from perfect, definition of a clone is “a group of cells with 
the same phenotype, which have expressed that phenotype consistently since their most 
recent common ancestor”. This handles the problem of convergent evolution, and is a 
convenient working definition, though in most cases we note it is likely impractical to 
formally demonstrate temporal invariance in phenotype. Indeed even functional definitions 
of a clone are confounded by the continuous and often plastic (changeable) nature of 
phenotypes [13,14]. Take cell division rate as an example: it can have a continuum of 
values (short to long) and may change in response to microenvironmental stimuli (e.g. the 
availability of nutrients) and such changes in rate are reasonable to expect in absence of 
underlying genetic change. Thus, definition #3, when the common ancestor in question is 
specified, at least provides a less ambiguous definition of a clone.  
 
What happens when nothing happens? 
Evolution results from the interplay of three fundamental forces: random mutations, 
random drift and non-random selection (Figure 1). Mutations provide the substrate for 
genetic and phenotypic variation, hence this process increases heterogeneity. Drift and 
selection change the frequency of alleles (and of clones) in a population, making some 
larger or even dominant, and others to go extinct. Drift does this at random, while selection 
does it based on reproductive fitness. Both processes generally reduce heterogeneity.  
 
Drift results from one lineage randomly having more offspring than another (perhaps due 
to random cell killing) and intuitively drift has a significant effect on allele frequencies in 
small populations but a proportionally much smaller effect in large populations. For 
example, if a tumour is composed of only four cells, which all divide and then half their 
offspring are killed at random (so only 4 cells remain), then it would not be unlikely to find 
that the surviving four cells came from just two of the ancestors. Selection occurs when 
individuals show different proliferation or survival rates: they show ‘functional variation’. If 
there is no difference in proliferation or survival, a population is defined as functionally 
‘homogeneous’: all individuals have equal fitness in their current context.  
 
In a homogeneous population, we may confidently state that there is only one ‘clone’. But, 
while the phenotype is ‘stable’ in a homogenous population, what happens to the 
genotype? In other words, what is happening while apparently nothing (no phenotypic 
change) is happening? In the absence of clonal selection, genotypes cannot ‘stay still’. In 
such a scenario, the two forces of random mutation and drift will still be at play, 
respectively introducing new variants into the population and altering their frequency. 
Hence the genomic variation within the population will increase as time passes. While the 
population could be considered a single ‘clone’ from a functional point of view, it is actually 
constituted by a multitude of different lineages, each with its own unique set of genomic 
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mutations. In this case, the evolutionary dynamics at play are defined as neutral (Figure 1) 
as no lineage behaves differently than another. Importantly, the ‘dark side’ of this process 
is that when the environment changes, neutral variation may become functional in the new 
microenvironment, and so potently induce selection of the lineage. In fact, the concept that 
variation is pre-existing and ‘neutral’ in origin is the very essence of Darwinian evolution, 
and was formally demonstrated experimentally for the first time by Luria and Delbruck with 
their famous and exquisitely elegant experiment in 1943, showing pre-existing resistance 
in bacterial populations[15], for which they won the Nobel prize. 
 
Paradoxically, out of the three fundamental processes in evolution, although selection 
seems to be the easiest to understand, it actually produces the most complex patterns. 
Moreover, whereas we have the quantitative mathematical tools to understand random 
mutations (e.g. Poisson statistics) and genetic drift (e.g. Markov processes), a general 
mathematical formalism for selection is still to be defined. Although extensive work has 
been done to determine timing of clonal sweeps and accumulation of selected variants 
[16,17], solutions for the allele frequency distributions within a population under selection 
are generally an unsolved problem in population genetics. This is in part due to the fact 
that we do not know what the genotype-phenotype map is in cancer, and it remains 
unclear to what extent we can ever know it, considering the potentially limitless 
combinations of genotypes and environments. 
 
Importantly however, the change in allele frequencies in a neutrally evolving population is 
analytically tractable [15,18], even when the population is exponentially growing (such as 
cancer) [19-21]. The frequency distribution of mutations in an exponentially growing and 
neutrally evolving population has the solution: 
 

𝑀(𝑓)~
1
𝑓

 

 
Where f is the frequency of a mutation within the population and M(f) is the cumulative 
number of mutations. This dynamic behaviour produces a fractal-like structure in the 
phylogeny of the population, where the phylogenetic tree doubles its numbers of branches 
each time the cell population doubles (Figure 2). This is because in a neutrally evolving 
population there is no selection acting that would act to ‘prune’ the branches of the tree. 
So when apparently ‘nothing happens’ to the phenotype, actually a lot of things happen to 
the genotype. In fact, under this scenario, referred to as ‘neutral evolution’, the maximal 
genetic variation is created, as there’s no selective force removing variation.  
Consequently, neutrally evolving tumours may be the most ‘evolvable’, as they are likely to 
generate pre-existing variation that could be adaptive if the environment were to change. 
Neutral evolution is considered the null model of molecular evolution against which the 
effects of selection can be distinguished [22-24]. 
 
Under neutral evolution, all mutations are just a ‘label’ for different cell lineages, whereas 
under selective evolution, the frequency of the neutral labels are changed by the 
outgrowth of new clones, with selection increasing the frequency of both driver and 
passenger alterations in a given population (Figure 3). If selection is operating, the 
distribution of allele frequencies in a population will not fit the null model, and so fitting 
data to the null model provides a convenient test for the presence of on-going clonal 
selection in a population. 
 
Measuring evolution 
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Many sophisticated bioinformatics methods have been developed in recent years to 
analyse the wealth of data from cancer genomic profiling [3]. Those techniques have shed 
new light on the complexity of the cancer genome [25], and provided unprecedented 
insight on the genomic alterations that initiate and drive malignancies [4]. Similar statistical 
methods have also been applied to study the subclonal evolution of tumours, revealing the 
intricate clonal architectures [26-28]. However, although extremely useful, these 
approaches have limited power for understanding how the tumour changes over time. That 
is because, although statistically rigorous, these methods are not mechanistic: they do not 
model the evolutionary dynamics themselves, but rather provide a snapshot of the current 
clonal composition of the tumour.  
 
Key questions in cancer evolution are: How did the tumour grow in a specific patient? How 
did one cell become 100 billion cells? What patterns do we expect to see in the data 
depending on the different evolutionary trajectories of a tumour? Unsurprisingly, those 
patterns are often complex and counterintuitive, and so mathematically-described 
mechanistic models based on evolutionary theory provide a valuable complement to 
statistical bioinformatics approaches when interpreting cancer genome data [29,30]. 
Understanding tumour evolution with mechanistic models is important because it allows 
assumptions about the underlying evolutionary dynamics to be formally stated, thus 
allowing an evolutionary hypothesis to be statistically tested. Moreover, mechanistic 
models permit us to measure new parameters of tumour evolution, particularly those 
parameters that describe evolution over time. This is particularly important in the case of 
human malignancies, for which longitudinal measurements are difficult, and sampling is 
limited by ethical and technical issues. 
 
For example, in the case of neutral growth, the complete analytical solution for variant 
allele frequency distributions in the case of one cell becoming billions of cells is the 
following: 
 

𝑀 𝑓 =
𝜇
𝛽
1
𝑓 − 𝜋  

 
where 𝜋 is the ploidy of the tumour, 𝜇 is the mutation rate per division and 𝛽 is the ‘lineage 
survival’ rate per division, accounting for cell death and turnover. Hence, the slope of the 
line in this linear equation is precisely the ‘effective mutation rate’ 𝜇/𝛽 – in other words the 
rate of accumulation of mutations for each new cell lineage generated. This means that 
with this model we can not only determine if a population is growing neutrally or not, but in 
the case it is indeed evolving neutrally, we can measure its mutation rate in vivo [21]. 
 
Multi-region sampling of a tumour allows more detailed characterisation of the evolutionary 
dynamics. The tumour subclonal architecture could be very complex and distinct regions 
of the neoplasm may be characterised by radically distinct evolutionary dynamics. Multi-
region sequencing allows one to reduce sampling bias of single biopsies and unravel the 
tumour evolutionary complexity on another scale [7]. With multi-region profiling, both the 
allele frequency distribution of mutations (both passengers and drivers) and the physical 
distribution of those mutations around the tumour can be analysed to reveal evolutionary 
dynamics. Early mutations will be common in a tumour, whereas later mutations will be 
more spatially isolated – this kind of ‘mutational ordering’ analysis provides rich insight into 
the pattern of mutation and clonal expansion that have shaped a tumour’s clonal 
composition [12,31-41]. 
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However, as complexity increases – such as when considering time-varying changes in 
the selective microenvironment – simple and elegant analytical solutions do not exist, and 
so to describe tumour evolution we are forced to turn to stochastic simulations where in 
principle arbitrarily complexity can be implemented [29,38,42-47]. But how do we fit 
complex stochastic models to complex multi-dimensional data? 
 
The most appropriate technique in this case is Bayesian inference – a technique that 
allows us to ask how well a particular model describes the available data, given our prior 
knowledge about the parameter values.  
 
In particular, many major Bayesian inference techniques, such as Markov Chain Monte 
Carlo (MCMC) [48], rely on the calculation of a model’s likelihood (the probability that a 
model will produce the observed data) to estimate posterior parameter distributions (the 
parameter values that best describe the available data). For complex models it is often not 
possible to compute the likelihood because the model is too complex and/or non-analytical 
in essence (e.g. Agent based models that describe each cell independently [42] that 
cannot be expressed in terms of a simple likelihood equation). To overcome this ‘non-
computability’ problem, a powerful and elegant likelihood-free technique that has gained 
popularity amongst population geneticists in recent years is Approximate Bayesian 
Computation (ABC) [49-52]. Because ABC does not require the computation of likelihoods, 
it can be applied to models of arbitrary complexity.   
 
The idea behind ABC is to make a ‘guess’ (based on prior beliefs and/or knowledge) of the 
correct values a model’s parameters, and then simulate the model with these guessed 
parameters and evaluate how well the model’s output recapitulates the experimental data 
at hand. If the guessed parameters are ‘good’ (e.g. they produce model output faithful to 
the experimental data) then the guess is added to a list of acceptable parameters. If the 
guess is ‘bad’ (produces unrealistic model output) then it is discarded. This process of (1) 
guessing parameters, (2) simulating the model with the guessed parameter values, and (3) 
accepting/rejecting the guess on the basis of how well the data is recapitulated, is 
repeated many times (typically millions to billions of trials) until a comprehensive list of 
acceptable parameters is drawn up. This list of acceptable parameters is called the 
‘posterior distribution’, and by looking at the range of values within the posterior 
distribution we can assess which parameters best represent the data.  
 
The remainder of this section presents ABC in more formal mathematical terms. Readers 
who are not interested in the mathematical details can skip to the next section where we 
explain an application of ABC to cancer data. 
 
ABC statistical inference methods came from earlier similar approaches based on 
‘rejection algorithms’ [53,54]. In ABC the computation of the likelihood is substituted by a 
rejection step where some distance function is used to evaluate the ‘closeness’ of the 
model’s output to the available data, according to the following scheme: 
 
1. Sample the parameters 𝜃 from the prior distributions 𝑃 𝜃  

2. Simulate virtual data 𝐷′ from the stochastic model 𝑀 with the parameter input 𝜃 

3. If 𝜌 𝐷,𝐷! < 𝜖, accept 𝜃  

4. Go to (1) 

The rejection step 3 avoids computing the likelihood by accepting parameters from the 
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prior only if they generate virtual data that are similar to the observed data, given a certain 
distance measure 𝜌 and tolerance 𝜖. Collecting the accepted 𝜃 is equivalent to sampling 
from the posterior distribution 𝑃 𝜃 𝜌 𝐷,𝐷! < 𝜖 . The problem with this algorithm is that for 
complex multi-dimensional data, the acceptance step 3 may have an extremely low 
acceptance rate, which means that a very large number of simulations of the model must 
be performed to well approximate the posterior distribution. In these cases it is often 
necessary to use summary statistics 𝑆(𝐷) of the data rather than the data themselves and 
calculate the distance as 𝜌 𝑆(𝐷), 𝑆(𝐷!)  accordingly. What we obtain is an approximated 
version of the posterior distribution that corresponds to 𝑃 𝜃 𝜌 𝑆(𝐷), 𝑆(𝐷!) < 𝜖 . It is 
mathematically proven that for 𝑆 ∙  sufficient and 𝜖 → 0, such approximation converges to 
the exact posterior [50]. The sufficiency of the summary statistics given a model and a 
parameter 𝜃 means that the summary statistic contains the maximum amount of 
information about the data in that 𝑃 𝐷 𝑆,𝜃  is independent of 𝜃. Unfortunately, sufficient 
statistics rarely exist for realistic situations such as non-exponential family or agent-based 
models, hence one must rely on a combination of multiple summary statistics that 
(hopefully) provides a good approximation of the posterior. The magnitude of the 
approximation introduced by the method depends on 𝑆 ∙ , 𝜌 ∙  and in particular ε that has 
to be chosen as a trade-off between accuracy and computability. Given the small 𝜖, to 
generate a good posterior we need to draw a very large number of simulations because of 
their small chance of being accepted. This is the chief bottleneck of the method that 
requires simulating an instance of the model extremely quickly. For this reason, in this type 
of approach the computational performance of the model is crucial and determines the 
precision with which we can derive the posterior distribution. Despite the approximation, 
ABC is extremely useful and permits us to perform inference in many cases where 
traditional statistical methods simply cannot be used, including complex agent-based 
models of cancer evolution. 

The ABC of Colon Cancer 

We applied this combination of genomic data and statistical inference to study the 
evolution of colorectal cancer. In order to deconvolute the subclonal architecture of 
colorectal cancer at the single-clone resolution, in a recent study we performed genomic 
profiling on 349 individual colorectal glands (small tubular structures derived from a small 
number of stem cells) from 15 colorectal tumours [38]. Our computational modelling 
showed that the patterns of genetic heterogeneity within the tumours were consistent with 
a ‘Big Bang’ expansion in which the tumour grew as a single expansion, populated by a 
large number of early-arising clones that were coexisting for long periods of time due to 
the lack of stringent selection. A stepwise accumulation of driver mutations could not 
explain the data, but the subclonal dynamics could be governed by weak selection that 
was insufficient to drive large clonal expansions over short times. Together, this implied 
that the majority of observable intra-tumour heterogeneity was generated early in the 
primordial tumour, long before the tumour reached a clinically detectable size. The lack of 
stringent selection meant that newly generated mutations in an already established tumour 
effectively only experienced drift, and so were unlikely to reach a detectable size in the 
tumour. 
 
Importantly, spatial profiling also allowed to discover that carcinomas, which are malignant 
lesions, where characterised by clonal intermixing in distant parts of the tumour, whereas 
adenomas, which are instead benign lesions, were not. Computational modelling showed 
that this intermixing was likely a consequence of abnormal cell mobility in the early cancer 
(Figure 4). The Big Bang model has also been observed in breast cancer [37], and 
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hepatocellular carcinoma [34], and clonal intermixing has also been observed 
subsequently in breast cancer [35]. 
 
Importantly, the use of ABC allowed us to make inferences about the phenotypes of colon 
cancer cells (e.g. selection for particular lineages) using only the (quantitative) information 
about clone size and location provided by the genomic data. 
 
 
Conclusion 
The cancer genome is shaped by three fundamental components of evolution: mutation 
that generates new variation in the population, and drift and selection that underlying the 
expansion and contraction of the clones. While clonal selection is arguably the most 
important of these processes – not least because the selection of mutants capable of 
migrating and growing in distant regions of the body underpins deadly metastasis – it is 
unfortunately also the most challenging of the processes to mathematically define and 
quantify. Moreover, because drift can also lead to clones expanding within a tumour, we 
must be careful to discern the effects of drift and selection. The appropriate combination of 
bioinformatics approaches coupled with mechanistic mathematical modelling of the 
underlying evolutionary processes (encompassing all three of mutation, drift and selection) 
provides a tractable way to make sense to the wealth of data encoded in the cancer 
genome. And because the cancer genome is shaped by the evolutionary dynamics of 
tumour clones, the evolution of cancer cell phenotypes can begin to be understood by 
using statistical inference to parameterise mechanistic models of cell behaviours against 
the genomic data. It is a cell’s phenotype, not its genotype, that is the ultimate driver of 
cancer evolution, but irrespective of the nature of the driver itself, the history of cancer 
evolution is inevitably written in the genome. With the right tools, genomic measurement 
therefore provides a surreptitious handle with which we can understand phenotype 
evolution. 
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Figures 
Figure 1. The dynamics of evolution. Evolution is the result of the interplay of three 
fundamental forces: random mutation, random drift, non-random selection. Random 
mutations are inherently stochastic, but can be handled with existing mathematical tools 
such as Poisson statistics. Drift is also stochastic, and can be modelled with random 
sampling. Selection instead is non-random, but comprehensive mathematical tools to 
describe the result of selection are still lacking. When selection is not in operation, only the 
first two processes act, and the combination of random mutation and random drift together 
are what is defined as neutral evolution. 
 
Figure 2. The fractal pattern of neutral evolution. In the absence of selection, 
genotypes are free to mutate as the tumour grows, generating a well-defined fractal 
pattern in the phylogenetic history of the malignancy, with more and more rare mutations 
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(rare branches) at lower and lower frequencies. This pattern is characterised by a 1/f 
distribution of the allele frequencies of mutations within a population. 
 
Figure 3. Neutral evolution versus selection. When neutral dynamic are operating, new 
mutations in the genome represent just labels for individual cell lineages and so the 
frequency of new mutations decreases at a rate inversely to tumour size (this 1/f pattern of 
allele frequencies is characteristic of neutral growth). In the case of selection instead, both 
subclonal driver and passenger mutations are carried at higher frequency than expected 
under neutrality, generating signature of clonal outgrowth (‘too many’ mutations at high 
frequency) that distinguishes the pattern of allele frequencies under selection from the 
neutral case.  Edges between cells indicate the intended the lineage relationships. x-
coordinates of cells indicate their time of production from the parent cell. 
 
Figure 4. Spatial properties of growing clones. When tumours grow in a disordered 
fashion, when cell push each other around by means of proliferation pressure, 
characteristic patterns of subclonal intermixing are spontaneously generated. In this case, 
a new mutation in red originated early during the growth of the tumour, but was scattered 
by the disordered growth dynamics, and propagated to far away locations in the 
malignancy by the growth of the neoplasm. This occurs just by means of disordered 
growth, with no active migration of cells and it is an indication of a potentially invasive 
phenotype. 
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