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Background: The clinical outcomes for brain tumor resection have been shown to be
significantly improved with increased extent of resection. To achieve this, neurosurgeons
employ different intra-operative tools to improve the extent of resection of brain tumors,
including ultrasound, CT, and MRI. Young’s modulus (YM) of brain tumors have been
shown to be different from normal brain but the accuracy of SWE in assisting brain tumor
resection has not been reported.

Aims: To determine the accuracy of SWE in detecting brain tumor residual using post-
operative MRI scan as “gold standard”.

Methods: Thirty-four patients (aged 1–62 years, M:F = 15:20) with brain tumors were
recruited into the study. The intraoperative SWE scans were performed using Aixplorer®

(SuperSonic Imagine, France) using a sector transducer (SE12-3) and a linear transducer
(SL15-4) with a bandwidth of 3 to 12 MHz and 4 to 15 MHz, respectively, using the SWE
mode. The scans were performed prior, during and after brain tumor resection. The
presence of residual tumor was determined by the surgeon, ultrasound (US) B-mode and
SWE. This was compared with the presence of residual tumor on post-operative MRI scan.

Results: The YM of the brain tumors correlated significantly with surgeons’ findings (r =
0.845, p < 0.001). The sensitivities of residual tumor detection by the surgeon, US B-
mode and SWE were 36%, 73%, and 94%, respectively, while their specificities were
100%, 63%, and 77%, respectively. There was no significant difference between
detection of residual tumor by SWE, US B-mode, and MRI. SWE and MRI were
significantly better than the surgeon’s detection of residual tumor (p = 0.001 and p <
0.001, respectively).

Conclusions: SWE had a higher sensitivity in detecting residual tumor than the surgeons
(94% vs. 36%). However, the surgeons had a higher specificity than SWE (100% vs. 77%).
Therefore, using SWE in combination with surgeon’s opinion may optimize the detection
of residual tumor, and hence improve the extent of brain tumor resection.
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INTRODUCTION

The clinical outcomes for brain tumor resection have been
shown to be significantly improved with increased extent of
resection (1–18). To achieve this, neurosurgeons employ
different intra-operative tools to improve the extent of
resection of brain tumors (19–22). Although neuronavigation
with pre-operative imaging is indispensable in providing useful
information for craniotomy planning, it is susceptible to
structural shift during resection (23). Intra-operative MRI
(iMRI) has been shown to significantly improve the extent of
resection and clinical outcomes (21) of brain tumors by
providing high resolution imaging. However, iMRI increases
operative time by up to 107 min (21, 24) and is not widely
available, especially in the less affluent neurosurgical units.
Furthermore, it provides only infrequent (one or two)
opportunities to image during surgery. Fluorescence imaging
with 5-ALA (5-aminolevulinic acid) has been shown to improve
the extent of resection and therefore survival in patients with
malignant glioma (22). However, this method is limited to the
application in malignant gliomas. The fluorescence is only
limited to tumor surface and can be obscured by blood and
normal brain tissue (25). By providing real-time intra-operative
imaging with nearly unlimited imaging opportunity and minimal
effect on operative time, intraoperative US (IOUS) has also been
shown to provide significant improvement the extent of resection
(26, 27), even without integration with neuronavigation (28). It
can also improve quality of life in patients who had brain tumor
surgery (29). However, the artifacts of IOUS such as post-
resection hyperechoic rim (30, 31), post-surgical and post-
radiation artifacts (26), acoustic shadowing from Surgicel (30),
peritumoural-oedema hyperechogenicity (32), and hyperechoic
blood (32), may pose difficulty in IOUS interpretation.
Furthermore, in some cases, IOUS cannot distinguish the
surrounding tissue from the tumor (33). Due to artifacts and
limitations in IOUS and inaccuracies of neurosurgeons in
estimating residual tumor intra-operatively (34, 35), ultrasound
elastography may provide differentiation between residual tumor
from artifacts on IOUS. Intraoperative contrast-enhanced
ultrasound (iCEUS) has been shown to add anatomic and
biological information but its utility in detecting tumor
remnants have not been studied (36).

For a long time, neurosurgeons rely on visual inspection and
tactile feedback to help determine the nature of the tissue being
resected during surgery. Ultrasound elastography is an
ultrasound-based method of obtaining biomechanical
properties of tissue. There are two main types of ultrasound
elastography, i.e., qualitative and quantitative elastography.
Quasistatic strain elastography (QSE) is a qualitative
elastography method whereby the operator applies a certain
amount of pressure to deform the tissue (37). The degree to
which the tissue deforms is defined as strain. The stiffness will be
inversely proportional to the strain. As the amount of pressure
applied by the operator, i.e., stress, cannot be accurately
quantified, this method can only determine the strain of the
tumor in relation to the surrounding brain tissue. On the other
hand, shear wave elastography (SWE) is a quantitative
Frontiers in Oncology | www.frontiersin.org 2
elastography technique where stiffness of tissue was obtained
by measuring the speed of the shear waves generated in
the tissue.

Shear Wave Elastography
SWE is a type of elasticity imaging technique, which allows
quantification of soft tissue elastic modulus. This technique
requires generation of shear waves in the tissue either by ARF
(38, 39) or mechanically (40–42). Shear waves are secondary
waves that propagate perpendicular to the direction of
displacement, analogous to circular ripples on the water
surface that travels outward when a disturbance is introduced.
The shear wave propagation speed is dependent on the Young’s
(elastic) modulus of the medium by the equation E = 3rc2, where
E is the Young’s modulus, r is the medium density, and c is the
shear wave propagation speed. Assuming that the medium
through which the shear waves travel has a density of
approximately 1,000 kg/m3, the equation becomes E ≈ c2.

In this study, SWE is performed using SSI (SuperSonic shear
imaging) where ARF (acoustic radiation force) is applied to soft
tissue to induce displacement to generate perpendicularly
propagating shear waves, the speed of which are subsequently
estimated with cross-correlation function, thus allowing
quantitative real-time mapping of elastic modulus (38). This
system is capable of producing an ARF sweep to successively
focus on different depths along the line of excitation in a Mach
cone, thus allowing generation of shear waves at multiple depths,
known as quasi-plane shear waves (43). As a result of the Mach
cone, the shear waves generated are shaped like a cone, which is
at an angle to the axis of excitation travelling in opposite
directions to each other.

Ultrafast imaging acquisition is performed using plane wave
transmit-receive. This means that the whole 128 elements are
fired at the same time, therefore, for a 3-cm imaging depth, the
achievable frame rate is ~25 kHz, more than 100 times that of
conventional ultrasound. This means that the ultrafast imaging
regime can capture up to three frames of the shear waves
travelling within 1 mm, thus allowing real-time elasticity
mapping or elastography.
METHODS

Patient Selection
Patients were recruited prospectively from Great Ormond Street
Hospital for Children and The National Hospital for Neurology
and Neurosurgery between September 2011 and May 2013. This
study was approved by the National Research Ethics Service
Committee London – Queen Square. The inclusion criteria were
as follows:

1. They were diagnosed with brain tumor.
2. They had consented to undergo craniotomy and resection or

open biopsy of the tumor.
3. They have given their consent for this study, or their parents

have given their consent on their behalf for this study if they
are under 16 years old.
March 2021 | Volume 11 | Article 619286
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Those who had consented for craniotomy but underwent
neuronavigation-guided biopsy (burr hole biopsy), were
excluded because the surgeon would be unable to comment on
the stiffness of the tumor, and it would not be possible to perform
intra-operative SWE with the SuperSonic® Aixplorer.

Operating Room Protocol
The operating room setup is depicted in Figure 1. After
anesthesia, the patient was transferred to the operating table
and his/her head was pinned with a Mayfield clamp to
immobilize the head. Stealth® neuronavigation registration was
performed to plan the craniotomy placement. The location of the
tumor was determined with neuronavigation. For intrinsic
tumors, SWE was performed after durotomy and prior to
corticotomy, whereas SWE was performed prior to durotomy
for extrinsic tumors as they are often adhere to the dura. After
the initial scan, the resection was initiated. The resection was
continued until such time when the surgeon felt that he wanted
to check the extent of resection or to confirm the location of the
tumor. At this time, IOUS was again performed with SWE
simultaneously to assess the extent of resection or to confirm
the location of the tumor. Final SWE was performed to assess the
final extent of resection prior to closure of craniotomy.
Frontiers in Oncology | www.frontiersin.org 3
Data Acquisition
After craniotomy, the ultrasound transducer was placed in a sterile
sheath filled with acoustic coupling gel. The SWE mode on the
SuperSonic Aixplorer® scanner was then activated. The scans were
performed on exposed cortex for intrinsic tumors and on closed
dura for extrinsic tumors. The intraoperative SWE scans were
performed using Aixplorer® (SuperSonic Imagine, France) using a
sector transducer (SE12-3) and a linear transducer (SL15-4) with a
bandwidth of 3-12 MHz and 4-15 MHz, respectively, using the
SWE mode. The sector transducer was used at Great Ormond
Street Hospital whereas the linear transducer at the National
Hospital for Neurology and Neurosurgery. Without informing
the surgeon about the SWE findings beforehand, the surgeon was
asked to grade the stiffness of the lesions from 1 to 5 as follows:

1. The lesion is very soft like cyst.
2. The lesion is softer than brain.
3. The lesion is similar to brain.
4. The lesion is stiffer than brain.
5. The lesion is very stiff like cartilage.

After the resection was deemed complete by the surgeon, SWE
was performed to determine if there was tumor residual. The tumor
residual was graded by the author as either present or absent on
both SWE and B-mode. The Q-box function was used to measure
the Young’s modulus for the tumor bed and adjacent brain. The YM
contrast (YMC) was calculated using the following equation:

YMC =
El − Eb
El + Eb

,

where El is the YM of the lesion and Eb is the YM of adjacent
normal brain. A negative YMC denotes a soft tumor whereas a
positive YMC a stiff tumor.
Data Analysis
The intra-operative findings by SWE, B-mode and the surgeon
were compared with post-operative MRI.

Statistical analysis using Spearman’s rank correlation, a non-
parametric statistical test, was performed for comparison of
Young’s modulus measurements and Young’s modulus
contrast with surgical findings, because the grading of stiffness
was ordinal and discrete whereas Young’s modulus and Young’s
modulus contrast were continuous. McNemar’s test was used to
compare SWE, B-mode and surgeon’s opinions with post-
operative MRI, which was considered the “gold standard”, and
also SWE with surgeon’s opinions. This test uses 2 × 2
contingency tables with dichotomous, that is either a “Yes” or
“No” in this case, result for paired data. Statistical analysis was
performed using Student’s t-test and Mann Whitney U test to
compare Young’s modulus measurements for different
histological diagnoses, when the Young’s modulus distribution
was Gaussian and non-Gaussian, respectively. For paired data
comparing Young’s modulus measurements for brain tumors
and corresponding surrounding brain, paired Student’s t-test
and Wilcoxon signed-rank test were used for normally and non-
normally distributed data.
FIGURE 1 | The operating room setup. The Supersonic Aixplorer® scanner
(orange) is placed next to the patient body (beige) with the monitor swivelled
to face the surgeon. I stand next to the scanner so that I can optimize the
scanner settings as well as acquire images for this thesis.
March 2021 | Volume 11 | Article 619286

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chan et al. SWE in Brain Tumor Resection
RESULTS

A total of 34 patients were recruited into the study. The summary
of the cases is given in Table 1.

The patient characteristics are summarized in Table 2.
Comparison of Young’s Modulus
Measurements With Surgical Findings
One patient (Patient 13) was excluded for comparison because
the surgeons could not ascertain the stiffness of the tumor due
excessive bleeding upon opening the dura, which resulted in the
operation being abandoned.

There was overall a significant correlation between Young’s
modulus measurements and surgical grading (Spearman’s rank
correlation coefficient (r) = 0.845, p < 0.001), illustrated in
Frontiers in Oncology | www.frontiersin.org 4
Figure 2. The correlation between the Young’s modulus
contrast and surgical grading was also significant (r = 0.780,
p < 0.001), as illustrated in Figure 3. The calculation of Young’s
modulus contrast for Patients 7 and 8 was not possible as the
tumor, SEGA, was located under the ventricle and the adjacent
brain could not be imaged with SWE due to lack of signal (see
Figures 4 and 5).

Figure 6 shows the plot for Young’s modulus of normal brain
and all tumors. The median Young’s modulus for the normal
brain was 14.9 kPa, which was significantly lower than that for all
tumors (median 33.5 kPa, p = 0.003). Wilcoxon’s signed-rank
test was used to perform paired statistical analysis, as the values
for both the tumor and normal brain were not normally
distributed. Figure 7 shows the Young’s modulus for various
tumor types. The tumors with WHO grades of I and II were
graded as low grade while those with WHO grades of III and IV
TABLE 1 | Summary of brain resection cases recruited into this study.

Patient
number

Age Gender Diagnosis YM (kPa)
(mean ± SD)

YMC Stiffness
grading

Residual
(Surgeon)

Residual
(B-mode)

Residual
(SWE)

Residual
(MRI)

US
Probe

1 12 M Low grade astrocytoma 26.2 ± 3.1 0.297 2 No Yes No No Sector
2 11 F sPNET£ 35.6 ± 4.5 0.361 2 No Yes Yes Yes Sector
3 1 F Choroid plexus papilloma 13.2 ± 2.6 −0.064 2 No Not done Not done No Sector
4 6 F Epidermoid cyst 182.4 ± 15.6 0.772 4 No No No Yes Sector
5 11 F Residual sPNET£ 164.4 ± 48.4 0.692 4 No No No No Sector
6 15 M Pilomyxoid astrocytoma 9.7 ± 1.7 −0.224 2 Yes Yes Yes Yes Sector
7$ 8 F SEGA§§ 300 ± 0 N/A 4 No No Yes No Sector
8$ 6 F SEGA§§ 300 ± 0 N/A 4 No No No signal No Sector
9 6 M Metastasis from clear cell

sarcoma of the kidney
241.6 ± 21 0.788 5 No No Yes Yes Sector

10 15 M GBM$$ 154.4 ± 20.9 0.748 4 Yes Yes Yes Yes Sector
11 2 F Pilocytic astrocytoma 17.8 ± 1.5 −0.285 2 No Yes Yes Yes Sector
12 2 M ATRT&& 159.1 ± 82.3 0.802 5 Yes No Yes Yes Sector
13 14 M Recurrent pleomorphic

xanthoastrocytoma
197.8 ± 2.4 0.681 N/A Yes Yes Yes Not done* Sector

14 1 F ETANTR££ 4.2 ± 0.9 −0.720 2 Yes Yes Yes Not done§ Sector
15 3.3 M Pineoblastoma 196.3 ± 23.6 0.920 4 Yes Yes Yes Yes Sector
16 1.1 M Choroid plexus papilloma 11.9 ± 5.9 −0.290 2 No No No No Sector
17 7 F Anaplastic ganglioglioma 11 ± 3.9 −0.102 2 No No No No Sector
18 17 F Pleomorphic xanthoastrocytoma

with anaplasia
11.2 ± 1.4 −0.138 2 Yes Yes Yes Yes Sector

19 15 M Recurrent pilocytic astrocytoma 146.4 ± 14.1 0.889 4 Yes Yes Yes Yes Sector
20 43 F Meningioma 39.5 ± 1.2 0.771 4 No Yes No No Linear
21 1 M ATRT&& 33.6 ± 8.6 0.559 2 No Yes No No Sector
22 1 F Residual choroid plexus

papilloma
178.9 ± 57.6 0.921 4 No Yes Yes Yes Sector

23 53 M GBM$$ 7.3 ± 3.2 −0.170 2 No No Yes Yes Linear
24& 39 M Residual medulloblastoma 33.1 ± 8.6 0.458 3 No N/A N/A No Linear
25 61 F GBM$$ 12.3 ± 1.3 0.070 2 No No Yes Yes Linear
26 46 F GBM$$ 3 ± 0.9 −0.439 2 No Yes Yes Yes Linear
27 62 M Vestibular schwannoma 153.8 ± 56.3 0.870 4 Yes Yes Yes Yes Linear
28 49 F Meningioma 5.6 ± 2 −0.158 2 No Yes No signal Yes Linear
29 40 M GBM$$ 9.9 ± 4.9 −0.823 2 No Yes No signal Yes Linear
30 35 F Pilocytic astrocytoma 31.8 ± 5.7 0.216 2 No Yes Yes No Linear
31 49 F Metastasis from breast 97.6 ± 42 0.711 4 No Yes Yes Yes Linear
32 56 F Meningioma 46.2 ± 24.2 0.505 4 No No No No Linear
33 5 F Pilocytic astrocytoma 11.4 ± 0.7 −0.088 2 No Yes Yes Yes Sector
34 10 M Anaplastic ependymoma 77.1 ± 11.4 0.858 2 No No No signal No Sector
March 20
21 | Volume
 11 | Article
¶Standard deviation. *It was converted to biopsy due to excessive bleeding. §It was a case of known residual due to invasion into brainstem. &The patient developed air embolus during
surgery so the post-operative scan was abandoned. $The calculation of YMC for these cases was not possible as the lesions were subventricular and the adjacent brain was too deep for
shear wave to penetrate. £Supratentorial primitive neuroectodermal tumor. §§Subependymal giant cell astrocytoma. &&Atypical teratoid/rhabdoid tumor. $$Glioblastoma multiforme.
££Embryonal tumor with abundant neuropil and true rosettes.
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were graded as high grade. As demonstrated, the low grade and
high grade tumors were not normally distributed, hence the
Mann Whitney U test was used to judge whether the difference
between the values in the two groups were statistically significant.
Low grade tumors tended to be stiffer than high grade tumors,
and metastases even stiffer. However, differences between the
Young’s moduli were not significant for low grade versus high
grade (p = 0.220), low grade versus metastasis (p = 0.288), and
high grade versus metastasis (p = 0.101).
Residual Tumor Detection
Table 3 shows the 2 × 2 contingency table comparing SWE with
MRI findings on the presence of residual tumor. Using MRI as
the “gold standard”, the sensitivity and specificity of SWE for
Frontiers in Oncology | www.frontiersin.org 5
detection of residual tumor identified by MRI were 94% and
77%, respectively. McNemar’s test showed no statistically
significant difference between SWE and MRI in the number of
cases in which residual tumor was and was not detected
(p = 1.000).

The sensitivity and specificity of US B-mode for the same task
were 73% and 63%, respectively, using MRI as the “gold
standard” (see Table 4). McNemar’s test showed no statistically
significance between US B-mode and MRI for detecting residual
tumor (p = 1.000).

When comparing surgeon’s findings with MRI, there was
a statistically significant difference (p < 0.001), as illustrated
in Table 5. The sensitivity and specificity of surgeon’s opinion
on whether residual tumor was present were 36% and
100%, respectively.

When comparing SWE with US B-mode, there was no
statistically significant difference between them (p = 0.727), as
shown in Table 6.

When comparing SWE against surgeon’s findings, there was a
statistically significant difference between them (p = 0.001), as
shown in Table 7. Although surgeon agreed with SWE when
SWE demonstrated no residual tumor, SWE detected residual
tumor in significantly more cases than surgeon.

Of the 34 patients, only 26 patients were included in the
comparison between intra-operative SWE and post-operative
MRI in detecting residual tumor. Patients 13 and 14 were
excluded because post-operative MRI was not performed.
Patient 13 developed excessive bleeding during surgery
resulting in the surgeons abandoning the operation. Patient 14
had extensive invasion into the brainstem on pre-operative MRI.
Therefore, the surgeons decided to perform only debulking
surgery with intended residual tumor. Patients 8, 11, 28, 29,
and 34 did not have SWE signal post-operatively despite using
“penetration mode” and the probe being held as close to the
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FIGURE 2 | Box and whiskers plot for Young’s modulus measurements according to stiffness grade assessed by independent surgical opinion (n = 34). The upper
and lower bounds of the box were the third and first quartiles, respectively, while the line within the box was the median. The upper and lower whiskers were
maximum and minimum values, respectively.
TABLE 2 | Summary to patient and tumor characteristics.

Variables n

Age 20.7y (range: 1–62y)
Sex Female 19

Male 15
Hispathology High grade glioma 8

Low grade glioma 9
Metastasis 2
Meningioma 3
Choroid plexus papilloma 3
Developmental 1
Vestibular schwannoma 1
Malignant embryonal tumor 6

Tumor locations Frontal 11
Temporal 7
Parietal 5
Thalamus 1
Posterior fossa 9
Pineal 1
March 2021 | Volume 11 | Article 619286
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cavity as possible. The tumor in Patient 8 was situated at a depth
of >5 cm, and there was no SWE signal. In contrast, Patient 7,
similar case to Patient 8, had SWE signal down to a depth of
5-cm post-resection, but the signal was of questionable
reliability as it gave a very high Young’s modulus of 300 kPa.
For Patient 34, the water standoff could not be maintained in the
resection cavity. For cases performed at the National Hospital
for Neurology and Neurosurgery, as the acquisition was
performed using a linear array probe, which was a lot larger
than the sector array probe, all the post-resection scans were
performed with the probe above the cavity using a water
Frontiers in Oncology | www.frontiersin.org 6
standoff. Patient 28 had Surgicel® in the resection cavity prior
to the scan because of excessive bleeding, thereby causing a lack
of SWE signal. Patient 29 had a large GBM prior to resection,
resulting in a very deep post-resection cavity. Due to the large
linear array probe, it was not possible to insert the probe in the
cavity. Patient 3 did not have a post-resection scan, as it was one
of the earlier cases where the primary aim was to investigate the
feasibility and determine the artifacts associated with clinical
scanning. Patient 24 did not have a post-resection scan as the
patient developed an air embolus and the surgery had to
be abandoned.
FIGURE 4 | Intra-operative SWE for Patient 7 showing the tumor lying under the ventricles. The adjacent deep grey matter did not have any SWE signal. This scan
was acquired using the sector probe (SE12-3) insonating in the coronal plane. The histology of this lesion is subependymal giant cell astrocytoma (SEGA).
S�ffness grades

Yo
un

g’
s 

m
od

ul
us

 c
on

tr
as

t

-1

4

9

14

19

24

2 3 4 5

ρ = 0.780
p < 0.001

FIGURE 3 | Box and whiskers plot for Young’s modulus contrast according to stiffness grade assessed by independent surgical opinion (n = 32). The upper and
lower bounds of the box were the third and first quartiles, respectively, while the line within the box was the median. The upper and lower whiskers were maximum
and minimum values, respectively.
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DISCUSSION

Neurosurgeons usually employ intra-operative tools, which offer
spatial orientation, navigational guidance, and up-to-date
imaging to achieve maximal brain tumor resection. However,
as these intra-operative tools do not offer elasticity imaging, to
gain information on tissue mechanics neurosurgeons ultimately
rely on visual inspection and tactile feedback during surgery.
Neurosurgeons tend to overestimate the extent of resection of
brain tumors by up to three times, as judged by post-operative
MRI (34, 35). This could be due to the similarity in appearance of
Frontiers in Oncology | www.frontiersin.org 7
tumor and brain resulting in the neurosurgeon having difficulty
in differentiating tumor from brain.

Elastography is a term coined in 1991 to describe a method of
quasistatic ultrasound strain imaging (37). Nowadays, there are
three main types of ultrasound elastography, namely: quasistatic
strain elastography (QSE) (37), shear wave elastography (SWE)
(38–42), and acoustic radiation force impulse (ARFI) imaging
(44). Ultrasound elastography has been employed in clinical
practice to characterize lesions in other parts of the body
including the salivary gland, the thyroid, the breast, the
gastrointestinal tract, the prostate, and the liver (45). Although
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FIGURE 6 | Box and whiskers plot for Young’s modulus measurements of normal brain and tumor. The upper and lower bounds of the box were the third and first
quartiles, respectively, while the line within the box was the median. The upper and lower whiskers were maximum and minimum values, respectively. *There was a
significant difference between the two groups (p = 0.003, Wilcoxon’s signed-rank test).
FIGURE 5 | Intra-operative SWE for Patient 8 showing the tumor lying under the ventricles at a depth of 5 cm from the transducer. There was a lack of SWE signal
in the adjacent brain. This scan was acquired using the sector probe (SE12-3) insonating in the sagittal plane. The histology of this lesion again is subependymal
giant cell astrocytoma (SEGA).
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ultrasound elastography in the brain has not been used in clinical
practice, there have been studies looking at the application in
brain tumor surgery using QSE (46–51) and SWE (52, 53).
Chakraborty et al. (47) demonstrated feasibility of using QSE
co-registered with MRI in brain tumor resection whereas Uff et al.
(46) showed that real-time QSE was able to demonstrate good
correlation between surgeon and elastograms in determining
tumor stiffness and surgical plane. Selbekk et al. (50) and
Selbekk, Bang, and Unsgaard (51) demonstrated that arterial
pulsations were able to generate elastograms to improve
March 2021 | Volume 11 | Article 619286
TABLE 3 | McNemar’s 2 × 2 contingency table comparing intra-operative SWE
with post-operative MRI for detecting residual tumor.

MRI Residual tumor No residual tumor Total
SWE

Residual tumor 16 2 18
No residual tumor 1 7 8
Total 17 9 26
No statistically significant difference was detected between SWE and MRI for detecting
residual tumor (p = 1.000).
TABLE 4 | McNemar’s 2 × 2 contingency table for comparing intra-operative US
B-mode with post-operative MRI scan in detecting residual tumor.

B-mode Residual tumor No residual tumor Total
MRI

Residual tumor 14 4 18
No residual tumor 5 7 12
Total 19 11 30
No statistically significant difference was detected between US B-mode and MRI for
detecting residual tumor (p = 1.000).
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TABLE 5 | McNemar’s 2 × 2 contingency table for comparing surgeon’s intra-
operative opinion with post-operative MRI scan in detecting residual tumor.

MRI Residual tumor No residual tumor Total
Surgeon

Residual tumor 7 0 7
No residual tumor 12 13 25
Total 19 13 32
A statistically significant difference was detected between surgeons’ opinion and MRI for
determining whether there was residual tumor or not (p < 0.001).
TABLE 6 | McNemar’s 2 × 2 contingency table for comparing intra-operative
SWE with B-mode in detecting residual tumor.

B-mode Residual tumor No residual tumor Total
SWE Residual tumor No residual tumor Total

Residual tumor 15 5 20
No residual tumor 3 5 8
Total 18 10 28
No statistically significant difference was detected for SWE and B-mode for detecting
residual tumor (p = 0.727).
TABLE 7 | McNemar’s 2 × 2 contingency table for comparing intra-operative
SWE and surgeon’s opinion in detecting residual tumor.

Surgeon Residual tumor No residual tumor Total
SWE Residual tumor No residual tumor Total

Residual tumor 9 11 20
No residual tumor 0 8 8
Total 9 19 28
A statistically significant difference was deteted for SWE and surgeon’s opinion of the
presence of residual tumor. (p = 0.001).
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visualization of tumors. Cepeda et al. (49) showed that
peritumoural tissue of glial tumors have different elasticity
compared to other tumor types. Prada et al. (48) showed that
elastograms were superimposable to US B-mode and had sharper
tumor margins than US B-mode. Besides brain tumor surgery,
ultrasound elastography has also been studied in paediatric (54,
55) and epilepsy surgery (56). Su et al. (54) showed that the brains
in preterm babies have lower stiffness compared to those in term
babies whereas Kim et al. (55) demonstrated different stiffness in
different parts of neonatal brains. Chan et al. (56) demonstrated a
case report of the detection of MRI-negative epileptogenic lesion
using SWE. There have also been studies using ultrasound
elastography in animal models looking at changes in brain
elasticity after stroke (57) and trauma brain injury (58).
Comparison of Young’s Modulus
Measurements With Surgical Findings
This study showed that there was significant correlation between
both Young’s modulus and Young’s modulus contrast measured
by SWE and surgical opinion of tumor stiffness relative to normal
brain. In the brain tumors, the Young’s modulus measurements
agreed better than Young’s modulus contrast with surgical grading
of the stiffness. This is consistent with the findings in other studies
using QSE where strain was correlated with surgical opinion on
tumor stiffness (47, 53, 59, 60). In Patient 34, although the tumor
was thought to be softer than brain by the surgeon, the Young’s
modulus measurement was 77.1 ± 11.4 kPa (mean ± SD) and
Young’s modulus contrast was 0.858, indicating that it was stiffer
than brain by SWE. This could be due to undue pressure on the
brain surface when performing the scan. The location of the
tumor, which was parietal, was particularly vulnerable to saline
irrigation flowing out making water standoff almost impossible.
Therefore, in order to acquire a good quality B-mode or SWE, the
surgeon might have applied too much pressure, which was known
to cause artifactual stiffness due to the non-linear effects of pre-
compression in the area of stress concentration caused by the
transducer. As the lesion was superficial, this effect could be
unintentionally produced by small pressure.

This study showed that the Young’s modulus for all tumor
types was significantly higher than normal brain (p = 0.003),
thereby showing that SWE was capable of differentiating various
brain tumors from the surrounding brain. The paired statistical
analysis, Wilcoxon’s signed rank test in this case, showed that the
difference in Young’s modulus measurements was significant
between brain tumors and normal brain. In this study low grade
tumors tended to be stiffer than high grade tumors, andmetastases
stiffer still, although the differences betweenmedian values was not
significant. However, the low grade tumors (p = 0.036) and
metastasis (p = 0.007) were shown to be significantly stiffer than
brain. Murphy et al. (61) showed that meningiomas have shear
modulus of 2–10 kPa, that is, Young’s modulus of 6–30 kPa. From
the intraoperative SWE study by Chauvet et al. (62), the
meningiomas was found to have a Young’s modulus of 33.1 ±
5.9 kPa. From Table 1, the meningioma cases (patients 13, 30, and
31) showed that the Young’s modulus ranged from 5.6 to 46.2 kPa
(mean 30.4 kPa; SD 21.8 kPa), which agreed with the literature. In
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a case of breast metastasis (NHNN 14), the Young’s modulus was
97.6 kPa ± 42 kPa (mean ± SD), which agrees with the reported
values of 61–165 kPa in the literature (63, 64). This study attempts
to examine whether Young’s modulus is characteristic of brain
tumor type, showing that there is considerable variability within
groups but due to small numbers of different tumor types, the
result was not conclusive. This means that SWE was capable in
distinguishing brain tumors from normal brain but was unable to
separate different tumor types from each other intraoperatively
prior to resection. Chauvet et al. (62) showed that low grade
gliomas, meningiomas, and metastasis were significantly stiffer
than normal brain. The high grade glioma is stiffer than normal
brain but the result was not statistically significant. In this study
the normal brain only had Young’s modulus of 6.3 to 7.2 kPa,
which was much lower than the findings from this thesis (median
Young’s modulus of 31.0 kPa and 18.8 kPa for grey and white
matter, respectively). This study also showed that the different
tumor types had significantly different Young’s modulus, which
was not shown by this study. This could be due to the much larger
number of patients in this study (63 patients) than this study
(34 patients).

Residual Tumor Detection
Using post-operative MRI as the “gold standard”, detection of
residual tumor by SWE was shown to have a sensitivity and
specificity of 94% and 77%, respectively. Currently, there has
been no literature reporting the sensitivity and specificity of SWE
in detecting residual brain tumor. SWE was shown to be
comparable to post-operative MRI in detecting residual tumor.

Compared to post-operative MRI, US B-mode was shown to
have a sensitivity and specificity of 73% and 63%, respectively,
for detecting residual tumor. This result agrees with current
literature results, which showed a sensitivity of 67%–85% (26, 27,
30). US B-mode was also shown to be comparable to both post-
operative MRI findings and SWE in detecting residual tumor.

Surgeon’s intraoperative opinion of the presence or absence of
residual tumor was shown to be significantly different from post-
operative MRI findings. The sensitivity of surgeon’s opinion in
detecting residual tumor was also lower than both SWE and US B-
mode. This agrees with Albert et al. (34) and Orringer et al. (35),
where surgeons were less likely to detect residual tumor than post-
operative MRI. The reason underpinning this could be that tumor
can have similar appearance to normal surrounding brain, making
visual inspection less reliable. Furthermore, after manipulation
and dissection, the tumor typically becomes softer and loses its
pre-resection appearance, thereby making it harder for the
surgeon to differentiate it from normal surrounding brain. Most
surgeons would err on the side of caution to prevent neurological
deficit, thereby explaining the lower sensitivity of surgeon
detecting residual tumor. Having said that, surgeons had a
specificity of 100%, higher than both SWE and US B-mode, in
detecting residual tumor. This means that when there was no
residual tumor on the MRI scan, surgeon would correctly identify
this intraoperatively. Comparing SWE with surgeon’s findings,
SWE significantly detected more cases of residual tumor than
surgeon. This could be explained by the ability of SWE to visualize
the tumor deep to the “manipulated” tumor. Therefore, using
March 2021 | Volume 11 | Article 619286
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SWE in combination with surgeon’s opinion may optimize the
detection of residual tumor as SWE has a higher sensitivity than
surgeon while the surgeon has a higher specificity than SWE.
LIMITATIONS

This study has a few limitations. Firstly, the small sample size
with a heterogeneous tumor types in this study, has led to
statistically non-significant results in the ability for SWE to
differentiate different tumor types. This can be overcome with
a larger study focusing on main tumor types undergoing
resection. Secondly, the use of two different of US probes in
the two different hospitals in which the study was performed,
may pose some skepticism regarding the validity of the SWE
measurements. However, the measurements of the normal brain
Young’s modulus were shown to be similar using these two
different probes. Furthermore, the bandwidths for these probes
were very similar—3-12 MHz and 4-15 MHz for the sector and
the linear probes, respectively, thereby producing very similar
image quality. Thirdly, due to SWE signal insufficiency, there
were eight patients (24%) excluded from SWE analysis compared
to four patients (12%) and two patients (6%) excluded from B-
mode and surgeons’ opinion analyses. This may have biased the
result, which again can be overcome with a larger sample.
CONCLUSION

This study showed that the SWE measurements of Young’s
modulus and Young’s modulus contrast correlated significantly
with surgical grading of stiffness. This means that clinically, the
SWE measurements are reliable in predicting stiffness.

It also showed that there was high sensitivity and specificity of
SWE in detecting residual tumor compared to post-operative MRI
scan as the “gold standard”. It also showed thatwhen there is residual
tumor, SWE is better than the surgeon at detecting residual tumor by
2.5 times (94% versus 37%). When there is an absence of residual
tumor, the surgeon is better at predicting the absence of residual
tumor (100% versus 77%). These results imply that intraoperative
SWE can be a useful tool in assisting neurosurgeons in identifying
residual tumor during resection. However, these results are
preliminary due to the small sample size with heterogeneous
tumors. A larger study with less heterogeneous tumor types will be
required to show reproducibility of these findings.
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