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Abstract: Insertion mutations in exon 20 (Ex20ins) of the epidermal growth factor receptor 
(EGFR) gene are the largest class of EGFR mutations in non-small cell lung cancer 
(NSCLC) for which there are currently no approved targeted therapies. NSCLC patients 
with these mutations do not respond to clinically approved EGFR tyrosine kinase inhibitors 
(TKIs) and have poor outcomes. A number of early phase clinical trials are currently 
underway to evaluate the efficacy of a new generation of TKIs that are capable of binding 
to and blocking Ex20ins. Although these agents have shown some clinical activity, patient 
responses have been restricted by dose-limiting toxicity or rapid acquisition of resistance 
after a short response. Here we review the current understanding of the mechanisms of 
resistance to these compounds, which include on-target EGFR secondary mutations, com-
pensatory bypass pathway activation and acquisition of an EMT phenotype. Taking lessons 
from conventional EGFR inhibitor therapy in NSCLC, we also consider other potential 
sources of resistance including the presence of drug-tolerant persister cells. We will discuss 
therapeutic strategies which have the potential to overcome different forms of drug resis-
tance. We conclude by evaluating recent technological developments in drug discovery such 
as PROTACs as a means to better tackle TKI resistance in NSCLC harbouring Ex20ins 
mutations. 
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Introduction
Lung cancer accounts for around 13% of all cancer diagnoses and is one of the 
leading causes of cancer mortality.1 Non-small cell lung cancer (NSCLC) com-
prises the vast majority of lung cancer cases (~85%)2 and activating mutations in 
the epidermal growth factor receptor (EGFR) gene are the second most prevalent 
oncogenic driver present in ~15–20% of NSCLC patients.3,4 There are a wide array 
of different EGFR mutations including the two most frequent mutations, L858R and 
Exon 19 deletions (Ex19del) which are often referred to as classical or sensitizing 
EGFR mutations. The third most common class of EGFR mutations are exon 20 
insertions (Ex20ins) which account for ~4–10% of all EGFR mutations in 
NSCLC.5–7 EGFR Ex20ins are a class of mutations which are heterogeneous both 
in terms of size and location within the EGFR gene. They can be grouped together 
as insertions or duplications of 1–7 amino acids found between the α-C helix and 
following loop (762–774 amino acid sequence) of EGFR.5–8 The most frequently 
identified EGFR Ex20ins variants are V769_D770ins and D770_N771ins, which 
together account for half of all NSCLC cases that harbour Ex20ins.8 Activating 
Ex20ins have also been observed in the human epidermal growth factor receptor 2 
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(HER2) gene, another member of the EGFR family of 
receptor tyrosine kinases (RTK). Although HER2 muta-
tions are present in only ~2% of NSCLC patients, Ex20ins 
are the most common HER2 mutation in lung cancer and 
occur between the α-C helix and following loop (767–783 
amino acid) of the protein in a similar fashion to EGFR.9 

Beyond NSCLC, EGFR Ex20ins have recently been 
described in 68% of sinonasal squamous cell 
carcinomas,10 a rare form of head and neck cancer, and 
both EGFR Ex20ins and HER2 Ex20ins were found in 
18% and 3.6% of urothelial cancers, respectively.11 

These data suggest that development of targeted therapies 
against Ex20ins may have therapeutic implications for 
other cancer types.

In lung cancer tumors with EGFR or HER2 mutations, 
blockade of EGFR or HER2 activity with targeted inhibi-
tors can trigger rapid apoptosis in a manner consistent with 
the “oncogene addiction” model, in which cells are depen-
dent on persistent kinase signalling for survival.12 As 
a kinase which is readily druggable with selective small 
molecule inhibitors, EGFR presents an attractive therapeu-
tic target, and the success of EGFR inhibitors in NSCLC 
has paved the way for realising the potential of targeted 
therapy in oncology. However, EGFR Ex20ins represent 
a clinical unmet need as they are associated with de novo 
resistance to clinically approved EGFR inhibitors, includ-
ing the competitive, reversible first-generation tyrosine 
kinase inhibitors (TKIs) (erlotinib and gefitinib) and the 
irreversible second-generation (afatinib) and third- 
generation inhibitors (osimertinib).6,9,13 One of the main 
challenges of targeting EGFR Ex20ins is that unlike clas-
sical EGFR mutations, Ex20ins mutations can activate 
EGFR without diminishing ATP affinity versus the wild- 
type kinase,14 a feature which negates the advantage of 
ATP-competitive inhibitors to selectively target mutant 
over wild-type EGFR. Moreover, 3D modelling suggests 
that EGFR Ex20ins possess a rigid C-helix conformation 
that creates a compact drug binding site, further blocking 
drug accessibility.9 Together, these features create an 
extremely narrow therapeutic window that prohibits clini-
cally approved EGFR inhibitors from reaching therapeutic 
doses that can selectively target EGFR Ex20Ins mutants 
over wild-type EGFR without significant toxicity in 
patients. There is however one exception, the insertion 
mutant A763_Y764FQEA has a high affinity for first- 
generation EGFR inhibitors and there are multiple case 
studies that report responses to erlotinib in patients with 
this specific mutation.13,15 Beyond this exception, EGFR 

inhibitors are not currently used to treat EGFR Ex20Ins 
NSCLC patients. Instead, although the survival benefit is 
minimal, the current standard of care for the majority of 
EGFR Ex20ins patients remains cytotoxic chemotherapy 
comprising a platinum based agent such as cisplatin or 
carboplatin combined with a taxane or pemetrexed.16–18

EGFR inhibitors with the capacity to bind to and inacti-
vate the compact ATP-binding site of Ex20ins (Ex20ins TKI; 
Table 1) include the covalent, irreversible EGFR inhibitors 
poziotinib (formerly HM781-36B), mobocertinib (TAK- 
788), and TAS6417 (CLN-081).9,19,20 Therapeutics which 
target the Ex20ins receptor but do not block the ATP- 
binding site include the EGFR and the hepatocyte growth 
factor receptor (HGFR or MET) dual targeting antibody 
amivantamab and the heat shock protein 90 (Hsp90) inhibitor 
luminespib (NVP-AUY922) (Figure 1).21,22 Pre-clinical stu-
dies and several ongoing clinical trials are currently evaluat-
ing these experimental therapeutics in NSCLC patients with 
EGFR and HER2 Ex20ins mutations.23–25 However, the 
limited clinical efficacy of these drugs reported to date high-
lights the challenges associated with Ex20ins mutant selec-
tivity and drug resistance. In this review, we will outline the 
currently known resistance mechanisms identified for inves-
tigational agents that target Ex20ins and also describe candi-
date mechanisms based on the extensive clinical experience 
with first and third generation EGFR inhibitors in the context 
of classical EGFR mutations.

Clinical Trial Evaluation of Ex20ins 
Targeting Agents
Due to the lack of efficacy of approved EGFR inhibitors in 
EGFR Ex20ins NSCLC, targeted therapy is not normally 
considered and the standard of care for this subset of 
patients is chemotherapy.26 Retrospective analysis of 165 
EGFR Ex20ins NSCLC patients found a significantly 
longer median progression-free survival (PFS) for patients 
treated with platinum-based chemotherapy (6.4 months) 
compared with all approved EGFR inhibitors (2.9 
months).18 However, there are now several new targeted 
agents under clinical investigation with the potential to 
change the standard of care in these patients.

The most advanced candidate poziotinib is currently 
being assessed in a number of phase II clinical trials includ-
ing an open label, single arm study (NCT03066206) to 
assess the safety and efficacy of poziotinib in advanced or 
relapsed NSCLC patients with confirmed EGFR or HER2 
mutations. Early data of 40 patients with Ex20ins mutations 
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from this trial demonstrated a promising 58% objective 
response rate (ORR) after 8 weeks treatment.25 There was 
no restriction in the number or type of prior systemic thera-
pies received, and responses were observed in 8 of 13 
patients (62%) previously treated with an alternative TKI, 
indicating the potential role of poziotinib in heavily pre- 
treated patients. However, poziotinib is also a potent inhibi-
tor of wild-type EGFR, and this trial reported that 60% of 
patients experienced grade 3 or greater adverse events, most 
commonly rash and diarrhoea. Furthermore, 45% of patients 
required a dose reduction from the starting dose of 16 mg 
poziotinib daily to 12 mg daily, and 17.5% of patients 
required a dose reduction to 8 mg daily.

Poziotinib has also been investigated in the phase II 
ZENITH20 trial (NCT03318939), an open-label, multi- 
cohort, multi-centre study which includes a cohort of pre- 
treated patients with a proven EGFR or HER2 Ex20ins 
mutation.27 This cohort of 115 patients had a median of 2 
prior lines of therapy, and treatment with poziotinib 16 mg 
once daily conferred an ORR of 14.8% falling below the 
pre-specified primary endpoint of an ORR of 17%. 65% of 
patients had an observed reduction in tumor size with 
a disease control rate of 68.7% and a median PFS of 4.2 
months. Toxicity remained a concern with 63% of patients 

reporting grade 3–4 treatment related adverse events. As 
a result, 68% of patients required dose reductions to sub-
therapeutic doses; 16% requiring a one-step reduction to 
14 mg, 30% requiring a 2-step reduction to 12 mg, 22% 
requiring a dose of 10 mg or less and 10% of the study 
population permanently discontinued treatment. Adverse 
events were consistent with those previously reported for 
irreversible second-generation EGFR TKIs, most com-
monly diarrhoea and skin rash. This large multi-centre 
trial is ongoing with a cohort of treatment-naïve Ex20ins 
NSCLC patients and a split daily dosing regimen of pozio-
tinib to determine if this regimen reduces incidence of 
adverse events and the requirement for dose reductions.

Mobocertinib is another covalent, irreversible inhibitor 
that selectively targets EGFR and HER2 Ex20ins.28 It is 
being assessed in the ongoing phase I/II EXCLAIM trial 
(NCT02716116) to determine the safety of administering 
mobocertinib as a single agent or in combination with 
pemetrexed or carboplatin. Preliminary results have been 
presented, with 28 patients with locally advanced or meta-
static NSCLC harbouring EGFR or HER2 Ex20ins treated 
with 160 mg mobocertinib once daily included for 
analysis.28 Of these 28 patients, 26 were evaluable for 
treatment response with 14 having a partial response, 

Table 1 Key Clinical Trial Results for NSCLC Harbouring EGFR Exon 20 Insertions. Details for Trials with NCT Numbers Can Be 
Accessed on Https://Clinicaltrials.gov/

Inhibitor Inhibitor Class Clinical Trial (s) Number of Evaluable 
Pts with ex20ins

RR 
(%)

Median 
PFS 

(mo.)

Grade ≥3 
TRAE (%)

Refs

Gefitinib/Erlotinib 1st Gen EGFRi Retrospective analyses n=46 8–27 <3 – Naidoo et al98

n=27 Beau-Faller et al99

Afatinib 2nd Gen EGFRi NCT00525148, 

NCT00949650, 

NCT01121393

NR 8.7 2.7 – Yang et al100

Neratinib NCT00266877 n=3 0 NR NR Sequist et al101

Osimertinib 3rd Gen EGFRi NCT03414814 n=3 0 3.5 NR Kim et al102

Retrospective analysis n=6 66.7 6.2 0 Fang et al103

Poziotinib EGFRi with activity 

against Ex20ins  

(Ex20ins TKI)

ZENITH20 

(NCT03318939)

n=115 14.8 4.2 63 Le et al27

Mobocertinib (TAK-788) EXCLAIM 

(NCT02716116)

n=26 53.8 7.3 40 Janne et al28

TAS6417 (CLN-081) NCT04036682 NR NR NR NR –

Amivantamab EGFR-Met 

bispecific antibody

CHRYSALIS 

(NCT02609776)

n=39 36 8.3 6 Park et al21

Luminespib Hsp90 inhibitor NCT01854034 n=29 17 2.9 21 Piotrowska 

et al22

Abbreviations: EGFRi, EGFR inhibitor; RR, response rate; PFS, progression-free survival; TRAE, treatment-related adverse events, NR; not reported.
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giving an ORR of 53.8%, and 23 (88.5%) achieved disease 
control. In terms of toxicity, 21.7% of patients required 
a dose reduction due to treatment related adverse events 
with 10.9% discontinuing treatment as a result. The most 
common side effects included diarrhoea, rash and nausea. 
Based on this data, the FDA granted mobocertinib break-
through designation status, however it remains to be deter-
mined whether toxicity will be present as an issue moving 
forwards into its phase III trial, EXCLAIM-2, which is 
now enrolling treatment-naïve NSCLC patients with 
EGFR Ex20ins (NCT04129502).29

TAS6417 is a covalent, irreversible EGFR inhibitor 
specifically designed to target the ATP binding site of the 
EGFR Ex20ins kinase domain.30 Promising pre-clinical 
work suggests that TAS6417 has a wide therapeutic win-
dow to target EGFR Ex20ins mutants over wild-type 

EGFR in cell line models.20 Clinical data for TAS6417 
has yet to be reported, however a phase 1/2a clinical trial 
(NCT04036682) is ongoing to establish the maximum 
tolerated dose for NSCLC patients with EGFR Ex20ins.

An EGFR and MET-targeted bispecific antibody, amivan-
tamab, has shown promising efficacy against EGFR Ex20ins 
NSCLC in engineered mouse models with a reduction in 
tumor volume, as well as a reduction in total and phospho 
EGFR and MET and the inhibition of downstream signaling 
pathways protein kinase B (AKT) and extracellular signal- 
regulated kinase (ERK). Amivantamab has also shown super-
ior efficacy to poziotinib in tackling EGFR Ex20ins NSCLC 
with lower skin toxicity and loss of body weight in mice.31 

Promising clinical activity has been observed in the phase 1 
first-in-human study CHRYSALIS (NCT02609776) involving 
50 NSCLC patients with 13 distinct EGFR Ex20ins mutations, 

Figure 1 Therapeutic approaches to target EGFR Ex20ins NSCLC in clinical trials. Several approaches with distinct mechanisms are being assessed in clinical trials to target 
EGFR Ex20ins NSCLC, which are refractory to current clinically approved EGFR inhibitors. Small molecule tyrosine kinase inhibitors with the capacity to target the EGFR 
Ex20ins (Ex20ins TKI) can inhibit kinase catalytic activity. The bispecific EGFR-MET antibody amivantamab binds to both receptor tyrosine kinases which can result in 
receptor internalisation and downmodulation of oncogene expression on the cell surface. The Hsp90 inhibitor luminespib can inhibit the Hsp90 chaperone system which is 
co-opted by mutant EGFR Ex20ins to prevent ubiquitin-mediated protein degradation.
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of which 39 patients were evaluable for response. After 
a median follow-up of 4 months, ORR for amivantamab was 
36% across the 39 patients, with 8.3 months median PFS.21 

The safety profile for amivantamab was manageable, with 
36% of patients experiencing grade >3 adverse events, of 
which 6% were treatment related. Based on this data, the 
FDA granted breakthrough designation status for amivanta-
mab in March 2020 to accelerate the clinical investigation of 
this antibody in EGFR Ex20ins NSCLC. A phase 3 clinical 
trial, the PAPILLON study, is currently underway to investi-
gate the potential of a combination of amivantamab with 
carboplatin-pemetrexed chemotherapy compared to che-
motherapy alone in NSCLC patients with EGFR Ex20ins 
(NCT04538664).32

The Hsp90 inhibitor luminespib is generally well- 
tolerated, though reversible low-grade ocular-toxicity is 
common.22 In a phase II study (NCT01124864) involving 
patients with advanced NSCLC with several molecularly- 
defined subtypes, luminespib showed an ORR of ~17% 
among EGFR-mutant NSCLC. Notably, one patient with 
an Ex20ins mutation responded to luminespib.33 Based on 
further pre-clinical evidence that Hsp90 inhibition is effec-
tive in models that harbour EGFR Ex20ins,34 a phase II 
clinical trial for luminespib in NSCLC patients that speci-
fically harbour EGFR Ex20ins (NCT01854034) found 
a 17% ORR in 29 patients and a median PFS of 2.9 
months.22 The study met its primary endpoint for ORR, 
indicating that Hsp90 inhibitors could potentially be used 
as a therapeutic strategy in patients with EGFR Ex20ins. It 
should be noted however, that a high degree of lumine-
spib-related toxicities reported in clinical trials reflects the 
general challenge of using Hsp90 inhibitors in patients and 
may ultimately be a limiting factor for further clinical 
development.

The clinical data to date highlight the challenges of target-
ing EGFR Ex20ins without significant toxicity due to wild- 
type EGFR inhibition. The ORR for these new agents remains 
low compared to approved EGFR inhibitors in the context of 
NSCLC bearing L858R and Ex19del (ORR >60%).35–37 The 
design of EGFR inhibitors with a greater therapeutic index 
may result in higher response rates and better drug tolerability. 
However, an outstanding question is whether intrinsic and 
acquired drug resistance will be a major limiting factor to the 
clinical efficacy of these agents that target EGFR Ex20ins. The 
short median PFS of 2.9 months for luminespib, 4.2 months 
reported for poziotinib27 and 7.3 months for mobocertinib23 

contrasts with 10.1 months for osimertinib in L858R and 
Ex19del NSCLC in the second-line setting.38 While 

insufficient dosing due to toxicity may contribute to short- 
term responses in patients, early data from the use of pozioti-
nib in EGFR Ex20ins patients suggests rapid acquisition of 
drug resistance, and the specific mechanisms of resistance 
have some overlap with those observed to arise in classical 
mutant EGFR NSCLC treated with approved EGFR 
inhibitors.39 Therefore, it is important to consider and antici-
pate the potential routes of drug resistance in order to achieve 
durable responses in patients with Ex20ins mutations.

Known Mechanisms of Ex20ins TKI 
Resistance
Despite having only recently been evaluated in clinical 
trials, clinical mechanisms of resistance have already 
been reported for some of the aforementioned Ex20ins 
TKIs.39 Here we will outline the currently known resis-
tance mechanisms to poziotinib and other Ex20ins TKIs 
focusing on on-target mechanisms and compensatory 
bypass mechanisms of resistance described in the literature 
(Figure 2). An overview of genomic alterations, mutations, 
amplifications and copy number losses which are present 
at baseline or occur at relapse post-TKI treatment in 
Ex20ins patients are summarized in Table 2.39–41 We 
also outline potential therapeutics and druggable targets, 
which could be utilised to overcome TKI resistance.

On-Target Mechanisms of Resistance
A well-established mechanism of resistance to clinically 
approved EGFR inhibitors is the acquisition of on-target 
secondary mutations in EGFR, including the T790M gate-
keeper and C797S point mutation. T790M is located in the 
ATP binding pocket and confers resistance to competitive 
first generation inhibitors by sterically hindering drug 
binding and increasing the affinity of mutant EGFR for 
ATP, thus decreasing the affinity and binding of reversible 
TKIs.42 This mutation can be effectively overcome with 
the irreversible inhibitor osimertinib, which covalently 
binds to the C797 residue of EGFR and shows greater 
selectivity for EGFR T790M mutations over wild-type 
EGFR.43,44 However 7% of NSCLC patients with classical 
EGFR mutations that are treated with osimertinib as a first 
line therapy develop the C797S mutation, the second most 
common mechanism of acquired resistance observed after 
MET amplification (15%).45 The C797S mutation renders 
osimertinib ineffective by preventing the formation of the 
key covalent bond between this irreversible inhibitor and 
the thiol group (-SH) of cysteine in the EGFR 797 
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residue.46–48 This second critical point mutation is 
a common mechanism of resistance to irreversible inhibi-
tors which prevents permanent inactivation of the kinase.

On-target secondary mutations in EGFR have also 
been observed to confer resistance to Ex20ins targeting 
TKIs. A recent study from Elamin et al has shown that 
resistance to poziotinib can occur through the acquisition 
of T790M in pre-clinical models and EGFR Ex20ins 
NSCLC patients.39 The study found that co-expression of 
an Ex20ins (S768supSVD) and T790M in engineered Ba/ 
F3 cells caused resistance to poziotinib. This study also 
analysed blood samples and biopsies collected at baseline 
and upon disease progression from 50 NSCLC Ex20ins 

patients enrolled in a poziotinib phase II clinical trial 
(NCT03066206). Patient samples were analysed using 
next generation sequencing. Of the 20 patients who went 
on to have disease progression, a number of on-target 
secondary mutations were observed. These mutations 
included T790M (n=2), V774A (n=1) and D770A (n=1).39

To determine whether poziotinib binds to EGFR via the 
C797 residue, Robichaux et al generated Ba/F3 cells engi-
neered with the EGFR C797S point mutation.9 At the time 
of this study, the C797S mutation had only been observed 
in response to osimertinib in patients with classical EGFR 
mutations and T790M. The addition of C797S to classical 
EGFR mutants co-expressing T790M was found to confer 

A

B

Figure 2 Mechanisms of EGFRex20ins TKI resistance. Evidence from the use of poziotinib in patients and in pre-clinical models39 suggests drug resistance can be driven by 
(A) acquisition of secondary on-target mutations in EGFR or (B) mutations or amplification in other oncogenic pathway proteins that result in activation of compensatory 
bypass pathways including the PI3K/AKT pathway, RAS/MAPK pathway, alternative RTKs and cell cycle genes.
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poziotinib resistance (the half maximal inhibitory concen-
tration IC50 >10 μM), indicating poziotinib does bind to 
the C797 residue.9

Mobocertinib has also been shown to inhibit EGFR and 
HER2 via covalent modification of EGFR C797 and its 
equivalent residue C805 in HER2, indicating point 

mutations in these amino acids may confer resistance to 
multiple Ex20ins TKIs.49 Koga et al demonstrated that the 
C805S secondary resistance mutation can confer pozioti-
nib resistance in a Ba/F3 model with HER2 Ex20ins muta-
tions (A775_G776insYVMA and G776delinsVC). Using 
N-ethyl-N-nitrosourea (ENU), a mutagen known to cause 

Table 2 The Prevalence of Baseline or Post-Treatment Resistance Associated Genetic Alterations in EGFR Ex20ins Patients. Studies 
Presented in the Table Utilized Different Sample Collection Methods, Elamin et al Evaluated Tumour Specimens Pre-Poziotinib and on 
Progression from 20 Patients Who Responded to Poziotinib.39 Riess et al and Montenegro et al Were Observational Studies to 
Identify the Most Common Co-Occurring Genetic Alterations at Baseline from Formalin Fixed Embedded Ex20ins NSCLC Tumour 
Specimens from 263 (Riess et al)40 and 104 (Montenegro et al)41 Patients

Genetic 
Alteration

Genetic Alteration 
(Prevalence %)

Baseline/Post- 
Treatment

Confers Poziotinib Resistance (Confirmed/ 
Putative/Unknown)

Ref

Mutation EGFR T790M (10%)

Post-treatment Confirmed (T790M)/putative (V774A, D770, PIK3CA 

E545K and MAP2K2 S94L)

Elamin et al
39

EGFR V774A (5%)

EGFR D770A (5%)

PIK3CA E545K (5%)
MAP2K2 S94L (5%)

Amplification MET amplification (5%)

Post-treatment PutativeEGFR amplification (10%)

CDK6 amplification (10%)

Mutation TP53 (56%)

Baseline Unknown

Riess et al40

CDKN2A (22%)

CDKN2B (16%)

RB1 (11%)
CTNNB1 (5–10%)

PIK3CA (5–10%)

Amplification NKX2-1 (14%)

Baseline Unknown

NFKBIA (5–10%)
MDM2 (5–10%)

MYK (5–10%)

CDK4 (5–10%)

Mutation TP53 (51%)

Baseline Unknown

Montenegro 
et al41

CTNNB1 (6%)

PIK3CA (4%)

PTEN (3%)
SMAD4 (3%)

CHEK2 (2%)

Amplification CDK4 (11%)

Baseline Unknown

EGFR (9%)

MDM2 (9%)

FOXA1 (7%)
HMGA2 (6%)

Copy number 
loss

CDKN2A (7%)

Baseline Unknown

CTNNB1 (2%)

ATR (2%)

BRCA2 (2%)
FANCL (2%)
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random mutations, poziotinib resistant clones were gener-
ated by growing ENU mutagenized Ba/F3 HER2 Ex20ins 
cells in the presence of poziotinib. All clones were 
sequenced to identify on-target secondary HER2 mutations 
and notably, C805S accounted for resistance in 31% of the 
resistant clones and was the only on-target secondary 
mutation identified. The acquisition of the C805S mutation 
was found to confer a 100-fold increased resistance to 
poziotinib. The authors demonstrated that luminespib was 
able to reduce the viability of HER2 Ex20ins mutant 
expressing cells regardless of the presence of the C805S 
on-target mutation.50 The mechanism through which the 
Hsp90 inhibitor overcomes this resistance mechanism was 
not explored by Koga et al, however the Hsp90 chaperone 
complex has been shown to protect cellular proteins from 
ubiquitin degradation. EGFR and HER2 Ex20ins mutants 
are reliant upon Hsp90 for maintaining mutant receptor 
protein levels51 and Hsp90 inhibitors have been shown to 
reduce expression of mutant EGFR and HER2 proteins.52

Compensatory Bypass Pathways
Co-occurring mutations and gene amplifications in alternative 
oncogenic drivers are also putative resistance mechanisms in 
cancers with EGFR activating mutations. Elamin et al identi-
fied that co-occurring mutations in the Kirsten rat sarcoma 2 
viral oncogene homolog (KRAS) and the Erb-B2 receptor 
tyrosine kinase 4 (ErbB4) were observed in genetically engi-
neered mouse models (GEMM) harbouring tumors expressing 
EGFR Ex20ins (D770insNPG), following treatment with 
poziotinib.39 Additionally, activation of the mitogen- 
activated protein kinase (MAPK), the mitogen-activated pro-
tein kinase kinase (MEK), AKT and ERK was elevated in 
GEMM tumors which progressed on poziotinib treatment 
compared to sensitive tumors, suggesting that acquired resis-
tance to poziotinib is associated with the reactivation of 
MAPK and phosphatidylinositol 3-kinase (PI3K) 
pathways.39 The same study utilized Ex20ins NSCLC patient 
biopsies from a poziotinib phase II clinical trial which were 
taken prior to treatment and upon disease progression. 1/20 
patients with Ex20ins NSCLC had an E545K mutation in 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic sub-
unit alpha (PIK3CA) following progression on poziotinib. 
Mitogen-activated protein kinase 2 (MAPK2) S94L mutation 
(1 patient), MET amplification (1 patient) and cyclin dependent 
kinase 6 (CDK6) amplification (2 patients) were also 
identified.39 Notably, MET and CDK6 amplifications have 
been previously described as mechanisms of acquired 

resistance to approved EGFR TKIs and are potential druggable 
targets to overcome resistance to TKIs that target Ex20ins.53,54

Putative Mechanisms of Ex20ins TKI 
Resistance
Ex20ins TKIs are still undergoing the initial stages of 
clinical development and our understanding of their resis-
tance mechanisms is limited. However, based on recent 
studies it appears that these compounds may share over-
lapping acquired resistance mechanisms to first- and third- 
generation EGFR inhibitors, including the acquisition of 
the point mutations T790M and C797S described above. 
These findings, together with the extensive knowledge 
gleaned from over a decade of clinical use of approved 
EGFR TKIs in NSCLC bearing classical mutations allows 
us to make informed predictions about additional potential 
acquired resistance mechanisms to TKIs that target 
Ex20ins. This is key to anticipating and forecasting effec-
tive therapeutic strategies to overcome drug resistance in 
this patient group. Here we will discuss two mechanisms 
that may play a role in the acquisition of resistance in the 
context of EGFR Ex20ins based on pre-clinical data from 
cellular models of classical EGFR mutations treated with 
first and third generation EGFR inhibitors, namely epithe-
lial to mesenchymal transition (EMT) and drug tolerance. 
The cell line models and experimental design employed in 
these studies, and their EGFR mutational status, genomic 
alterations associated with resistance and drug dosing regi-
mens are summarized in Table 3.

Epithelial to Mesenchymal Transition
EMT has been shown to confer resistance to clinically 
approved EGFR inhibitors in classical mutant EGFR 
NSCLC which lack EGFR on-target mutations or compen-
satory bypass mechanisms (Table 3).55 The acquisition of an 
EMT phenotype in response to gefitinib treatment has been 
observed both in vitro and in patients with a decrease in 
expression of the epithelial marker E-cadherin.56 EMT pro-
tects against EGFR-mediated TKI cell death through 
increased expression of the mesenchymal transcription factor 
zinc finger E-box binding homeobox 1 (ZEB1) which in turn 
inhibits the expression of the Bcl-2-like protein 11 (BIM). 
BIM is a pro-apoptotic protein required for EGFR TKI- 
induced apoptosis, therefore lower levels of BIM in cells 
that undergo EMT protect against EGFR TKI induced cell 
death.57 ZEB1 has also been linked to increased expression 
of the fibroblast growth factor receptor 1 (FGFR1) which is 
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associated with resistance to EGFR inhibitors and often con-
comitant with EMT.58 Activation of an autocrine fibroblast 
growth factor 2 (FGF2)-FGFR1 growth loop drives resis-
tance to EGFR TKIs through FGFR1-mediated activation of 
PI3K/AKT and MEK/ERK pathways.59 Moreover, FGFR1 

inhibition has been shown to restore sensitivity to EGFR 
TKIs in acquired resistant cell models with an EMT 
phenotype.59,60 EMT has also been indirectly identified as 
a potential mechanism by which NSCLC cells can become 
resistant to poziotinib. NSCLC cell lines with classical 

Table 3 A Summary of the Characteristics of EGFR Mutant Cell Line Models Employed in Studies to Investigate EGFR Inhibitor 
Resistance and the Reported Genomics Alterations Associated with Drug Resistance

Pre-clinical Model EGFR 
Mutation

Dosing Regimen Duration to 
Persister 

Phase

Genomic Alterations 
Associated with Resistance

Refs

HCC827 Ex19del Gefitinib, high concentration 

exposure

– EMT, ↑ZEB1

Shien et al55

HCC4006 Ex19del Gefitinib, high concentration and 

stepwise escalation exposure

– EMT

HCC827 Ex19del Gefitinib, stepwise escalation 

exposure

– EMT

Weng et al56

H1975 L858R/T790M Osimertinib, stepwise escalation 

exposure

– EMT, ↑ZEB1

H1975 L858R/T790M Dacomitinib, stepwise escalation 

exposure

–

EMT, ↓BIM Song et al57

Patient-derived 

treatment-naïve 

MGH119-1

Ex19del

WZ4002, stepwise escalation 

exposure

–

Patient-derived 

erlotinib-resistant 

MGH164-2A

Ex19del/T790M –

HCC827 Ex19del Erlotinib, stepwise escalation 

exposure

– EMT, ↑ZEB1, ↑FGFR1 Vad-Nielsen et al58

HCC4006 Ex19del

Gefitinib, stepwise escalation 

exposure

–

↑FGFR1, ↑FGF2 Ware et al59

HCC2279 Ex19del –

H1650 Ex19del –

HCC4011 L858R –

H1975 L858R/T790M – ↑FGFR1

HCC827 Ex19del Erlotinib, stepwise escalation 

exposure

– EMT, ↑ZEB1, ↑FGFR1 Jakobsen et al60

HCC827 Ex19del Erlotinib, stepwise escalation 

exposure

–

EMT

Robichaux et al9

HCC4006 Ex19del –

PC9 Ex19del Gefitinib, stepwise escalation 

exposure

2 weeks EGFR T790M Hata et al72

12–16 weeks –

PC9 Ex19del Erlotinib, stepwise escalation 

exposure

∼ 8–10 months EGFR T790M, METamp, NRASmut, 

RAF1amp, PIK3CAmut, BRAFmut*

Ramirez et al73

Notes: Where drug-tolerant persister cells have been identified, duration of drug treatment is indicated. Ex19del, EGFR exon 19 deletion. *Single mutations detected in 
different PERCs (persister-derived erlotinib-resistant colonies). ↑ – increase /↓ – decrease.
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EGFR mutations (HCC4006 (Ex19del) and HCC827 
(Ex19del)) which underwent EMT in response to escalating 
concentrations of erlotinib were also resistant to poziotinib.9 

Further preclinical and translational studies are required to 
determine if EMT is a bona fide mechanism of resistance in 
EGFR Ex20ins patients.

Drug Tolerance
It is now well established that the emergence of minimal 
residual disease can be attributed to a subpopulation of 
drug tolerant persister (DTP) cells.61,62 DTP cells are 
defined as the small subpopulation of cells that remain 
viable in the presence of anti-cancer treatments, despite 
not harboring classic genetic mutations commonly asso-
ciated with drug resistance. They undergo a drug tolerant 
reversible state which has been observed in numerous 
cancer models in vitro and in vivo in response to drug 
pressure, suggesting a general phenomenon.63–68 Despite 
no evidence of on-target resistance mutations, drug sensi-
tivity can be >100-fold less in DTP cells when compared 
to the bulk tumor cells. Although the properties of DTP 
cells have not been fully characterized, it has been demon-
strated that these cells harbor specific epigenetic modifica-
tions and a reversible drug tolerant slow-growing 
phenotype.62,69 Experiments in several cell line models 
suggest that the ability of these DTP cells to maintain 
viability following drug exposure to both targeted therapy 
and chemotherapy involves a transient chromatin state 
dependent on insulin-like growth factor 1 receptor (IGF- 
1R) signaling, histone demethylase KDM5A and KDM6B 
activity and decreased histone acetylation.62,69 This rever-
sible DTP state could also account for the re-sensitization 
of patient tumors to TKIs after the interruption of treat-
ment for an extended period of time (drug holiday). For 
example, some NSCLC patients with classical EGFR 
mutations who respond well to treatment with gefitinib 
and later experience therapy failure, showed a second 
response to the same EGFR TKI after a drug holiday.70,71

DTP cells in NSCLC have been studied in vitro using 
the PC9 cell line (Ex19del mutation). Hata et al showed 
that acquired resistance to gefitinib can occur as a result of 
either pre-existing EGFR T790M containing cellular sub-
populations or from initially T790M-negative DTP cells.72 

These DTP cells provide a reservoir of cells that can then 
acquire de novo T790M or other resistance-associated 
mutations after prolonged exposure to gefitinib. The cells 
also showed diminished apoptosis after exposure to osi-
mertinib, indicating they may be less responsive to third- 

generation EGFR inhibitors.72 A second study explored 
the evolution of PC9 DTP cells derived DTP cells from 
a single clonal population after prolonged exposure to 
erlotinib.73 Different DTP cells derived from the same 
clonal population were found to acquire a diverse set of 
resistance mechanisms, including those most commonly 
observed in NSCLC patients in the clinic such as EGFR 
T790M mutation and MET amplification. These data sug-
gest that different genetic and epigenetic drug resistance 
mechanisms can arise independently within the same 
initial cell population passing through the persister bottle-
neck, thereby complicating strategies to overcome 
resistance.73

Given that DTP cells have been observed in response to 
clinically approved EGFR inhibitors, it is tempting to spec-
ulate that a similar phenomenon may be seen in EGFR 
Ex20ins tumors. Upon treatment with Ex20ins-targeted 
TKIs, a small subpopulation of clones may enter 
a resistant slow-growing state facilitating escape from 
drug pressure. Multiple de novo resistance mechanisms 
can then arise in these DTP clones which will allow them 
to revert to a fast-growing state, eventually becoming the 
dominant population in a relapsed tumor.73 Understanding 
the biological mechanisms driving the evolution of DTP 
cells will undoubtedly help in the design of more effective 
upfront therapeutic strategies for EGFR Ex20ins patients.

Future Perspectives
Given the dose limiting toxicities in the current generation 
of EGFR Ex20ins TKIs, there is an urgent need for new 
compounds with a wider therapeutic index which are both 
effective and safe for use in Ex20ins patients. 
Furthermore, it is also essential to identify innovative 
approaches to overcome key resistance mechanisms antici-
pated with the current generation of Ex20ins TKIs. In this 
section we describe new methods to discover next- 
generation compounds which may be more effective in 
the treatment of Ex20ins patients including proteolysis 
targeting chimeras (PROTACs) and the mammalian mem-
brane two-hybrid drug screen (MaMTH-DS) methodology. 
We also outline recent advances in monoclonal antibodies 
(mAb) combinations targeting on-target EGFR resistance 
mutants and explore new therapeutic opportunities in over-
coming DTP tumor cells in patients.

PROTACs
PROTACs are valuable tools for the discovery of EGFR 
Ex20ins targeting agents. PROTACs consist of 
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a bifunctional molecule containing a target protein binding 
ligand and an E3 ligase ligand which are bridged by 
a crosslinker. After the formation of a ternary complex 
composed of the protein target, PROTAC and E3 ligase, 
the ubiquitin proteasome system is recruited to degrade the 
protein of interest (in this case a transmembrane RTK). 
After degradation, the bifunctional PROTAC molecule is 
released and can enter the next degradation cycle, allowing 
a sustained reduction in receptor signaling and providing 
potential for PROTAC activity at lower concentrations 
than comparable TKIs.74–76 Promising PROTACs have 
been reported for mutant EGFR in various cellular 
models.77,78 Burslem et al described the development of 
a PROTAC for RTKs based on the reversible EGFR/HER2 
inhibitor lapatinib by using a ligand that binds to the E3 
ligase, VHL (von Hippel-Lindau).77 Interestingly, this 
lapatinib-based compound was also shown to be capable 
of degrading EGFR Ex20ins protein (ASV duplication) in 
engineered HeLa cells.77 By virtue of the ability of 
PROTACs to degrade EGFR rather than just inhibit its 
kinase activity, the authors showed that PROTACs offered 
several advantages over conventional TKIs. This included 
marked improvement in potency in preclinical models as 
well as sustained inactivation of downstream effector sig-
naling compared to kinase inhibition by TKIs. These 

effects minimize compensatory pathway activation 
and could circumvent kinome rewiring which is a fre-
quently observed resistance mechanism in response to 
TKIs (Figure 3).77 However, phase I clinical trials of 
PROTACs have yet to report on the safety profile of 
these compounds. PROTACs have the potential to cause 
adverse clinical effects due to prolonged on-target and off- 
target protein degradation.79–82 For example, proteins that 
are part of the same complex or in close proximity with 
the target protein can be degraded even if not directly 
bound to a PROTAC.83 In addition disruption of cellular 
proteostasis can occur, through either competition with 
endogenous E3 binding substrates or accumulation of ubi-
quitinated proteins which can saturate the proteolysis 
machinery.84 Finally, some proteins are refractory to 
PROTAC-mediated degradation, which may limit the suit-
ability of this therapeutic strategy for targeting certain 
oncogenes.85,86

MaMTH-DS
MaMTH-DS is a split-ubiquitin-based-technology which 
has recently been used to identify new EGFR targeting 
agents. It involves a high-throughput screening methodol-
ogy that is based on targeting functional RTK protein- 
protein interactions.87 Rather than relying on classical 

A B C

Figure 3 Comparison of tyrosine kinase inhibitor, PROTAC and therapeutic monoclonal antibodies mechanism of action. (A) TKIs bind to the kinase domain of the receptor 
which inhibits receptor phosphorylation and activation. Upon acquisition of drug resistance either develops on-target mutations or activate compensatory bypass pathways. 
(B) PROTACs degrade tyrosine kinase receptors through protein ubiquitination and receptor degradation. The degradation of the receptor is thought to minimize the 
activation of compensatory bypass pathways. (C) A combination of three monoclonal antibodies can target T790M and C797S mutant EGFR tumors. Cetuximab (EGFR), 
trastuzumab (HER2) and mAb33 (HER3) when used together were shown to suppress HER2, HER3, MET and AXL compensatory bypass pathway activation.91
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in vitro kinase methods, this drug discovery platform 
utilizes full-length integral membrane proteins in their 
natural membrane context in live mammalian cells. In 
this assay, cells are transfected to stably express a bait 
RTK which is fused to the C-terminus of ubiquitin and 
an artificial transcription factor. In addition, the Src homol-
ogy 2 domain-containing adaptor protein 1 (Shc1) is fused 
to the N-terminus of ubiquitin and expressed as the prey 
due to its ability to interact with a wide variety of phos-
phorylated RTKs. Upon activation of the bait RTK, pro-
teolytic cleavage and release of the transcription factor 
leads to the activation of a luciferase reporter system. 
This methodology provides a useful strategy to identify 
inhibitors that block RTK phosphorylation resulting in 
a reduction in the luciferase readout. As proof of principle, 
Saraon et al used this platform to screen a EGFR inhibitor 
resistant Exon19del/T790M/C797S triple mutant NSCLC 
model against a library of 2960 small molecules.88 They 
identified 4 new compounds that inhibit this triple mutant 
which is resistant to irreversible EGFR inhibitors includ-
ing poziotinib. Importantly, two of these compounds, 
AZD7762 and EMI1, would not have been identified 
using in vitro kinase assays. For instance, the specificity 
of the checkpoint kinase (Chk) inhibitor AZD7762 for 
mutant EGFR depends on additional factors only present 
in the live-cell format while the mechanisms of action of 
the small molecule EMI1 is reliant on direct inhibition of 
microtubule polymerization, which indirectly affects 
mutant but not wild-type EGFR signaling and trafficking. 
This work demonstrates the utility and potential of 
MaMTH-DS as a screening platform that could be used 
to identify new candidate drugs for Ex20ins and associated 
on-target resistance mutations.

Therapeutic Monoclonal Antibodies
MAbs represent an important component in the arsenal of 
targeted cancer therapy for NSCLC treatment. MAbs that 
bind to the extracellular domain of EGFR are not affected 
by the acquisition of common on-target resistance mechan-
isms (eg T790M or C797S) that are found in the intracel-
lular domain of the receptor. Cetuximab is a mAb that binds 
to the extracellular domain of EGFR, preventing ligand 
binding and blocking receptor activation.89 Experimental 
strategies able to overcome EGFR T790M or C797S resis-
tant mutants have exploited the combinatorial use of MAbs, 
such as cetuximab, trastuzumab (anti-HER2 mAb) and 
mAb33 (anti-HER3 mAb).90 In particular, it has been 
shown that a triple combination of mAbs (3xmAbs) that 

simultaneously target EGFR, HER2 and HER3 inhibited 
tumor growth with low toxicity in a xenograft NSCLC 
model with classical EGFR mutations in combination with 
T790M.91 In tumors which had acquired T790M, the 
3xmAbs combination was shown to inhibit tumor growth 
in a similar fashion to osimertinib, but through a mechanism 
of cell senescence rather than apoptosis. This mAb combi-
nation overcame resistance to osimertinib in tumors that 
either expressed C797S or upregulated HER2 and HER3 
as compensatory bypass mechanisms (Figure 3).91 In 
another study from the same group, the combination of 
the TKI osimertinib and mAbs cetuximab and trastuzumab 
had a long-lasting effect in preventing onset of resistance to 
osimertinib by suppressing signaling from compensatory 
RTKs, such as HER2, HER3, MET and AXL.92 These 
findings suggest that the combinatorial mAbs strategy may 
offer a feasible pharmacological option for treating Ex20ins 
lung cancer patients that develop both on-target and bypass 
resistance mechanisms to TKIs such as poziotinib. Limited 
clinical evidence for the efficacy of afatinib in combination 
with cetuximab has been reported in patients with EGFR 
Ex20ins,93 however the 3xmAbs combination has yet to be 
assessed in this context.

Therapeutic Targeting of DTP Cells
In order to fully tackle the challenge of drug resistance and 
tumor relapse, it will be necessary to identify ways to effec-
tively overcome DTP cells and residual disease following 
EGFR TKI treatment. The DTP cell state is reliant upon 
specific signaling pathways and epigenetic alterations, 
which present a therapeutic opportunity for drugs that can 
target these dependencies. A study from Rusan et al showed 
that the DTP cellular state is transcriptionally addicted to 
specific genes and pathways in a variety of cancer models.94 

In the PC9 cell line, the authors found that DTP cells arising 
from erlotinib treatment could be targeted by combining 
erlotinib with THZ1, which is a CDK7/12 inhibitor that 
blocks the transcriptional response in DTP cells (Figure 4). 
A genome-wide CRISPR/Cas9 screen performed in PC9 
treated with erlotinib in combination with THZ1 demon-
strated that suppression of genes associated with transcrip-
tional complexes (such as EP300 or CREBBP) enhanced the 
THZ1/erlotinib therapeutic synergy. In addition, a new drug 
tolerant pathway associated with the dysregulation of 
UFMylation protein response and endoplasmic reticulum 
(ER) stress was characterized using this approach.95 

Components of the post-translational UFMylation pathway 
have only recently been characterized. They play an 
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important role in cell survival as regulators of ER home-
ostasis and are linked to several types of cancer including 
lung cancer.96,97 Suppressing expression of genes involved in 
the UFMylation pathway protects DTP cells against THZ1 
and erlotinib combination treatment by promoting 
a protective unfolded protein response (UPR) associated 
with the stimulator of interferon response CGAMP interactor 
1 (STING) upregulation. This triggers pro-tumorigenic 
inflammatory signaling and dependency on the apoptotic 
repressor B-cell lymphoma-extra large (Bcl-xL).94 The dys-
regulation of the UFMylation pathway and ER stress 
response is a key TKI drug tolerance pathway that activates 
survival signaling which could be therapeutically exploited, 
however further work is required to identify whether similar 
DTP cellular pathways are present in Ex20ins tumors.

Conclusion
The current generation of TKIs capable of targeting 
Ex20ins has shown preclinical promise in the treatment of 
this rare group of NSCLC patients. However, early clinical 
data finds that this strategy suffers from a poor therapeutic 

index and inevitable primary and acquired drug resistance. 
Recent pre-clinical and clinical studies indicate that resis-
tance may be acquired through the acquisition of EGFR on- 
target mutations or the activation of compensatory bypass 
pathways.39 In some cases, resistance mechanisms that 
mirror what has been observed with the common classical 
EGFR activating mutants in response to clinically approved 
EGFR inhibitors are applicable to this current generation of 
Ex20ins TKIs. But there is still a large gap in our knowledge 
of the myriad ways in which these tumors evolve when 
subjected to drug selection. In addressing this class of 
mutations, there is clearly a twin challenge of not only 
identifying a new generation of drugs with a better thera-
peutic index but also developing an in-depth understanding 
of the spectrum of biological mechanisms of drug resis-
tance. The advent of new drug discovery tools, such as 
MaMTH-DS and PROTACs technology, should facilitate 
the rapid identification of new therapeutics that might ulti-
mately be useful as first-line or salvage therapy; while 
a better understanding of mechanisms of resistance arising 
from residual DTP cells may hold the key to achieving 

Figure 4 Proposed model of drug tolerant persister cell evolution. Under drug pressure a subpopulation of transient drug tolerant persister cells can emerge through 
epigenetic mechanisms. This transient DTP population can acquire permanent genetic modifications which allows for the emergence of a drug tolerant population. The 
transcriptionally dependent state of persister cells induced by targeted therapy can be exploited by the treatment with THZ1 which blocks transcriptional responses, 
promoting cancer cell death.94 However, THZ1 treatment in combination with erlotinib suppresses the expression of the UFMylation pathway components which can trigger 
a protective unfolded protein response associated with tolerable levels of ER stress and cell survival.94
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durable responses in this NSCLC patient group of unmet 
need.
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