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Abstract BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of

complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a

promising target in a range of cancers with defects in the DNA damage response; however,

selective small molecule inhibitors of defined mechanism are currently lacking. Here, we identify

and characterise a specific inhibitor of BLM’s ATPase-coupled DNA helicase activity, by allosteric

trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-

ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and

closing are integral to translocation of ssDNA, and which provides a highly selective pocket for

drug discovery. Comparison with structures of other RECQ helicases provides a model for branch

migration of Holliday junctions by BLM.

Introduction
RECQ helicases catalyse the unwinding of duplex DNA with 3’ to 5’ directionality, driven by energy

liberated by ATP-hydrolysis. As well as simple DNA duplexes, the various members of the RECQ

helicase family (BLM, WRN, RECQ1, RECQ4, and RECQ5 in humans) are able to unwind DNA within

a range of complex DNA structures and DNA repair intermediates, including: forks, bubbles, triple

helices, displacement (D)-loops, G-quadraplexes, and three- or four-way Holliday junctions (exten-

sively reviewed in Croteau et al., 2014; Wu, 2012).

RECQ-helicases are strongly implicated in the maintenance of genomic integrity, principally

through their participation in the homologous recombination (HR) pathway for repair of DNA dou-

ble-strand breaks and restart of collapsed or blocked replication forks (reviewed in Croteau et al.,

2014; Urban et al., 2017), but also have roles in toleration of microsatellite instability (Chan et al.,

2019; Lieb et al., 2019) and sister chromatid decatenation (Chan et al., 2007). Defects in RECQ-

family members are responsible for rare genetic diseases displaying substantial genomic instability

and cancer predisposition (Bernstein et al., 2010). Loss of function of WRN underlies the complex

progeria Werner Syndrome; defects in BLM underlie Bloom Syndrome, which is characterised by

growth retardation and immunodeficiency; and defects in RECQ4 are associated with Rothmund-
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Thompson syndrome, which displays growth retardation, skeletal abnormalities and premature

ageing.

A number of experimental and computational studies have implicated RECQ helicases – primarily

BLM and WRN - as potential targets for cancer therapy, due to the synthetic lethality of their silenc-

ing or downregulation with genetic defects inherent in a range of different cancers (Chan et al.,

2019; Lieb et al., 2019; Aggarwal and Brosh, 2009; Behan et al., 2019; Datta et al., 2021;

Kategaya et al., 2019; Pearl et al., 2015; Wang et al., 2018). Despite the therapeutic opportuni-

ties this presents, no drugs targeting RECQ helicases have yet been licensed, although potential

leads have been reported (Nguyen et al., 2013; Rosenthal, 2010; Yin et al., 2019).

Here, we determine the mode of action for two reported inhibitors of BLM – ML216

(Nguyen et al., 2013; Rosenthal, 2010) and a substituted benzamide (compound 2). While ML216

appears to act, at least in part, through direct DNA binding and has poor specificity, we find that 2

and derivatives thereof are highly specific binders of a defined BLM-DNA complex. Crystallographic

analysis of the BLM-DNA-2 complex identifies a novel allosteric binding site and reveals a distinctive

conformational step in the helicase mechanism, that can be trapped by small-molecules. These data

pave the way for the development of allosteric inhibitors of BLM helicase with the potential to gen-

erate trapped and highly cytotoxic BLM-DNA complexes.

Results

Compound identification and screening
A series of compounds that targeted the helicase activity of human BLM were identified in a quanti-

tative high-throughput screen (qHTS) (Rosenthal, 2010), where the results were made publicly avail-

able from the PubChem data repository [https://pubchem.ncbi.nlm.nih.gov/bioassay/2528]. Filtering

the 627 reported active compounds for preferential physicochemical properties (e.g. Lipinski’s rule

of five) and excluding those with potential pan-assay interference activity (PAINS) allowed us to

group the compounds into several distinct clusters according to chemical similarity. The inhibitory

activity of exemplars from each cluster were tested in a fluorescence-based DNA unwinding assay

(Rosenthal, 2010) against recombinant human BLM-HD (HD = helicase domain; amino acids 636–

1298). However, only a single compound produced an IC50 lower than 10 mM (compound 1,

IC50 = 4.0 mM; Figure 1A).

We synthesised and purified six close analogues of this compound with the aim of generating

preliminary structure-activity relationship data and confirmed their inhibitory activity in the unwind-

ing assay (Materials and methods, Appendix 1). Compounds 2 to 6 inhibited the 3’ ! 5’ helicase

activity of recombinant human BLM-HD with IC50 values ranging from 2.2 to ~60 mM, whereas 7 did

not inhibit BLM-HD over the concentration range tested (Figure 1A and Figure 1—figure supple-

ment 1, Table 1). An IC50 of 4 mM was determined for ML216, a compound reported to be a semi-

selective inhibitor of human BLM (Nguyen et al., 2013; Rosenthal, 2010), which was included as a

positive control (Figure 1A).

In a malachite green-based assay that measures ATP turnover, we observed robust stimulation of

hydrolysis by BLM-HD when the protein was incubated with a short single-stranded 20-base oligonu-

cleotide (Figure 1B). Here, we determined IC50 values ranging from 3.2 to ~50 mM for each of our

active analogues and 4.4 mM for ML216 (Figure 1C and Figure 1—figure supplement 1, Table 1).

Whilst the values of IC50 obtained in our orthogonal assay did not agree in absolute value with those

determined in the first, it ranked each analogue with a similar order of potency.

Biophysical analysis of compound binding
We could readily observe changes in fluorescence, indicative of binding, upon titration of both ADP

and ATP-gS into BLM-HD using microscale thermophoresis (MST, Figure 1—figure supplement 2).

We could not, however, observe any interaction for our most potent compound 2. In the absence of

biophysical evidence for binding, we sought to confirm that 2 wasn’t just a false positive generated

by interference with the fluorescent readout of the unwinding assay. An alternative gel-based assay

allowed direct visualisation of the conversion of a forked DNA-duplex into its component single-

stranded oligonucleotides via the helicase activity of BLM-HD (Figure 2A). Titration of 2 clearly
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Figure 1. Inhibition of BLM helicase unwinding activity. (A, left) Chemical drawings for compounds 1, 2, and

ML216. (A, right) Dose response curves from fluorescence-based DNA unwinding assays with BLM-HD.

Experimental data were fitted with a four parameter, log(inhibitor) vs. response model with variable slope.

Calculated values for IC50, Hill slope (nH) and 95% confidence intervals (95% CI) are given in each case. (B)

Turnover of ATP by BLM-HD, as measured by a malachite-green end-point assay, is strongly stimulated in the

presence of a 20-base single-stranded oligonucleotide. (C) Dose response curves from ATP-turnover assays with

BLM-HD. Data were fitted as for (A). In each case data points are the mean of three technical replicates, with error

bars representing one standard deviation (1 SD).

Figure 1 continued on next page
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inhibited production of the single-stranded DNA product in a dose-dependent manner, with a calcu-

lated IC50 of 1.8 mM (Figure 2B).

ML216 interacts with DNA
Another potential false positive could be generated by compounds that bind directly to DNA, thus

preventing BLM-HD from productively engaging with its substrate. To test this hypothesis, we used

a commercial assay that utilises recombinant Topoisomerase I (Topo I) to relax a supercoiled plas-

mid. Compounds that intercalate or bind to the major or minor groove of the plasmid DNA prevent

relaxation. At the manufacturer’s recommended concentration of 200 mM, the positive control

m-Amsacrine (mAMSA) strongly inhibited relaxation of the supercoiled plasmid. In contrast, no effect

was observed with 2 at the same concentration. However, partial inhibition of relaxation could be

observed for a reaction containing ML216 (Figure 2C). To confirm this observation, we purchased

ML216 from an alternative commercial supplier (ML216-A) and also resynthesised and purified the

compound in-house (ML216-B; Materials and methods, Appendix 1). In both cases, a similar level of

inhibition was observed when the compounds were included in the relaxation assay, indicating that

this was both a real and reproducible effect (Figure 2C).

To explore further the possibility that ML216 might interact directly with DNA, we tested its abil-

ity to displace SYBR Green II (SG2) from a DNA substrate in a dye displacement assay (Del Villar-

Guerra et al., 2018; Tse and Boger, 2004). When SG2 binds to DNA, a concomitant increase in its

fluorescence can be measured. If an added compound can compete with the dye for binding to the

DNA, a corresponding decrease in the fluorescent signal is observed. We titrated ML216 into a

forked-50mer dsDNA substrate, that had been pre-incubated with SG2, observing a clear time- and

dose-dependent displacement of the dye, indicating that ML216 can directly interact with a DNA

substrate (Figure 2D).

Compound 2 does not interfere with ATP-binding
With confidence that 2 was, in fact, a bona fide inhibitor of BLM, we repeated the unwinding assay

in the presence a 10-fold higher concentration of ATP to examine if the compound was directly com-

petitive with nucleotide binding to the active site of the enzyme. As the resulting IC50 value was

identical to that previously determined, it ruled out this mode of inhibition, and suggested that the

compound bound elsewhere (Figure 2—figure supplement 1).

Compound 2 is a non-competitive inhibitor
ATP-turnover experiments, under Michealis-Menten conditions, allowed us to generate a Linewea-

ver-Burk plot with data taken from DNA substrate titrations in the presence of 0, 5, and 10 mM of 2.

The resultant plot indicated a non-competitive (allosteric) mode of inhibition for 2 (Figure 2E). With

this information, we postulated that 2 might only bind to BLM-HD when it was engaged with a DNA

substrate. We therefore revisited MST, first confirming the interaction of BLM-HD with the single-

stranded 20mer used in our malachite green assay, plus a shorter 15mer that would be taken into

crystallographic trials (Figure 2F). We next titrated 2 into the two pre-formed BLM-HD/ssDNA com-

plexes. This time changes in fluorescent signal could be detected, confirming our hypothesis, with

dissociation constants of 1.7 and 2.6 mM determined for the interaction with the 15mer and 20mer,

respectively (Figure 2G).

Enabling structural biology with the expression construct BLM-HDDWHD

We created the expression construct BLM-HDDWHD to remove the conformationally flexible Winged

Helix domain (WH) that requires the presence of either a stabilising nanobody, or interaction with a

large DNA substrate to facilitate crystallogenesis (Newman et al., 2015; Swan et al., 2014)

Figure 1 continued

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Assay data for compunds 3 to 7.

Figure supplement 2. Indicative binding isotherms for titrations of Mg-ADP and Mg-ATPgS into BLM-HD as

measured by MST.
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replacing it with a short poly-(glycine/serine) linker that serves to connect the Zinc-binding domain

(Zinc) directly to the Helicase and RNAse C-terminal domain (HRDC, Figure 3A). In validation of this

approach, we were able to crystallise the protein in complex with ADP and magnesium co-factor,

and to determine its structure at a resolution of 1.53 Å; a significant increase in resolution over struc-

tures previously deposited in the PDB (4CDG, 2.8 Å; 4CGZ, 3.2 Å; 4O3M, 2.3 Å; see Appendix 1—

table 1).

Superposition of the structures of BLM-HD (PDB: 4CDG) and BLM-HDDWHD produces a rmsd of

0.86 Å over 2450 atom positions (D1 + D2 + Zn; PyMOL), indicating the overall conformation and

geometry of the two recombinant proteins is highly similar, despite deletion of the WH domain (Fig-

ure 3—figure supplement 1). Furthermore, BLM-HDDWHD binds both ssDNA-15mer and 2 with a

similar affinity to that of BLM-HD (Figure 3—figure supplement 2).

Table 1. Summary of inhibition data for seven exemplars from the identified compound series.

IC50 values were determined by fitting of experimental data to log (inhibitor) vs response models pro-

vided in GraphPad Prism. Data for the unwinding assay correspond to three technical replicates from

a single experiment. For the ATP-turnover assay data correspond to at least two independent experi-

ments, each containing three technical replicates.

unwinding turnover

# Chemical drawing IC50 [95% CI]; mM IC50 [95% CI]; mM

2 2.2
[1.7–2.7]

3.2
[2.3–4.0]

3 3.5
[2.4–5.2]

5.3
[4.7–6.1]

4 6.6
[3.4–12.7]

11.2
[8.3–15.3]

5 12.8
[4.5–36.8]

47.86
[18.28–180.7]

6 56.9
[25.4–171.3]

40.94
[15.9–139.8]

7 No inhibition No inhibition

ML216 4.0
[3.7–4.3]

4.4
[4.0–4.8]
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Figure 2. DNA interaction assays. (A) Titration of BLM-HD with 2 prevents the unwinding of a forked-50mer dsDNA substrate into its component

strands, as judged by native gel electrophoresis. (B) Quantification of inhibitory activity by 2 in the gel-based activity assay. Experimental data were

fitted with a four parameter, log(inhibitor) vs. response model with variable slope. Calculated values for IC50, nH and 95% CI are given in each case. (C)

Representative results from a Topoisomerase I (Topo I) DNA-unwinding assay. M = molecular mass maker; DMSO = buffer supplemented with dimethyl

Figure 2 continued on next page
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Crystal structure of BLM-HDDWHD in complex with compound 2 and
ssDNA
We crystallised 2 in complex with BLM-HDDWHD, ADP/magnesium co-factor, and ssDNA-15mer

(liganded complex); determining its structure at a resolution of 3.0 Å (Appendix 1—table 1). The

complex crystallised in space group P1, with six molecules of BLM-HDDWHD and associated ligands

forming the asymmetric unit. Interestingly, the co-crystallised ssDNA-15mer helped drive formation

of the crystal lattice, due to its partial self-complementary at the 5’ end (5’-CGTAC-3’) that serves

to form four consecutive base pairs between two oligonucleotides (Figure 3B); the cytosine at the 5’

end of the oligonucleotide is not readily discernible in electron density maps and is therefore likely

to be disordered. An extensive series of interactions are made to the bound nucleic acid by amino

acids from all four sub-domains of the BLM-HDDWHD expression construct (Figure 3—figure supple-

ment 3).

Compound 2 sits in a small pocket found on the opposite face of the protein to that which binds

nucleotide (Figure 3B, inset), and integrates amino acid side chains from both the D1 and D2 subdo-

mains of the helicase core, as well as several from the Zn-binding domain. The oxygen of the amino

group at the centre of the compound is hydrogen-bonded to the side chain of Asn1022, whilst the

nitrogen of the same moiety is in hydrogen-bonding distance to both the backbone oxygen and

side chain of Ser801. The side chains of His805 and Thr1018 stack up against, and provide Van der

Waals contacts to, the central ring system of the 3-amino-4,5-dimethylbenzenesulfonamide pendant

group as part of a pocket lined by the side chains of residues Asp806, His1014, Thr1015, His1019

(Figure 3C). The nitrogen of the sulphonamide group is hydrogen-bonded to the side chain of

Asp840, which itself is bonded to the side chain of His805. The 2-methyl-thiazole moiety of 2 sits

against the surface of the alpha-helix containing Gly972 and is sandwiched by additional packing

interactions with the side chains of Gln802 and Glu971. The side chains Thr832 and His798 also con-

tribute to this section of the binding pocket, which is ‘capped’ by Gln975. The central benzene ring

of 2 is also contacted by the side chains of Gln802 and Glu971.

Reconfiguration of the aromatic-rich loop
The aromatic-rich loop (ARL) is a highly conserved motif in RecQ helicases that serves as a molecular

‘sensor’, detecting binding of single-stranded DNA and coupling it to structural rearrangements that

enable ATP hydrolysis (Manthei et al., 2015; Zittel and Keck, 2005). In our high-resolution structure

of BLM-HDDWHD, the ARL is disordered and is not visible in electron-density maps (Figure 4A). By

contrast, it can be fully modelled in the liganded complex, but its conformation is distinct from that

observed in PDB entries 4CDG and 4CGZ where the single-stranded extension of bound nucleic

acid substrates does not extend across to the D1 domain (Figure 4B, Figure 4—figure supplement

1).

Structures with a high degree of structural similarity to the liganded complex were identified with

PDBeFold (Krissinel and Henrick, 2004). The search produced PDB entries 6CRM and 4TMU, with

Q-scores of 0.47 and 0.46 respectively, which both describe structures of the catalytic core of Crono-

bacter sakazakii RecQ helicase (CsRecQ) in complex with different DNA substrates (Manthei et al.,

2015; Voter et al., 2018). Comparison, in each case, reveals a close to identical conformation of the

Figure 2 continued

sulfoxide control; mAMSA = mAmsacrine; ML216, ML216-A, ML216-B = refer to the three independent sources of the compound as described in the

main text of the manuscript (D) Dose response curves from SYBR-Green II dye displacement assays, using a forked-50mer DNA duplex incubated with

ML216 for a period of 20 (open circles), 45 (filled circles), and 60 min (crossed circles). Fitted lines are intended as visual aids only. (E) Lineweaver-Burk

plot for data generated at three compound concentrations (0, 5, and 10 mM) in a colourimetric ATP turnover assay. Linear regression produces an

intercept of all data on the X-axis indicating that 2 is a non-competitive inhibitor (i.e. same Km, altered Vmax parameter). (F, G) Binding isotherms for

binding of BLM-HD to ssDNA-15mer and �20mer, or to compound 2 in the presence of either oligonucleotide, as determined by microscale

thermophoresis (MST). Experimental data were fitted with a one-site, specific binding model. Values for Kd and 95% CI are given in each case. For all

plots, data represent the mean of three technical replicates with error bars representing 1 SD.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Dose response curves from fluorescence-based DNA unwinding assays with BLM-HD, carried out at two different ATP

concentrations.
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Figure 3 continued on next page
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ARL to that observed in our liganded complex, as well as nucleic acid interactions that include the

D1 domain (Figure 4—figure supplements 1, 2 and 3).

For CsRecQ, Manthei et al., 2015 described concerted movements of residues Phe158 and

Arg159, within the ARL to interact with the 3’ single-stranded extension of their co-crystallised DNA

substrate in our liganded complex the equivalent residues undergo a similar transition (Phe807 and

Arg808, respectively). We observe that Phe158 moves to make base-stacking interactions with G8

and A9 of the bound ssDNA-15mer. By comparison to 4CGZ, we also see that Arg808 switches from

interacting with Asp806 of the ARL to the backbone oxygen of Pro715 and the side chain of Glu768

(Figure 4A and B). Notably, mutation of residues equivalent to Arg808 or Glu768 in EcRecQ

(Arg159 and Glu124) have been shown to perturb enzyme function (Manthei et al., 2015; Zittel and

Keck, 2005). Interestingly, in BLM, Asp806 is ‘freed’ to interact with the side chain of His1019, a res-

idue within the Zn-binding domain (Figure 4A and B).

Movement of the HRDC from parked to DNA-engagement
The HRDC (Helicase and RNase D C-terminal domain) was originally identified as a putative nucleic-

acid binding motif in both BLM and WRN (Werner syndrome helicase) and named in part for its simi-

larity to a domain found at the C-terminus of E. coli RNase D (Morozov et al., 1997). However, only

very weak ssDNA binding (Kd ~100 mM) has been reported for this domain in isolation (Kim and

Choi, 2010).

In their paper describing the crystal structure of BLM in complex with DNA, Newman et al.

observe that the HRDC domain packs against a shallow cleft formed between the D1 and D2

domains of the helicase core, with the interface between the different modules being highly polar in

nature. Their follow-on small angle X-ray scattering experiments also indicate that the HRDC domain

of BLM is free to disassociate and re-bind to the helicase core (Newman et al., 2015). In our high-

resolution crystal structure of BLM-HDDWHD, we observe the same ‘parked’ interaction for the HRDC,

even in the absence of the WHD, but in our liganded structure we see that the HRDC domain swings

across the face of the core helicase fold (Figure 5A) to make a series of polar interactions with the

ssDNA-15mer, which is presented on the surface of the D1 domain of a second protomer within the

asymmetric unit (Figures 5B and 3B). The side chains of HRDC residues Asn1242 and His1236, con-

tained within the ‘hydrophobic 310 helix’ (Kim and Choi, 2010), are hydrogen-bonded to the O4

group of the T12 base and the N3 of the G11 base, respectively. The side chain of Phe1238 is also

involved in an edge to ring-stacking interaction with the G11 base.

Each of these interactions is consistent with chemical shift changes previously observed in HSQC

spectra – as a result of titrating ssDNA into 15N-labelled BLM-HRDC (Kim and Choi, 2010) – sug-

gesting that the observed interactions have biological relevance, and that our structure represents

the first to capture HRDC interactions with ssDNA. Furthermore, amino acids residues Lys1227,

Tyr1237, Thr1243, and Asn1239 are also in close proximity to the bound DNA (Figure 5B) and could

be expected to undergo changes in chemical environment upon interaction; again consistent with

the reported perturbations in HSQC spectra (Kim and Choi, 2010). Asn1239 might also be expected

Figure 3 continued

asymmetric unit of BLM-HDDWHD/Mg-ADP/2/ssDNA crystals, driven by partial complementarity of the single-stranded 15mer oligonucleotide at its 5’

end (DNA1 and DNA2, coloured orange and cyan respectively). Compound 2 (yellow-coloured spheres) binds to a small pocket found on the opposite

side to that which binds nucleotide (grey-coloured spheres). (C, left) Molecular cartoon representation highlighting interactions made between 2 and

BLM-HDDWHD. Key amino acid residues are labelled and shown in stick representation, with carbon atoms coloured according to the schematic shown

in panel A. Compound 2 is shown in stick representation, with carbon atoms coloured yellow. Potential hydrogen bonds are indicated by black dotted

lines. (C, right) Modified LIGPLOT+ (Laskowski and Swindells, 2011) diagram of protein-compound interactions. See associated key for additional

detail.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Superposition of the structures of BLM-HD (PDB: 4CDG) and BLM-HDDWHD using PyMOL (Schrödinger, 2020).

Figure supplement 2. Isotherms for binding of BLM-HDDWHD to (top) ssDNA-15mer and (bottom) compound 2 in the presence of ssDNA-15mer, as

determined by MST.

Figure supplement 3. Schematic summary of DNA-interactions made within the crystal lattice of the liganded complex (BLM-HDDWHD + Mg-ADP +

ssDNA-15mer + compound 2).
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Figure 4. Structural transitions around the aromatic rich loop. (A) Molecular secondary structure cartoons for the region surrounding the aromatic rich

loop (ARL) of BLM-HDDWHD (top), PDB entry 4CGZ; BLM-HD in complex with DNA (middle) and liganded complex; BLM-HDDWHD in complex with ADP,

ssDNA-15mer and 2 (bottom). The side chains for key amino acid residues are shown in stick representation, with carbon atoms coloured according to

their respective domains (see associated key). Bound ADP and 2 are also shown in stick representation, with carbon atoms coloured grey and yellow,

Figure 4 continued on next page
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to pick up an additional contact with the 5’-phosphate of a subsequent nucleotide in an extended

substrate.

Examining the selectivity profile of compound 2
With a robust molecular understanding for the binding mode for 2, we next examined if the com-

pound displayed selectivity for members of the RecQ-helicase family. In our ATP-turnover assay, we

saw no inhibition of recombinant helicase domains (HD) from human WRN, human RecQ5 or the

unrelated E. coli helicase UvrD over the concentration range tested, whilst at higher concentrations

inhibitory effects started to appear against human RecQ1. In contrast, ML216 robustly inhibited all

four RecQ-family helicases tested and at higher concentrations also affected UvrD; in line with, and

in support of, our observation that ML216 is non-specific and elicits at least part of its inhibitory

effect by binding directly to DNA (Figure 6A).

Whilst compound solubility prevented generation of a complete inhibition curve for UvrD and

thus a robust estimate of IC50, the estimated Hill coefficient (nH) was close to 1 — in contrast to

those calculated for titrations of ML216 against the RecQ helicases, which were generally steeper

(ranging from 1.8 to 4.3), again suggesting that instead of a forming a 1:1 protein to inhibitor com-

plex, there is in fact, a more complex (possibly mixed) mode of binding for this compound to this

class of enzymes.

Conformational trapping by compound 2
As binding of 2 has no direct effect on the ability of BLM-HDDWHD to bind either ssDNA or nucleo-

tide, we hypothesised that it might act to ‘lock’ the helicase into a conformational state where DNA

substrates remain bound but cannot be unwound. In support of this idea, we undertook MST assays

with a labelled single-stranded oligonucleotide in both the presence and absence of 2. Here, we

observed a clear concentration-dependent decrease in Kd when 2 was added, consistent with a

decrease in the off-rate for DNA-binding, supporting our hypothesis that the compound acts to

‘trap’ BLM in its interaction with ssDNA (Figure 6B).

Discussion

Conformational cycle of RecQ helicases
During their catalytic cycle, the RecQ-family of helicases undergo a sequential set of conformational

transitions, driven by ATP-binding and hydrolysis, then the subsequent release of inorganic phos-

phate and ADP (Newman et al., 2017). An initial ‘encounter’ complex is generated when the D2

domain of a RecQ-helicase binds to single-stranded DNA (ssDNA). This then leads to a set of motif /

domain movements, including the ARL, that serve to couple ATP-binding and hydrolysis to move-

ment of the bound ssDNA, such that it is now functionally engaged with the D1 domain. The process

of DNA-unwinding is thought to proceed via an ‘inchworm’ type of mechanism, where the D2

domain sequentially binds and releases the DNA substrate, in order to ‘feed’ it onto the D1 domain,

translocating it one base at a time. The WHD and HRDC domains of the RecQ helicase-family appear

to contribute to the binding, recognition and unwinding of different DNA substrates via their ability

to bind to ds and ssDNA respectively.

Figure 4 continued

respectively. (B) Expanded and rotated view highlighting the interactions made between the ARL and ssDNA-15mer oligonucleotide (cartoon coloured

cyan) in the liganded complex, also showing the relative position of compound 2. Potential hydrogens bonds are represented by black dotted lines.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Molecular secondary structure cartoons showing selected amino acid side chains of the aromatic-rich loop (ARL) region in PDB

entries 4CDG and 4CGZ (BLM-HD) and 4TMU (Cronobacter sakazakii RecQ) to that reported here for liganded-BLM-HDDWHD.

Figure supplement 2. Superposition of the ARL in liganded-BLM-HDDWHD (coloured orange) with those found in PDB entries 4TMU (cyan) and 6CRM

(Voter et al., 2018) (grey); which both represent structures of the catalytic core of C. sakazakii RecQ in complex with different DNA substrates.

Figure supplement 3. Molecular cartoon representations of the helicase catalytic cores reported in PDB entries 4CGZ, 4O3M, and 4TMU, highlighting

their respective interactions with bound DNA substrates and comparing this to liganded BLM-HDDWHD.
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Figure 5. Repositioning of the HRDC domain. (A) Molecular surface representation of BLM-HDDWHD (left) and the

liganded complex (right) highlighting the relative positions of the HRDC domain (cylindrical helices coloured in

pink). The HRDC moves from a ‘parked’ position located on one side of the helicase core, to an ‘engaged’

position on the other side in order to interact with the bound ssDNA-15mer. The N-terminus of the first HRDC

alpha-helix is extended at the by ~6 aa, relative to the ‘parked’ position (as indicated by an arrow). (B) Molecular

secondary structure cartoon highlighting interactions made by the HRDC to the bound ssDNA-15mer

oligonucleotide. Side chains for key amino acid residues are shown in stick representation, with carbon atoms

coloured according to their respective domains (see associated key). The bound ssDNA-15mer oligonucleotide is

Figure 5 continued on next page
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Inhibition via the allosteric binding site
As noted earlier, our liganded complex is structurally most similar to PDB entry 4TMU (CsRecQ)—a

structure that has been previously characterised as representing a ‘pre-ATP hydrolysis’ conformation

in the catalytic cycle of RecQ-family helicases (Newman et al., 2017). Although we have co-crystal-

lised BLM-HDDWHD with ADP, we can see that the active site of the liganded complex is also compat-

ible with ATP-binding, through comparison to the crystal structure of E. coli RecQ in complex with

ATP-g-S (Figure 6—figure supplement 1; Bernstein et al., 2003). This in turn suggests that binding

of compound 2—to a small pocket hereinafter referred to as the allosteric binding site (ABS)—acts

to ‘trap’ or stall BLM by blocking the set of conformational changes required for progression to the

next step of the catalytic cycle.

The ARL must be in a particular conformation to permit compound binding, otherwise the side

chain of Trp803 would occupy and occlude the ABS (Figure 4A, Figure 4—figure supplement 1).

This condition is satisfied when the D1 domain of BLM is engaged with single-stranded DNA, provid-

ing one explanation as to why we only observe compound binding in the presence of oligonucleo-

tide. However, it is equally possible that binding of 2 serves to promote rearrangement of the ARL

into the configuration that then permits the D1-ssDNA interaction.

The side chains of amino acids Gln975 and His798 contribute to the ABS (Figure 3C right and

Figure 4A). In hsRECQ5, a polar contact between the equivalent residues (Gln345 and His160) is

reported to be broken as a consequence of ATP-binding, freeing the ARL to interact productively

with the single-stranded 3’-overhang of a bound DNA substrate (Newman et al., 2017). Importantly,

mutation of the glutamine to alanine (Q345A) prevents stimulation of ATPase activity by binding to

DNA, but does not perturb the basal rate of hydrolysis (Newman et al., 2017). The importance of

the conserved glutamine is perhaps more apparent in E. coli RecQ, where mutation of the equivalent

residue (Q322A) essentially ablates all ATPase capability (Manthei et al., 2015). Consistent with the

‘pre-ATP hydrolysis’ conformation for our liganded complex, the polar contact between Gln975 and

His798 is broken, being ~3.8 Å apart. We note, however, that proximity of the 2-methyl-thiazole moi-

ety from 2, may sterically prevent reformation of this important contact.

It is clear that more detailed kinetic studies would be required to unambiguously distinguish

between a ‘passive’ or ‘induced’ mode of binding for 2. However, compounds bound stably to the

ABS should sterically prevent the ARL from reverting to its initial conformation/structurally disor-

dered state found at the beginning of the catalytic cycle (Figure 4A,B). The observed hydrogen

bond between Asp806 and His1019 may also act to stablise the ternary interaction between BLM-

HDDWHD, 2 and ssDNA (Figure 4).

Achieving selectivity by Helical Hairpin interactions
In addition to the ARL, several other regions of BLM interact with 2 when it is bound to the ABS,

including amino acids from helicase motifs I and III, plus a short region just upstream of motif IV

(Gorbalenya and Koonin, 1993; Hall and Matson, 1999) (pre-motif IV, Figure 4A). Unsurprisingly,

the amino acid sequence identity of each region across the RecQ-family is extremely high, and do

not therefore provide a facile explanation for the observed selectivity of 2 (Figure 7A). In particular,

two of the amino acid side chains involved in hydrogen bonds with 2 are absolutely conserved in

identity (motif I, Ser801; motif III, Asp840, Figures 7A and 3C). Likewise, amino acids within these

motifs involved in hydrophobic contacts with 2 are also highly conserved in identity/chemical prop-

erty. However, the third hydrogen bonding interaction (made by Asn1022 to 2) and its position

within the ‘Helical Hairpin’ of the Zn-binding domain provides some insight, as both the length and

amino acid composition of this loop is highly divergent across the RecQ-family and absent from

RecQ4 (Figure 7A). There is no obvious consensus for any of the residues, in equivalent positions to

those in BLM, involved in compound interaction. This observation provides a plausible route,

although the addition or alteration of chemical groups to the core scaffold of 2, for generating

potent and highly selective inhibitors for the individual members of the RecQ-family of helicases.

Figure 5 continued

involved in interactions with both the D1 domain (carbon atoms coloured green) and the HRDC (carbon atoms

coloured pink). Bound oligonucleotide is shown in stick representation, with carbon atoms coloured cyan.
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Figure 6. Selectivity profile of compound 2. (A) Dose response curves from ATP-turnover assays for titration of compounds 2 and ML216 against

purified recombinant BLM-HD, WRN-HD, RecQ1-HD, RecQ5-HD and UvrD respectively. Calculated values for IC50, nH and 95% CI are given in each

case. (B) MST-derived binding isotherms for the interaction of BLM-HD with ssDNA-20mer in the presence of increasing concentrations of 2. Calculated

values for Kd and 95% CI are given in each case. For all plots, data represent the mean of three technical replicates with error bars representing 1 SD.

Figure 6 continued on next page
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Release of the HRDC
During the catalytic cycle, it is clear that the HRDC must be ‘released’ in order to interact with

ssDNA, indeed amino acid residues within the aforementioned ‘hydrophobic 310 helix’ contribute to

both the ‘parked’ and ‘engaged’ interfaces; as exemplified by the side chain of Phe1238 that moves

from a packing interaction with Pro956, a residue in the D1 domain, to an interaction with a base in

the bound ssDNA-15mer (Figure 5A). As a consequence of the extended ssDNA interface visualised

in our liganded complex (also seen in PDB entry 4TMU), we can see that the size and shape of the

pocket that serves to bind the HRDC is substantially altered. Interaction of the D1 domain with

ssDNA alters its spatial relationship with the D2 domain, leading to a widening of the pocket and to

disruption of the hydrogen bonds that have previously been described to anchor the HRDC in place

(Newman et al., 2015; Figure 4—figure supplement 3). Binding and release of the HRDC has pre-

viously been linked to nucleotide-status, indicating that the domain only becomes disengaged when

BLM is not bound to ADP or ATP (Newman et al., 2015). Our data suggest an additional nuance: if

the HRDC is able to engage in an ssDNA interaction, it is prevented from re-binding to the catalytic

core, thus isolating it from the catalytic cycle of the enzyme.

A speculative model for the involvement of the HRDC in unwinding
DNA substrates
During model building and evaluation of our liganded structure, we found that the nucleic-acid inter-

actions made by the different sub-domains of BLM-HDDWHD explain how the HRDC might contribute

to the ability of BLM to unwind different types of DNA substrate—incorporating information taken

from our own structure, as well as that for the interaction of the WHD with dsDNA from PDB entry

4CGZ (Figure 7B).

Simple superposition of the two structures results in a clash of the HRDC (in our structure) with

the WHD; however, this is readily resolved by a small horizontal translation of the HRDC (roughly

equivalent to adding an additional nucleotide to the single-stranded portion of the bound DNA sub-

strate). We also note that, in our liganded structure, the polarity of the single-stranded DNA inter-

acting with the HRDC is opposite to that of our model but with the understanding that is actually

dictated by the packing arrangement of the molecules that serve to generate the crystal lattice; on

examination, each of the observed HRDC interactions is fully compatible with binding to ssDNA in

either orientation.

However, using the trajectories for each of the bound DNA substrates as positional markers

allows generation of a model for unwinding of a simple DNA duplex. The double-stranded portion

of the substrate is held in place through the previously described set of interactions with the WHD

domain (Newman et al., 2015). The b-hairpin of the WH serves to separate the DNA duplex, with

one strand ‘actively’ engaged with the D1/D2 domains of the helicase core and the Helical Hairpin

of the Zn-binding domain. The second ‘inactive’ strand passes along the opposite face of the WH b-

hairpin, to subsequently interact with the HRDC domain, potentially acting to prevent reversion and

re-annealing of the DNA duplex. The relatively poor binding affinity of the HRDC for ssDNA is com-

patible with this model, as it would allow iterative release and recapture of the ‘inactive’ strand as

the DNA substrate is unwound.

A model for how BLM might unwind a Holliday Junction has previously been reported

(Kitano, 2014) but this treats the HRDC domain as a static object, leaving in it the ‘parked’ position

and making no interactions with nucleic acid. Data published subsequent to this paper has indicated

that the HRDC plays a more fundamental role, for example the charge-reversal mutation N1239D to

has been shown to ablate interaction of the HRDC with both ssDNA and a Holliday junction sub-

strate (Kim and Choi, 2010). The HRDC has also been reported to confer DNA-structure specificity

to BLM, with Lys1270 playing a role in mediating interactions with DNA and for efficient dissolution

of double-Holliday junction substrates in vitro (Wu et al., 2005). Consistent with this, our structural

Figure 6 continued

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The active site of the liganded complex is compatible with binding of ATP, as judged by superposition of PDB entry 1OYY (E.

coli RecQ in complex with ATP-gS Bernstein et al., 2003).
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Figure 7. Compound selectivity/speculative model. (A) The observed selectivity of compound 2 appears to arise from interactions made with amino
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data reveals that both Asn1239 and Lys1270 of the HRDC are poised to interact with a section of sin-

gle-stranded DNA just one to two nucleotides longer than that captured in our crystal lattice

(Figure 5B). Finally, our model also suggests the existence of a transient direct interaction between

the WHD and the HRDC.

Compound 2 itself, is unlikely to be suitable as a therapeutic agent, due to its poor ability to pen-

etrate the cell membrane of mammalian cells (data not shown). Indeed, subsequent iterations of 2,

or compounds that bind to the same allosteric site, may lead a tool compound that could be used to

discover or confirm synthetic lethal relationships with BLM across different tumour backgrounds

(Datta et al., 2021).

However, as the first described bona fide selective allosteric inhibitor of human BLM, the under-

standing of its mode of action will aid ongoing efforts to develop molecules targeting this class of

enzymes for the treatment of human disease.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Gene
(Homo sapiens)

BLM UniProt P54132 BLM_HUMAN

Gene
(Homo sapiens)

RECQL UniProt P46063 RECQ1_HUMAN

Gene
(Homo sapiens)

WRN UniProt Q14191 WRN_HUMAN

Gene
(Homo sapiens)

RECQL5 UniProt O94762 RECQ5_HUMAN

Gene
(Escherichia coli)

uvrD UniProt P03018 UVRD_ECOLI

Strain
(Escherichia coli)

BL21(DE3) New England Biolabs C2527I Competent Cells

Sequence-based reagent ssDNA-15mer This paper CGTACCCGATGTGTT

Sequence-based reagent ssDNA-20mer This paper CGTACCCGATGTGTTCGTTC

Sequence-based reagent Forked-50mer:
FORK A

This paper XGAACGAACACATCGGGTACG
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
X = Black Hole Quencher 2 or none

Sequence-based reagent Forked-50mer:
FORK B

This paper TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
CGTACCCGATGTGTTCGTTCY
Y = Tetramethylrhodamine or none

Recombinant DNA reagent pET-17b Novagen
Merck Millipore

69663

Recombinant DNA reagent pNIC28-Bsa4 Addgene 26103

Chemical compound, drug ML216 Merck KGaA
Caymen Chemical

SML0661
15186

Commercial assay or kit PiColorLock Gold
Phosphate
Detection System

Novus Biologicals 303–0030

Commercial assay or kit DNA Unwinding
Assay Kit

Inspiralis DUKSR001

Software, algorithm BUSTER Global Phasing RRID:SCR_015653

Software, algorithm CCP4 CCP4 RRID:SCR_007255

Continued on next page

Figure 7 continued

key for additional information. (B) A speculative model for how the HRDC domain may contribute to the unwinding of a DNA duplex or a Holliday

junction (inset) via transient interactions with the passive or ‘inactive’ strand. See associated key for additional details.
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Software, algorithm Coot Coot RRID:SCR_014222

Software, algorithm Fiji Fiji RRID:SCR_002285

Software, algorithm Phaser Phaser RRID:SCR_014219

Software, algorithm PHENIX PHENIX RRID:SCR_014224S

Software, algorithm Prism GraphPad RRID:SCR_002798

Software, algorithm XDS XDS RRID:SCR_015652

Compound synthesis and purification
Details for synthesis and purification of compounds is provided in Appendix 1.

Expression constructs
Synthetic genes, codon-optimised for expression in E. coli, were purchased from GeneArt (Thermo-

Fisher Scientific, Loughborough, UK). With the exception of RECQ5 (see below) the coding sequence

was subcloned into an in-house modified pET-17b vector at the NdeI and EcoRI sites of the multiple

cloning site.

BLM-HD, BLM-HDDWHD

pAWO-STREP-3C; a pET-17b expression vector modified to encode an N-terminal human rhinovirus

3C-protease (HRV-3C) cleavable StrepII-affinity tag. BLM-HD encodes amino acids 636–1298 of

human BLM (UniProt ID: BLM_HUMAN), whereas BLM-HDDWHD encodes amino acids 636–1074 and

1231–1298.

RECQ1-HD
pAWO-His-TRX-3C; a pET-17b expression vector modified to encode an N-terminal His6-tagged E.

coli Thioredoxin HRV-3C cleavable affinity/solubility tag. RECQ1-HD encodes amino acids 49–616 of

human RECQ1 (Uniprot ID: RECQ1_HUMAN).

WRN-HD
pAWO-His-SUMO-3C; a pET-17b expression vector modified to encode an N-terminal His6-tagged

S. cerevisiae Smt3 (SUMO) HRV-3C cleavable affinity/solubility tag. WRN-HD encodes amino acids

480–1251 of human WRN (Uniprot ID: WRN_HUMAN).

RECQ5-HD
The expression construct pNIC28-Bsa4-RecQL5 was obtained from the Structural Genomics Consor-

tium, Oxford (see https://www.thesgc.org/tep/RECQL5 for full details). RECQ5-HD encodes amino

acids 11–526 of human RECQ5 (Uniprot ID: RECQ5_HUMAN).

Expression and purification
BLM-HD, BLM-HDDWHD

E. coli strain BL21(DE3) [New England Biolabs, Hitchin, UK] was transformed with the required

expression plasmid. A ‘starter’ culture was generated by inoculating a 250 ml glass Erlenmeyer flask

with 100 ml of Turbo-broth [Molecular Dimensions, Sheffield, UK] supplemented with 50 mg/ml ampi-

cillin. The culture was allowed to grow in an orbital-shaking incubator set at 37˚C, 220 rpm, until the

absorbance at 600 nm reached 1.5. The culture was then stored at 4˚C until the following day.

Twelve ml of the ‘starter’ culture was used to inoculate a 2 l Erlenmeyer containing 1lL of Turbo-

broth supplemented with antibiotic as before. The culture was grown until the absorbance at 600

nm reached 1.5, when the flask containing the culture was placed on ice for a period of 30 min. Dur-

ing this time, the incubator temperature was reduced to 20˚C. After incubation on ice, isopropyl-b-

D-thiogalactoside (IPTG) was added to a final concentration of 0.4 mM, to induce protein
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expression. The flask was then returned to the incubator, and the culture allowed to grow overnight

at the reduced temperature of 20˚C. Cells were harvested by centrifugation after a period of 16 hr.

The resultant cell pellet was stored at �20˚C until required.

The cell pellet arising from 2 l of culture was resuspended, on ice, in 25 ml of Buffer A (50 mM

HEPES-NaOH, pH 7.5, 1 M NaCl, 0.5 mM TCEP, 0.5 mM EDTA) supplemented with a protease inhib-

itor tablet (cOmplete EDTA-free Protease Inhibitor Cocktail Tablet; Roche, Burgess Hill, UK). The

cells were lysed by sonication and insoluble material removed by centrifugation. The resultant super-

natant was applied to a 5 ml Strep-Tactin Superflow Plus Cartridge (Qiagen, Manchester, UK), pre-

equilibrated with Buffer A. Unbound material was application of 10 column volumes (CV) of Buffer A

(50 ml). Retained proteins were then eluted from the column by application of 5 CV of Buffer B

(Buffer A supplemented with 5 mM desthiobiotin). Fractions containing the required protein were

identified by SDS-PAGE, pooled, and then concentrated to a final volume of 2.5 ml using centrifugal

concentrators (Vivaspin 20, 5000 MWCO; Sartorius Stedim Biotech GmBH, Goettingen, Germany).

After overnight cleavage of the affinity tag with human rhinovirus 3C-protease, the sample was

diluted to reduce the NaCl concentration to below 250 mM. This was applied to a 5 ml HiTrap Hepa-

rin HP cartridge (GE Healthcare Life Sciences, Little Chalfont, UK), pre-equilibrated in Buffer C (50

mM HEPES-NaOH, pH 7.5, 250 mM NaCl, 0.5 mM TCEP, 0.5 mM EDTA). Unbound material was

removed by washing the column with 10 CV of buffer C. A linear NaCl gradient starting at a concen-

tration of 250 mM and ending at 2000 mM, over 50 CV, was applied to the column. Fractions con-

taining the desired recombinant protein were identified, pooled and concentrated as before. The

concentrated sample was then applied to an HiLoad 26/600 Superdex 200 size exclusion chromatog-

raphy column [GE Healthcare] pre-equilibrated in Buffer D (20 mM HEPES-NaOH pH7.5, 250 mM

NaCl, 0.5 mM TCEP). Again, fractions containing the desired recombinant protein were identified,

pooled and concentrated, then flash-frozen in aliquots in liquid nitrogen and stored at �80˚C until

required.

RecQ1-HD, RecQ5-HD, WRN-HD
Expression and purification of RecQ1-HD, RecQ5-HD and WRN-HD were achieved using procedures

similar to that used for BLM-HD, but with initial capture achieved using an IMAC column. Samples

were applied to a HiTrap 5 ml TALON Crude column (GE Healthcare) pre-equilibrated in Buffer A

(50 mM HEPES-NaOH pH 7.5, 500 mM NaCl, 0.5 mM TCEP, 10 mM imidazole). The column was

washed with five column volumes of Buffer A, with retained protein eluted by the addition of 5 CV

of Buffer B (50 mM HEPES-NaOH pH 7.5, 500 mM NaCl, 0.5 mM TCEP, 300 mM imidazole). Affinity/

solubility tags were removed by incubation with either HRV-3C (RecQ1, WRN) or TEV protease

(RecQ5).

UvrD
Purified recombinant E. coli UvrD was kindly provided by Dr. Mohan Rajasekaran (Sussex Drug Dis-

covery Centre, University of Sussex, UK).

REAGENTS
Solutions

Mg-ATP = 50 mM MgCl2, 50 mM ATP
Mg-ADP = 50 mM MgCl2, 50 mM ADP

Oligonucleotides
Reverse-phase purified oligonucleotides were purchased from either Kaneka Eurogentec S.A. (Sera-

ing, Belgium) or Eurofins Genomics Germany GmbH (Ebersberg, Germany).

ssDNA-15mer: 5’-CGTACCCGATGTGTT-3’
ssDNA-20mer: 5’-CGTACCCGATGTGTTCGTTC-3’
Forked-50mer
A: 5’-XGAACGAACACATCGGGTACGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’
B: 5’-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCGTACCCGATGTGTTCGTTCY-3’
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Where X and Y are the following modifications:

Unwinding assay; X = BHQ2 (Black Hole Quencher 2), Y = TAMRA (tetramethylrhodamine)
Gel-based assay; X = none; Y = TAMRA
Dye-displacement assay; X = none; Y = none

FORK-A and FORK-B were annealed at a concentration of 200 mM using a slow-cooling cycle pro-

grammed into a PCR thermal cycler, in a buffer containing 20 mM HEPES.NaOH pH 7.5, 50 mM

NaCl and 1 mM MgCl2.

Commercially sourced ML216
ML216 was purchased from Merck KGaA (Darmstadt, Germany), product code: SML0661. ML216-A

was purchased from Cayman Chemical (Ann Arbor, Michigan, USA), product code: 15186.

Biochemical assays
Fluorescence-based DNA unwinding assay
Methodology is based on that previously reported by Rosenthal, 2010. Briefly, assays were carried

out in 384-well black plates, with measurements taken at emission and excitation wavelengths of

540 and 590 nm respectively, in a PHERAstar multimode plate reader (BMG Labtech). Assay buffer:

50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2 mM MgCl2, 0.01% v/v Tween-20, 2.5 mg/ml poly(dI-dC), 1

mM DTT.

A total of 28 ml of BLM-HD (at 0.535 nM in assay buffer) was pre-incubated with 2 ml of compound

(2 mM stock dissolved in 100% v/v DMSO, over a range of final concentrations up to 100 mM) for a

period for 15 min at room temperature. Next, 10 ml of substrate (40 nM forked-50mer dsDNA and

2000 mM Mg-ATP) was added, then incubated for a further 20 min at room temperature, before the

final fluorescent intensity for each well was measured.

Assay conditions (compounds 2 to 7 and ML216): 0.375 nM BLM-HD, 10 nM annealed DNA sub-

strate, 500 mM Mg-ATP in a reaction volume of 40 ml over a 20 min incubation period.

Data for compound 1 are taken from an earlier iteration of the assay and were measured used

the conditions: 3.75 nM BLM-HD, 75 nM annealed DNA substrate, 120 mM Mg-ATP in a reaction vol-

ume of 40 ml over a 20-min incubation period.

Malachite-green ATP turnover assay
Assay uses the PiColorLock Gold Phosphate Detection System from Novus Biologicals following the

manufacturer’s recommended protocol. Briefly, assays were carried out in 96-well clear flat-bot-

tomed plates, with absorbance measurements taken at a wavelength of 630 nm in a CLARIOstar

multimode plate reader (BMG Labtech). Assay buffer: 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 2 mM

MgCl2, 0.05% v/v Tween-20, 0.5 mM TCEP.

165 ml of BLM-HD and ssDNA-20mer (at a concentration of 2.4 nM and 121 nM, respectively) was

pre-incubated with 10 ml of compound (2 mM stock dissolved in 100 % v/v DMSO, over a range of

final concentrations up to 100 mM) for a period of 15 min at room temperature. Next, 25 ml of Mg-

ATP substrate (at 16 mM) was added. After 20 min, reactions were stopped by the addition of 50 ml

Gold mix (a 100:1 ratio of PiColorLock:Accelerator reagents). After 2 min, 20 ml of stabiliser solution

was added to each well. After a further 30 min absorbance measurements were taken.

Assay conditions: 2 nM BLM-HD, 100 nM ssDNA-20mer and 2 mM Mg-ATP in a reaction volume

of 200 ml over a 20-min incubation period.

Gel-based assay
Assay buffer: 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2 mM MgCl2, 0.01% v/v Tween-20, 2.5 mg/ml

poly(dI-dC), 1 mM DTT. 28 ml of BLM-HD (at a concentration of 2.9 nM) was pre-incubated with 2 ml

of compound (2 mM stock dissolved in 100 % v/v DMSO, over a range of concentrations up to 100

mM) for a period of 15 min at room temperature. Next, 10 ml of substrate (300 nM forked-50mer

dsDNA and 4.8 mM Mg-ATP) were added. After 10 min, reactions were terminated by the addition

of 1 x loading dye (6 x solution: 10 mM Tris-HCl pH 7.5, 0.03% w/v bromophenol blue, 60% v/v glyc-

erol, 60 mM EDTA). The samples were then loaded onto a 15% native gel (29:1 acrylamide:bis-acryl-

amide, 0.5 x TBE), separated by electrophoresis, and then visualised using a FLA-1500 fluorimager
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[Fujifilm, Bedford, UK]. The intensity of each species on the gel was quantified using the analysis

tools provided in the software package Fiji (Schindelin et al., 2012).

Topoisomerase I DNA-unwinding assay
Assay uses the DNA Unwinding Assay Kit from Inspiralis (Norwich, UK) following the manufacturer’s

recommended protocol. Resultant samples were applied to a 1% w/v agarose gel (in 1 x TAE buffer),

separated by electrophoresis, stained with ethidium bromide, and then visualised with a UV-transillu-

minator/digital gel documentation system.

Dye-displacement assay
Fluorescence intensity was measured in a CLARIOstar multi-mode plate reader (BMG Labtech) with

excitation and emission wavelengths of 485 nm and 520 nm respectively, in 384-well black plates.

Twenty-eight ml of forked-50mer dsDNA (at a final concentration of 800 nM) was pre-incubated with

10 ml of SYBR Green II (1:200 dilution) for a period of 20 min at room temperature. Two ml of com-

pound (1 mM stock dissolved in 100 % v/v DMSO, over a range of final concentrations up to 50 mM)

was then added. Measurements were taken after incubation times of 20, 45, and 60 min. Assay

buffer: 50 mM Tris-HCl pH 8.0, 50 mM NaCl, 2 mM MgCl2, 0.01% v/v Tween-20, 1 mM DTT.

Assay conditions: 800 nM annealed DNA substrate and 1:800 SYBR Green II in a reaction volume

of 40 ml over a 20-min incubation period.

Biophysical assays
Microscale thermophoresis (MST)
Experiments were performed in a Monolith NT.115 instrument from NanoTemper Technologies

GmbH (München, Germany). Purified recombinant protein was labelled using a Monolith NT RED-

Maleimide Protein Labelling Kit supplied by the manufacturer, following the recommended protocol.

A total of 19 ml of BLM-HD (at a final concentration of 75 nM) was mixed with 1 ml of the required

‘ligand’ solution (ssDNA and / or compound) and incubated for 15 min at room temperature, before

being transferred to ‘premium’ capillaries for measurement. Experiments were performed at a tem-

perature of 25˚C, with settings of 20% excitation power, 20% MST power. Assay buffer: 50 mM Tris-

HCl pH 7.5, 100 mM NaCl, 2 mM MgCl2, 0.05% v/v Tween-20, 0.5 mM TCEP.

Crystallography
BLM-HDDWHD / ADP
Prior to setting up of crystallisation screens BLM-HDDWHD at a concentration of 15 mg/ml was com-

bined with glycerol (100% v/v) and Mg-ADP (50 mM) to produce final concentrations of 10% v/v and

2 mM, respectively. Of the prepared complex, 150 nl was combined with 150 nl of crystallisation

reagent in MRC2 sitting drop vapour diffusion experiments against a reservoir volume of 50 ml. Crys-

tals were obtained in condition A8 of the Morpheus HT-96 screen (0.06 M divalents, 37.5% Buffer

System 2% and 37.5% Precipitant Mix 4); Molecular Dimensions [Sheffield, UK] at 4˚C after a period

of approximately 1 week.

Divalents = 0.3M magnesium chloride, 0.3M calcium chloride
Buffer system 2 = 1M sodium HEPES, MOPS (acid) pH 7.5
75% Precipitant Mix 4 = 25% w/v MPD, 25% v/v PEG1000, 25% w/v PEG 3350

Cryoprotection for data collection was achieved by stepwise soaking of crystals in buffers contain-

ing increasing amounts of ethylene glycol, to a final concentration of 20% (v/v). Diffraction data to a

resolution of 1.53 Angstrom were collected from a single crystal, on beamline I04 at the Diamond

Light Source (Didcot, UK). Crystals were in space group P21 with one molecule of BLM-HDDWHD plus

associated ligands forming the asymmetric unit.

BLM-HDDWHD / ADP / ssDNA-15mer / compound 2
BLM-HDDWHD was mixed with ssDNA-15mer at a 1:1.2 molar ratio (protein:DNA) to produce a final

concentration of 15 mg/ml with respect to protein. Compound 2 was then added to a final concen-

tration of 3 mM (from a stock at 100 mM in 100% v/v DMSO) and incubated with the protein:DNA

complex overnight at 4˚C. Prior to setting up crystallisation trials the complex was combined with
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glycerol (100% v/v) and Mg-ADP (50 mM) to produce final concentrations of 10% v/v and 2 mM,

respectively. 150 nl of the prepared complex was combined with 150 nl of crystallisation reagent in

MRC2 sitting drop vapour diffusion experiments against a reservoir volume of 50 ml. Crystals were

obtained in condition C9 of the Morpheus HT-96 screen (0.09 M NPS, 0.1M Buffer System, 30% Pre-

cipitant Mix 1, Molecular Dimensions) at 4˚C after a period of approximately 1 week.

NPS = 0.3 M sodium nitrate, 0.3 M sodium phosphate dibasic, 0.3 M ammonium sulphate
Buffer System 1 = 1.0 M imidazole, MES monohydrate (acid) pH 6.5
60% Precipitant Mix 1 = 40% v/v PEG 500 MME, 20% w/v PEG 20000

Cryoprotection for data collection was achieved by stepwise soaking of crystals in buffers contain-

ing increasing amounts of ethylene glycol, to a final concentration of 20% (v/v). Diffraction data to a

resolution of 3.0 Angstrom were collected from a single crystal, on beamline I03 at the Diamond

Light Source (Didcot, UK). Crystals were in space group P1 with six molecules of BLM-HDDWHD plus

associated ligands forming the asymmetric unit.

Data processing and model building
Diffraction data were automatically processed at the synchrotron by the xia2 pipeline (Winter et al.,

2013), using software packages DIALS (Beilsten-Edmands et al., 2020; Winter et al., 2018) or XDS

(Kabsch, 2010) and Aimless (Winn et al., 2011). For BLM-HDDWHD/ADP, coordinates corresponding

to the helicase domain were extracted from PDB entry 4O3M and provided as a search model for

molecular replacement using Phaser (McCoy et al., 2007). For BLM-HDDWHD/ADP/ssDNA-15mer/

compound 2, the rebuilt and refined coordinates for BLM-HDDWHD were used as the search model.

Initial models were extended and improved by iterative rounds of building in Coot (Emsley and

Cowtan, 2004) and refinement in either PHENIX (Liebschner et al., 2019) or BUSTER (Bri-

cogne, 2020) to produce the final deposited models. Crystallisation and refinement statistics are

provided in Appendix-table 1.

Data plotting and analysis
All experimental data were plotted and analysed using GraphPad Prism, 2020.
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Appendix 1

Synthetic preparation of test molecules
All reactions were conducted under an atmosphere of nitrogen unless otherwise stated. Anhydrous

solvents were used as purchased or were purified under nitrogen as follows using activated molecu-

lar sieves. Thin layer chromatography was performed on glass plates pre-coated with Merck silica

gel 60 F254. Visualisation was achieved with U.V. fluorescence (254 nm) or by staining with a phos-

phomolybdic acid dip or a potassium permanganate dip. Flash column chromatography was carried

out using pre-packed columns filled with Aldrich silica gel (40–63 mm) on an ISCO Combiflash Rf, or

a Biotage Isolera Prime. Proton nuclear magnetic resonance spectra were recorded at 500 MHz on a

Varian 500 spectrometer (at 30˚C), using residual isotopic solvent (CHCl3, dH = 7.27 ppm, DMSO

dH = 2.50 ppm, 3.33 ppm (H2O)) as an internal reference. Chemical shifts are quoted in parts per

million (ppm). Coupling constants (J) are recorded in Hertz (Hz). Carbon nuclear magnetic resonance

spectra were recorded at 125 MHz on a Varian 500 spectrometer and are proton decoupled, using

residual isotopic solvent (CHCl3, dC = 77.00 ppm, DMSO dC = 39.52 ppm) as an internal reference.

Carbon spectra assignments are supported by HSQC and DEPT editing and chemical shifts (dC) are

quoted in ppm. Infrared spectra were recorded on a Perkin Elmer FT-IR One spectrometer as either

an evaporated film or liquid film on sodium chloride plates. Absorption maxima are reported in

wave numbers (cm�1). Only significant absorptions are presented in the data, with key stretches

identified in brackets. LCMS data was recorded on a Waters 2695 HPLC using a Waters 2487 UV

detector and a Thermo LCQ ESI-MS. Samples were eluted through a Phenomenex Lunar 3m C18 50

mm �4.6 mm column, using acetonitrile and water acidified by 0.01% formic acid in three methods:

method 1 (3:7 to 7:3 acetonitrile and water over 7 min), method 2 (3:7 to 7:3 acetonitrile and water

over 4 min) and method 3 (19:1 to 1:19 acetonitrile and water over 10 min), High resolution mass

spectrometry (HRMS) spectra were recorded on Bruker Daltonics Apex III ESI-MS, with an Apollo ESI

probe using a methanol spray. Only molecular ions, fractions from molecular ions and other major

peaks are reported as mass/charge (m/z) ratios.

N-(2-methyl-5-sulfamoyl-phenyl)�4-(2-methylthiazol-4-yl)benzamide (1)
Methyl 4-(2-bromoacetyl)benzoate

A solution of methyl 4-acetylbenzoate (1.00 g, 5.61 mmol) and p-toluenesulfonic acid monohydrate

(54 mg, 0.28 mmol) in acetonitrile (30 mL) was treated with N-bromosuccinimide (0.99 g, 5.61 mmol)

and the reaction mixture heated to 80˚C for 16 hr. The solvent was removed under reduced pres-

sure. The crude product was taken up in saturated aq. NaHCO3 (15 mL) and extracted with ethyl

acetate (3 � 15 mL). The combined organic components were then washed with brine (15 mL), dried

over MgSO4, filtered and concentrated under reduced pressure. The crude product was purified by

column chromatography (silica 24 g, 0% to 10% ethyl acetate in petroleum ether) to yield the

desired compound as a light yellow solid (1.12 g, 70%). Rf 0.66 (petroleum ether:ethyl acetate, 9:1);
1H-NMR (500 MHz, DMSO-d6) d 8.14–8.01 (m, 4H, H-2, H-3), 4.98 (s, 2H, COCH2Br), 3.89 (s, 3H,

COOCH3).

Methyl 4-(2-methylthiazol-4-yl)benzoate

To methyl 4-(2-bromoacetyl)benzoate (2.12 g, 8.23 mmol) in N,N-dimethylformamide (30 mL) was

added thioacetamide (931 mg, 12.4 mmol) and the reaction mixture stirred at ambient temperature

for 16 hr. Upon completion, water was added to the reaction mixture. The resulting precipitate was

collected by vacuum filtration and dried under reduced pressure to afford the desired compound as

a white solid (1.48 g, 73%). m.p. 223–225˚C; 1H-NMR (500 MHz, DMSO-d6) d 8.14 (s, 1H, H-6), 8.08

(d, J 8.2, 2H, H-2), 8.01 (d, J 8.2, 2H, H-3), 3.87 (s, OCH3), 2.73 (s, CH3);
13C-NMR (126 MHz, DMSO-

d6) d 166.5 (CO), 166.4 (C-8), 153.0 (C-5), 138.9 (C-4), 130.2 (C-2), 129.1 (C-1), 126.5 (C-3), 116.8 (C-

6), 52.5 (OCH3), 19.4 (CH3); IR (neat, nmax, cm
�1) 3106, 2943, 1713, 1606, 1436, 1409, 1270, 1170;

LCMS (LCQ) Rt = 2.9 min (method 2), m/z (ESI+) 234.2 [M+H]+; HRMS m/z (ESI): calcd. for

C12H11NO2S [M+H]+ 234.0583, found 234.0583.
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4-(2-Methylthiazol-4-yl)benzoic acid

To methyl 4-(2-methylthiazol-4-yl)benzoate (1.46 g, 6.26 mmol) in methanol (24 mL) and water (8 mL)

was added sodium hydroxide (502 mg, 12.5 mmol) and the reaction mixture stirred at an ambient

temperature for 16 hr. Upon completion, the reaction mixture was acidified to pH of 2–3 using 2 M

aq. hydrochloric acid solution. The resulting precipitate was collected by vacuum filtration and dried

under reduced pressure to afford the desired acid as a white solid (1.21 g, 84%). m.p. 250–252˚C;
1H-NMR (500 MHz, DMSO-d6) d 8.10 (s, 1H, H-6), 8.05 (d, J 8.2, 2H, H-3), 7.99 (d, J 8.1, 2H, H-2),

2.73 (s, 3H, CH3);
13C-NMR (126 MHz, DMSO-d6) d 167.5 (CO), 166.4 (C-8), 153.2 (C-5), 138.5 (c-4),

130.3 (C-2), 126.4 (C-3), 116.5 (C-6), 19.4 (12-CH3). Quaternary 5 C not visible; IR (neat, nmax, cm
�1)

2826, 1667, 1608, 1573, 1421, 1290, 1169; 256 LCMS (LCQ) Rt = 0.6 min (method 1), m/z (ESI+)

220.2 [M+H]+; HRMS m/z (ESI): calcd. for C11H9NO2S [M+H]+ 220.0427, found 220.0428.

N-(2-methyl-5-sulfamoyl-phenyl)-4-(2-methylthiazol-4-yl)benzamide (1)

To 4-(2-methylthiazol-4-yl)benzoic acid (120 mg, 0.55 mmol), HBTU [(2-(1H-benzotriazol-1-yl)�

1,1,3,3-tetramethyluronium hexafluorophosphate] (153 mg, 0.66 mmol), N,N-diisopropylethylamine

(191 mL, 1.09 mmol)) in N,N-dimethylformamide (2 mL) was added 3-amino-4-methylbenzenesulfona-

mide (102 mg, 0.55 mmol). The reaction mixture was stirred at ambient temperature for 16 hr. Upon

completion, the solvent was removed under reduced pressure. The crude product was taken up in

ethyl acetate (5 mL), washed with saturated aq. NaHCO3 (4 mL), brine (4 mL), dried over MgSO4, fil-

tered and concentrated under reduced pressure. The crude was purified by column chromatography

(silica 12 g, 0% to 55% ethyl acetate in petroleum ether) and further purified by column chromatog-

raphy (amino silica 4 g, 0% to 5% methanol in dichloromethane) to yield the desired amide 1 as a

white solid (15 mg, 7%). Rf 0.14 (petroleum ether:ethyl acetate 9:11); m.p. 261–263˚C; 1H-NMR (500

MHz, DMSO-d6) d 10.11 (s, 1H, CONH), 8.15–8.09 (m, 3H, H-3, H-6), 8.06 (d, J 8.2, 2H, H-2), 7.87 (s,

1H, H-6’), 7.62 (d, J 8.0, 1H, H-4’), 7.48 (d, J 8.0, 1H, H9’), 7.34 (s, 2H, SO2NH2), 2.75 (s, 3H, 8-CH3),

2.32 (s, 3H, 2’-CH3);
13C-NMR (126 MHz, DMSO-d6) d 166.4 (CO), 165.5 (C-8), 153.3 (C-5), 142.5 (C-

5’), 138.3 (C-1), 137.6 (C-2’), 137.2 (C-2’), 133.6 (C-4), 131.2 (C-3’), 128.75 (C-2), 126.3 (C3), 124.1

(C-6’), 123.4 (C-4’), 116.1 (C-6), 19.4 (8-CH3), 18.44 (2’-CH3); IR (neat, nmax, cm
�1) 3258, 2923, 1630,

1572, 255 1516, 1444, 1403, 1304, 1154; LCMS (LCQ) Rt = 2.7 min (method 1), m/z (ESI+) 388.1 [M

+H]+; HRMS m/z (ESI): calcd. for C18H17N3O3S2 [M+H]+ 388.6847, found 388.6850.

N-(2,3-dimethyl-5-sulfamoyl-phenyl)-4-(2-methylthiazol-4-yl)benzamide
(2)
To 4-(2-methylthiazol-4-yl)benzoic acid (120 mg, 0.55 mmol), HBTU (153 mg, 0.66 mmol), N,N-diiso-

propylethylamine (0.19 mL, 1.09 mmol) in N,N-dimethylformamide (3 mL) was added, 3-amino-4,5-

dimethylbenzenesulfonamide (110 mg, 0.55 mmol). The reaction mixture was stirred at ambient tem-

perature for 16 hr. Upon completion, the solvent was removed under reduced pressure. The crude

product was taken up in ethyl acetate (5 mL), washed with saturated aq. NaHCO3 (4 mL), brine (4

mL), dried over MgSO4, filtered and concentrated under reduced pressure. The crude was purified

by column chromatography (silica 12 g, 0% to 60% ethyl acetate in petroleum ether) to yield the

desired amide 2 as a white solid (15 mg, 7%). Rf 0.12 (petroleum ether:ethyl acetate 1:1); m.p. 246–

248˚C; 1H-NMR (500 MHz, DMSO-d6) d 10.17 (s, 1H, CONH), 8.13–8.08 (m, 3H, H-3, H-6), 8.05 (d, J

8.4, 2H, H-2), 7.64 (d, J 1.9, 1H, H-4’), 7.54 (d, J 1.9, 1H, H-3’), 7.28 (s, 2H, SO2NH2), 2.74 (s, 3H, 8-

CH3), 2.36 (s, 3H, 3’-CH3), 2.17 (s, 3H, 2’-CH3);
13C-NMR (126 MHz, DMSO-d6) d 166.4 (CO), 165.7

(C-8), 153.3 (C-5), 141.6 (C-5’), 138.5 (C-1), 137.6 (ArC), 137.5 (ArC), 137.1 (ArC), 133.7 (C-4), 128.7

(C-2), 126.3 (C-3), 124.6 (C-6’), 122.3 (C-4’), 116.1 (C-6), 20.7 (3’-CH3), 19.4 (8-CH3), 15.0 (2’-CH3);

IR (neat, nmax, cm
�1) 3258, 2923, 1630, 1572, 1516, 1444, 1403, 1304, 1154; LCMS (LCQ) Rt = 2.0

min (method 1), m/z (ESI+) 402.1 [M+H]+; HRMS m/z (ESI): calcd. for C19H19N3O3S2 [M+H]+

401.0868, found 401.0866

N-(3-hydroxy-2-methyl-phenyl)�4-(2-methylthiazol-4-yl)benzamide (3)
To 4-(2-methylthiazol-4-yl)benzoic acid (80 mg, 0.36 mmol) in dichloromethane (3 mL) was added

oxalyl chloride (37 mL, 0.44 mmol) in a dropwise manner followed by the addition of a few drops of
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N,N-dimethylformamide (10 mL). The reaction mixture was stirred at ambient temperature for 16 hr.

The crude acyl chloride was then added to a stirred mixture of 3-amino-2-methylphenol (54 mg, 0.44

mmol), N,N-diisopropylethylamine (397 mL, 2.28 mmol) and dichloromethane (1 mL) and stirred at

ambient temperature for 2–16 hr. The solvent was removed under reduced pressure. The crude

product was taken up in saturated aq. NaHCO3 (5 mL) and extracted with ethyl acetate (3 � 10 mL).

The combined organic components were then washed with brine (10 mL), dried over MgSO4, filtered

and concentrated under reduced pressure. The crude was purified by column chromatography (silica

12 g, 0% to 40% ethyl acetate in petroleum ether) to yield the desired amide three as a white solid

(13 mg, 10%).Rf 0.47 (petroleum ether:ethyl acetate 1:1); m.p. 238–240˚C; 1H-NMR (500 MHz,

DMSO-d6) d 9.84 (s, 1H, CONH), 9.35 (s, 1H, OH), 8.10 (s, 1H, H-6), 8.07 (d, J 8.2, 2H, H-3), 8.03 (d,

J 8.3, 2H, H-2), 7.00 (t, J 7.9, 1H, H-5’), 6.79 (d, J 7.8, 1H, H-6’), 6.73 (d, J 8.0, 1H, H-4’), 2.74 (s, 3H,

8-CH3), 2.03 (s, 3H, 2’-CH3); 13C-NMR (126 MHz, DMSO-d6) d 166.4 (CONH), 165.3 (C-8), 156.2 (C-

5), 153.4 (C-3’), 137.9 (ArC), 137.3 (ArC), 134.1 (ArC), 128.7 (H-2), 126.2 (H-3), 126.0 (ArC), 121.3

(ArC), 118.0 (C-6’), 116.0 (C-6), 112.9 (C-4’), 19.4, (C-8) 11.4 (C-2’); IR (neat, nmax, cm
�1) 3291, 1640,

1607, 1499, 1466, 1307, 1174; LCMS (LCQ) Rt = 2.5 min (method 1), m/z (ESI+) 325.1 [M+H]+;

HRMS (ESI): calcd. for C18H16NaN2OS [M+Na]+ 347.0825, found 347.0827.

Methyl 4-methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoate (4)
To 4-(2-methylthiazol-4-yl)benzoic acid (800 mg, 3.65 mmol) and methyl 3-amino-4-methylbenzoate

(52 mL, 9.12 mmol) in tetrahydrofuran (15 mL) was added phosphorus trichloride (0.32 mL, 3.65

mmol). The reaction mixture was heated in a microwave reactor for 20 min at 150˚C. The crude prod-

uct was taken up in saturated aq. NaHCO3 (5 mL) and extracted with ethyl acetate (3 � 10 mL). The

combined organic components were then washed with brine (10 mL), dried over MgSO4, filtered

and concentrated under reduced pressure. The crude was purified by column chromatography

(amino silica 12 g, 0% to 50% ethyl acetate in petroleum ether) to yield the desired amide 4 as a

white solid (920 mg, 65%). Rf 0.23 (petroleum ether:ethyl acetate 3:1); m.p. 179–181˚C; 1H-NMR

(500 MHz, DMSO-d6) d 10.03 (s, 1H, CONH), 8.14–8.07 (m, 3H, H-3, H-6), 8.05 (d, J 8.3, 2H, H-2),

8.00 (d, J 1.8, 1H, H-6’), 7.76 (dd, J 7.9, 1.8, 1H, H-4’), 7.44 (d, J 7.9, 1H, H-9’), 3.85 (s, 3H, OCH3),

2.74 (s, 3H, 8-CH3), 2.33 (s, 3H, 2’-CH3); 13C-NMR (126 MHz, DMSO-d6) d 166.4 (CO), 165.6 (C-8),

153.3 (C-5), 140.0 (C-8’), 137.6 (C-1), 137.3 (C-7’), 133.7 (C-4), 131.3 (C-3’), 128.8 (C-2), 128.1 (C-6’),

127.5 (C-5’), 126.9 (C-4’), 126.3 (C-3), 116.1 (C-6), 52.5 (OCH3), 19.4 (8-CH3), 18.6 (2’-CH3). COO

not visible; IR (neat, nmax, cm�1) 3256, 1726, 1643, 1523, 1432, 1296, 1171, 1110; LCMS (LCQ)

Rt = 2.6 min (method 1), m/z (ESI+) 367.0 [M+H]+; HRMS m/z (ESI): calcd. for C20H18N2O3S [M+Na]+

389.0930, found 389.0931.

4-Methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzamide (5)
Methyl 4-methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoate

To 4-(2-methylthiazol-4-yl)benzoic acid (800 mg, 3.65 mmol) and methyl 3-amino-4-methylbenzoate

(52 mL, 9.12 mmol) in tetrahydrofuran (15 mL) was added phosphorus trichloride (0.32 mL, 3.65

mmol). The reaction mixture was heated in a microwave reactor for 20 min at 150˚C. The crude prod-

uct was taken up in saturated aq. NaHCO3 (5 mL) and extracted with ethyl acetate (3 � 10 mL). The

combined organic components were then washed with brine (10 mL), dried over MgSO4, filtered

and concentrated under reduced pressure. The crude was purified by column chromatography

(amino silica 12 g, 0% to 50% ethyl acetate in petroleum ether) to yield the desired amide as a white

solid (920 mg, 65%). Rf 0.23 (petroleum ether:ethyl acetate 3:1); m.p. 179–181˚C; 1H-NMR (500

MHz, DMSO-d6) d 10.03 (s, 1H, CONH), 8.14–8.07 (m, 3H, H-3, H-6), 8.05 (d, J 8.3, 2H, H-2), 8.00 (d,

J 1.8, 1H, H-6’), 7.76 (dd, J 7.9, 1.8, 1H, H-4’), 7.44 (d, J 7.9, 1H, H-9’), 3.85 (s, 3H, OCH3), 2.74 (s,

3H, 8-CH3), 2.33 (s, 3H, 2’-CH3); 13C-NMR (126 MHz, DMSO-d6) d 166.4 (CO), 165.6 (C-8), 153.3 (C-

5), 140.0 (C-8’), 137.6 (C-1), 137.3 (C-7’), 133.7 (C-4), 131.3 (C-3’), 128.8 (C-2), 128.1 (C-6’), 127.5 (C-

5’), 126.9 (C-4’), 126.3 (C-3), 116.1 (C-6), 52.5 (OCH3), 19.4 (8-CH3), 18.6 (2’-CH3). COO not visible;

IR (neat, nmax, cm
�1) 3256, 1726, 1643, 1523, 1432, 1296, 1171, 1110; LCMS (LCQ) Rt = 2.6 min

(method 1), m/z (ESI+) 367.0 [M+H]+; HRMS m/z (ESI): calcd. for C20H18N2O3S [M+Na]+ 389.0930,

found 389.0931.
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4-Methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoic acid

To methyl 4-methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoate (920 mg, 2.51 mmol) in meth-

anol (24 mL) was added 2 M aq. sodium hydroxide (12.6 mL, 25.1 mmol) and the mixture stirred at

an ambient temperature for 16 hr. The reaction mixture was then heated for 2 hr at 50˚C. The sol-

vent was removed under reduced pressure. The crude was taken up in water and the mixture was

acidified to a pH of 2–3 with 2 M aq. hydrochloric acid solution. The resulting precipitate was col-

lected by vacuum filtration and dried under reduced pressure to afford the desired acid as a white

solid (926 mg, 99%). m.p. 254–256˚C; 1H-NMR (500 MHz, DMSO-d6) d 12.85 (s, 1H, COOH), 10.04

(s, 1H, CONH), 8.13–8.07 (m, 3H, H-3, H-6), 8.06 (d, J 8.3, 2H, H-2), 7.95 (d, J 1.7, 1H, H-6’), 7.74

(dd, J 7.9, 1.7, 1H, H-4’), 7.40 (d, J 7.9, 1H, H-3’), 2.74 (s, 3H, 8-CH3), 2.32 (s, 3H, 2’-CH3);
13C-NMR

(126 MHz, DMSO-d6) d 167.4 (COOH), 166.4 (CONH), 165.6 (C-8), 153.3 (C-5), 139.5 (C-2’), 137.5

(C-1), 137.1 (C-1’), 133.8 (C-4), 131.1 (C-3’), 129.3 (C-5’), 128.7 (C-2), 127.8 (C-6’), 127.2 (C-4’), 126.3

(C-3), 116.01 (C-6), 19.4 (8-CH3), 18.59 (2’-CH3); IR (neat, nmax, cm
�1) 2923, 1679, 1638, 1512, 1492,

1414, 1390, 1251, 1178; LCMS (LCQ) Rt = 3.0 min (method 1), m/z (ESI+) 353.0 [M+H]+; HRMS (ESI):

calcd. for C19H16N2NaO3S [M+Na]+ 375.0774, found 375.0774.

4-Methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzamide (5)

To 4- methyl-3-((4-(2-methylthiazol-4-yl)benzoyl)amino)benzoic acid (146) (100 mg, 0.28 mmol), EDCI

(68 mg, 0.35 mmol), HOBt (54 mg, 0.35 mmol), N,N-diisopropylethylamine (100 mL, 0.57 mmol) in N,

N-dimethylformamide (1 mL) was added 2 M ammonia in methanol (0.43 mL, 0.85 mmol). The reac-

tion mixture was stirred at ambient temperature for 16 hr. The solvent was removed under reduced

pressure. The crude product was taken up in ethyl acetate (5 mL), washed with 1 M aq. hydrochloric

acid solution. (4 mL), saturated aq. NaHCO3 (4 mL), brine (4 mL), dried over MgSO4, filtered and

concentrated under reduced pressure. The crude was purified by column chromatography (amino sil-

ica 12 g, 0% to 5% methanol in dichloromethane) to yield the desired primary amide five as a white

solid (39 mg, 37%). Rf 0.17 (dichloromethane:methanol 19:1); m.p. 215–217˚C; 1H-NMR (500 MHz,

DMSO-d6) d 10.02 (s, 1H, CONH), 8.14–8.08 (m, 3H, H-3. H-6), 8.05 (d, J 8.5, 2H, H-2), 7.91 (s, 1H,

5’-CONHAB), 7.86 (d, J 1.8, 1H, H-6’), 7.70 (dd, J 7.9, 1.8, 1H, H-4’), 7.35 (d, J 7.9, 1H, H-3’), 7.27 (s,

1H, 5’-CONHAB), 2.74 (s, 3H, 8-CH3), 2.28 (s, 3H, 2’-CH3);
13C-NMR (126 MHz, DMSO-d6) d 167.9

(CO), 166.4 (CO), 165.5 (C-8), 153.3 (C-5), 138.0 (C-2’), 137.5 (C-1), 136.8 (C-1’), 133.8 (C-4), 132.8

(C-5’), 130.6 (C-3’), 128.7 (C-2), 126.6 (C-6’), 126.3 (C-3), 125.6 (C-4), 116.0 (C-6), 19.4 (8-CH3), 18.37

(2’-CH3); IR (neat, nmax, cm
�1) 3108, 1713, 1668, 1608, 1571, 1501, 1436, 1410, 1278; LCMS (LCQ)

Rt = 1.7 min (method 1), m/z (ESI+) 352.0 [M+H]+; HRMS (ESI): calcd. for C19H17N3NaO2S [M+Na]+

374.0934, found 374.0933.

4-Methyl-3-((4-(2-methyloxazol-4-yl)benzoyl)amino)benzamide (6)
Methyl 4-(2-methyloxazol-4-yl)benzoate

Methyl 4-(2-bromoacetyl)benzoate (400 mg, 1.56 mmol) was stirred in neat acetamide (276 mg, 4.67

mmol) at 160˚C for 2 hr. Water was added to the reaction mixture. The resulting precipitate was col-

lected by vacuum filtration and dried under reduced pressure to afford the desired compound 191

as a brown solid (308 mg, 87%) which was carried forward without further purification. 1H-NMR (500

MHz, DMSO-d6) d 8.07 (s, 1H, H-6), 8.00 (d, J 8.2, 2H, H-3), 7.89 (d, J 8.1, 2H, H-2), 3.86 (s, 3H,

OCH3), 2.48 (s, 3H, 8-CH3).

4-(2-Methyloxazol-4-yl)benzoic acid

To methyl 4-(2-methyloxazol-4-yl)benzoate (191) (279 mg, 1.2 mmol) in methanol (5 mL) and water

(1.5 mL) was added sodium hydroxide (150 mg, 3.86 mmol) and the reaction mixture stirred at ambi-

ent temperature for 16 hr. Upon completion, the reaction mixture was acidified to pH of 2–3 using 2

M aq. hydrochloric acid solution. The resulting precipitate was collected by vacuum filtration and

dried under reduced pressure to afford the desired acid as a as a white solid (130 mg, 47%). 1H-

NMR (500 MHz, DMSO-d6) d 8.56 (s, 1H, 11, H-6), 7.97 (d, J 8.0, 2H, H-3), 7.85 (d, J 8.0, 2H, H-2),

2.47 (s, 3H, 8- CH3); LCMS (LCQ) Rt = 0.5 min (method 1), m/z (ESI+) 204.2 [M+H]+.
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4-Methyl-3-((4-(2-methyloxazol-4-yl)benzoyl)amino)benzamide (6)

To 4-(2-methylthiazol-4-yl)benzoic acid (110 mg, 0.54 mmol) in dichloromethane (3 mL) was added

oxalyl chloride (0.05 mL, 0.65 mmol) in a dropwise manner followed by N,N-dimethylformamide (10

mL). The reaction mixture was stirred at ambient temperature for 16 hr. The crude acyl chloride was

then added to a stirred mixture of 3-amino-4-methylbenzamide (98 mg, 0.65 mmol) followed by the

addition of N,N-diisopropylethylamine (0.47 mL, 2.71 mmol). The reaction mixture was stirred at

ambient temperature for 2–16 hr. The solvent was removed under reduced pressure. The crude

product was taken up in saturated aq. NaHCO3 (5 mL) and extracted with ethyl acetate (3 � 10 mL).

The combined organic components were then washed with brine (10 mL), dried over MgSO4, filtered

and concentrated under reduced pressure. The crude was purified by column chromatography (silica

12 g, 0% to 5% methanol in dichloromethane) to yield the desired amide 6 as a white solid (55 mg,

29%). Rf 0.28 (dichloromethane:methanol 19:1); m.p. 260–262˚C; 1H-NMR (500 MHz, DMSO-d6) d

10.00 (s, 1H, CONH), 8.61 (s, 1H, H-6), 8.05 (d, J 8.1, 2H, H-3), 7.91 (d, J 8.4, 3H, H-2, 5’-CONHAB),

7.86 (s, 1H, H-6’), 7.70 (dd, J 7.9, 1.9, 1H, H-4’), 7.35 (d, J 7.9, 1H, H-3’), 7.27 (s, 1H, 5’-CONHAB)

2.28 (s, 3H, 2’-CH3). 8-CH3 under DMSO peak; 13C-NMR (126 MHz, DMSO-d6) d 167.8 (CO), 165.4

(CO), 162.2 (C-8), 139.4 (C-5), 137.9 (C-2’), 136.8 (ArC), 136.3 (ArC), 134.6 (C-1), 133.8 (C-4), 132.8

(C-5’), 130.6 (C-3’), 128.7 (C-2), 126.6 (C-6’), 125.5 (C-4’), 125.33 (C-3), 18.4 (8-CH3), 14.0 (2’-CH3); IR

(neat,, nmax, cm
�1) 3255, 1673, 1635, 1616, 1522, 1489, 1386, 1276, 1214; LCMS (LCQ) Rt = 0.8 min

(method 1), m/z (ESI+) 336.1 [M+H]+; HRMS (ESI): calcd. for C19H17N3NaO3 [M+Na]+ 358.1162,

found 358.1150.

N-(6-methyl-2-pyridyl)-4-(2-methylthiazol-4-yl)benzamide (7)
To 4-(2-methylthiazol-4-yl)benzoic acid (80 mg, 0.36 mmol) in dichloromethane (3 mL) was added

oxalyl chloride (37 mL, 0.44 mmol) in a dropwise manner followed by N,N-dimethylformamide (10

mL). The reaction mixture was stirred at ambient temperature for 16 hr. The crude acyl chloride was

then added to a stirred mixture of 2-amino-6-methylpyridine (40 mg, 0.36 mmol) followed by the

addition of N,N-diisopropylethylamine (397 mL, 2.28 mmol). The reaction mixture was stirred at

ambient temperature for 2–16 hr. The solvent was removed under reduced pressure. The crude

product was taken up in saturated aq. NaHCO3 (5 mL) and extracted with ethyl acetate (3 � 10 mL).

The combined organic components were then washed with brine (10 mL), dried over MgSO4, filtered

and concentrated under reduced pressure. The crude was purified by column chromatography (silica

12 g, 0% to 45% ethyl acetate in petroleum ether) to yield the desired amide 7 as a colourless solid

(54 mg, 45%). Rf 0.48 (petroleum ether:ethyl acetate 1:1); m.p. 195–197˚C; 1H-NMR (500 MHz,

DMSO-d6) 10.69 (s, 1H), 8.13 (s, 1H), 8.10 (d, J 8.2, 2H), 8.06 (d, J 8.0, 2H), 8.02 (d, J 8.2, 1H), 7.73

(t, J 7.8, 1H), 7.03 (d, J 7.3, 1H), 2.74 (s, 3H), 2.46 (s, 3H); 13C-NMR (126 MHz, DMSO-d6) 166.4,

165.9, 157.0, 153.3, 152.0, 138.8, 137.6, 133.5, 129.1, 126.1, 119.5, 116.2, 112.1, 24.0, 19.4; IR

(neat, nmax, cm
�1) 3314, 2923, 1610, 1539, 1522, 1290, 1169; LCMS (LCQ) Rt = 3.1 min (method 1),

m/z (ESI+) 310.1 [M+H]+; HRMS (ESI): calcd. for C17H16N3OS [M+H]+ 310.1009, found 310.1012.

1-(4-Fluoro-3-(trifluoromethyl)phenyl)-3-(5-(4-pyridyl)-1,3,4-thiadiazol-2-
yl)urea (ML216) (Rosenthal et al., 2013)
Phenyl-5-(4-pyridyl)�1,3,4-thiadiazol-2-ylcarbamate

Sodium hydride (700 mg, 33.7 mmol) was slowly added to a suspension of 5-(4-pyridyl)�1,3,4-thia-

diazol-2-yl-amine (2.00 g, 11.2 mmol) in tetrahydrofuran (40 mL) at 0˚C. The resulting reaction mix-

ture was stirred at 0˚C for 2 hr. Diphenyl carbonate (2.89 g, 13.5 mmol) was added and the reaction

mixture was stirred at 0˚C for 30 min. The reaction mixture was warmed to ambient temperature and

stirred overnight. Dichloromethane (40 mL) and brine (10 mL) was added to the reaction mixture

and the solid precipitate was collected by filtration to yield the desired compound as a crystalline

off-white solid (3.10 g, 93%). Rf 0.52 (dichloromethane:methanol 19:1); m.p. 278–280˚C; 1H-NMR

(500 MHz, DMSO-d6) d 8.58 (d, J 4.9, 2H, H-2), 7.70 (d, J 4.9, 2H, H-3), 7.33 (t, J 7.6, 2H, H-15), 7.11

(t, J 7.4, 1H, H-17), 7.07 (d, J 7.7, 2H, H-16); 13C-NMR (126 MHz DMSO-d6) d = 174.7 (CO), 162.1

(ArC), 155.1 (ArC), 153.7 (C-14), 150.7 (C-2), 140.1 (ArC), 129.2 (C-15), 124.0 (C-17), 122.4 (C-16),

120.2 (C-3); IR (neat, nmax, cm�1) 3542, 3118, 2417, 1604, 1460, 1319, 1296, 1208, 1113; LCMS
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(LCQ) Rt = 1.8 min (method 2), m/z (ESI+) 299.03 [M+H]+; HRMS (ESI): calcd. for C14H11N4O2S [M

+H]+ 299.0598, found 299.0597.

1-(4-Fluoro-3-(trifluoromethyl)phenyl)�3-(5-(4-pyridyl)�1,3,4-thiadiazol-2-yl)
urea (ML216)

To a suspension of phenyl -(5-(4-pyridyl)�1,3,4-thiadiazol-2-yl)carbamate (150 mg, 0.50 mmol) in tol-

uene (5 mL) was added 4-fluoro-3-(trifluoromethyl)aniline (65 mL, 0.50 mmol). The reaction mixture

was heated in a microwave reactor at 150˚C for 30 min and the resulting suspension was cooled to

room temperature. The reaction mixture was concentrated under reduced pressure. The resulting

solid 223 was triturated with dichloromethane (5 mL) and further triturated with 5% methanol in

dichloromethane (3 mL) to yield the desired compound ML216 as an orange solid (82 mg, 46%). 1H-

NMR (500 MHz, DMSO-d6) d 11.61 (s, 1H, NH-urea), 9.52 (s, 1H, NH-urea), 8.73 (d, J 5.9, 2H, H-2),

8.06 (s, 1H, H15), 7.89 (d, J 5.3, 2H, H-3), 7.77 (s, 1H, H-19), 7.49 (t, J 9.7, 1H, H-18); LCMS (LCQ)

Rt = 2.7 min (method 1), m/z (ESI+) 384.0 [M+H]+. 1H-NMR consistent with literature data

(Rosenthal et al., 2013).

Appendix 1—table 1. Statistics for data collection, phasing and refinement.

BLM-HDDWHD + ADP Liganded-BLM-HDDWHD

Data collection

Space group P21 P1

Cell dimensions

a, b, c (Å) 54.28, 107.69, 55.20 84.69, 111.60, 132.38

a, b, g (˚) 90.00, 109.31, 90.00 72.70, 80.13, 79.24

Wavelength 0.9780 0.9762

Resolution (Å) 51.23–1.53 (1.56–1.53) 125.37–2.97 (3.08–2.97)

Mn I / sI 12.7 (1.2) 7.8 (1.4)

Mn I, CC1/2 1.00 (0.61) 0.99 (0.57)

Completeness (%) 98.3 (90.3) 98.0 (94.5)

Redundancy 1.9 (1.7) 2.6 (2.7)

Refinement

Resolution (Å) 51.23–1.53 (1.56–1.53) 47.28–2.97 (3.07–2.96)

No. unique reflections 88464 (8096) 91661 (8892)

Rwork / Rfree 0.19/0.21 0.23/0.27

No. atoms

Macromolecules 3870 24954

Ligands 65 427

Solvent 438 91

B-factors

Wilson 32.58 77.77

ADP (mean)

Macromolecules 31.00 95.79

Ligands 40.89 98.56

Solvent 45.69 53.65

R.m.s. deviations

Bond lengths (Å) 0.014 0.006

Bond angles (˚) 1.64 1.11

Continued on next page
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Appendix 1—table 1 continued

BLM-HDDWHD + ADP Liganded-BLM-HDDWHD

Molprobity

All atom clashscore 2.44 7.42

Ramachandran

Outliers 0.21% 0.42%

Allowed 1.65% 3.72%

Favoured 98.15% 95.85%

*Values in parentheses are for the highest resolution shell
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