1	Nine year follow-up for a study of diffusion-weighted MRI in a prospective prostate
2	cancer active surveillance cohort.
3	
4	Daniel R. Henderson ^{a,c}
5	
6	Nandita M. de Souza ^{b,c}
7	
8	Karen Thomas ^a
9	
10	Sophie F. Riches ^{b,c}
11	
12	Veronica A. Morgan ^{b,c}
13	
14	Syed A. Sohaib ^{b,c}
15	
16	David P. Dearnaley ^{a,c}
17	
18	Christopher C. Parker ^{a,c}
19	
20	Nicholas J. van As ^{a,c} (Corresponding author)
21	
22	Academic Urology Unit,
23	Royal Marsden NHS Foundation Trust
24	Fulham Road
25	London
26	SW3 6JJ

27	F: 0207 811 8336
28	T: 0207 811 8338
29	E: Nicholas.vanAs@rmh.nhs.uk
30	
31	
32	^a Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
33	
34	^b Department of Radiology, Royal Marsden NHS Foundation Trust, London, UK
35	
36	^c Institute of Cancer Research, London, UK
37	
38	
39	
40	
41	
42	Text word count (inc abstract): 2796
43	
44	Abstract word count (300): 300
45	
46	Keywords (3-10): active surveillance; MRI; apparent diffusion coefficient; diffusion
47	weighted; prostate cancer
48	
49	

50	Abstract	h
50	AUSUACI	Ļ

52	Background: In active surveillance (AS) for prostate cancer there is little data on
53	long-term outcomes associated with novel imaging markers.
54	
55	Objective: To determine long-term outcomes with respect to apparent diffusion
56	coefficient (ADC) derived from diffusion-weighted MRI (DW-MRI) in a prospective
57	AS cohort. Early results were previously published; we now present findings with
58	long-term follow-up.
59	
60	Design, Setting, and Participants: A subset of patients (86) had pre-enrolment DW-
61	MRI in a prospective research study of AS, 2002-2006. Inclusion criteria: untreated
62	prostate cancer, clinical T1/T2a/N0M0, Gleason \leq 3+4, PSA < 15. Protocol follow-
63	up was by biopsy at 18-24 months, then every 24 months, with regular PSA.
64	
65	Intervention(s): Men had baseline DW-MRI in addition to standard sequences. ADC
66	was measured from the index lesion on T2-weighted images. To avoid influencing
67	treatment decisions, results of DW-MRI sequences were not available to the AS study
68	investigators.
69	
70	Outcome Measurements and Statistical Analysis: Baseline ADC was analysed with
71	respect to time to radical treatment (TRT) and time to adverse histology (TAH).
72	Kaplan-Meier analysis, univariate and multivariate regression was performed.

74	Results and Limitations: Median follow-up: 9.5 years (IQR: 7.9-10.0). On
75	univariate analysis, ADC below the median was associated with shorter TAH and
76	TRT with hazard ratios of 2.13 (CI: 1.17-3.89; p <0.014) and 2.54 (CI: 1.49-4.32; p
77	<0.001), respectively. Median TRT in patients with ADC above the median was 9.3
78	years (CI: 7.0-11.6) but 2.4 years (CI: 1.5-6.0) for those below the median. For TRT,
79	addition of ADC to a multivariate model of baseline variables resulted in a significant
80	improvement in model fit (HR: 1.33, CI: 1.14-1.54, p<0.001). ROC analysis for TRT:
81	AUC 0.80 (CI: 0.70-0.88). The number of variables included in the multivariate
82	model was limited by sample size.
83	
84	Conclusions: Long-term follow-up for this study provides strong evidence that ADC
85	is a useful marker when selecting patients for AS. Routine DW-MRI is now being
86	evaluated in our ongoing AS study for initial assessment and as alternative to repeat
87	biopsy.
88	
89 90	

91	Patient summary: Before entering a study of close monitoring for the initial
92	management of prostate cancer, patients in this study had a type of MRI scan that
93	looks at the movement of water within cancers. These scans may help predict
94	whether patients should receive close monitoring or whether immediate treatment
95	should be given.

98 Introduction

99

100	Active surveillance (AS) is a standard of care for localised prostate cancer 1,2 . A
101	successful AS programme requires two processes: first, the accurate selection of
102	patients who may safely defer or avoid radical treatment and, secondly, the effective
103	monitoring of patients, with institution of radical treatment for clinically significant
104	progression.
105	
106	In the major reported cohort studies, selection and monitoring has been based on
107	serum PSA, biopsy Gleason score, and rectal examination findings ³⁻⁸ . Although
108	these cohorts have demonstrated medium-term outcomes consistent with other radical
109	treatment approaches, a significant proportion of patients develop progression
110	requiring treatment. More importantly, a small group of patients may develop more
111	advanced disease while on AS, and might have benefited from "upfront" radical

treatment. It therefore appears that these baseline investigations cannot fully explainthe behaviour of prostate cancer. Furthermore, regular biopsy for AS is invasive and

114 patients are often understandably reluctant to undergo this.

115

In response to this need for improved selection and monitoring, there has been
increasing use of MRI in AS⁹. MRI aims to improve initial staging, and may be
useful during monitoring to guide biopsies, or avoid them if imaging is stable.
Diffusion-weighted MRI (DW-MRI) measures the movement of water molecules
within tissues. The apparent diffusion coefficient (ADC) is derived from these
measurements¹⁰. ADC is relatively high in normal prostate tissue, but low in
cancerous prostate tissue due to increased cellularity restricting diffusion ¹⁰⁻¹². We

123	have previously published outcome data with a median follow-up of 29 months for a
124	cohort of AS patients having baseline DW-MRI ¹³ . This demonstrated that tumours
125	with lower ADC values were associated with a more aggressive phenotype, as
126	measured by repeat biopsy findings and time to radical treatment. However, given
127	that patients can remain on AS for many years, long-term follow-up is essential for
128	patients and clinicians to make fully informed treatment decisions. There is also a
129	relative lack of AS studies with median follow-up significantly beyond 5 years ¹⁴ . In
130	this setting we now present the findings of our study of DW-MRI in AS with the
131	benefit of 9.5 years median follow-up.
132 133	

135 Patients and Methods136

158

159

130	The methods for this study have been published previously ¹³ . The Royal Marsden
138	prospective active surveillance study was commenced in 2002 ³ . Eligibility criteria
139	were: clinical stage T1/T2a N0/Nx M0/Mx prostate adenocarinoma with serum PSA
140	<15ng/ml, Gleason score 3+3 or 3+4, and percentage of positive biopsy cores (pbc)
141	≤50%. Patients were monitored with serial PSA (minimum 3 monthly) and prostate
142	biopsies (first between 12 and 24 months, then every 24 months). Criteria for
143	initiating radical treatment were ¹⁵ : PSA velocity >1 ng/ml per year, primary Gleason
144	grade ≥ 4 on repeat biopsy, or pbc > 50% on repeat biopsy.
145	
146	Although MRI was not mandated for active surveillance study entry, a number of
147	patients had prostate MRI scans as part of their assessment for deciding between
148	radical treatment and AS. All patients in this study had DW-MRI in addition to
149	standard sequences. These DW-MRI studies were performed as research scans and
150	results were not available to the managing clinicians in order to minimise influence on
151	decision-making. Although not specified in the AS study protocol, some patients did
152	have repeat MRI during AS follow-up (see Results). When these were reported, the
153	reporting radiologist would have had access to the DW-MRI taken at baseline,
154	although managing clinicians remained blinded.
155	
156	Initial and repeat biopsies were done using a standard transrectal ultrasound (TRUS)
157	systematic approach. At the date of original analysis (2007), there were 326 patients

Comment [h1]: Removed for word count

8

160 repeat biopsy (i.e. not declined biopsy, been treated, or been withdrawn from study)

enrolled in our active surveillance study, 160 of whom had had DW-MRI imaging at

baseline. At the time of recruitment to this study, patients had to be eligible for initial

161 and have an MRI-visible index lesion from which ADC could be calculated. In 162 addition, for index lesions in the peripheral zone, a positive biopsy in that octant was 163 required. For central gland tumours a homogenous low signal with evidence of mass 164 effect was required. In total, 86 patients fulfilled these criteria and were included in 165 the study. The current analysis was performed in August 2014. 166 DW-MRI was performed according to a standard protocol, which has been previously 167 described¹³. A single region of interest was defined, and mean ADC calculated. 168 Interpretation was performed by an experienced prostate radiologist (NMdS). 169 170 171 Baseline clinical variables included: age, initial PSA, Gleason score, clinical stage, 172 free PSA to total PSA ratio, PSA velocity, percentage maximum core involvement, 173 and percentage of positive cores. These were analysed with respect to time to adverse 174 histology (TAH) and time to deferred radical treatment (TRT). ADC was analysed as 175 both a continuous variable and dichotomised about the mean. The unit of measure for ADC was 100 mm²/s. Kaplan-Meier analysis along with univariate Cox regression 176 177 was performed for TAH and TRT with date measure from consent to first event. 178 Patients with no event were censored at date of last biopsy or last clinic follow-up for 179 TAH and TRT, respectively. Hazard ratios (HR) and 95% confidence intervals were 180 calculated (1/HR was presented for ADC as lower ADC is associated with more 181 aggressive disease). A multivariate model incorporating selected baseline variables 182 was fitted to the data. The addition of ADC to this model was analysed to determine 183 its independent predictive value. As biopsies are not always performed at exactly 184 regular intervals in AS studies, for TAH, an additional analysis using logistic 185 regression was performed for comparison. This analysis used the binary outcome of

Comment [h2]: Removed for word count – data available in original paper

adverse histology at 4 years (the majority of eligible patients had at least two biopsies

187 in the first 4 years). ROC (receiver operating characteristic) analysis was also

188 performed to allow comparison with our original publication¹³. For ROC analysis,

189 repeat biopsy result was treated as a binary outcome.

190

191

- 192
- 193

Comment [h3]: Removed for word count

194 **Results**

195 196	Median clinical follow-up was 9.5 years (IQR: 7.9-10.0). Median follow-up for
197	patients who had not had radical treatment at time of analysis was 9.2 years (IQR: 8.2-
198	9.6). Baseline characteristics are displayed in Table 1. Seventy seven (90%) patients
199	had Gleason grade 3+3 at baseline while the remaining nine (10%) were Gleason
200	grade 3+4. Seventy four (86%) patients were clinical stage T1 and 12 (14%) clinical
201	stage T2a. With regard to D'Amico risk group, 72 (84%) were low risk, while 14
202	(16%) were intermediate risk (in 4 patients this was solely due to a PSA above $10 -$
203	range 11-13). Eighty one (94%) patients had an index lesion in the peripheral zone
204	(PZ), while 3 had index lesions involving both the PZ and central gland, and 2
205	patients had index lesions in the central gland.
206	
207	Thirty patients (35%) had at least one repeat MRI (see Patients and Methods). The
208	median time to first repeat MRI in this group was 2.8 years (IQR: 2.3-3.6). These
209	investigations were not mandated by the study protocol and were done on an
210	individual patient basis.
211	
212	Eighty two patients had at least one repeat biopsy and were included in the TAH
213	analysis. The other four patients had treatment due to clinical factors or biochemical
214	progression alone. Median length of biopsy follow-up was 5.4 years, measured from
215	consent to most recent repeat biopsy. Median TAH was 4.1 years (95% CI: 2.5-5.4).
216	The results of univariate analysis are displayed in Table 2. Among other factors,
217	continuous and dichotomised ADC were significant predictors for the development of
218	adverse histology: HR: 1.30; p <0.0001; 95% CI: 1.13-1.50, and HR: 2.13; p =0.014;
219	95% CI: 1.17-3.89, respectively. For patients whose ADC value was below the

220	median ADC value, median TAH was 2.20 years (95% CI: 1.67-2.73), for those
221	above the median ADC reading, median TAH has not yet been reached (Figure 1).
222 223 224	All patients were included in the analysis of TRT. Median follow-up was 9.5 years
225	(IQR 7.9-10.0), with 69 (80%) patients having at least 7 years of follow-up. At the
226	time of analysis 59 patients had received deferred treatment. Of these 35 had
227	treatment for adverse histology on repeat biopsy, 15 for biochemical progression
228	alone, 4 due to patient choice and one for worsening clinical features. In addition, 4
229	patients had radical treatment for PSA or biopsy progression not meeting the criteria
230	for treatment within the study, but supported by repeat MRI findings of volume
231	progression. These repeat MRI scans were done for clinical concern, and were not
232	part of the active surveillance protocol. Radical treatments given were: radiotherapy
233	(42), prostatectomy (13) and, brachytherapy (3). One patient declined radical
234	treatment and was treated with androgen deprivation therapy alone. Univariate
235	analysis for time to deferred radical treatment is shown in Table 3. Again, continuous
236	and dichotomised ADC were significant predictors for time to deferred radical
237	treatment: HR: 1.40; p <0.001; 95% CI: 1.22-1.61, and HR: 2.54; p =0.001; 95% CI:
238	1.49-4.32, respectively. For patients whose ADC value was below the median ADC
239	reading, median time to deferred radical treatment was 2.40 years (95% CI: 1.5-6.0),
240	compared with 9.33 years (95% CI: 7.0-11.6) for those above the median (Figure 2).
241 242	A baseline multivariate model of initial PSA, clinical T stage and percentage of
243	positive cores was fitted to the data. Gleason grade was not included, as this was not
244	a significant predictor on univariate analysis. No further clinical factors were
245	included in view of the limited sample size. The addition of continuous ADC to
246	models for both TAH and TRT resulted in a significant improvement in model fit

- 247 (Tables 4 and 5): HR: 1.23; p =0.002; 95% CI: 1.06-1.44 and, HR: 1.33; p <0.001;
- 248 95% CI: 1.14-1.54, respectively. For TAH, similar results were obtained with both
- 249 logistic and Cox regression approaches (Table 4). The results of the ROC analysis are
- shown in Table 6.

252 Discussion

253

254	We have shown that baseline ADC is strongly predictive of both time to adverse
255	histology and deferred radical treatment in an AS cohort with long-term follow-up.
256	Building on our initial findings, the additional multivariate analysis is evidence that
257	ADC has independent predictive value. Therefore, DW-MRI appears to provide
258	further information about disease biology than that provided by standard
259	investigations. Our findings are in keeping with previous studies of DW-MRI in AS,
260	which have shown an association between low ADC and clinically significant prostate
261	cancer ^{16,17} .
262	
263	The potential predictive value of DW-MRI, makes it an appealing method for
264	monitoring patients on AS. This may allow men with findings unchanged from
265	baseline to avoid re-biopsy. It may also permit targeted biopsy in those with new
266	areas of low ADC. In a recent systematic review Schoots et al assessed the use of
267	MRI in AS. MRI imaging was typically multi-parametric (mpMRI), incorporating
268	DW, T2-weighted, and contrast-enhanced sequences ¹⁸ . They concluded that while
269	baseline mpMRI was a good predictor of clinically significant disease, there was
270	relatively little data for its use in monitoring on AS. They also emphasised the need
271	to determine radiological significance and radiological progression for monitoring.
272	We would suggest that the development of areas of reduced ADC while on
273	surveillance is likely to prove useful in this regard. Even more recently, Walton et al
274	reported a cohort of 58 men undergoing AS ¹⁹ . These patients had mpMRI (including
275	DW-MRI) at baseline and prior to repeat biopsy. They found that unchanged mpMRI

Comment [h4]: Removed for word count – data can be got from references provided

had a negative predictive value of 80% for biopsy upgrade (Gleason 6 to \geq 7),

279	An unexpected finding in our cohort was the high rate of progression to radical
280	treatment. In our original report, at 29 months follow-up, 39 of 86 patients had
281	received deferred radical treatment ¹³ . Now, with 9.5 years follow-up, this has risen to
282	59 patients (with estimated deferred radical treatment rates at nine years of 45% and
283	81% for patients with ADC above and below the median, respectively; Figure 2). The
284	major reported series (including our own) have 5 year deferred radical treatment rates
285	between 15-40% ³ . Klotz <i>et al</i> have reported the series with the longest follow up
286	(819 patients with 6.4 years median follow-up), estimating deferred radical treatment
287	rates of 24%, 36%, and 45% at 5, 10, and 15 years, respectively ⁴ . A possible
288	explanation is selection bias. Patients were required to have an MRI-visible index
289	lesion from which to calculate ADC. Given that pathological cancer volume is
290	associated with outcome ²⁰ , patients with visible lesions on T2-weighted MRI may be
291	more likely to progress than those without visible disease. It should also be
292	remembered that our initial T staging was based on clinical findings rather than MRI.
293	
294	This study has a number of limitations. First, the relatively small numbers limited the
295	number of variables that could be included in the multivariate analysis and ideally
296	requires validation in a larger cohort. Second, actual ADC values will be dependent
297	on the data acquisition parameters and the model used to derive ADC. In this regard,
298	published ADC values for cancer vary significantly ²¹ . Therefore, reproducibility
299	between centres is challenging and requires further work to be generalisable.
300	Furthermore, the ADC values of cancer and inflammation can overlap ²¹ . However,

302 biopsy in the corresponding octant. Third, 35% of patients had at least one repeat 303 MRI. As the reporting radiologist for the repeat scans was not blinded to the initial 304 DW-MRI, this may have introduced an element of bias via their report (although the 305 AS investigators remain blinded). However, the median time to repeat imaging was 306 2.8 years (IQR: 2.3-3.6), where as it can be seen from Figures 1 and 2 that wide 307 separation of curves had occurred by two years. Together with the fact that 65% of 308 patients did not have repeat MRI, this fact makes it less likely that repeat MRI 309 influenced the results significantly. Fourth, the duration of biopsy follow-up is 310 significantly shorter than the clinical follow-up. This is likely due to a combination of 311 factors including: increased interval between biopsies in those with stable features, the 312 increased use of MRI for follow-up, men declining further biopsy, and men who 313 become less fit transferring to a "watchful waiting" strategy. Fifth, we acknowledge that the use of TRUS biopsy has limitations with regard to under-sampling 22 . This 314 may have been improved by using trans-perineal template biopsies²³. However, these 315 316 techniques were not our practice at the time of embarking on the study. Finally, an AS 317 strategy incorporating DW-MRI may be less informative for patients who have no 318 index lesion from which to measure ADC at baseline, but a baseline MRI remains a 319 useful comparator for future follow-up.

in our study, the majority of patients had peripheral zone index lesions with a positive

320

301

In order to validate the DW-MRI approach, we are currently conducting a prospective cohort study of AS incorporating mpMRI. The study protocol mandates mpMRI at baseline, 12 months, then every 24 months. In patients with no significant changes in mpMRI findings, repeat biopsy is not mandated. This study will help to generate the prospective evidence required in this setting.

16

Comment [h5]: Deleted to reduce word count

220	A 1 '
4 /U	I onemerone.
547	Conclusions.

221	
331	Long term follow-up for this study of DW-MRI in AS provides strong support for its
332	value in predicting adverse histology and the need for radical treatment. The
333	evaluation of DW-MRI in large prospective AS studies to improve patient selection
334	and potentially replace biopsy-based monitoring is justified.
335 336 337 338	Acknowledgements
339	This work was undertaken at the Royal Marsden NHS Foundation Trust, which
340	received a proportion of its funding from the National Health Service (NHS)
341	Executive; the authors acknowledge NHS funding to the National Institute for Health
342	Research Biomedical Research Centre. The views expressed in this publication are
343	those of the authors and not necessarily those of the NHS Executive.
344	
345	Data access and responsibility
346	Dr Nicholas van As had full access to all the data in the study and takes responsibility
347	for the integrity of the data and the accuracy of the data analysis.

References

350		
351	1.	EAU. European Association of Urology: Guidelines on Prostate Cancer. 2015.
352		http://uroweb.org/guideline/prostate-cancer/. Accessed 11/06/2015.
353	2.	NCCN. National Comprehensive Cancer Network - Clinical Practice
354		Guidelines in Oncology: Prostate Cancer. Version 1.2015. 2014;
355		http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed
356		24/10/2014.
357	3.	Selvadurai ED, Singhera M, Thomas K, et al. Medium-term outcomes of
358		active surveillance for localised prostate cancer. Eur Urol. Dec
359		2013;64(6):981-987.
360	4.	Klotz L, Vesprini D, Sethukavalan P, et al. Long-term follow-up of a large
361		active surveillance cohort of patients with prostate cancer. J Clin Oncol. Jan
362		20 2015;33(3):272-277.
363	5.	Tosoian JJ, Trock BJ, Landis P, et al. Active surveillance program for prostate
364		cancer: an update of the Johns Hopkins experience. J Clin Oncol. Jun 1
365		2011;29(16):2185-2190.
366	6.	Cooperberg MR, Cowan JE, Hilton JF, et al. Outcomes of active surveillance
367		for men with intermediate-risk prostate cancer. J Clin Oncol. Jan 10
368		2011;29(2):228-234.
369	7.	Bul M, Zhu X, Valdagni R, et al. Active surveillance for low-risk prostate
370	_	cancer worldwide: the PRIAS study. <i>Eur Urol.</i> Apr 2013;63(4):597-603.
371	8.	Soloway MS, Soloway CT, Eldefrawy A, Acosta K, Kava B, Manoharan M.
372		Careful selection and close monitoring of low-risk prostate cancer patients on
373		active surveillance minimizes the need for treatment. <i>Eur Urol</i> . Dec
374		2010;58(6):831-835.
375	9.	van den Bergh RC, Ahmed HU, Bangma CH, Cooperberg MR, Villers A,
376		Parker CC. Novel tools to improve patient selection and monitoring on active
3//		surveillance for low-risk prostate cancer: a systematic review. <i>Eur Urol.</i> Jun
378	10	2014;65(6):1023-1031.
379	10.	Van As N, Charles-Edwards E, Jackson A, et al. Correlation of diffusion-
380		weighted MRI with whole mount radical prostatectomy specimens. Br J
381	11	<i>Radiol.</i> Jun 2008;81(966):456-462.
382	11.	Sato C, Naganawa S, Nakamura T, et al. Differentiation of noncancerous
383		tissue and cancer lesions by apparent diffusion coefficient values in transition
384 295		and peripheral zones of the prostate. J Magn Reson Imaging. Mar
385	10	2005;21(5):258-262. Moreon VA Kuriozi S. Ashlov SE, DeSouze NM, Evolution of the notantial
200	12.	of diffusion variabled imaging in practate appear detection Acta Radial Ivi
2007		2007.48(6).605-702
380	13	2007,46(0).095-705.
309	13.	magnetic resonance imaging in men with untreated localised prostate cancer
390		on active surveillance. Fur Ural. Dec 2000:56(6):081-087
302	14	Simplin A.I. Tilling K. Martin P.M. et al. Systematic Paviaw and Mata
392	14.	analysis of Factors Determining Change to Dedical Treatment in Active
393		Surveillance for Localized Prostate Cancer Fur Urol Jap 21 2015
395	15.	Venkitaraman R Norman A Woode-Amissah R et al Predictors of
396	10,	histological disease progression in untreated localized prostate cancer <i>LUrol</i>
397		Sen 2007.178(3 Pt 1).833-837
271		

- 398 16. Somford DM, Hoeks CM, Hulsbergen-van de Kaa CA, et al. Evaluation of
 399 diffusion-weighted MR imaging at inclusion in an active surveillance protocol
 400 for low-risk prostate cancer. *Invest Radiol.* Mar 2013;48(3):152-157.
- 401 17. Morgan VA, Riches SF, Thomas K, et al. Diffusion-weighted magnetic
 402 resonance imaging for monitoring prostate cancer progression in patients
 403 managed by active surveillance. *Br J Radiol.* Jan 2011;84(997):31-37.
- 404 18. Schoots IG, Petrides N, Giganti F, et al. Magnetic Resonance Imaging in
 405 Active Surveillance of Prostate Cancer: A Systematic Review. *Eur Urol.* Apr
 406 2015;67(4):627-636.
- 407 19. Walton Diaz A, Shakir NA, George AK, et al. Use of serial multiparametric
 408 magnetic resonance imaging in the management of patients with prostate
 409 cancer on active surveillance. *Urol Oncol.* Mar 5 2015.
- Turkbey B, Mani H, Aras O, et al. Prostate cancer: can multiparametric MR
 imaging help identify patients who are candidates for active surveillance? *Radiology*. Jul 2013;268(1):144-152.
- 413
 414
 414
 414
 415
 416
 416
 417
 418
 418
 419
 419
 419
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
 410
- 417 22. Ukimura O, Coleman JA, de la Taille A, et al. Contemporary role of
 418 systematic prostate biopsies: indications, techniques, and implications for
 419 patient care. *Eur Urol.* Feb 2013;63(2):214-230.
- 420 23. Lecornet E, Ahmed HU, Hu Y, et al. The accuracy of different biopsy
 421 strategies for the detection of clinically important prostate cancer: a computer
 422 simulation. *J Urol.* Sep 2012;188(3):974-980.
- 423 424