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ABSTRACT 

Background and Purpose: 4D and midposition MRI could inform plan adaptation in 

lung and abdominal MR-guided radiotherapy. We present deep learning-based 

solutions to overcome long 4D-MRI reconstruction times while maintaining high 

image quality and short scan times. 

Methods: Two 3D U-net deep convolutional neural networks were trained to 

accelerate the 4D joint MoCo-HDTV reconstruction. For the first network, gridded 

and joint MoCo-HDTV-reconstructed 4D-MRI were used as input and target data, 

respectively, whereas the second network was trained to directly calculate the 

midposition image. For both networks, input and target data had dimensions of 256 × 

256 voxels (2D) and 16 respiratory phases. Deep learning-based MRI were verified 

against joint MoCo-HDTV-reconstructed MRI using the structural similarity index 

(SSIM) and the naturalness image quality evaluator (NIQE). Moreover, two 

experienced observers contoured the gross tumour volume and scored the images in 

a blinded study. 

Results: For 12 subjects, previously unseen by the networks, high-quality 4D and 

midposition MRI (1.25 × 1.25 × 3.3 mm3) were each reconstructed from gridded 

images in only 28 seconds per subject. Excellent agreement was found between 

deep-learning-based and joint MoCo-HDTV-reconstructed MRI (average SSIM ≥ 

0.96, NIQE scores 7.94 and 5.66). Deep-learning-based 4D-MRI were clinically 

acceptable for target and organ-at-risk delineation. Tumour positions agreed within 

0.7 mm on midposition images.  

 

Conclusion: Our results suggest that the joint MoCo-HDTV and midposition 

algorithms can each be approximated by a deep convolutional neural network. This 

rapid reconstruction of 4D and midposition MRI facilitates online treatment 

adaptation in thoracic or abdominal MR-guided radiotherapy. 

 

Keywords: 4D MRI; deep convolutional neural networks; radiotherapy treatment 

planning; magnetic resonance guided radiotherapy; MR-Linac. 

INTRODUCTION 

Magnetic resonance (MR) guided radiotherapy (MRgRT) harnesses the exquisite 

soft-tissue contrast of magnetic resonance imaging (MRI) to improve the conformity 

of radiotherapy treatment delivery and subsequently patient outcome [1-3]. For 

abdominal and lung cancer patients, four-dimensional (4D) and midposition [4, 5] 

(MidP; time-weighted mean position within respiratory cycle) MRI have many 
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applications on an MR-Linac [6-14]. For instance, 4D/MidP-MRI could be acquired 

online before treatment delivery (pre-beam) and inform treatment plan adaptation to 

better represent the daily patient anatomy and respiratory pattern [15-17]. 

Alternatively, MidP-MRI could be calculated from pre-beam 4D-MRI and then 

continuously updated throughout treatment delivery based on 2D cine MRI, to adapt, 

for example, to baseline drifts [18, 19].  

To achieve reasonable scanning times, 4D-MRI data are acquired heavily 

undersampled and iterative compressed sensing-based reconstructions [20-22] are 

used to calculate high-quality 4D/MidP-MRI. However, state-of-the-art 

reconstructions are currently of limited use for online MRgRT applications because 

of long reconstruction times. For the 4D joint motion-compensated high-dimensional 

total variation (joint MoCo-HDTV) algorithm, 9-12 hours were reported [23], while 

current implementations of the Golden-angle Radial Sparse Parallel (GRASP) 

reconstruction take approximately 10 minutes [20, 24, 25]. 

Deep learning techniques can bypass the long calculation times required by iterative 

compressed sensing algorithms to reconstruct highly undersampled data [26-30]. 

Deep learning-based MR image reconstruction techniques can be loosely 

categorised into data-driven, model-based and hybrid methods [31]. 

In data-driven approaches, a mapping is obtained between input and target data 

using a deep convolutional neural network (dCNN) architecture, with either minor or 

no use of a priori information. For instance, Han et al. applied a dCNN to reconstruct 

undersampled two-dimensional (2D) MR images [32], which were acquired using a 

radial stack-of-stars spoiled gradient echo sequence [33]. Similarly, Hyun et al. 

trained and applied a dCNN to reduce aliasing artefacts in 2D-MR images [34], 

which were acquired using a Cartesian turbo spin echo sequence. 

 

In model-based techniques, image reconstruction is formulated as an iterative 

optimisation problem with free parameters and functions. By unrolling the 

optimisation algorithm, on an iteration by iteration basis, a deep network can be 

constructed and trained to perform image reconstruction [28]. Hybrid approaches 

combine data-driven and model-based techniques. For example, [29, 35] proposed 

frameworks utilising dCNN-based regularizers (data-driven) and data consistency 

steps (model-based) to reconstruct undersampled MR images. 

From the literature, it is clear that dCNNs can rapidly reduce aliasing artefacts 

present in undersampled MR images [30-32]. However, dCNNs have not yet been 

applied to accelerate compressed sensing-based 4D/MidP-MRI reconstructions.  

In this article, data-driven dCNNs were implemented, trained and applied to 

reconstruct 4D-MRI and MidP-MRI from gridded data. The implemented architecture 

is referred to as Dracula, i.e. a deep radial convolutional neural network. The dCNN-

reconstructed images were verified against 4D joint MoCo-HDTV-reconstructed MRI 
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by comparison of image similarity (structural similarity index metric (SSIM) and 

naturalness image quality evaluator (NIQE) [36]). In addition, dCNN-reconstructed 

4D-MRI were visually assessed and compared against joint MoCo-HDTV-

reconstructed 4D-MRI by two experienced observers.

MATERIALS AND METHODS 

Data acquisition 

Within imaging studies approved by the local ethics committee (16/LO/0591 and 

16/LO/1390), 20 adult healthy volunteers and 47 patients (27 lung cancer [adult]; 3 

liver cancer [adult]; 17 abdominal cancer [paediatric]) were scanned in free breathing 

with a volumetric T1-weighted radial stack-of-stars spoiled gradient echo sequence 

[33] with golden-angle spacing [37] at 1.5 T (MAGNETOM Aera; Siemens 

Healthcare; Erlangen, DE). T1-weighted images were acquired in axial orientation 

with pixel-size 1.25 × 1.25 to 1.50 × 1.50 mm2 and slice-thickness 3.0 to 3.5 mm. 

Written informed consent was obtained for all patients to use their images for 

research purposes. Very young patients were scanned under general anesthesia 

and required a smaller imaging field-of-view. Detailed acquisition parameters are 

provided in the supplemental material.  

Reconstruction of raw data 

Raw data were corrected for gradient-delays [38] and sorted into 16 overlapping 

respiratory phases using a self-gating signal [39]. Afterwards, the joint MoCo-HDTV 

algorithm was applied to calculate high-quality 4D magnitude images from the sorted 

raw data [23], which will onwards be referred to as 4D-MoCo. In addition, 4D-

Gridded images were obtained from the sorted raw data by density compensation 

and interpolation onto a rectilinear grid using a Kaiser-Bessel kernel followed by a 

fast Fourier transform [23]. Removal of oversampling resulted in a matrix size of 256 

× 256 pixels for each slice for both 4D-Gridded and 4D-MoCo MRI. 

Calculation of Midposition images 

Midposition images were obtained from 4D-MoCo MRI using a similar approach to 

[40]. Motion vector fields (MVFs) (M𝑇𝑛

𝑇1 ) between the end-exhalation phase (𝑇1) and 

all other respiratory phases (𝑇𝑛) of 4D-MoCo MRI were calculated by b-spline GPU-

accelerated deformable image registration using NiftyReg [41, 42]. The average 

transformation (M𝑇𝑀𝑖𝑑𝑃

𝑇1 ) was then calculated from the M𝑇𝑛

𝑇1  set [4]. Next, MVFs 

describing the transformation between MidP and all respiratory phases (𝑇𝑛) were 

obtained by composing the M𝑇𝑛

𝑇1  and inverse M𝑇𝑀𝑖𝑑𝑃

𝑇1  MVFs: M𝑇𝑛

𝑇𝑀𝑖𝑑𝑃 = M𝑇𝑛

𝑇1 ∘ M𝑇1

𝑇𝑀𝑖𝑑𝑃. 

Afterwards, the MidP-MoCo image was calculated by warping all 𝑇𝑛 with the inverse 

M𝑇𝑛

𝑇𝑀𝑖𝑑𝑃 transformations and averaging over all respiratory phases: MidP-MoCo =
1

16
∑ M𝑇𝑀𝑖𝑑𝑃

𝑇𝑘16
𝑘=1 𝑇𝑘.  
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Data pre-processing 

Per subject, the intensity values of the MidP-MoCo, 4D-Gridded and 4D-MoCo 

images were divided by 1.5 times the maximum intensity of the 4D-Gridded image. 

Scaling ensured that image intensity values were between 0 and 1.  

 

Scaled data were randomly assigned to training (50 subjects [75 %]), validation (11 

subjects [16 %]) and test sets (6 subjects [9 %]); collectively referred to as Group 1. 

Random sorting was constrained to ensure that ratios between the number of 

healthy volunteers, lung cancer patients, liver cancer patients and abdominal cancer 

patients were similar in the training, validation and test sets. Using the same 

approach, a second data set (Group 2) was obtained. Test sets of Group 1 and 2 

were disjoint, each containing data from two healthy volunteers, three lung cancer 

patients and one abdominal cancer patient. 

Implementation of Dracula 

A three-dimensional (3D) U-net dCNN architecture [43, 44] was implemented in 

TensorFlow [45] to separately reconstruct 4D-MoCo and MidP-MoCo images from 

4D-Gridded MRI. The output image volumes are referred to as 4D-Dracula and 

MidP-Dracula, respectively. Figure 1 displays the Dracula architecture, which 

contained encoding (left-hand side), bottleneck (middle) and decoding (right-hand 

side) paths. Overall, Dracula contained 90,304,449 trainable parameters, which were 

associated with batch normalisation (shifting and scaling parameters), convolutions 

(kernel weights) and transposed convolutions (kernel weights). Further information 

on the choices regarding the implemented network architecture and how overfitting is 

prevented, is provided as supplemental material.  

Training and application of Dracula 

Using the training and validation data from Group 1, two separate instances of 

Dracula were optimised to learn transformations between the following input and 

target images: 

 

Dracula-4D-1: Generates 4D-Dracula images from 4D-Gridded data. 

Dracula-MidP-1: Generates MidP-Dracula images from 4D-Gridded data. 

 

For both networks, input and target images had dimensions 256 [voxels] × 256 

[voxels] × 16 [respiratory phases] to enable capturing of features at different length 

scales and to resolve motion between respiratory phases. For the Dracula-MidP-1 

network, copies of the MidP-MoCo image were used as the target image for each of 

the 16 respiratory phases. 

 

All networks were trained using the Adam optimizer [46] with mean square error as 

the loss function and hyper-parameters: learning rate = 10-5, epochs = 120 and 
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batch-size = 1 (GPU memory constraints). Hyper-parameters were empirically 

optimised by monitoring the training and validation loss curves (Figure 2a) and by 

manually assessing the image quality of 4D-Dracula images generated from the 

validation data at subsequent epochs throughout training. While the validation loss 

curves were stable after epochs 20 to 30, slight improvements in image quality were 

observed in the validation images up to epoch 120. Identical hyper-parameters were 

chosen for the Dracula-MidP-1 network as the resulting training and validation loss 

curves exhibited similar behaviour to those corresponding to the Dracula-4D-1 

network (Figure 2b). 

 

For cross-validation purposes, two further instances of Dracula (Dracula-4D-2 and 

Dracula-MidP-2) were trained in the same way as the Dracula-4D-1 and Dracula-

MidP-1 networks, except using training and validation data from Group 2. 

 

Once trained, all networks were separately applied to reconstruct test data from 

Groups 1 (Dracula-4D-1 and Dracula-MidP-1) and 2 (Dracula-4D-2 and Dracula-

MidP-2). Test data were previously unseen by the networks. All training and testing 

calculations were performed on an NVIDIA Quadro P6000 GPU with 24 GB memory. 

 

MidP-Dracula MRI was obtained from the output of the Dracula-MidP networks by 

averaging over the respiratory phase dimension.  

 

Verification of Dracula-reconstructed images 

4D-Dracula and MidP-Dracula MRI were verified against the corresponding 4D-

MoCo and MidP-MoCo images. Heavy streaking artefacts exhibited by 4D-Gridded 

MRI prohibited calculation of and comparison to a MidP-Gridded image. Images 

were compared in terms of the SSIM [47] and NIQE [36] metrics. The SSIM is scaled 

between 0 and 1, where the SSIM of two images = 1, if they are identical in terms of 

contrast, luminance and structure. The NIQE score measures the distance between 

the natural scene statistic (NSS) features of an image and a pre-trained model. 

Lower NIQE scores symbolize better agreement with the model in terms of 

perceptual image quality. Here, we trained an NIQE model using 1000 randomly 

extracted 2D slices from the 4D-MoCo test data of Groups 1 and 2.  

A radiation oncologist and a radiologist independently evaluated the exhalation and 

inhalation respiratory phase images of 4D-Gridded, 4D-MoCo and 4D-Dracula MRI 

(Groups 1 and 2: 8 patients and 4 healthy volunteers). Both observers had at least 

five years of experience reading abdominal and thoracic MR images. All images 

were anonymized and randomly presented in RayStation software (v7.99, 

RaySearch Laboratories, Sweden). Images were scored using a five-point Likert 

scale: 0 - unreadable, 1 - poor, 2 - adequate (clinically acceptable for target and 

organ-at-risk delineation in radiotherapy treatment planning), 3 - good and 4 - 

excellent. Images were assessed in terms of: general image sharpness, general 

streaking artefacts, visibility of the tumour extent, visibility of the heart and visibility of 
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the oesophagus. It was not possible to assess the visibility of the heart and the 

oesophagus for two abdominal cancer patients because these organs were outside 

the field-of-view. Moreover, the visibility of the tumour extent was not scored for 

three patients (two abdominal and one lung) because the gross tumour volume 

(GTV) could not be localised without additional clinical information. Independently for 

observers 1 and 2, scores given to each reconstruction algorithm were compared 

using a two-sided paired Wilcoxon signed-rank test (α=0.05). We report mean and 

standard deviation over all test-subjects for each reconstruction and scoring 

category. In addition, the inter-observer agreement was assessed for each metric 

using the intra class correlation coefficient (ICC) in R [48] with α=0.05, two-way 

mixed effects, single measures and consistency agreement. Based on [49], scores 

0.00-0.39, 0.40-0.59, 0.60-0.74 and 0.75-1.00 were interpreted as poor, fair, good 

and excellent, respectively.  

Both observers delineated the GTV for five patients to enable a comparison of the 

tumour motion range and contour similarity between the 4D-Dracula and 4D-MoCo 

images. Tumour motion range was calculated as the Euclidean distance between the 

GTV centre-of-mass in exhalation and inhalation. Motion ranges for 4D-Dracula and 

4D-MoCo were compared using a two-sided paired Wilcoxon signed-rank test 

(α=0.05). Separately for each patient and observer, the Sørensen-Dice coefficient 

(DSC) [50] was calculated between GTV contours delineated on corresponding 

phases of 4D-Dracula and 4D-MoCo images. Further, to evaluate inter-observer 

contour variation, the DSC coefficients of GTV contours delineated on the same 

images were calculated.  

 

Tumour positions in MidP-Dracula were verified against MidP-MoCo using image 

registration. For each patient, from the GTV contour on the 4D-MoCo exhalation 

image, a rectangular bounding box was obtained after morphological dilatation with a 

spherical structuring element (3, 3, 3 pixels) and used as a mask to extract the 

tumour region. The difference of the tumour position between MidP-Dracula and the 

masked MidP-MoCo image was then obtained by rigid registration using the 

imregister function in MATLAB (version 2020b; The Mathworks, Natik, MA).  

 

RESULTS 

Dracula-4D networks were each trained in approximately 11 days and took less than 

28 seconds to reconstruct high spatio-temporal resolution 4D-MoCo MRI (voxel-size 

≈ 1.25 × 1.25 × 3.30 mm3, 16 respiratory phases) from 4D-Gridded MRI. For all 12 

subjects in the test data, 4D-Dracula image appearance was qualitatively similar to 

the 4D-MoCo images but exhibited a slight loss of high frequency structures (e.g. 

small lung vessels). Figure 3 shows an example comparison between Gridded, 

Dracula-reconstructed and MoCo images for a lung cancer patient, where heart and 

tumour extent are similarly visible in Dracula-reconstructed and MoCo images. This 
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is reflected by average observer scores of 3.5 and 3.75 for visibility of the heart and 

tumour extent, respectively. A similar example for an anesthetised paediatric patient 

is provided in the supplemental material. Figure 4 displays Gridded, Dracula-

reconstructed and MoCo images for the case with the lowest observer scores. Minor 

to moderate blurring is observed in the Dracula-reconstructed images, for instance in 

the lung, when compared to the corresponding 4D-MoCo images. This finding is 

supported by the average observer scores for general image sharpness, which were 

2.3 and 3.8 for the 4D-Dracula and 4D-MoCo images, respectively. Two movies 

further illustrating the differences between 4D-Gridded, 4D-Dracula and 4D-MoCo 

MRI are provided as supplemental material. 

 

The average SSIM value (median, [25th and 75th percentile]) between 4D-Dracula 

and 4D-MoCo MRI was 0.97 [0.97, 0.98], which was substantially larger compared to 

the corresponding 4D-Gridded and 4D-MoCo SSIM value: 0.74 [0.59, 0.80]. The 

average NIQE scores (median, [25th and 75th percentile]) for the 4D-Gridded, 4D-

Dracula and 4D-MoCo MRI were 81.03 [56.16, 97.83], 7.94 [6.49, 9.87] and 5.66 

[5.16, 9.66], respectively.  

Table 1 summarises the scores assigned to inhalation and exhalation images by 

both observers. For all metrics, 4D-Dracula images were awarded significantly 

higher scores by both observers when compared to those assigned to the 4D-

Gridded images; except by Observer 2 for the delineation of tumour extent metric 

(p=0.06). The 4D-Gridded images were clinically unacceptable as average scores for 

the majority of categories were below 2. In contrast, 4D-Dracula images were 

reported by both observers to be clinically acceptable (mean scores greater than 2) 

for all metrics and were awarded a total average of 2.7. Although clinically 

acceptable, 4D-Dracula images were assigned significantly lower scores than the 

state-of-the-art 4D-MoCo images for most metrics. The reduction in image quality 

can be observed for a lung cancer patient in Figure 3, where the 4D-Dracula images, 

for instance, exhibit minor blurring when compared to the 4D-MoCo images. Scores 

recorded for the delineation of tumour extent (Observers 1 and 2) and oesophagus 

visibility metrics (Observer 1) were not significantly different when comparing the 4D-

Dracula and 4D-MoCo images. Table 1 additionally displays the ICC values 

calculated by assessing the scores reported by Observers 1 and 2. For all scores, 

good inter-observer agreement was determined, except for the general streaking 

artefact, where excellent agreement was found.  

 

The tumour motion ranges, calculated from the GTV delineations, are included in 

Table 1. Differences in median tumour ranges, obtained from the 4D-Dracula and 

4D-MoCo delineations, were statistically insignificant and were less than 2.4 mm. 

The median DSC scores, which are also reported in Table 1, between GTV contours 

delineated on 4D-Dracula and 4D-MoCo images were greater than 0.86 for both 

observers. The average inter-observer DSC scores for the 4D-Dracula and 4D-MoCo 

images were (median, [25th and 75th percentile]) 0.83 [0.75, 0.88] and 0.86 

[0.81,0.88], respectively. 
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Dracula-MidP networks were applied to reconstruct high-resolution MidP-MoCo 

images from the 4D-Gridded MRI test data of Groups 1 and 2. Training and 

reconstruction took approximately 11 days and 28 seconds, respectively. As 

demonstrated in Figure 5 for a lung cancer patient, MidP-Dracula images exhibited 

good visual agreement with the corresponding MidP-MoCo images. In this example, 

streaking artefacts were greatly reduced in the MidP-Dracula image when compared 

to the exhalation image of 4D-Gridded MRI. Similarly to the outputs of the Dracula-

4D networks, MidP-Dracula images suffered from minor blurring and loss of high-

detail information, but maintained a high SSIM value when compared against the 

MidP-MoCo images: 0.96 [0.94, 0.97]. Moreover, similar NIQE scores were 

calculated for the MidP-Dracula (8.47 [7.32, 10.13]) and MidP-MoCo images (6.72 

[5.04, 9.17]). Excellent agreement was found between tumour positions in the MidP-

Dracula and MidP-MoCo images, with a maximum Euclidean distance of 0.63 mm.  

DISCUSSION 

Our results demonstrate that it is possible to reconstruct good-quality 4D-MRI with 

very short reconstruction times. Deep convolutional neural networks were trained 

and applied for fast reconstruction of 4D-MRI and MidP-MRI from Gridded data 

(undersampled 4D-MRI). The presented Dracula network required less than 28 

seconds to reconstruct 4D-MRI and MidP images, which is substantially faster than 

state-of-the-art compressed sensing algorithms, such as GRASP [20, 24] (≈ 10 

minutes) and 4D joint MoCo-HDTV [23] (≈ 9-12 hours). 4D-Dracula images were 

scored significantly better than corresponding 4D-Gridded images and were awarded 

a mean score (2.7) between adequate (2) and good (3). Using Dracula to calculate 

the MidP image directly took less time compared to sequential 4D-MRI 

reconstruction and MidP reconstruction. 

 

A U-net architecture [44] was chosen based on the study by Han et al. [32], which 

demonstrated the feasibility of applying a 2D U-net to reduce radial streaking 

artefacts exhibited by undersampled 2D-MRI. This decision was further influenced by 

the wide range of applications and the availability of a mature open-source 

implementation. Using a 3D U-net [43] was inspired by modern compressed sensing-

based 4D-MRI algorithms [20, 23, 51] which exploit information in both spatial and 

temporal domains to reconstruct heavily undersampled data. With Dracula’s 3D U-

net architecture, spatial information from neighbouring slices was not available, 

which might have caused blurring of structures experiencing through-plane motion. 

However, in the presented work it was not possible to implement a 3.5D or 4D U-net 

architecture due to GPU memory constraints. 

 

Two experienced observers visually assessed the exhalation and inhalation 

respiratory phase images. They agreed that the 4D-MoCo images had the highest 

overall image quality with average scores between 3.0-4.0 for all metrics, while 4D-

Dracula images received scores between 1.8-3.4. Both observers reported that 
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minor blurring and residual streaking artefacts exhibited by 4D-Dracula images 

caused general loss of image quality (sharpness and streaking), but also led to 

reduced visibility of tumour and organs-at-risk (heart and oesophagus). 

Nevertheless, 4D-Dracula images were considered clinically acceptable for 

contouring in radiotherapy treatment planning with the majority of average scores 

being greater than 2. In contrast, Gridded images were found clinically unacceptable 

for contouring purposes with average scores between 0.5-2.5 for all metrics. Based 

on the ICC values, good to excellent inter-observer agreement was found between 

the reported scores. 

 

No statistically significant differences were found between the average tumour 

motion ranges in 4D-Dracula and 4D-MoCo images. Average tumour motion ranges 

were based on the delineated contours, which were consistent between 4D-Dracula 

and 4D-MoCo with average DSC scores above 0.87. Table 1 reveals that the 

difference in motion range between 4D-Dracula and 4D-MoCo was smaller than the 

difference in motion range reported by the two observers. While average inter-

observer DSC scores were larger than 0.82, which is better than the value of 0.75 

reported in [52] for the category of less difficult cases, the interquartile range of the 

tumour motion extent suggests that the distribution might be skewed. In the case 

presented in Figure 4, it was challenging to distinguish between tumour and 

atelectasis, which led to an average inter-observer DSC score of only 0.38 for this 

patient.  

 

Similarly to 4D-Dracula MRI, MidP-Dracula images exhibited only minor blurring and 

residual streaking artefacts when compared to corresponding MidP-MoCo images 

and had excellent agreement in terms of the SSIM (average value: 0.96). While 

calculation of SSIM is straight-forward, it is not as sensitive to low contrast features 

as a trained observer and differs in the assessment of blurred and noisy images [53]. 

As SSIM requires a reference, we further included the reference-less NIQE metric, 

which yielded similar average NIQE scores of 8.47 and 6.72 for the MidP-Dracula 

and MidP-MoCo images, respectively. Finally, the calculated tumour positions in 

MidP-Dracula exhibited high spatial agreement with those in the MidP-MoCo images, 

with calculated maximum differences of only 0.63 mm. These results demonstrate 

the feasibility of rapidly calculating good-quality MidP-MRI directly from 4D-Gridded 

MRI data. 

 

Dracula could be applied on an MR-Linac, to reconstruct both 4D-MRI and MidP-MRI 

online in less than 1 minute, to support daily plan adaptation for lung and abdominal 

cancer patients [15-17]. Alternatively, 4D-Dracula MRI can provide MVFs, which 

could be used to transform a scan acquired with a separate contrast, to different 

respiratory phases [54, 55]. This approach yields co-registered 4D-MRI of several 

contrasts, such as: T1-weighted, T2-weighted and synthetic-CT, without requiring 

multiple lengthy 4D acquisitions, which could facilitate MR-only radiotherapy 

treatment planning and delivery on an MR-Linac for lung and abdominal patients 



11 
 

[40]. Daily 4D-MRI could inform whether and how motion-management could enable 

better sparing of normal tissue, for instance by assessing the amplitude of 

respiratory motion. The supplemental 4D-MRI movies suggest that Dracula is less 

susceptible to flow effects and high-frequency motion. We suspect that this is a 

consequence of the variable ratio of cardiac and respiratory frequencies within the 

training cohort.   

 

Due to the heavy use of image registration in the iterative reconstruction, achieving 

calculation times of below 10 minutes is challenging for the joint MoCo-HDTV 

algorithm [23], even with full GPU acceleration. Paulson et al. demonstrated 

successful use of 4D-MRI in abdominal MR-guided radiotherapy [16], reporting 

reconstruction times of 3.7 and 6.4 minutes for MidP and 4D-MRI with 8 respiratory 

frames, respectively. A Dracula-based reconstruction could shorten these 

reconstruction times and potentially the acquisition time for 4D-MRI, as the joint 

MoCo-HDTV algorithm [23] can overcome higher undersampling than the CG-

SENSE reconstruction used in [16]. Combination of 4D-MRI with imaging during 

irradiation could yield volumetric real-time MRI either through 2D to 3D deformable 

registration [13] or signature matching [56], enabling verification of the delivered 

dose [57, 58]. 

 

One limitation of our method is that the 4D-MRI and MidP images used for training 

are subject to inaccuracies of deformable image registration and to slight over-

regularisation of respiratory motion. We expected these to manifest in Dracula-

reconstructed images, as Dracula is hypothesized to have learnt any errors present 

in joint MoCo-HDTV and NiftyReg-calculated data during the training process. Future 

work will explore  model-based deep learning reconstructions, which allow for 

inclusion of data consistency layers in a deep cascading approach [29]. Model-based 

approaches potentially could reduce errors by promoting data fidelity. Treating the 

joint MoCo-HDTV algorithm as a variational network [28] might enable MVFs 

(applied for reconstruction purposes in [23]) to be directly calculated without 

requiring a separate deformable image registration step, potentially resulting in 

reduced errors. A second limitation relates to the mean square error loss metric, 

which might not be sensitive enough to resolve the large dynamic range of MR 

images. Recently a feature-wise perceptual loss was found to outperform pixel-wise 

(L1 and L2) and patch-wise loss functions in cardiac MR imaging [59]. The 

improvements in image quality found between epochs 20 and 120 are not reflected 

in the validation loss, which appeared stable. We expect that further training (i.e. 

epochs > 120) would result in overfitting, but this hypothesis was not tested due to 

the considerable time required to train each network. Another limitation of our work is 

that we only performed a 2-fold cross validation. While testing on the whole patient 

cohort would be possible, the considerable resource requirements for training and 

scoring prevented us from doing so. A further limitation of this study is that only data 

acquired on a diagnostic MRI scanner was evaluated. This was due to the limited 

availability of sufficient 4D-MRI data sets to train an MR-Linac specific version of the 
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Dracula reconstruction. Future work will focus on training and applying the Dracula 

reconstruction to MR-Linac data directly, hypothesizing that this will lead to 

significant improvements in image quality and usability over 4D Gridded data and 

enable ultra-fast 4D-MRI and MidP image reconstruction for MR-guided 

radiotherapy. 

 

In conclusion, Dracula neural networks were separately trained and applied to 

reconstruct 4D-MRI and MidP-MRI from Gridded data in only 28 seconds. Dracula-

reconstructed MRI had excellent agreement with corresponding joint MoCo-HDTV-

reconstructed MRI (SSIM ≥ 0.96) and were considered clinically acceptable for target 

and OAR delineation. Rapidly calculated 4D-MRI and MidP-MRI could provide up-to-

date information to support radiotherapy treatment plan adaptation in thoracic and 

abdominal MR-Linac workflows. 
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TABLES 

Reconstruction 
algorithm 

Gridded Dracula MoCo 
 

 

Observer 
number 

1 2 1 2 1 2 ICC 

General image 
sharpness (0-4) 

1.71 ± 1.04 0.92 ± 0.58 2.96 ± 0.75a 2.29 ± 0.91a 3.88 ± 0.34ab 3.13 ± 0.90ab 0.743 

Streaking 
artefacts (0-4) 

0.96 ± 0.20 1.00 ± 0.72 2.83 ± 0.56a 3.04 ± 0.95a 3.50 ± 0.51ab 3.71 ± 0.55ab 0.840 

Delineation of 
tumour (0-4) 

1.60 ± 0.50 1.11 ± 0.33 3.40 ± 0.69a 2.22 ± 1.30 3.90 ± 0.32a 3.56 ± 0.53a 0.747 

Heart            
visibility (0-4) 

2.45 ± 0.83 1.30 ± 0.57 3.25 ± 0.64a 2.70 ± 1.03a 3.95 ± 0.22ab 3.50 ± 0.69ab 0.612 

Oesophagus 
visibility (0-4) 

1.25 ± 0.64 0.45 ± 0.83 2.55 ± 0.76a 1.75 ± 1.02a 3.00 ± 0.56a 3.10 ± 0.72ab 0.701 

Tumour motion 
range (mm) 

NA NA 
1.6  

[1.3, 3.3] 
5.8 

[1.9, 12.0] 
2.2 

[2.0, 2.7] 
3.5 

[1.8, 3.8] 
NA 

DSC (0-1) NA NA NA NA 
0.89 

[0.85, 0.91] 
0.87 

[0.72, 0.90] 
NA 

Table 1: Scores (mean ± standard deviation) by two experienced observers for 4D-

Gridded, 4D-Dracula and 4D-MoCo reconstructed images in a blinded study of eight 

patients and four healthy volunteers (0 is worst, 4 is best). a and b denote statistically 

significant differences compared to 4D-Gridded and 4D-Dracula, respectively (p < 

0.05). The intraclass correlation coefficient (ICC) demonstrates the inter-observer 

agreement for each score. The Sørensen-Dice coefficient (DSC) was calculated for 

GTV contours delineated on the 4D-Dracula and 4D-MoCo images. Tumour motion 

ranges and DSC values are reported as: median [25th percentile, 75th percentile].        

FIGURES 
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Figure 1: Implemented Dracula network architecture. Black and blue numbers 

display the number and matrix-size of feature maps at each stage of the network. 

Dracula was trained using Gridded (Input) and MoCo (Target) reconstructed images 

of dimensions: 256 [voxels] × 256 [voxels] × 16 [respiratory phases]. 

 

 

 
Figure 2: Training curves demonstrating the optimizer loss convergence for the a) 

Dracula-4D-1 and b) Dracula-MidP-1 networks. In both cases, the validation loss 

was stable and had converged between 20-30 epochs.
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Figure 3: Comparison of the exhalation (Exh) and inhalation (Inh) respiratory phases of the 4D-Gridded, 4D-Dracula and 4D-MoCo 

reconstructed images of a representative lung cancer patient. Dracula restores image quality in a comparable manner to the joint 

MoCo-HDTV reconstruction with only minor blurring; e.g. see the magnified view of the region surrounded by the yellow boxes. For 

this patient, the average 4D-Gridded, 4D-Dracula and 4D-MoCo observer scores were 1.3, 3.3 and 4.0 (general image sharpness), 

1.0, 3.5 and 4.0 (general streaking artefacts), 1.0, 3.75 and 4.0 (visibility of the tumour extent), 1.75, 3.5 and 4.0 (visibility of the 

heart) and 0.75, 3.0, 3.5 (visibility of the oesophagus), respectively. White dashed lines aid comparison of the diaphragm position. 

Yellow arrows point to the tumour site.  
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Figure 4: Comparison of exhalation (Exh) and inhalation (Inh) phases for the lung cancer patient with the lowest overall observer 

scores. Dracula achieves clinically acceptable image quality, but minor to moderate blurring remains. See, for instance, the vessels 

inside the lung and the oesophagus in the magnified insert. White dashed lines facilitate comparison of the diaphragm position. 

Average 4D-Gridded, 4D-Dracula and 4D-MoCo observer scores were 1.0, 2.3 and 3.8 (general image sharpness), 1.0, 2.8 and 3.3 

(general streaking artefacts), 1.5, 3.0 and 4.0 (visibility of the tumour extent), 1.5, 2.5 and 3.5 (visibility of the heart) and 0.8, 2.0 

and 2.8 (visibility of the oesophagus), respectively. 
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Figure 5: An example comparison of 4D-Gridded (exhalation phase), Dracula-reconstructed midposition (MidP-Dracula) and joint 

MoCo-HDTV-reconstructed midposition (MidP-MoCo) images for one lung cancer patient. Apart from minor blurring, the 

appearance of the MidP-Dracula and MidP-MoCo images are similar. White dashed lines aid comparison of the diaphragm surface 

positions. Yellow arrows point to the tumour site. Window levels in both absolute difference images are the same. Exh: exhalation; 

MidP: midposition. 
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 Use of deep convolutional neural networks (dCNNs) to accelerate 4D-MRI image reconstruction for online adaptive MR-

guided radiotherapy. 

 First reconstruction of high resolution whole thorax 4D-MRI (256 x 256 x 96 pixel) for 16 respiratory phases in 28 seconds. 

 First use of dCNNs for midposition reconstruction from undersampled 4D-MRI in 28 seconds. 

 Excellent agreement in tumour position (less than 0.7 mm difference) for deep learning-based MidP-Dracula and midposition 

of joint MoCo-HDTV 4D-MRI. 
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