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Despite increasing evidence supporting the clinical relevance of tumour infiltrating lymphocytes (TILs) in invasive breast cancer, TIL
spatial variability within ductal carcinoma in situ (DCIS) samples and its association with progression are not well understood. To
characterise tissue spatial architecture and the microenvironment of DCIS, we designed and validated a new deep learning pipeline,
UNMasSk. Following automated detection of individual DCIS ducts using a new method IM-Net, we applied spatial tessellation to
create virtual boundaries for each duct. To study local TIL infiltration for each duct, DRDIN was developed for mapping the
distribution of TILs. In a dataset comprising grade 2-3 pure DCIS and DCIS adjacent to invasive cancer (adjacent DCIS), we found
that pure DCIS cases had more TILs compared to adjacent DCIS. However, the colocalisation of TILs with DCIS ducts was significantly
lower in pure DCIS compared to adjacent DCIS, which may suggest a more inflamed tissue ecology local to DCIS ducts in adjacent
DCIS cases. Our study demonstrates that technological developments in deep convolutional neural networks and digital pathology
can enable an automated morphological and microenvironmental analysis of DCIS, providing a new way to study differential
immune ecology for individual ducts and identify new markers of progression.
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INTRODUCTION

Ductal carcinoma in situ (DCIS) is a non-obligatory precursor of
invasive ductal carcinoma (IDC). It is the most common
mammographically detected breast cancer, however, predicting
DCIS progression to IDC remains a major clinical challenge'™. A
recent study has categorised DCIS evolution to IDC into four
models, highlighting its heterogeneity. The evolutionary potential
of individual DCIS ductules/ducts may dramatically differ, deter-
mined by not only their genetic mutations but also microenviron-
mental selective pressure*®. Remarkable progress in genetic
profiling has advanced our understanding of clonal evolution in
DCIS. However, given the complex spatial ductule structure,
ecological dynamics between individual DCIS ducts and their
surrounding microenvironment are difficult to measure by eye.
These ultimately limits our ability to study the influence of the
microenvironment on tumour evolution and progression’.

DCIS lesions are composed of malignant epithelial cells, which
proliferate within the breast terminal duct lobular unit and are
surrounded by myoepithelial cells and basement membrane. The
architectural pattern of DCIS is highly variable, and it broadly
comprises solid, cribriform, papillary and comedo type of DCIS®.
Such diverse patterns of DCIS present challenges not only to
diagnosis® but also to the application of machine learning tools.

To the best of our knowledge, few automated methods based
on machine learning have been proposed for evaluation of DCIS
on haematoxylin and eosin (H&E) samples. One of the approaches
used multiscale superpixels to discriminate epithelial area from
the remaining tissue area and further clustered the epithelial
regions based on a random polygon model, but had difficulty with

comedo DCIS'®. More recently a new deep learning pipeline was
developed to predict the risk of recurrence in pure DCIS patients
treated with breast-conserving surgery, where texture features
were utilised for classification of image patches into the normal
duct, stroma, cancer duct and immune rich patterns in H&E''.
However, such efforts have not yet been applied in the studies of
DCIS to evaluate the spatial variability related to individual DCIS
ducts with single-cell spatial resolution, or the relationship of
these ducts to the immune microenvironment.

Recent studies support the importance of tumour infiltrating
lymphocytes (TILs) in the progression from DCIS to IDC® and risk of
local and metastatic recurrences'. However, TIL assessment still
relies heavily on quantification by pathological scoring'®, which is
labour intensive. In this study, we aimed to provide new insights
into the local immune microenvironment surrounding individual
DCIS ducts by capturing spatial information quantitatively. To
automate the spatial mapping of TIL distribution patterns for
individual DCIS ducts in H&E, we designed an integrated
computational framework based on deep learning. We hypothe-
sise that the local microecology for individual DCIS within the
tissue creates differential selective forces and may ultimately
influence its potential for progression to invasive cancers. Our
primary aims were: (1) to develop and validate a computational
pipeline that accurately detects and segments individual DCIS
ducts; (2) to characterise the immune microecology for each DCIS
duct using spatial statistics on H&E and IHC for TILs; (3) to test the
difference in DCIS microecology between samples with pure DCIS
and DCIS samples derived from IDC patients (adjacent DCIS, as a
surrogate for poor prognosis DCIS).
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Overview of proposed UNMaSk pipeline for DCIS detection and segmentation. a UNet architecture for tissue segmentation and one
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examine local tissue ecology for each DCIS duct, based on deep learning results on DCIS segmentation and single-cell classification. Examples
shown are immune depleted and immune predominant/inflamed ecology local to individual DCIS ducts and spatial analysis using DCIS

immune colocalisation/Morisita Score (MS).

RESULTS
IM-Net for DCIS detection and segmentation

To automate the identification and segmentation of morphologi-
cally heterogeneous DCIS ducts in H&E (Fig. 1), we specifically
designed a new deep learning framework, IM-Net (Fig. 2a). IM-Net
can: (1) distinguish DCIS by combining high-level spatial context
and local features using multiple inputs to the encoders, (2) provide
precision in localising DCIS boundary by learning weak boundary
features using boundary weight map in the optimisation of features
across spatial resolutions, (3) reduce sensitivity to tissue artefacts
and local noise by using multiple filters in inception blocks (Fig. 2a).
Prior to DCIS detection and segmentation, UNet was first used for
tissue segmentation (Fig. 1a). Compared with a threshold-based
method, a higher segmentation accuracy for UNet was found
(Supplementary Table 1).

To evaluate the performance of the proposed IM-Net in
DCIS detection and segmentation, we compared it with five
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state-of-the-art deep learning methods using images generated
across three datasets (Fig. 1a). These include some of the most
widely used methods for segmentation or detection: single-shot
detector'®, Resnet 101-based RCNN network'®, UNet'®, MicroNet'”
and the proposed IM-Net. Training, validation and testing samples
were split on a patient-level, consisting of 340, 522 and 949
annotations on 40, 20 and 18 H&E whole-section images,
respectively (Table 1). Three experiments were conducted to test:
(1) accuracy of DCIS detection as a binary segmentation problem;
(2) accuracy of DCIS segmentation by quantifying the overlap
between pathologists’ delineation and automated segmentation;
(3) validation using immunohistochemistry.

For the first experiment, while IM-Net, MicroNet and Faster
RCNN yielded similar precision in the testing set, IM-Net achieved
the highest Fl1-score (0.79, Supplementary Table 2), closely
followed by MicroNet (0.77). Next, to compare IM-Net and
MicroNet, we performed 3-fold cross-validation within the training
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Fig.2 Schematic of IM-Net architecture for detection and segmentation of DCIS and schematic of DRDIN cell detection network. a IM-Net
architecture. Five inception blocks (IB) in the contracting path and five decoder blocks (DB) in the expanding path used to encode features
along with spatial context with multiple inputs applied to the respective first three blocks. Inception blocks with batch normalisation
performed on resized images generate feature maps from the convolution blocks (IB;, 1B, and IBs). Resized image by a factor of 2 and 4 are
represented as x/2 and x/4, respectively. Features from the convolution blocks were preserved and passed to the expanding path comprising
decoder block with concatenate (C) and transpose convolution block (TC) as the basic units that aid to preserve crucial low-level information
for DCIS boundary localisation. b DRDIN architecture has a dense cross-connection from the inception blocks (I1) in the encoder and the
decoder path. Components of I1 comprises 3 x 3 and 1 x 1 kernel convolutional filters. In the encoder path, average pooling (AP) is used and
the decoder path consisted of transpose convolution (TC), concatenate (C) layers.

Table 1. Breakdown of training and validation tiles used in annotations of DCIS.
Category WSI samples Number Total number of pathologist
of tiles annotations on tiles
Duke TransATAC IHC
Training 20 20 0 317 340
Validation 10 10 0 310 522
Test 10 0 8 300 949

Independent held out test dataset (Duke)

Biological validation (IHC)

HE 100

HE
IHC
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Fig. 3 Representative H&E image with DCIS segmentation output from IM-Net. a H&E image. b Spatial overlap between the pathologist
annotation and DCIS detection using IM-Net. Visual representation of DICE overlap image map in terms of estimated DICE coefficient. True
positive (TP) in green represent the expert annotations overlap with the segmented region of DCIS; false-negative (FN) in magenta represent
DCIS regions in annotation and not in DCIS segmentation. False-positive (FP) in yellow represent pixels falsely segmented as DCIS and not in
expert annotation. True negative (TN) represented in blue are pixels were correctly detected as background in both expert and DCIS detection.
Inspection of the false-positive regions indicated that some of these were DCIS but contained tissue artefacts or tears, which prevented
pathologist from annotating them. ¢ DCIS segmentation based on IM-Net. d Pathologist annotation of DCIS on H&E image. e Region of interest
depicting the DICE overlap image map. f, g Region of interest depicted from pathologist and IM-Net approach, respectively.

dataset split at patient-level. Across all folds, IM-Net achieved
higher recall (mean * standard deviation = 0.860 + 0.006)
compared to recall by MicroNet (0.823 +0.036, Supplementary
Table 3). Finally, to challenge these two methods, we trained them
on TransATAC that had sufficient positive and negative examples,
and testing was performed on the DUKE dataset. In this context,
IM-Net achieved an F1-score of 0.8 compared to 0.754 for
MicroNet (Supplementary Table 4).

Secondly, the overlap measure between pathologists’ anno-
tated DCIS and automated segmentation results indicated that IM-
Net followed by MicroNet achieved the best performance among
all five methods (0.83 + 0.30 for IM-Net, 0.82 £ 0.50 for MicroNet,
Fig. 3 and Supplementary Table 5). Spatial overlap estimated by
DICE for IM-Net was 0.83, where DICE of 0.6 and above is typically
considered to indicate a good agreement between ground truth
and prediction'®. Comparison of IM-Net and MicroNet based on
spatial overlap suggested that IM-Net can detect the highest
proportion of DCIS annotated by pathologists with potentially low
false-positive rates. This was supported by a further breakdown of
the false-positive and true positive rates (Supplementary Table 5).

Finally, further examination of the false-positives of DCIS detected
by IM-Net indicated that a number of these were due to tissue
artefacts or tears occurring within or near DCIS, which prevented
pathologists from annotating them. We, therefore, performed
immunohistochemistry experiments to base our validation on
biological marker-based expression (see ‘Methods’ section). This
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biological validation demonstrated a high correlation between
IM-Net and MicroNet segmentation of DCIS with hand annotation
based on cells positive for CK5 expression lining the basal
membrane (cor=0.99 vs cor=0.98-094 for other networks,
Supplementary Table 6). Detailed performance measures indicate
that although MicroNet achieved similar scores as IM-Net in terms
of detecting the correct number of DCIS and estimated area,
IM-Net was able to more precisely segment the ducts as suggested
by the lower mean squared error and higher R-square estimate
(IM-Net MSE=0.17, R*=0.65 MicroNet MSE=0.25 R’>=059,
Supplementary Table 6). Visual inspection confirmed the quantita-
tive data, showing a good agreement between automated
detection on the H&E and CK5-based annotations on serial IHC,
irrespective of different growth patterns (Fig. 4).

TILs distribution mapped by deep learning

To spatially map immune and stromal cells that form the immediate
microenvironment of DCIS, we tailored a deep learning approach
with two steps. First, using Distance Regularised Dense Inception
Net (DRDIN), single cells from H&E slides were detected (Fig. 2b).
Second, the detected cells were classified based on a neighbour-
hood ensemble approach implemented in the SCCNN method.
Single-cell annotations by experts in the Duke cohort were used for
training, validation and testing, comprising a total of 11,412 cells
from 12 WSI for training, 5207 cells from three WSI for validation

Published in partnership with the Breast Cancer Research Foundation
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Fig. 4 Biological validation of automated DCIS detection using CK5 immunohistochemistry. a An example showing CK5 IHC image where
DCIS regions were annotated by hand following the CK5 expression pattern, indicated by green contour. b Segmented H&E image with DCIS
regions marked in blue contour by IM-Net for the same sample. ¢ Quantitative assessment of the IHC-H&E correlation between H&E-based
automated DCIS detection result and hand annotations on IHC using an estimated number of DCIS. d Quantitative assessment of the IHC-H&E
correlation between H&E-based automated DCIS detection result and hand annotations on IHC using an estimated area of DCIS.

and 5304 annotations from five WSIs for testing. For H&E cell
detection, DRDIN achieved an accuracy, recall and F1-score of
0.8065, 0.911 and 0.856, respectively. For H&E cell classification,
SCCNN achieved a balanced accuracy of 89.3% in the training
cohort and 87.1% using 8302 cells in the TransATAC cohort. As a
result, all cells in the H&E images classified into epithelial, stromal
and lymphocyte cells (Fig. 5a-c). TILs from H&E image referred to as
lymphocyte% was quantified as a percentage of all cells that were
lymphocytes for each image.

Using the same network, DRDIN, we collected 4275 cell
annotations for training and 754 cells (~15% split) for validation
to train a model for immune markers of IHC samples. In addition,
we used 8,165 cell annotations for testing, achieving an accuracy,
recall and F1-score of 0.8736, 0.936 and 0.9037, respectively. Using
this model, all positive cells in the CD4, CD8, FOXP3-stained IHC
dataset were identified, and the remaining cells were classified as
negative lymphocytes, epithelial cells and stromal cells. We
observed a good concordance between H&E-based lymphocyte
estimate and IHC-based CD4, CD8, FOXP3 estimate (correlation
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between lymphocyte% from H&E and CD4 % in IHC R = 0.86 and
p =0.024; CD8"% R =1 p = 0.0004; FOXP37% R = 0.79 p = 0.048).
This integration of H&E and IHC data provided additional data
supporting the accuracy of single-cell analysis using our proposed
network that is generalisable to different histology staining.

Increased colocalisation of TILs and adjacent DCIS

Spatial variability of TILs among DCIS ducts could inform
differential ecological features that ultimately dictate invasive
potential and fundamental biological underpinning. However,
this would require quantitative methods to examine the spatial
heterogeneity, instead of focusing on only the abundance of
lymphocyte cells. Therefore, to characterise local tumour ecology
of individual DCIS, we applied a spatial statistical method, the
Morisita index to quantify the colocalisation between TILs and
DCIS ducts'®. Widely applied in ecology, Morisita index is often
used to examine spatial overlap or colocalisation. Here it
provides a single score for a spatial area: a high score indicates

npj Breast Cancer (2021) 19
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Fig. 5 UNMaSk results with single-cell classification and Voronoi tessellation. a A representative example of an adjacent DCIS case
illustrating single-cell classification results in two DCIS regions. Scale bar represents 100 um. b High-resolution images of areas within the two
DCIS regions, showing single-cell classification using unified segmentation and classification pipeline based on DRDIN and SCCNN, classifying
cells into the epithelial cell (green), stromal cell (yellow) and lymphocyte (blue). Scale bar represents 50 um. ¢ Heatmap showing lymphocyte
cell density based on single-cell classification results. d Voronoi tessellation using the centres of DCIS ducts as seeds, performed over tissue
region excluding epithelial cells identified by single-cell classification that was not DCIS. Because of the mathematical principles underlying
Voronoi tessellations, lymphocytes within a polygon will be closer to its seed than any other seeds. This means that each lymphocyte can now
be assigned to its closest DCIS duct within the tessellation space, thereby quantifying lymphocyte abundance for each DCIS duct locally. Note
that because convex polygon was used, some of the DCIS ducts closer to the invasive region were omitted from the analysis. Scale bar

represents 100 um.

that the two spatial variables, DCIS ducts and TILs, tend to
colocalise, whereas a low score suggests TIL exclusion from DCIS
or concentration in only a subset of ducts. We applied this
method to the Duke dataset to compare pure DCIS with DCIS
adjacent to an invasive component as a surrogate for poor
prognosis DCIS. The colocalisation pattern of TILs and DCIS ducts
in pure DCIS samples were compared with adjacent DCIS in a
total of 92 WSiIs, representing n =26 pure and n =22 adjacent
DCIS cases (Fig. 6a-f). Sample variability of WSI and patients is
depicted in the flow diagram (Supplementary Fig. 1). WSI with
less than 5 ducts was excluded from computing DCIS immune
colocalisation.

A significantly higher number of TILs (measured as a percentage
of lymphocytes in all cells after exclusion of invasive tumour
regions if any) was found in pure DCIS samples than in adjacent
DCIS (p =6.1e—06, Cohen’s d = 0.47), however, the DCIS immune
colocalisation score indicated that colocalisation of TILs was lower
in pure DCIS compared with adjacent DCIS patients with IDC
(p =4.1e—09, Cohen’s d = 0.61, Fig. 6e, f). The difference in DCIS
immune colocalisation score remained significant when the DCIS

npj Breast Cancer (2021) 19

immune colocalisation score was averaged per patient (p =2.7e
—06, Supplementary Fig. 2a), randomly sampled from cases with
more than 1 slide available (p <0.05 for 100 of 100 random
samplings), or randomly sampled from pure cases to match the
number of adjacent cases (Supplementary Fig. 2b). This suggests
that although there were more TILs in the pure DCIS samples,
these TILs did not colocalise well with DCIS ducts. In contrast,
TILs sampled from tissues adjacent to IDCs, although fewer in
comparison, tend to localise with DCIS, possibly due to
heightened inflammatory response. Representative examples with
the positioning of lymphoid aggregates in pure DCIS and adjacent
DCIS samples are shown in Fig. 6¢, d. There was no correlation
between TILs abundance and the DCIS immune colocalisation
score within each DCIS group (p=0.082 for pure DCIS and
p =021 for adjacent DCIS), thus the spatial pattern was not
dependent on TIL abundance. These quantitative data and
empirical observations support the different types of lympho-
cyte/epithelial interactions in these two types of DCIS, and further
highlights the importance of examining spatial heterogeneity
beyond cellular abundance alone.

Published in partnership with the Breast Cancer Research Foundation
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Fig. 6 Comparison of TIL distribution pattern local to DCIS ducts in adjacent versus pure DCIS cases. a Voronoi tessellation of adjacent
DCIS excluding invasive components. b Voronoi tessellation of pure DCIS. Scale bar represents 100 um. ¢ Representative DCIS region enclosed
within the Voronoi of adjacent DCIS. d Representative DCIS region enclosed within the Voronoi of pure DCIS. e Boxplots illustrating the
difference in DCIS immune colocalisation score calculated using the Morisita index. It was computed by associating individual DCIS duct with
the surrounding lymphocytes within the Voronoi region; a high score indicates the spatial colocalisation of lymphocytes and DCIS ducts. Each
point corresponds to a WSI image, 52 WSI from n = 40 patients in the pure DCIS and 40 WSI from n = 25 patients in the adjacent DCIS group.
f Boxplots illustrating the difference in overall lymphocyte percentage in all cells for WSIs of pure DCIS and adjacent DCIS cases (after
exclusion of invasive tumour regions), using only single-cell classifications.

Furthermore, we tested the dependency of the DCIS immune
colocalisation score on clinical parameters of these patients
including ER, PR, HER2, age and grade (Table 2). Firstly, the DCIS
immune colocalisation score continued to differentiate two DCIS
types within ER-positive and ER-negative patients (Supplementary
Fig. 3). Secondly, in a multivariate model predicting DCIS types
with the DCIS immune colocalisation score, TILs abundance and
clinical parameters, the DCIS immune colocalisation score
remained a significant discriminator of pure, versus adjacent DCIS
(p =9.08e—03). These data suggest that the DCIS immune
colocalisation score which measures the colocalisation pattern of

Published in partnership with the Breast Cancer Research Foundation

TILs and DCIS ducts within the tissue may have utility in
differentiating pure and adjacent DCIS, independent of known
clinical parameters.

TIL phenotypes in DCIS and invasive region

Our data suggest that within the DCIS compartment in adjacent
samples, lymphocytes decrease in amount but localise well with
DCIS ducts. Increasing evidence supports the importance of T cells
in DCIS progression®>?'. To test whether the colocalisation pattern
in adjacent DCIS differs according to T cell subsets, we evaluated

npj Breast Cancer (2021) 19



P.L. Narayanan et al.

Table 2. Demographics of patients belonging to DUKE dataset
comprising pure DCIS and adjacent DCIS.

Features Pure DCIS Adjacent DCIS
Age (mean + std) 56.19+11.47 61.26 + 7.40
>60 18 14

<60 22 11

DCIS grade

2 17 7

3 23 17

2-3 1

ER status

Positive 27 16
Negative 7 9

Not processed (NP) 6 0

PR status

Positive 27 14
Negative 7 1

Not processed 6 0

HER?2 status

Positive NA 5
Negative NA 20

the quantitative number, ratio and DCIS immune colocalisation
using CD4, CD8 and FOXP3 cells in the IHC dataset of adjacent
tumours (Fig. 7a). Following automated identification of cells, we
separated the invasive compartment from DCIS compartment as
described above, and computed cell percentage within each
compartment, as well as colocalisation score between each
immune cell subset and DCIS or invasive cancer cells as described
previously'®.

Within the DCIS compartment, DCIS colocalisation score of
CD8™ cells was significantly higher than CD4" and FOXP3™ cells,
suggesting that CD8" cells colocalise better with DCIS ducts and
may reflect a state of immune activation (Fig. 7b). However,
despite having a similar amount in both compartments (p > 0.05),
CD8" cells colocalised significantly less with invasive cells
compared with DCIS (Fig. 7c). In comparison, there was no
difference in the colocalisation pattern between compartments for
CD4" or FOXP3* cells (Supplementary Fig. 4b) after multiple
testing correction (p > 0.05). The invasive compartment could be
further characterised as having a higher amount of CD4* cells and
the ratio of CD4/CD8 than DCIS compartment (Supplementary Fig.
43, ¢). These data indicate the immunosuppressive function of
invasive cancer cells specifically for CD8" cell infiltration, despite
increased immune recognition and localisation of CD8" cells with
DCIS epithelial cells.

DISCUSSION

There is high variability in clinical outcomes and propensity for
invasion among DCIS cases. Development of reliable markers,
which can identify DCIS patients who are likely to follow a benign
course from those who would benefit from therapy are currently
an unmet requirement for clinical care.

To provide advanced tools for identifying interactions
between individual DCIS and its local immune microenviron-
ment, we developed a multi-stage deep learning framework,
UNMaSk that integrates tissue segmentation, DCIS segmenta-
tion, single-cell detection, classification and spatial analysis in
routine H&E histology images. The framework was developed for
the study of tissue microecology by spatially measuring the DCIS

npj Breast Cancer (2021) 19

and immune colocalisation. As such, our approach can be used
to deliver a DCIS immune colocalisation score that integrates
morphological context of DCIS and high-resolution single-cell-
based classification with intrinsically captured heterogeneous
DCIS microenvironment. This type of integrative approaches was
not previously possible due to the lack of computational utility,
and we bridged this gap in this study.

Routine clinical H&E stained images are known to be highly
noisy with staining variability and preprocessing artefacts.
Frequently occurring problems in WSI are fixation artefacts,
coverslip artefacts and pen marking. Our framework incorpo-
rates problem-specific design using tissue segmentation based
on UNet to alleviate effects due to artefacts. Training and
evaluation were performed on datasets that were processed,
stained and scanned in independent laboratories using different
digital slide scanners, to reduce overfitting and improve
generalisability across scanners and datasets in an unbiased
and systematic manner.

Additionally, we showed that the proposed network (IM-Net)
for DCIS segmentation was able to capture image semantics
across granularities with the usage of inception block and the
multiple resized input images fed to each convolution block in
the contracting path. The tailored inception block usage in the
contracting path and its effective use of the weighted loss
function introduced for the first three convolution and transpose
convolution blocks preserved features of DCIS. Despite the
major challenges in analysing diverse growth patterns across
images, the proposed IM-Net has improved DICE and reduced
false-positive rate compared to the other networks (Supple-
mentary Table 5). The context features for large and small DCIS
were captured from multiple resized images and IM-Net was
found to be agnostic to the size and morphology of DCIS.
Furthermore, IM-Net could capture weak boundaries of the
ducts containing necrosis without over-segmentation of DCIS
regions (Supplementary Fig. 5).

Without an automated framework like UNMaSk, it would be
impossible to derive precise ecological parameters such as
lymphocytic colocalisation with high spatial resolution. Spatial
mapping of individual DCIS ducts combined with single-cell
classification based on deep learning enabled characterisation
of DCIS tissue habitat at micro-scale, i.e. microecology. In the
Duke cohort, there is a lower abundance of TILs but higher
colocalisation of TILs and DCIS ducts in DCIS adjacent to invasive
cancer compared to pure DCIS cases. Increased number of
leukocytes is often associated with high-grade DCIS, Her2 status
and IDC®. Our data showing lower TIL abundance in adjacent
DCIS compared with pure DCIS may be attributed to the fact that
pure DCIS samples in our cohort were intermediate to high-
grade (47% grade 2 and 53% grade 3), and that invasive tumour
regions were excluded in the calculation for the adjacent cases.
Nevertheless, our observation of differential colocalisation spatial
pattern is new. Although high spatial variability of TIL distribu-
tion in DCIS has been reported, it has rarely been quantitatively
measured. Our data on an increased level of spatial colocalisa-
tion of TILs to individual DCIS ducts in adjacent DCIS suggest
a potentially different spatial configuration of the immune
microenvironment in these patients compared with pure DCIS.
Based on these data, we speculate that the colocalisation-based
spatial immune score may help predict which DCIS is likely to
progress to invasive disease.

Indeed, in a small dataset of adjacent DCIS samples, we
observed that despite having equal quantity in the DCIS and
invasive compartments, CD8" cells colocalised significantly less
with invasive epithelial cells compared to DCIS epithelial cells. To
this effect, increased DCIS immune colocalisation score in
adjacent DCIS perhaps suggests inflamed local microenviron-
ments for DCIS epithelium but escape from cytotoxic cell
recognition in the part of invasive cancer. This will require
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Fig. 7 Spatial colocalisation patterns of TIL subset in adjacent DCIS samples in the IHC dataset. a Low power CD4, CD8, FOXP3 IHC images
of a sample and high-resolution images of a region of DCIS showing single-cell detection and classification using DRDIN and SCCNN.
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further validation in larger cohorts, as well as in samples with
longitudinal follow up. Nevertheless, our data are consistent with
a study where dense chronic inflammation surrounding DCIS,
defined as circumferential cuffing of the duct by lymphocytes or
plasma cells at least three cell layers in thickness, was associated
with a high recurrence score of Oncotype DX DCIS?%. This
preliminary evidence supports future studies to validate the use
of the DCIS immune colocalisation score in predicting propensity
of individual DCIS for invasive progression. This hypothesis is
biologically intriguing, and these studies are currently under way
in our lab.

Further study limitations include the lack of high-dimensional
immunohistochemistry markers to delineate more subtypes of
TILs?' beyond CD4/CD8/FOXP3, other key cell types such as
macrophages, B cells?® and cancer-associated fibroblasts in the
tumour ecosystem, as well as the use of 2D slides that do not fully
represent the 3D ductal structure. However, methods like UNMaSk
provide additional usage of 2D, noisy clinical routine samples by
deploying tailored artificial intelligence that could likely help
transform traditional pathology. Future studies could focus on
longitudinal and 3D sampling to gain a better understanding of
the spatio-temporal heterogeneity of TIL distribution across ductal
structures.

Little is known in the evolution of immune response and
immunologic alterations along the continuum from DCIS to IDC.
We envisage that our future opportunities will include the
generalisation of our deep learning method to other types of
histological images such as immunohistochemistry for defining
immune cell subsets surrounding DCIS, investigation of the
morphological and architecture details within detected DCIS
ducts to account for the types of DCIS, integration with genomic
aberrations that could drive progression®*~2, adaptation for other
spatial analyses and scaling up in large patient cohort analyses. A
potential new utility of UNMaSk is the detection of DCIS as part of
a screening programme, which warrants further investigations.

Thus, our study contributes to driving future research
towards the use of novel parameters such as DCIS spatial
immune score based on automated histology image analysis
for the identification of drivers and biomarkers of progression
from DCIS to invasive cancers. This could further potentially aid
in stratifying risk of progression, and ultimately improve
personalised clinical care.

In summary, we presented a new deep learning pipeline,
UNMaSk, for the automated detection and segmentation of DCIS
ducts. Our comprehensive evaluation experiments on three
different cohorts, using expert annotations and biological
immunohistochemistry, and comparison with state-of-the-art
convolutional networks demonstrated UNMaSk to be agnostic to
diverse size and growth patterns of DCIS. Our framework allowed
the integration of spatially heterogeneous DCIS to be associated
with lymphocyte distribution by considering the topological
arrangement of DCIS. This provides a unique opportunity to study
inflammatory response reactive to carcinoma at the high spatial
resolution, paving the way for quantitative analysis of DCIS
ecology, morphology and Al-aided risk stratification for DCIS
disease.

METHODS

We utilised three independent breast tumour datasets, which we referred
to as the Duke, TransATAC and IHC datasets. These samples were
processed, stained and scanned in independent laboratories using
different digital slide scanners.

The Duke dataset consists of samples of pure DCIS disease and DCIS with
adjacent invasive cancer, the latter serving as an indicator for poor prognosis
DCIS based on the fact that progression to invasive cancer has already
occurred. The slides used for the study were selected for the presence of
DCIS, determined based on morphology on routine H&E staining according
to standard pathology criteria. IHC stains for p63 (a myoepithelial marker)
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was performed as part of the study. Results based on IHC analysis were used
to confirm whether patients belong to DCIS and/or invasive carcinoma
(adjacent DCIS) on the analysed slides. H&E stained images acquired from
subjects with no invasive component are henceforth referred to as pure
DCIS and images from patients with an invasive component along with DCIS
are henceforth referred to as adjacent DCIS throughout the manuscript. In
total, 140 WSIs were obtained from formalin-fixed paraffin-embedded blocks
from 65 patients (n =40 pure and n=25 adjacent), ranging from 1 to
3 slides per patient. These were digitised with an automated whole-slide
Aperio scanner at a resolution of 0.5 um/pixel at x20 magnification. The
study was approved by the institutional review board of Duke with a waiver
of the requirement to obtain informed consent. Patient demographics and
baseline characteristics of the Duke dataset are summarised in Table 2, and a
CONSORT diagram is provided in Supplementary Fig. 1.

TransATAC is the translational clinical study of the Arimidex, Tamoxifen,
Alone or in Combination (ATAC) trial on postmenopausal patients with ER™
breast cancer treated with tamoxifen or anastrozole®®. Patient demo-
graphics information can be found in Supplementary Table 1 in refs. 2%,
30 WSI H&E images representing 30 invasive breast carcinomas in the
TransATAC study were selected, which contained adjacent DCIS. The study
was approved by the South-East London Research Ethics Committee, and
all patients included gave informed consent. Images from TranATAC
dataset were digitally scanned using Hamamatsu Nanozoomer scanner at
a pixel resolution of 0.45 um/pixel at x20 magnification.

A set of 8 samples were inspected by pathologists and selected on the
basis that they contained confirmed areas of DCIS and IDC in the
same tissue specimen as part of a previous study®*. Patient demographic
information can be found in Table 1 in ref. 2>, H&E staining and
immunohistochemistry with CK5, CD4, CD8 and FOXP3 were performed
on consecutive 3-um-thick sections of paraffin-embedded blocks. Samples
from the IHC dataset were anonymized prior to analysis and the study was
approved by ethical committees at Hospital Universitario 12 de Octubre,
Madrid, with a waiver of the requirement to obtain informed consent. For
one of the eight samples, quality of CD4, CD8 and FOXP3 staining was
deemed unsuitable and thus removed from the analysis. Resulting slides
were digitalised with Hamamatsu Nanozoomer whole-slide scanner at a
pixel resolution of 0.45 um/pixel at x20 magnification.

Immunohistochemical staining

Immunohistochemistry was carried out using the Leica Bond Ill automated
immunostaining platform using Leica Bond Polymer Refine Detection
(Leica Biosystems, DS9800) according to the manufacturer’s instructions.
Peroxidase blocking and haematoxylin counterstaining were performed
onboard as per kit. All primary antibodies were applied for 15 min at room
temperature. CD4 (Leica Biosystems, mouse 4B12, cat. PA0427) and CD8
(Leica Biosystems, mouse 4B11, cat. PA0183) were used as supplied, FOXP3
(Invitrogen, mouse PCH101, cat 14-4776-82) was used diluted 1:100 in
Leica Bond Primary Antibody Diluent (Leica Biosystems, AR9352). Heat-
mediated epitope retrieval was carried out onboard as follows: CD4 and
CD8 using Leica Bond ER2 (high pH, AR9640) for 20 min at 97 °C and FOXP3
using Leica Bond ER1 (low pH, AR9961) for 30 min at 97 °C. Slides for CK5
(Dako, mouse D5/16 B4, M7237) were stained on the Dako Link48
automated immunostaining platform, and primary antibody detected
using the Dako Envision FLEX kit (Agilent, K8023) according to
manufacturer’s instructions. Peroxidase block and haematoxylin counter-
staining performed onboard as per kit. Primary antibody was diluted 1/25
in Dako FLEX primary antibody diluent (Agilent, K8006) and applied for
60min at room temperature. Heat-mediated epitope retrieval was
performed using the Dako PT LINK module using EnVision FLEX Target
Retrieval Solution, High pH for 20 min at 97 °C.

Manual annotation collection protocol

Ground truth annotations for DCIS ducts were hand marked by an expert
pathologist (B.G.) on the WSI acquired from both Aperio and Hamamatsu
scanners. We then used customised scripts to export raw annotations from
Aperio Imagescope. DCIS often involves multiple ductules within a single
lobule. When this occurs multiple ductules are often seen as individual
duct-like structures filled with cancer cells and surrounded by a
myoepithelial layer and basement membrane but separated by connective
tissue®. These biological features of DCIS informed our experimental
design. Annotations of individual DCIS ducts, together with annotations of
single cells (epithelial cells, lymphocytes, stromal cells), were used for
training deep learning networks. Subsequently, we split each of these WSI
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Fig. 8 Representative examples of DCIS from the Duke and TransATAC cohorts with different growth patterns.

images into tiles of size 2000 x 2000 pixels (1000 um x 1000 um). The tiles
were subsequently converted into image patches of different sizes to cater
for our training networks (detailed for individual methods). Quality control
of annotations was performed at the tile level and an expert consensus
was obtained before using the respective tiles for training.

Training and validation of DCIS

We randomly selected 20 WSIs from the Duke and 20 WSIs from the
TransATAC datasets for training the deep learning methods. The validation
dataset consisted of 10 WSIs from Duke and 10 WSIs from TransATAC. 10
WSIs with annotations from Duke were used as the test dataset.
Furthermore, 8 WSIs from the IHC dataset were used as an independent
test set. Training, validation and test data splitting was performed at the
patient-level. Further breakdown of the number of annotated tiles
employed in training, validation and testing are tabulated in Table 2.
Representative images from these datasets indicating varying growth

Published in partnership with the Breast Cancer Research Foundation

patterns and DCIS surrounded by different microenvironments are shown
in Fig. 8. Training images include both positive and negative examples
(Supplementary Fig. 6). The selection of the negative examples was guided
by an expert pathologist to include invasive regions, pure stromal,
background regions and challenging regions that are visually similar to
DCIS such as dense invasive region and lymphocytic clusters. To overcome
sample imbalance issue, training images were sampled to generate a
balanced number of positive and negative examples.

UNMaSk framework

The proposed UNMaSk (UNet-IM-Net-SCCNN) framework was designed to
integrate multi-stage convolutional networks to: (1) identify tissue and
remove background and large artefacts using UNet; (2) detect and
segment DCIS regions using a new Inception MicroNet (IM-Net); (3) detect
single cells using a new Distance Regularised Dense Inception Network
(DRDIN). Cells are then classified using an existing model, Spatially
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Constrained Convolutional Neural Network (SCCNN); (4) exclude invasive
region from DCIS in adjacent samples; (5) perform spatial tessellation to
identify immune cells in the vicinity of individual DCIS ducts (Fig. 1).

UNet for tissue detection

We used generic UNet encoder-decoder architecture'® to perform tissue
segmentation at x1.25 resolution of the image based on the openslide
library?®. We fine-tuned the network for tissue segmentation with a patch
size of 512 x 512. Fifty training images were selected at random from the
datasets, followed by standardised mean normalisation. The experiments
used a learning rate of 0.001 for 50 epochs with 20 percent hold out
dataset for validation.

IM-Net for DCIS detection

The proposed IM-Net architecture design includes contracting path,
which acts an encoder, and the expanding path, which acts as a decoder
of features from the network (Fig. 2a). We used five inception blocks in
the contracting path and five decoder blocks in the expanding path
where data were encoded along with the spatial context with multiple
inputs applied to the first three encoder blocks of IM-Net. To
simultaneously gain local features and wider context at the same level,
we introduced a custom inception block with batch normalisation
performed on resized images to generate feature maps from the
convolution blocks (B4, 1B, and IBs). Each inception block of our IM-Net
(Fig. 2a) used the 1x1 convolution to extract features at different scales of
the input. The parallel paths in the inception block aid to concatenate all
the features from four different scales to feed to individual blocks in the
contracting path. Features from the convolution blocks were preserved
and passed to the expanding path to preserve crucial low-level
information. Low-level information is particularly important for segmen-
tation and by concatenating and upsampling these features at different
resolutions, the network learns to preserve weak boundary features.
Learning weak boundary features is a specific challenge for DCIS regions
with necrosis, thus it is particularly important to address this to achieve
consistent segmentation of DCIS.

Input image tiles were of size 2000 x 2000, from which patches of size
508 x 508 were extracted. The rationale behind choosing input patches
of size 508 x 508 for IM-Net is to allow the network to capture the
representative context of DCIS, achieved from empirical experimentation
on patch sizes of 600 x 600, 508 x 508, 512 x 512. Subsequently, input
patches were augmented with a random flip, rotation, scaling, gaussian
blur, barrel and pincushion distortion. Tiles at the edges of the image
were padded with neighbouring patches to ensure all training regions
were of size 508 x 508. These were then normalised to zero mean and
unit norm and then fed to the network architecture as depicted in
Fig. 2a. We used an initial learning rate (Ir0 = 0.0001) and reduced it
through the epochs (Ir = Ir0/10%P°"). The loss function was defined as
weighted cross-entropy loss from the main and auxiliary outputs. A post-
processing step was used to exclude ducts with less than 10 epithelial
cells upon pathologist’s advice.

Distance regularised dense inception net (DRDIN) for single-cell
detection

DRDIN network is comprised of the encoder, decoder and cross-
connections that aids in the compilation of the dense UNet with inception
blocks (I1) as backend (Fig. 2b). Inspired by the recent improvements
based on the inception block that uses parallel paths with the variable
convolution filters, we utilised inception V3 as the baseline for each block
of the encoder and decoder architecture. Feature reuse by concatenating
using dense connection led to better optimisation. Apart from directly
adding dense connections in the expansion path, we added inception
blocks, which efficiently reduced the number of parameters for optimisa-
tion for cell detection.

Network parameters were optimised by minimising the forward
Hausdorff distance (HDy) as given in Eq. (1), where summation represents
the parameter estimated over the batch size (B) of images. HD’P and HD/
are the Hausdorff distance between the predicted and actual image ceﬁ
detections. Hausdorff distance between the subsets are taken in the
isometric embedding space, which takes into account smaller and the
larger distance and are relatively used in the segmentation evaluation
metric compared to the Euclidean distance. Compared with a loss function
that uses Euclidean distance, the use of Hausdorff distance helped achieve
better convergence, because predictions and ground truth cell centroids
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are not necessarily paired and Hausdorff distance captures the overall
geometrical similarity between two sets of points.

1
Hausdorff distance(HDr) = 1

1+};/§‘HD’;—HD§). m

DRDIN was used to detect all types of cells present in H&E and
immunohistochemistry images stained for CD8, CD4 and FOXP3 markers.
The centroids of the cells were regressed from the probability map of
DRDIN where a threshold of 0.8 was empirically chosen to yield centroids
of detected cells. We calculated precision, recall and F1-score between the
predicted cell centroids and the ground truth cell annotations.

SCCNN for single-cell classification

Single-cell classification was performed based on detected cell centroid by
DRDIN, using SCCNN®*., The detected cell centroids were then fed to
SCCNN classifier. SCCNN classifier network uses neighbouring ensemble
prediction combined with the standard softmax for classification. Expert
cell annotations were collected and then used for evaluation of
classification accuracy. DRDIN detected cells from H&E images were
classified into epithelial, stromal and lymphocyte cells. For IHC, we classify
the detected cells to epithelial, stain positive lymphocyte, stain negative
lymphocyte, and stromal cells.

Exclusion of invasive regions

Combining the DCIS segmentations from IM-Net and single-cell classifica-
tions that identified epithelial cells, we reclassified epithelial cells inside
DCIS regions as in situ epithelial cells, and the rest of epithelial cells were
reclassified as ‘other’ epithelial cells that could include both invasive and
normal ductal cells. Tissue regions containing ‘other’ epithelial cells were
deemed invasive compartment, due to the small amount of normal ducts
observed in these samples, and removed from polygon analysis (as shown
in Fig. 6a).

Spatial tessellation and the Morisita index

Spatial compartmentalisation was achieved automatically by partitioning
DCIS tissue space using Voronoi tessellation, resulting in Voronoi polygons
that contain one DCIS duct at the centre. The tessellation is a partition of
space according to neighbourhood relations of a given set of points in the
space. It has been suggested that Voronoi tessellation mimics the
biological patterns present in the histological image and naturally
emerged patterns®'. This property combined with the ecological index
aids to study the ecological characteristics of individual DCIS and is
similarly used in histology studies to provide a spatial context of diverse
cell types coexisting within the microenvironment®2,

Let K be a set containing all coordinates of DCIS D and let (D)) €  be the
coordinates of a DCISk. A Voronoi region R, generated by DCIS duct Dy
contains all cells P that are not seeds and are closer to Dy than to any other
seed D, j# k. Let d(Q; Q) be the Euclidean distance function between two
centroids of DCIS Q; and Q; then

Re = {x € Pld(x,Cy) < d(x,G)Vj=k}. 2

Centroids from IM-Net segmentation were estimated and the resulting
binary masks were mapped back to lower resolution (x1.25) of the image.
The centroids were then used as a seed for calculating the Voronoi
polygon. Because of these mathematical principles underlying Voronoi
tessellation, lymphocytes within a polygon will be closer to its seed than
any other seeds. This means that the closest DCIS duct for a lymphocyte is
the one that ‘seeds’ the polygon containing this lymphocyte. Subse-
quently, lymphocytes and stromal cells within in situ microenvironments
were reclassified as in situ lymphocytes and in situ stromal cells.

The Morisita-Horn similarity index is an ecological measure of
community structure to quantify the extent of spatial colocalisation or
overlap between two spatial variables. We have previously demonstrated
its use in studying cancer-immune cell colocalisation in IDCs'®. Here to
measure colocalisation of DCIS and lymphocytes, the Morisita index was
modified by restricting calculation in Voronoi polygons and estimating the
density of epithelial cells and immune cells in the newly defined space.
This space was further divided into Voronoi grids, following'®. This is to
provide more spatial points for calculation and to prevent a lack of power
for samples with a low number of DCIS ducts. The number of immune cells
and epithelial cells for each polygon i are denoted as n! and n¢, based on
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similarity index is henceforth referred to as DCIS immune colocalisation
score throughout the manuscript and it is calculated as:
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DCIS immune colocalisation score =

3)

High DCIS immune colocalisation score indicates that TILs colocalise well
with DCIS ducts within a sample, that is, spatial homogeneity; whereas, low
DCIS immune colocalisation score could indicate TILs to only localise with
part of the DCIS, i.e. high spatial variability.

State-of-the-art networks for comparison

Single-shot detector', Resnet 101-based RCNN network'®, UNet'® and
MicroNet'” were trained following optimal configuration as described in the
original publications. Hyperparameters such as learning rate varied from
0.00001 to 0.001 based on both original publications and experiments.
Further details on the number of parameters, optimiser and learning rate for
an individual network of choice are provided in Supplementary Table 7.

Quantitative evaluation at the slide level

We used DICE coefficient for our quantitative evaluation on the test
dataset with the ground truth annotation. DICE measures the spatial
overlap between the ground truth annotation and automated segmenta-
tion methods®>. Quantitative measures include DICE, positive predictive
value (PPV), negative predictive value (NPV), true positive rate (TPR), true
negative rate (TNR), false-positive rate (FPR) and false-negative rate (FNR)
for each test dataset across all slides.

Biological validation

CK5 is an immunohistochemistry myoepithelial marker and can be used to
differentiate between DCIS and invasive cancers®. To further evaluate the
DCIS segmentation accuracy on H&E images, we generated eight pairs of
H&E and CK5 immunohistochemistry (Dako, catalogue number M7237, lot
number 20014544) slides from whole-tumour serial sections. Based on
morphology and localisation of CK5 expression, areas of DCIS were hand-
annotated, providing both quantity and area of individual DCIS for a
quantitative evaluation for the automated segmentation results on H&E
images of serial sections.

Immune subset analysis

To gain additional knowledge on the immunological subtype of the
lymphocytes present in these samples, we used serial sections of the IHC
dataset stained for CD8, CD4 and FOXP3, respectively. CD4 and CD8
expression were defined by membranous lymphocyte labelling, and
FOXP3 expression was defined by nuclear labelling of lymphocytes. DCIS
immune colocalisation score was computed by restricting calculation in
Voronoi polygons and estimating the density of epithelial cells and positive
immune cell phenotype in the newly defined space. In addition, immune-
epithelial cell colocalisation was computed following methods proposed in
ref. ' within the invasive cancer regions and in situ regions.

Statistical methods

Wilcoxon test was used to determine the statistical significance of
differences in immune scores between pure and adjacent DCIS samples,
and p-value < 0.05 was used to determine significance. Patient-level
statistical tests were also carried out using the Wilcoxon test by taking
single WSI belonging to each group and randomised over 100 times to test
for significance of the DCIS immune colocalisation score. Effect size to
gauge the magnitude of experimental power was measured using Cohen's
d, for which d < 0.2 is considered small, (0.2 < d < 0.5) medium and d > 0.5
large®*3%. Correlation analysis of parameters such as the estimated number
of DCIS regions and the estimated area of DCIS was determined between
automated H&E method and hand annotations based on CK5 IHC marker.
Furthermore, leave one out cross-validation on the independent test set
were performed to compute R-square average estimate and mean squared
error for DCIS regions with the hand annotations from the IHC marker. All
correlation tests used Spearman’s correlation method and statistical tests
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were carried out in R 3.6.1 and the cross-validation using python 3.6 for the
models built using Tensorflow 1.8 and Keras 2.2.4.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The data generated and analysed during this study are described in the following
data record: https:/doi.org/10.6084/m9.figshare.13007954%”. All training data,
including the fully anonymised raw H&E image tiles and pathological annotations
as binary marks, as well as Python code, are available in the corresponding author’s
GitHub: https://github.com/pathdata/UNMaSk. Requests for data access for the Duke
samples can be submitted to E. Shelley Hwang (shelley.hwang@duke.edu) and Yinyin
Yuan (yinyinyuan@icr.ac.uk). Data underlying Figs. 4 and 6 are in the files
‘Ext_validData_DCIS_DAVE_Fig4_data.csv’ and ‘Ext_validData_DCIS_DAVE_Fig6_-
data.csv', included with the figshare data record®”. The images used as representative
examples in Fig. 8 are listed in the file ‘Fig. 8 image details.xIsx’, included with the
figshare data record®.

CODE AVAILABILITY

Python implementation of the UNMaSk pipeline is maintained in GitHub repository:
https://github.com/pathdata/UNMaSk for reproducibility.
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