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Abstract 
 

Multiple myeloma (MM) is the second commonest haematological cancer in 

Western Countries, with most patients dying from progressive disease after 

relapse. Currently, the molecular mechanisms responsible for the initiation and 

evolution of MM are poorly understood. The work presented in this thesis aims to 

characterise novel coding and non-coding drivers, gain insight into the 

aetiological basis, and understand the genetics of MM evolution and relapse 

through integrated study of multiple next-generation sequencing datasets. 

Firstly, using the CoMMpass dataset (>800 patients), multiple regulatory regions 

were identified as candidate non-coding drivers, including cis-regulatory 

elements (CREs) of MYC and a PAX5 enhancer. Coding drivers in 40 genes, 

including 11 novel were identified. The study revealed that MM oncogenic 

pathways are targeted somatically through multiple novel mechanisms including 

coding and non-coding mutations; exemplified by IRF4 and PRDM1, along with 

BCL6 and PAX5, genes central to plasma cell differentiation. Secondly, coding 

and non-coding regions were dominated by distinct mutational processes with 

aging, DNA repair deficiency (DRD), and APOBEC/AID activity characterising 

MM. Mutational signatures showed subgroup specificity – APOBEC signatures 

with MAF-translocation t(14;16) and t(14;20) MM; DRD with t(4;14) and t(11;14); 

and aging with hyperdiploidy. Mutational signatures beyond that associated with 

APOBEC were independent of established prognostic markers and had 

relevance to predicting high-risk MM, providing a strong rationale for integration 

of mutational signatures to tailor therapy. Thirdly, analysis of high-coverage WGS 

dataset of primary and matched relapsed tumours from Myeloma XI trial validated 

several recurrently mutated CREs and discovered novel CRE targets (e.g. BIRC2 

and IGLL5). Relapsed patients were characterised by higher mutational burden, 

and associated with increased APOBEC/AID activity and DRD. Notably, further 

acquisition of high-risk large-scaled copy number variations at relapse was also 

observed, specifically enriched at pre-existing unstable genomic regions. Three 

major clonal evolutional patterns were identified at relapse: (i) no change in clonal 

composition; (ii) subclonal expansion; and (iii) emergence of new clones 

accompanied by decline of primary clones. Finally, defective transcription-
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coupled DNA repairs was observed as predominant mutational process in MM 

mitochondrial DNA. Relapsed MM was characterised with global positive 

selection of non-synonymous mutations, most notably in genes encoding the 

NADH dehydrogenase complex (MT-ND2, MT-ND4, and MT-ND5). 

Together, these findings provide increased insights into the complex genetic 

basis underlying MM and its progression to relapse, with potential to support the 

development of personalised and effective treatment strategies, and predictive 

biomarkers of therapeutic outcome. 
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    Introduction 
 

1.1 Overview of multiple myeloma 

Multiple myeloma (MM) is the second most common haematological malignancy 

in economically developed countries12. The disease is caused by an abnormal 

clonal expansion of plasma cells in the bone marrow13. Plasma cells are the final 

stage of B-cell differentiation, producing and releasing immunoglobulin (Ig). While 

MM prognosis has improved over the last 40 years with the advance of 

immunomodulatory agents and proteasome inhibitors, the disease remains 

essentially incurable and 10-year survival rate is about 30%, with most patients 

eventually dying from relapse14. 

 

1.1.1 The cellular origin of multiple myeloma 

B-cells originate from pluripotent stem cells in the bone marrow in humans, with 

immature B-cells migrating from the bone marrow to the spleen where they exist 

as two main types of mature naïve B-cells – follicular B-cells and marginal zone 

(MZ) B-cells15, 16. Another type of mature naïve B-cells are B1-cells, present in 

the peritoneal and pleural cavities of the gut lamina propria and possesses self-

renewing ability17. All three types of B-cells can differentiate into antibody-

secreting cells (ASCs; plasmablasts and plasma cells) in response to antigenic 

stimulation (Figure 1.1). 

B1-cells develop into ASCs when challenged with antigens, often from bacterial 

pathogens or viruses, and form part of the innate immune system18. Similarly, MZ 

B-cells contribute to the innate immunity by differentiating into ASCs upon 

exposure to polymeric epitopes of bacteria or viruses. ASCs developed from B1-

cells and MZ B-cells are normally short-lived. 

Follicular B-cells, as the most abundant mature B-cell subset, can generate ASCs 

in an early response like B1-cells and MZ B-cells when they encounter foreign 

antigens. With T-cells help, the follicular B-cells can also form a germinal centre 

(GC) within secondary lymphoid organs, such as the spleen and lymph nodes15. 
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In the GC, the follicular B-cells undergo a clonal expansion, followed by somatic 

hypermutation (SHM) and class switch recombination (CSR) events19. SHM 

involves the Ig hypervariable domains of the heavy chain locus (IGH) undergoing 

affinity maturation to produce antibodies that are highly specific and avid for the 

antigens20. Functionality of the antibodies is further expanded during CSR, where 

the Ig constant regions undergo gene deletions to generate different Ig isotypes 

(IgA, IgG, and IgD)20. B-cells that bear high-affinity antibodies of various isotypes 

can differentiate into memory B-cells or ASCs, with some plasma cells becoming 

long-lived antibody response. Upon antigen rechallenge, the memory B-cells can 

differentiate into plasma cells rapidly and form secondary GC to generate higher-

affinity antibodies21.  

Plasma cells within the bone marrow can undergo abnormal clonal expansion in 

the process of developing asymptomatic monoclonal gammopathy of 

undetermined significance (MGUS), which precedes symptomatic MM with a 

conversion rate of 1% per annum22 (Figure 1.2). Smouldering multiple myeloma 

(SMM) is intermediary of MGUS and MM, with annual risk of 10% in first five 

years of progressing to MM, 3% per year in the subsequent five years and 1% 

per year thereafter23. Symptomatic MM is typified by the presence of monoclonal 

protein (M protein) in the blood or urine produced by the clonally-expanded 

plasma cells as well as the associated organ dysfunction13. During the 

development of the disease, clonal plasma cells can progress into plasma cell 

leukaemia (PCL) or extramedullary myeloma (EMM), migrating outside the bone 

marrow to the peripheral blood. Progression of the malignance is characterised 

by an accumulation of genetic aberrations. It is generally considered that multiple 

acquired genetic abnormalities disturb the intrinsic biological pathways of the 

plasma cells central to the development of MM2, 24.
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Figure 1.1: Key steps in normal B-cell differentiation. Upon antigen stimulation, mature naïve follicular B cells undergo B cell proliferation 
known as clonal expansion in germinal centres. Clonal expansion is followed by somatic hypermutation, with B cells bearing the highest affinity 
antibodies being preferentially selected. B-cells expressing high-antigen-affinity antibodies that have survived the germinal centre reaction 
ultimately differentiate into long-lived memory B-cells, antibody-secreting plasmablasts or plasma cells. Short-lived antibody-secreting 
plasmablasts and plasma cells can also develop from mature naïve marginal-zone B-cells and B1 cells. Adapted from Shapiro-Shelef et al.11 
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Figure 1.2: Initiation and progression in MM. MGUS, monoclonal gammopathy 
of undetermined significance; SMM, smouldering multiple myeloma; MM, multiple 
myeloma; EMM, extramedullary multiple myeloma; PCL, plasma cell leukaemia. 
Adapted from Morgan et al.25 

 

 

 

1.1.2 The multiple myeloma genome 

MM is characterised by the gain of genetic abnormalities from MGUS to 

symptomatic MM (Figure 1.3); these include hyperdiploidy (HD), chromosomal 

translocations, copy number changes, gene mutations, aberrant methylation, and 

microRNA deregulation2, 24. The primary genetic events can be broadly divided 

into HD and non-HD. HD is present in 55-60% of MM patients, involving trisomies 

of odd numbered chromosomes – 3, 5, 7, 9, 11, 15, 19, and 21. 

Non-HD MM can be further subdivided based on translocations of the IGH locus 

at 14q32 with various recurrently observed genes26-28 (Table 1.1). In normal B-

cell differentiation, both CSR and SHM in the GC are mediated by double-strand 

DNA breaks (DSBs) with the expression of activation-induced deaminase (AID). 

Most AID-induced DSBs at the IGH locus are repaired locally, although DSBs can 

be joined to others occurring on different chromosomes, resulting in aberrant IGH 

chromosomal translocations detected in MM or MGUS plasma cells. 

Juxtaposition of genes next to the strongly transcriptionally active IGH enhancer 

tends to lead to their overexpression; for example, FGFR3 (fibroblast growth 

factor receptor 3) and MMSET (myeloma SET domain protein) are overexpressed 

in t(4;14) MM29. The role of FGFR3 in myelomagenesis remains to be 

established, although FGFR3 overexpression in mice leads to tumour 

development, and targeting FGFR3 in vitro has shown to be cytotoxic in t(4;14) 



29 
 

MM cells30, 31. MMSET overexpression is thought to contribute to pathogenesis 

through epigenetic regulation and DNA repair32, 33.   

Figure 1.3:  Pathogenesis of MM. The initial deregulated plasma cell in the bone 
marrow belongs to MGUS, which develops further genetic abnormalities in the 
progression to symptomatic MM, EMM/PCL. MGUS, monoclonal gammopathy of 
undetermined significance; SMM, smouldering multiple myeloma; MM, multiple 
myeloma; EMM, extramedullary multiple myeloma; PCL, plasma cell leukaemia. 
Adapted from Morgan et al.25 

 

 

 

Table 1.1: The main primary chromosomal translocations in MM 

Primary chromosomal 
 

Frequency Translocated gene partner 

t(11;14) 15-20% CCND1 

t(4;14) 10-15% FGFR3, MMSET 

t(6;14) 2-5% CCND3 

t(14;16) 5% c-MAF 

t(14;20) 1-2% MAFB 
 

Secondary genetic events are implicated in the transition of MGUS to SMM and 

symptomatic MM, including the MYC aberrant expression from t(8;14), copy 

number changes, and mutations in RAS/MAPK signalling pathway (e.g. NRAS) 

(Figure 1.3)25. A key copy number variation is the gain of 1q21, present in > 40% 
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of SMM and MM cases34. Gain of 1q21 which implicates the oncogene CKS1B, 

shows a strong association with adverse patient prognosis35-38.   

Frequent deletions in MM are located at 1p (30%), 6q (33%), 8p (25%), 12p 

(15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%), and 22 (18%)2, 35. 

Loss of 1p is associated with poor prognosis in patients39, 40. Deletion of 1p12 and 

1p32.3 are of particular interest, with FAM46C, FAF1, and CDKN2C located at 

these genomic regions. FAM46C and FAF1 encode proteins in apoptosis 

regulation41, 42, and CDKN2C is a key cell cycle suppressor43, 44. MM patients with 

17p deletion, specifically 17p13, typically have an aggressive disease and poor 

outlook45-47. TP53 is located at 17p13, a tumour suppressor gene with a role in 

cell cycle arrest, DNA repair, and apoptosis in response to DNA damage48. With 

the gain of genetic abnormalities and deregulation of signalling components, MM 

can further progress to PCL or EMM outside the bone marrow. It has been 

suggested that 17p deletion and the subsequent TP53 dysfunction has a major 

impact on the development of PCL49. 

 

1.1.3 Diagnostic classification of multiple myeloma 

Diagnostic classification of MM was established by the International Myeloma 

Working Group (IMWG) (Table 1.2)50, 51. Serum and urine M proteins are 

measured from patients by electrophoresis and immunofixation. The degree of 

CRAB symptoms is also evaluated in patients, which assess Calcium levels 

(hypercalcemia; serum calcium > 2.75 mmol/L), Renal impairment (serum 

creatinine > 177 µmol/L), Anaemia (haemoglobin level < 100 g/L) and Bone 

lesions (defined as ≥ 1 osteolytic lesions detected on skeletal radiography, 

computed tomography (CT), or positron emission tomography–computed 

tomography (PET-CT)).  

Recently the IMWG has added the serum free light chain (sFLC) ratio to the 

diagnostic criteria of plasma cell disorders52. The normal serum free ᴋ 

immunoglobulin light chain level is between 3.3-19.4 mg/L and that of free λ 

immunoglobulin light chain level 5.7-26.3 mg/L, with a normal ᴋ/λ ratio of 0.26-

1.6553, 54. Abnormal ᴋ/λ ratio is a predictor of disease progression from MGUS, 

SMM to MM55, 56, indicating that one FLC isotype is excessively produced and the 
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presence of clonal expansion of plasma cells. FLCs produced by clonal plasma 

cells are of the ‘involved’ FLC isotype, and a patient with involved to uninvolved 

ratio > 100 and any of the myeloma-defining events is diagnosed with 

symptomatic MM (Table 1.2). 

Table 1.2: International Myeloma Working Group diagnostic criteria of MM 

 

Clinical stage Diagnostic criteria 

Monoclonal 

gammopathy of 

undetermined 

significance 

(MGUS) 

• Serum M protein < 30 g/L, and 

• Clonal plasma cells < 10% in bone marrow, and 

• Absence of myeloma-related end-organ damage or 

tissue impairment or CRAB. 

Asymptomatic / 

smouldering 

multiple myeloma 

(SMM) 

• Serum M protein level ≥ 30 g/L or urinary M protein > 

500mg per 24 hours, and/or clonal plasma cells 

10%-60% in bone marrow, and 

• Absence of myeloma defining-events (i.e. no 

myeloma-related end-organ damage or tissue 

impairment or CRAB, involved: uninvolved serum 

free light chain ratio < 100, no focal lesions identified 

by magnetic resonance imaging (MRI). 

Symptomatic MM 

• Clonal plasma cells > 10% in bone marrow or 

biopsy-proven bony or extramedullary 

plasmacytoma, and any one of the following: 

• Clonal plasma cells in bone marrow > 60%, or 

• Involved: uninvolved serum free light chain ratio > 

100 (providing involved FLC > 100mg/L), or 

• Evidence of end-organ damage related to myeloma 

or CRAB, or 

• >1 MRI focal lesion. 
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1.1.4 Prognostic factors 

An International Staging System (ISS) was established by the IMWG as 

prognostic factors for MM patient outcome, based on the serum levels of β2-

microglobulin and albumin57. Cytogenetic information from fluorescence in situ 

hybridisation (FISH) has also been used to risk-stratify myeloma patients58, 59 

(Table 1.3). Generally patients with IGH chromosomal translocations t(14;16), 

t(14;20), t(4;14), and 17p deletions are considered high risk. However, recent 

data has suggested patients with and without t(4;14) have similar survival 

outcomes in bortezomib-based initial therapy in conjunction with autologous stem 

cell transplantation and bortezomib maintenance60. 

Table 1.3: Cytogenetic risk-stratification of MM. Adapted from Bersagel et al.59. 

Standard risk Intermediate risk High risk 

Hyperdiploidy 

t(11;14) 

t(6;14) 

t(4;14) 

t(14;16) 

t(14;20) 

17p deletion 

Unsupervised clustering of messenger RNA (mRNA) expression profiles have 

been used to categorise MM cells into molecular subgroups determined by their 

gene expression signatures61, 62. For example, MAFB and c-MAF overexpression 

from t(14;20) and t(14;16) respectively clustered as one subgroup designated 

‘MF’, suggesting the over-expression of the MAF family results in deregulation of 

mutual downstream genes in MM. Different molecular subgroups have 

demonstrated differences in both event-free and overall survival63. Recently, 

mutational load has also been linked to a poorer outcome1. 

Risk-stratification of MM based on  gene expression profiling (GEP), mutational 

load, and FISH analysis is increasingly being used to define patient treatment; for 

example, in the Mayo Stratification of Myeloma and Risk-Adapted Therapy 

(mSMART)64 and ongoing trials Total Therapy 4 and 5 conducted by the 

University of Arkansas36. 
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1.1.5 Treatment strategies of multiple myeloma 

Treatment for MM generally involves chemotherapy with or without 

radiotherapy65, 66. Patients who are younger (usually < 70 years) without co-

morbidities are typically treated by high-dose therapy followed by an autologous 

stem cell transplantation and maintenance therapy. Older and/or less fit patients 

who are unsuitable for stem cell transplant, undergo chemotherapy treatment 

only.  

Chemotherapy drugs used in the treatment of MM include the classical DNA 

damaging drugs such as alkylating agent melphalan and cyclophosphamide, and 

anthracycline agents such as doxorubicin65. Other drugs also include the 

immunomodulating agents, such as thalidomide and lenalidomide, proteasome 

inhibitors such as bortezomib and steroids such as dexamethasone and 

prednisolone. Examples of combinatorial therapies include cyclophosphamide, 

thalidomide, and dexamethasone (CTD) or bortezomib, doxorubicin, and 

dexamethasone (PAD)67, 68, which rely on the synergistic effects of the therapy 

agents. Combinatorial treatments can be used as the induction treatment prior to 

high-dose therapy and stem cell transplantation, as an initial treatment for older 

and less fit patients, or at relapse.  

With no curative therapies for MM and development of drug resistance in patients, 

relapsed MM after a period of remission is generally inevitable. A regimen of 

formerly administered chemotherapy drugs or novel agents with or without stem 

cell transplantation is given at relapse, depending on the patient’s health at 

relapse (e.g. age, renal function, bone marrow function, presence of 

comorbidities), timing of relapse, and the efficacy and toxicity of the drugs used 

in prior therapy 66. 

Next-generation proteasome inhibitors (e.g. carfilozomib, ixazomib) and 

immunomodulatory agents (pomalidomide) are emerging as effective therapies 

for relapsed MM patients69, 70. Other novel agents are also now in development, 

including monoclonal antibodies in immunotherapies (e.g. daratumumab, 

elotuzumab, indatuximab, SAR650984), repurposed alkylating agents, kinesin 

spindle protein inhibitors, histone deacetylase inhibitors, and inhibitors of key 

complexes in MM development and progression, namely cyclin-dependent 
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kinase, interleukin 6, Bruton’s tyrosine kinase, B-cell lymphoma 2, protein kinase 

B, and phosphoinositide 3-kinase pathway components71. 

 

1.2 Somatic mutational characteristic of multiple myeloma 

1.2.1 Somatic mutations in cancer 

Somatic mutation is a DNA alteration occurring after conception. Somatic 

mutation is a universal feature of cancer, and considered to be a fundamental 

step in driving oncogenic growth72. Mutation types vary in size and complexity, 

from large-scale whole chromosomal gains/losses, through to complex structural 

changes (e.g. fusion genes) and single nucleotide variants (SNVs). Somatic 

mutation is not a process exclusive to cancer however and increasing evidence 

demonstrates that somatic mutation is also a common feature of normal tissue73. 

Many cancers develop as a consequence of abnormal cell proliferation due to 

accumulation of somatic mutations altering vital processes, including cell division 

and DNA damage. These mutations are known as ‘driver mutations’ as they 

provide proliferative advantage to some subpopulations of cells and drive their 

expansion and eventually tumourigenesis. In contrast, ‘passenger mutations’ 

provide no such fitness benefit. Given their central role, the study of driver genes 

has been of great interest across all tumour types. At their most impactful, the 

targeting of a single driver event can completely halt/control cancer growth, as 

exemplified by BCR-ABL fusion gene inhibition with imatinib, administration of 

which in chronic myeloid leukaemia contributed substantially to the dramatic 

increase in survival rates from around 40% to 89% (5-year)74, 75. It is worth noting 

however that the majority of subsequent efforts to inhibit targeted driver genes 

have been less successful, due to issues of intra-tumour heterogeneity and 

redundancy in the driver gene pathways, leading to targeted therapy resistance.  

Somatic mutations can be classified as those increase cell survival/proliferation 

(‘driver’ or positively selected mutations), those provide no fitness advantage 

(neutrally selected), and those could result in cell death or senescence 

(negatively selected).  One common approach to quantify the selection of 

mutations in cancer genomes is using the normalised ratio of non-synonymous 

to synonymous mutations or dN/dS76-79. The concept has been long used in 
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studying selection in species evolution, but a number of modifications are 

required to study somatic evolution76: (i) comprehensive models of context-

dependent mutational processes, (ii) inclusion of other types of non-synonymous 

mutations including nonsense and splice site mutations as well as 

insertion/deletion (indel), (iii) stringent filtering of somatic mutations to avoid 

biases caused by common germline polymorphisms, (iv) taking into account of 

mutation rate variation across human cancer genome. Neutral mutations have 

dN/dS values approximately 1.0, while values of > 1.0 and < 1.0 represent 

positive and negative selection respectively.  

The search for new driver genes intensified from around 2005 onwards, through 

large-scale international projects such as The Cancer Genome Atlas (TCGA) and 

the International Cancer Genome Consortium (ICGC) (section 2.2.3). These 

colossal projects leveraged high-throughput sequencing technologies to 

comprehensively profile > 30 different tumour types across > 10,000 patients. 

The typical DNA sequencing approach for these, and other comparable studies, 

is whole-exome sequencing (WES) or whole-genome sequencing (WGS) of 

matched tumour and normal (germline) DNA. Normal germline variants can be 

extracted to identify true somatic changes observed only in tumour tissue. A large 

number of novel driver genes have been identified from these studies, and the 

results have been captured in large open-access databases, such as the 

Catalogue of Somatic Mutations in Cancer (COSMIC)80, which currently lists > 

700 genes for which mutations have been causally implicated in cancer 

(https://cancer.sanger.ac.uk/census, accessed 04/12/2019). However, when 

cross-referenced with other published cancer gene sequencing studies, a small 

number of about 100 driver genes were found to be recurrently and robustly 

established81. As well as identification of novel driver genes, the results from 

TCGA and IGCG have had a broader impact on cancer research, leading to the 

discovery of novel copy number variants (CNVs), non-coding driver mechanisms, 

clinicopathological-molecular associations, and databases of tumour specific 

mutation signatures82. The cumulative insights from somatic tumour sequencing 

studies have been fundamental to redefine diagnosis and prognosis as well as 

the development of multiple novel cancer therapies used in the clinic82. 
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1.2.2 Established multiple myeloma driver genes 

Existing knowledge on somatic mutations in MM was based primarily on two 

sources: (i) cytogenetic studies, which profiled major translocation status and 

copy number changes at a relatively low level of resolution (detecting whole arm 

deletions/gains), and (ii) targeted sequencing/WES studies, where only mutations 

in coding regions were assessed. The results from early cytogenetic studies are 

detailed in section 1.1.2. Existing compendium of driver genes were identified 

from three major cohorts being studied using WES1-3, 5, 83, 84. Several genes are 

recurrently mutated across these independent cohorts, thus considered as driver 

events in MM tumourigenesis. Among these, 16 genes were found to be mutated 

in significant proportion of patients in one of the three published WES studies1-3, 

5 (Figure 1.4) 

Figure 1.4: Most frequent somatic mutations in patients with MM. Mutation 
frequencies were calculated by averaging the data from three whole-exome sequencing 
studies comprising a total of 733 patients1, 3, 5. MM, multiple myeloma; WES, whole-
exome sequencing. Figure taken from Manier et al.2  
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1.3 Mutational processes in multiple myeloma 

1.3.1 Mutational signatures in cancer 
The somatic mutations we observe in a cancer are outcomes of multiple 

mutagenic processes that have been operative during the lifetime of a patient. 

Each of these processes will leave an imprint or ‘mutational signature’ defined by 

the type of base substitutions, indels, or structural variants (SVs) and therefore 

we could have single base substitution (SBS), small insertion and deletion, and 

rearrangement signatures (RS) respectively. For instance, mutations in smoking-

related lung cancers are mostly G•C>A•T transversions85, while the C•G>T•A 

transitions are associated with ultraviolet radiation exposure in skin cancers86. 

Recent research has shown that these mutational signatures are identifiable and 

quantifiable using mathematical models such as the nonnegative matrix 

factorisation (NMF)87, 88. By correlating these mutational signatures with 

endogenous and exogenous factors such as aging, smoking, UV radiation, DNA 

repair deficiency, these signatures can provide insight into the underlying 

mutational processes in cancer, as well as potential biomarkers or targets for 

treatment10. Mutational processes can either act continuously throughout lifetime 

of cancer cell (clock signatures)89 or periodically, with some are influenced by the 

patient’s lifestyle90. 

 

1.3.2 Framework to study mutational signatures 
The first mutational signatures introduced were SBS, in which a signature is 

characterised by the type of specific base change and its direct 5’ and 3’ flanking 

bases. Given the six classes of base substitutions (C>A, C>G, C>T, T>A, T>C, 

T>G) and 4 different flanking bases on the 5’ end and 3’ end (A, T, C, G), there 

are 96 distinguishable trinucleotide substitution. Since it is not possible to identify 

on which strand the mutation initially occurred, C>A is considered equivalent to 

G>T and both are counted as a C>A substitution. NMF computational framework 

decomposes distinguishable patterns of mutational signatures, which are 

characterised by different relative contribution of each trinucleotide mutation87, 88. 

Similarly, structural rearrangement signatures could also be extracted based on 

the NMF framework91, 92. SVs could be classified into subclasses by types of SVs 

(deletion, insertion, tandem duplication, and translocation), clustered versus non-

clustered SVs, and sizes of SVs. Until recently, there are 30 different reference 
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SBS signatures extracted from a previous pan-cancer study87 categorised in the 

COSMIC database (https://cancer.sanger.ac.uk/cosmic/signatures_v2, 

accessed on 4/12/19); however only some are associated with known aetiologies 

(Figure 1.5). In contrast, rearrangement signatures are much less well-defined.   

 
Figure 1.5: Summary of some mutational signatures with known 
aetiologies, and the DNA damage and repair that constitute the mutational 
processes. Asterisk indicates instances where limits of the y-axes are exceeded. T, 
transcriptional strand bias. D, excess of dinucleotide mutations. I, association with 
insertions and deletions. APOBEC, apoliprotein B mRNA editing enzyme, catalytic 
polypeptide. REV1, DNA repair protein REV1. UV, ultraviolet. Figure taken from Helleday 
et al.10   
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1.3.3 Established mutational processes in multiple myeloma 

Prior to the work described in this thesis, mutational signatures in MM were only 

examined in WES84, 87, thus restricted to identification of the mutational processes 

primarily active in the coding regions. Therefore, there is a gap in knowledge that 

requires a more thorough interrogation of all mutational processes present in MM 

using large cohorts of WGS data. These early studies extracted two predominant 

mutational signatures in MM: (i) a generic signature found in many cancers 

enriched of C>T transitions in CpG context, and (ii) a signature enriched for C>G 

and C>T in TpCpA context attributed to apolipoprotein B mRNA editing enzyme 

catalytic polypeptide-like (APOBEC) activity. The APOBEC mutational signature 

was seen in 3.8% of 463 patients and enriched for MAF-translocated MM t(14;16) 

and t(14;20)84. Patients with the APOBEC signatures were also associated with 

higher mutational burdens and poor prognosis84. However, a more 

comprehensive analysis, taking into account of all mutational signatures and 

established risk factors, is required to refine the roles of mutational signatures in 

predicting patients’ prognosis.  

 

1.4 Clonal heterogeneity and evolution 

1.4.1 Overview of tumour heterogeneity and evolution 

Most cancers arise through the accumulation of changes in genome and 

epigenome93, 94. A tumour cell with driver mutations are conferred with 

proliferative advantage over others, thus generating more daughter cells in a 

process called clonal expansion95, 96. As a consequence, tumours are composed 

of subpopulations of cells (subclones) that have distinguished mutations including 

SNVs, indels, CNVs, and SVs. Somatic mutations can be divided into (i) clonal 

mutations - those acquired before the complete selective sweep hence shared 

by all tumour cells, and (ii) subclonal mutations - those emerge after the ‘most 

recent common ancestor’ thus shared by a subpopulation of cells or subclones 

(Figure 1.6).  

The emergence of next-generation sequencing (NGS) has revolutionised the 

ability to elucidate tumour heterogeneity at single nucleotide level and define 
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evolutionary trajectories. For the majority of available statistical methods, the first 

step for subclonal reconstruction is estimating genomic copy number profile and 

tumour purity using a number of different tools such as ASCAT97, ABSOLUTE98, 

and Sequenza99. This is followed by estimating the cancer cell fraction (CCF) of 

mutations100: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑚𝑚 ×
𝑉𝑉𝑉𝑉𝑉𝑉
𝜌𝜌

(𝜌𝜌 × 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + (1 −  𝜌𝜌) × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

where 𝑚𝑚 is mutation multiplicity, VAF is variant allele frequency, 𝜌𝜌 is tumour 

purity,  𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are local copy numbers in tumour and normal genome 

respectively. VAF of mutation 𝑖𝑖 (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖) can be calculated from read depths of 

variant (𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖) and reference alleles (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖): 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 =
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖  +  𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒,𝑖𝑖  
 

Subsequently, to reconstruct subclonal architecture, a number of methods 

employ the fact that many mutations with similar CCF correspond to a cluster of 

clonal or subclonal mutations100. For such purpose, the Bayesian Dirichlet 

clustering process is used to cluster and infer posterior density of mutations 

based on their CCF (Figure 1.7). Since the algorithm does not require a priori 

number of subclones, it can both infer the number of clusters and assign 

mutations to each cluster identified101. 
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Figure 1.6: Schematic diagram of phylogenetic tree reconstructing 
evolutional trajectory of a tumour. The thickness of branches indicates the 
proportion of tumour cells comprising that lineage. Each node of the tree represents a 
population of cells, with A is the founding clone or clonal population; while B, C, and D 
are subclones. 

 

 

Figure 1.7: Subclonal architecture reconstruction in tumour. Tumours typically 
consist a mixture of tumour cells with various mutations (solid lines) and normal cells 
(dashed line). Some mutations are carried by all tumour cells (squares) while some are 
carried by a subset of tumour cells (circle and triangles). During subclonal reconstruction 
process, clustering algorithm can be applied to decipher the number of subclones and 
assign mutations to these clones, based on mutations cancer cell fractions. Adapted 
from Dentro et al.100 
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1.4.2 Tumour heterogeneity and evolution in multiple myeloma 

Clonal heterogeneity and evolution in MM has previously been examined 

primarily using WES/targeted sequencing5, 6, 8, 102, 103, low coverage 

sequencing104, or FISH and/or array technology102, 105.  These early studies 

suggest that MM tumours are highly heterogeneous, with an average of five 

detectable subclones per tumour2. In addition, some recurrently mutated genes 

were frequently found to be clonal (e.g. MAX, RB1, TP53), suggesting they are 

important for early event of tumour progression2, 3, 5 (Figure 1.8).  

Figure 1.8: Frequency of driver genes clonal and subclonal mutations. The 
results were based on 203 patients’ whole-exome sequencing data. Figure adapted from 
Manier et al.2  

 

 

MGUS and SMM have been reported to have very similar mutational profile to 

MM, in which all the predominant clones and initiating structural rearrangement 

were already present prior to MM stage8, 106. Two patterns of tumour progression 

from SMM to MM were observed: (i) the static progression model where subclonal 

architecture is conserved, and (ii) the spontaneous evolution model where 

subclonal composition is changed during the progress106. 

Previous studies examining clonal dynamics before (primary tumours) and after 

therapy (relapsed tumours) observed different patterns in limited number of WES 

data available5, 107: (i) stable tumour with no changes in subclonal heterogeneity; 

(ii) differential clonal response where relative proportion of subclone changes 

after treatment; (iii) linear evolution where new subclones emerge at relapse; and 

(iv) branching clonal shift where new clones emerge while other decline at 
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relapse. However, complexity of subclonal heterogeneity and evolutional patterns 

are dependent much on the depth of sequencing, as well as number of mutations 

and samples included. Therefore, there is a need for a larger cohort with higher 

coverage WGS data to accurately characterise the evolutional patterns in MM.  

 

1.5 Mitochondrial DNA and cancer 

Mitochondria are important cellular organelles with their major function being 

adenosine triphosphate (ATP) production. They have small (16.5 Kb) and circular 

genome, which are present at 100 - 10,000 copies per cell depending on cell 

type108, 109. The two strands in the human mitochondrial DNA (mtDNA) are often 

classified as heavy and light strand, with the heavy strand is enriched with 

guanine. The mtDNA encode 13 proteins, 2 ribosomal RNAs (rRNAs), and 22 

transfer RNA (tRNAs)110 (Figure 1.9). Proteins encoded by mtDNA are subunits 

forming respiratory chain complexes I, III, IV, and ATP synthase that are essential 

for energy production (Figure 1.9). 

Figure 1.9: Annotated genetic composition of human mitochondrial DNA. 
HSP, heavy strand promoter. LSP, light strand promoter. OH, origin of heavy strand. OL, 
origin of light strand. Figure taken from Gammage et al.111   
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Mitochondria have long been considered important for tumour transformation and 

treatment response112. The majority of cancers have altered metabolism 

attributed to defective mitochondria113 to adapt to unrestrained growth114, 115, in 

part by switching from oxidative phosphorylation to glycolysis and increased 

uptake of glucose (i.e. the ‘Warburg effect’)116. In addition, mitochondria also have 

important roles in multiple key processes linked to tumourigenesis including 

regulation of apoptosis, cell cycle, cell growth, and signalling117. 

Recent evidences suggest the association of mitochondria with chemotherapies 

resistance and disease progression in MM118, 119. In addition, pre-clinical studies 

have further indicated promising outcomes for treatment targeting mitochondria 

in relapsed MM120, 121. Although recent studies have employed NGS to examine 

mtDNA mutations in various cancers122-126, the functional implications and 

spectrum of mtDNA mutations in MM have not been well characterised, partly 

due to limited sample size and depth of WES124. Furthermore, any characteristics 

specific to MM mitochondria have been largely dismissed due to overwhelmingly 

dominant number of other cancer types included in previous pan-cancer 

studies124. Hence, there is an unfilled gap to comprehensively characterise and 

examine the impact of mutations in MM mtDNA through using a larger cohorts 

and high-depth sequencing data.  
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1.6 Study aims and scope of enquiry 

The work detailed in this thesis aims to gain further insight into somatic mutational 

landscape in MM, making use of large NGS dataset. It is anticipated that research 

into the genetic basis of the plasma cell malignancy will lead to increased insight 

into MM biology and potentially identify novel therapeutic strategies.  

Specifically: 

• Chapter 3 reports on the identification of novel coding and non-coding 

drivers in MM, making use of The Relating Clinical Outcomes in Multiple 

Myeloma to Personal Assessment of Genetic Profile Study (CoMMpass) 

dataset (interim analysis, IA9 release). Through integrated pathways 

analysis, multiple mechanisms disrupting key oncogenic pathways in MM 

could be identified. 

• Chapter 4 reports on the analysis of CoMMpass dataset (IA10 release) to 

identify mutational processes contributing to development of MM, using 

mutational signatures analysis. Through integrating with patients’ survival 

data, the use of mutational signatures for novel risk stratification is 

explored. 

• Chapter 5 reports on the analysis of Myeloma XI trial, in which matched 

relapsed tumours are available. Given the high-coverage of the data, 

coding and non-coding drivers identified previously could be validated. In 

addition, the evolutionary trajectories at relapse are examined to shed light 

on the impacts of treatment on MM clonal evolution.  

• Chapter 6 reports on spectrum and impacts of mtDNA mutations in MM, 

making use of both CoMMpass and Myeloma XI trial dataset. The 

pathogenic and prognostic implications of mtDNA mutations in MM are 

also examined.  
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    Material and Methods 
 

2.1 Dataset 
The analyses made use of two dataset: CoMMpass4, 127 and Myeloma XI trial128.  

2.1.1 The Multiple Myeloma Research Foundation (MMRF) CoMMpass 
dataset 

CoMMpass is an initiative launched in 2011 by The Multiple Myeloma Research 

Foundation (MMRF) (https://research.themmrf.org/). The aim of the study is to 

collect molecular and clinical data of 1000 patients with MM, creating the largest 

dataset for the disease. WGS raw fastq data of baseline newly diagnosed bone-

marrow samples and their matched normal were downloaded from the database 

of Genotype and Phenotype (dbGaP, accession code phs000748.v4.p3). The IA9 

and IA10 releases consist of WGS from 765 and 850 patients, respectively. MM 

tumour specimens were enriched from bone marrow aspirates by CD138 

antibody conjugation yielding on average 99% CD138+ plasma tumour cell 

purity129. WES somatic variants, matched tumour RNA-seq (606 patients) 

processed by HTseq130, CNVs, and sequencing-based fluorescence in situ 

hybridisation (Seq-FISH) data were obtained from the MMRF web portal 

(https://research.themmrf.org/).  

Classifications of translocations in the CoMMpass dataset were based on Seq-

FISH data131. Preliminary analysis from the MMRF CoMMass network suggests 

that Seq-FISH assay has similar specificity and greater sensitivity to clinical 

FISH131. Hyperdiploid was defined as amplification of 90% of the chromosome in 

at least two autosomal chromosomes.  

 

2.1.2 Myeloma XI trial dataset 

The Myeloma XI trial was a randomised, phase 3 design trial carried out at 110 

National Health Service hospitals throughout the United Kingdom128. The trial 

featured two treatment groups – intensive (high-dose therapy and a stem cell 

transplant) and non-intensive groups. Bone marrow aspirates and blood samples 

were obtained from 80 patients with newly diagnosed MM and 25 matched 
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relapsed patients being treated according to the UK National Cancer Research 

Institute Myeloma XI trial protocol132. Tumour DNA was extracted from plasma 

cells selected and sorted using CD138 microbeads35. Germline DNA was derived 

from matched blood samples. WGS sequencing libraries were prepared using an 

Illumina SeqLab specific TruSeq Nano High Throughput library preparation kit 

(Illumina Inc, San Diego, CA 92122 USA) and sequenced using paired end on a 

HiSeqX instrument. Matched RNA-seq data was available for 54 of the 80 primary 

and 7 of the 25 relapsed tumours. RNA samples were prepared using NEB ultra 

II total RNA kit and sequenced paired end with the HiSeq 2500 system. Clinical 

data and informed consent was obtained from all patients. Ethical approval for 

the study was obtained by the Oxfordshire Research Ethics Committee (MREC 

17/09/09, ISRCTN49407852). 

Tumour IGH-translocation status was determined using multiplexed real-time 

polymerase chain reaction (PCR)133, cross-referenced by expression of 

translocation target genes from RNA-seq and SVs called from WGS data (section 

2.2.7.3). Hyperdiploid MM was defined as gain of any two of chromosomes five, 

nine and fifteen35.  

 

2.2 Bioinformatics analysis 
2.2.1 R Software 

All statistical analyses were carried out using the statistical software programme 

R134 v3.5.0, unless otherwise stated. R is a publicly available software 

environment for statistical computing and data visualisation. Functions in R can 

be extended by the installation of packages, enabling wide range of statistical 

and bioinformatics methods to be applied134. All bar plots presented in this thesis 

generated by R have Whisker bar extend within + 1.5 × interquartile range, unless 

otherwise stated. 

 

2.2.2 Statistical significance assessment 

The P-value, defined as the probability of obtaining a value that is at least as 

extreme as that of the actual sample by chance, was used to assess statistical 
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significance. If the P-value is smaller than a pre-set threshold then the null 

hypothesis of no association is rejected and the result is considered significant. 

For a single test P < 0.05 is deemed significant in order to control the family wise 

error rare (FWER; the probability of making even one type I error) at 0.05. The 

rate of type I error, achieving significant result by pure chance, increases when 

conducting multiple tests on the same dependent variable. A Bonferroni 

correction of the P-value can be applied to minimise false positives and keep 

FWER at 0.05. The corrected P-value is given by the equation P = α/n, where α 

equates to the initially accepted level of significance (0.05) and n to the number 

of independent tests performed. 

 

2.2.3 Databases  

2.2.3.1 University of California Santa Cruz genome browser 

The University of California Santa Cruz (UCSC) genome browser135 

(http://genome.ucsc.edu/) is a virtual map of the human genome, annotated with 

known genes, transcripts, polymorphic variation, repeated sequences, 

conservation, structural variation, and experimental data from external databases 

such as The encyclopedia of DNA elements (ENCODE, section 2.2.3.3). These 

features are mapped against their physical positions in the genome. Various 

bioinformatics tools and information are contained within the website and were 

utilised as follows: 

• Genome Browser tool was used to query specific regions of DNA and 

visualise genes, introns, regulatory elements, and other features of the 

genomic location. 

• LiftOver tool was used to convert genome coordinates between different 

genome assemblies (hg19 and hg38).  

• Table Browser tool was used to download data associated with specific 

tracks in the genome browser. For example this tool was used to download 

genomic co-ordinates of simple repetitive regions for somatic variants 

filtering step. 

• Cytoband definitions (hg19 and hg38) and cancer cell lines replication 

timing data (hg19) were downloaded.  
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2.2.3.2 National Centre for Biotechnology Information 

The National centre for biotechnology information (NCBI) web server 

(http://www.ncbi.nlm.nih.gov/) hosts a multitude of databases and bioinformatics 

tools136. Specific tools used in this work are: 

• PubMed for literature searches and citations. 

• RefSeq to obtain reference sequences of chromosomes, genomic contigs, 

mRNAs, and proteins. These data can also be queried in UCSC. RefGene 

database, which specifies known human protein-coding and non-protein-

coding genes was created from RefSeq using the UCSC database.  

• dbSNP database of short genetic variations to query specific SNPs for 

position, allele and frequency information. Variant data from dbSNP were 

used to minimise false positives attributable to germline variation for 

somatic variants calling.   

• ClinVar to query genetic variant pathogenicity. 

 

2.2.3.3 The Encyclopedia of DNA Elements 

The encyclopedia of DNA elements (ENCODE)137 aims to build a comprehensive 

list of functional elements in the human genome, including elements that act at 

the protein and RNA level, as well as DNA regulatory elements. The ENCODE 

project integrates genome-wide experimental data for over 100 different cell 

types. The following data were used in this thesis: 

• Mappability tracks which indicate how mappable a genome region in terms 

of short reads sequencing (75mers). 

• Replication sequencing (Repli-Seq) for lymphoblast cell lines. 

 

2.2.3.4 1000 Genomes project 

The 1000 Genomes Project (http://www.1000genomes.org/) aims to provide a 

comprehensive catalogue of human genetic variation with frequencies > 1% 

through sequencing large numbers of individuals138. Combining data from all 

individuals allows for accurate imputation of variants not directly covered in this 

low coverage sequencing. Data from the pilot phase, phase one and phase three 
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of the project have been made publicly available. Variant data from 1000 

Genomes project were used as part of human common single nucleotide 

polymorphism (SNP) reference (section 2.2.11.1). 

 

2.2.3.5 The Genome Aggregation Database 

The Genome Aggregation Database (gnomAD) 

(https://gnomad.broadinstitute.org/) is a resource developed by an international 

consortium to aggregate exome (> 100,000 exomes) and whole-genome (> 

70,000 WGS) sequencing data from a wide variety of large-scale sequencing 

projects139. The database offers a comprehensive human genetic variation, 

including both single nucleotide and indels. It is currently the largest publicly 

available resource for genome-wide variant frequency data across different 

populations worldwide. Common SNPs and indels from gnomAD were used to 

remove potential false positives somatic mutations attributed to germline variants 

(section 2.2.12.1 and 5.2.2.1).  

 

2.2.3.6 Ensembl genome browser 

The Ensembl genome browser (http://www.ensembl.org) is a genome annotation 

database supported by the European bioinformatics institute140. Along with the 

ensembl biomart (http://www.ensembl.org/biomart/) it is of particular use for 

retrieval of gene information including genomic organisation of exons, introns and 

known regulatory domains, known transcripts, proteins, homologues and 

recorded variation within the gene sequence and also hosts the Variant Effect 

Predictor for annotation of variant effects140. 

 

2.2.3.7 Catalogue of somatic mutations in cancer 

The Catalogue of somatic mutations in cancer (COSMIC) 

(https://www.cancer.sanger.ac.uk/cosmic) is a source of manually curated 

somatic mutation information in human cancers80. Variant data from COSMIC 

were used to minimise false positives for somatic variant calling (section 2.2.4.5). 
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2.2.3.8 BLUEPRINT 

The BLUEPRINT portal (http://www.dcc.blueprint-epigenome.eu/) provides 

information of haemopoetic epigenomes, including RNA-seq and ChIP-seq of 

healthy and blood-based diseased cell lines and individuals141. ChIP-seq data of 

naïve B-cell were downloaded for the use of this thesis in chapter 3. 

 

2.2.3.9 MITOMAP 

The Mitomap142 (https://www.mitomap.org/) is a human mitochondrial genome 

database, which contains information on mtDNA reference and published data 

on polymorphisms and mutations. Mitomaster tool as part of Mitomap can query 

and annotate specific mitochondrial variants. The Mitomap database was used 

for the analysis of mitochondria described in chapter 6. 

 

2.2.4 Whole-genome sequencing analysis 

The following programmes were used to analyse WGS data. 

2.2.4.1 Description of file formats in next generation sequencing 

FASTQ format 

The FASTQ format is a text-based format for storing nucleotide NGS reads and 

their corresponding per-base quality scores143. Additional information relating to 

whether reads are single-end or paired-end is also stored. Base quality scores 

(Q) are Phred-based and related to the probability (p) of a base call being false 

by the equation: Q = -10 log10 p. For example, a Q score of 10 corresponds to a 

1 in 10 chance of an incorrect base call, whereas a Q score of 30 corresponds to 

a 1 in 1,000 chance. 

 

Sequence alignment/map (SAM) format 

The sequence alignment map (SAM) format is the most widely used file format 

for storing read alignments against reference sequences144. Details of aligned 
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and unaligned reads are stored along with associated mapping qualities. SAM 

files are typically stored in the binary form as binary alignment map (BAM) files. 

 

Variant call format (VCF) 

The variant call format (VCF) is a widely used specification for storing genetic 

sequence variations relative to a specified reference genome145. These files are 

typically generated by variant callers such as MuTect146. A variant in this format 

is defined as containing an allele (called the alternate allele) that is not the 

reference allele at that position. For a given genetic variant, the likely genotype 

is given along with a Phred-based genotype quality score, information about read 

depths for the reference and alternate alleles, genotype likelihoods as well as any 

additional meta-information such as variant annotation. 

 

2.2.4.2 Sequencing quality check 

All raw sequencing reads underwent quality control check with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which performs a 

set of analyses to provide impressions of any problems in the sequencing data.  

 

2.2.4.3 Sequence alignment 

The Burrows-Wheeler aligner (BWA)147 is a software package designed for 

mapping of single-end and paired-end sequencing of short reads against a large 

reference genome. The alignment of sequencing reads to human hg37 and hg38 

reference genome was carried out by BWA v0.7.12. 

 

2.2.4.4 Picard tools 

Picard (http://broadinstitute.github.io/picard/) is a set of command line tools for 

working with NGS data in a reliable and efficient manner. In the WGS analysis 

pipeline, Picard v1.94 was used to filter duplicate reads arising during sample 

preparation (e.g. PCR library construction) and generate coverage metrics. 
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2.2.4.5 Genome Analysis Toolkit 

The Genome Analysis Toolkit (GATK) is a widely used software package 

developed for use in analysis of high-throughput sequencing data148, 149. It was 

chosen for its ability to perform a wide range of analyses from local realignment, 

base score calibration, and variant calling. In the WGS sequence analysis 

pipeline, GATK v3.7 and v4.0 and was used to pre-process and call somatic 

variants in CoMMpass and Myeloma XI dataset respectively, according to GATK 

best practices (https://software.broadinstitute.org/gatk/best-practices/). 

Base quality score recalibration 

The base quality score recalibration (BQSR) package attempts to recalibrate 

base quality scores of sequence reads in a BAM file. The aim is for these quality 

scores to more truly reflect the probability of mismatching the reference genome 

through correcting for variation in quality with machine cycle and sequence 

context. 

 

Coverage estimation 

Coverage of was estimated using the DepthOfCoverage tool, restricting to 

genomic regions of interest (e.g. cis-regulatory regions). 

 

MuTect 

MuTect is a tool developed by the Broad institute to accurately and reliable 

identify somatic variants in cancer genome NGS data, and was chosen due to its 

low false positive rate146. The tool takes in matched tumour and normal tissues 

sequencing data, and outputs somatic mutations. Mutect v1.1.7 and v2.0 were 

used to call somatic variants on WGS data from CoMMpass and Myeloma XI 

respectively.  

MuTect v1 starts by pre-processing aligned reads in tumour and normal 

sequencing data, omitting reads with low quality scores or with too many 

mismatches. Two Bayesian classifiers are then used to identify candidate 

somatic mutations – the first aims to detect whether the tumour is non-reference 
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at a given site and when this is found, the second classifier makes sure the normal 

does not carry the variant allele. Finally, post-processing of candidate somatic 

mutations is carried out to eliminate artifacts of next-generation sequencing, short 

read alignment, and hybrid capture. Mutect1 could only identify SNVs. Mutect v2 

combines the original MuTect v1 with the assembly-based GATK 

HaplotypeCaller150, enabling identification of somatic SNVs and indels151.   

 

2.2.4.6 Telomere length estimation 

Telomerecat estimates average telomere length from WGS input, taking into 

account of aneuploidy as well as noise from the interstitial telomeric and sub-

telomeric sequences152.  

 

2.2.5 Promoter capture Hi-C analysis 

The HiCUP pipeline153 v0.6.1 was used to process raw promoter capture Hi-C 

(CHi-C) sequencing reads, map di-tag positions against the reference human 

genome hg38, and remove duplicate reads. The pipeline was performed for three 

biological replicates of raw promoter CHi-C generated on naïve B-cells154. 

Statistically significant interactions were called using the CHiCAGO pipeline155, 

with all three biological replicates processed in parallel to obtain a unique list of 

reproducible long-range contacts. Interactions with a –log(weighted P-value) > 5 

were considered significant, and only promoter-CRE interactions with linear 

distance < 1Mb were considered for downstream analysis as previously 

advocated156. 

 

2.2.6 RNA-seq analysis 

RNA samples were prepared using the NEB ultra II total RNA kit and sequenced 

paired end with the HiSeq 2500 system. Raw sequencing reads were quality 

checked with FastQC and trimmed for adapter with Trim Galore v.0.6.4 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Trimmed 
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reads were aligned to reference genome hg38 with HISAT2157 v2.1.0. RNA read 

counts were then obtained using HTSeq130 v.0.10.0 using default parameters. 

 

2.2.7 General somatic genomic analysis 

2.2.7.1 Somatic variant calling 

The core WGS processing pipeline was followed, as described in section 2.2.4, 

with final BAM files generated. SNVs were then called using MuTect making use 

of data from dbSNP v147 and COSMIC noncoding variants v7780 to minimize 

false positives attributable to germline variation. Variants were then filtered for 

potential DNA oxidation artefacts during sample preparation158, and only retained 

if they had a minimum of one alternative read in each strand direction, a mean 

Phred base quality score > 26, a mean mapping quality ≥ 50, and an alignability 

score of 1.0 based on alignability of 75mers defined by the ENCODE/CRG GEM 

mappability tool84, 159. 

 

2.2.7.2 Significantly mutated coding genes 

Two methods were used to identify significantly mutated coding genes: 

MutSigCV160 v1.2 and dNdScv76.  

MutSigCV 

MutSigCV analyses list of somatic mutations and identifies genes that are 

somatically mutated more often than would be expected by chance, given the 

background model160. The covariates incorporated in background mutation rate 

calculation include DNA replication time, chromatin state, and general level of 

transcription activity. Since the covariate file provided is only available for hg37, 

MutSigCV was used for CoMMpass data with default settings (Chapter 3). Prior 

to running MutSigCV, somatic variants were annotated with Oncotator161. Genes 

with Q < 0.05 were considered significantly mutated.  
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dNdScv 

dNdScv detects cancer driver genes through a background mutation rate 

incorporating local (synonymous and nonsynonymous mutations in the gene) and 

global covariates (mutation rate variation across genes, epigenomic information), 

as well as sequence composition of each gene, and mutational signatures76. The 

method was used to detect somatic driver genes in Myeloma XI trial dataset 

(Chapter 5). The tool was also used to estimate dN/dS values (section 1.2.1) per 

gene and across genome (Chapter 6). 

 

2.2.7.3 Somatic structural variants 

Somatic SVs were identified on WGS data using MANTA162 v1.2.0, LUMPY163 

v0.2.13, and/or DELLY164 v0.7.9. All the software call translocations, inversions, 

deletion, and tandem duplications. These tools exhibited top performance in 

recent bench-marking study for SV calling165. 

 

2.2.7.4 Kataegis 

Kataegis is a pattern of localised hypermutated regions seen in cancer genomes, 

mostly characterised by C>T substitution and co-localised with somatic structural 

rearrangements87, 166. Kataegis foci were identified using the KataegisPortal with 

default parameters (https://github.com/MeichunCai/KataegisPortal) and defined 

as having six or more consecutive SNVs with an average mutational distance ≤ 

1 Kb, excluding immune hypermutated regions127. 

 

2.2.7.5 Chromoplexy 

Chromoplexy is a phenomenon in which multiple genomic arrangements arising 

in an interdependent manner167, disrupting multiple cancer genes co-ordinately 

within a single cell cycle and providing proliferative advantage to a (pre-) 

cancerous cell. Chromoplexy was detected using ChainFinder v1.0.1 with default 

parameters167 and UCSC cytoband definitions. 
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2.2.7.6 Chromothripsis 

Chromothripsis is a chromosome shattering phenomenon triggered by DSB, 

characterised by oscillation copy number states in a localised genomic region168. 

Chromothripsis was identified using ShatterSeek with default parameters169. 

 

2.2.8 Non-coding drivers analysis 

2.2.8.1 Defining regulatory regions 

Promoter regions were defined as intervals spanning 400 bp upstream and 250 

bp downstream of the annotated transcription start site (TSS) from RefGene 

database170 as per Rheinbay et al.171 Cis-regulatory elements (CREs) were 

defined using publicly accessible promoter CHi-C data generated on naïve B-

cells154. Only promoter-CRE interactions with linear distance ≤ 1 Mb156 and only 

interactions with a CHiCAGO score ≥ 5 were considered statistically significant155 

(section 2.2.5). 

 

2.2.8.2 Identification of recurrently mutated regulatory regions 

Promoters and CREs were tested independently for recurrence of non-coding 

mutations based on the approach of Melton et al.172 The statistical modelling of 

recurrent mutations assumes a Poisson binomial model, in which the mutation 

probability for each regulatory region in each tumour is determined by fitting a 

logistic regression model with glm R function to all data in CREs and promoters 

separately, taking into account the following factors at every nucleotide base172: 

tumour  ID, mutational status, reference base pair (A/T versus G/C), replication 

timing, and coverage. Since replication timing influences mutational rate at each 

nucleotide base173, replication timing at a base position was estimated as the 

average of replication timing data for hg37 (from Hela, K562, HEPG2, MCF7, and 

SKNSH cell lines)173 and hg38 (two B-lymphocyte replicates downloaded from 

https://www.replicationdomain.com/). CRE regions that overlap with open 

reading frames (extended by 5 bp to account for splice sites), and 5’ untranslated 

region (UTR) and 3’ UTR as defined by Ensembl v73174 were excluded from the 
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analysis. For promoters, mutations overlapping with open reading frames as 

defined by Ensembl v73174 were excluded.  

The mutation probability of each defined regulatory region is defined as: 

P(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) = 1 −�(1 − 𝑝𝑝𝑘𝑘)
𝑠𝑠

𝑘𝑘=1

 

where 𝑠𝑠 is the size of the regulatory region tested, 𝑘𝑘 is the nucleotide position, 𝑝𝑝𝑘𝑘 

is the mutational probability at base 𝑘𝑘. The Poibin R package was used for 

approximation of Poisson binomial to estimate the empirical P-value for each 

CRE and promoter regions as per Melton et al.172 

Mutations in each promoter and CRE region were tested for clustering based on 

the number of mutations occurring at the same nucleotide positions across all 

samples in the defined region, as recurrence of exact somatic mutations across 

different tumour samples implies particular SNVs have an impact on 

tumorigenesis. For each regulatory region containing at least three mutations171, 

the mutation positions were permuted 10,000 times within the same length of the 

tested region under uniform distribution. The empirical clustering P-value for each 

tested region was calculated as the fraction of times that a set of permutated 

mutations having at least the same number of mutations occurring at the exact 

position as in the tested region.  

The clustering P-value and background estimated P-value were combined, 

implementing the Fisher method within metap R package to derive combined P-

values for recurrent mutation as per Rheinbay et al.171 The Benjamini-Hochberg 

False Discovery Rate (FDR) procedure was used to adjust for multiple-hypothesis 

testing with significance thresholded at Q < 0.05. 

 

2.2.8.3 Effect of regulatory region SNVs on gene expression 

Promoter and CRE regions which were significantly mutated were examined for 

differential gene expression. Difference in gene expression between mutated and 

non-mutated tumours was tested using a negative binomial model174, 

implemented in edgeR175. Samples with CNVs (including aneuploidy) at either 

the gene or the related regulatory regions were excluded174. Regulatory regions 
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were not tested if the CRE was mutated in fewer than three samples, after the 

removal of samples with overlapping CNVs. Where many mutated CREs were 

identified as interacting with a promoter, tumours harbouring mutations in more 

than one CRE fragment were excluded and only samples with no mutations in 

any of the recurrently mutated CREs were used for comparison. Regulatory 

regions interacting with multiple genes were tested multiple times. Only CREs 

interacting with protein-coding genes were evaluated. P-values obtained were 

adjusted by Benjamini-Hochberg FDR. Regions with fold change in gene 

expression ≥ 1.2 or ≤ 0.8, and threshold Q < 0.1 are reported.  

 

2.2.8.4 Analysis of gene expression and CNVs at CREs 

Focal deletions and amplifications by CNVs were defined as those with size < 3 

Mb. Tumours with deleted or amplified CREs were defined as those overlapping 

CNVs and for each promoter-gene, CREs were excluded based on the following 

criteria (i) amplification or deletion of the target gene; (ii) observed <1% of total 

sample size. Gene expression between mutated and unmutated samples were 

compared using edgeR175 using default parameters as per SNV analysis (Section 

2.2.8.3). 

 

2.2.9 Gene-set enrichment analysis 

Gene ontology (GO) term enrichment analysis was performed to examine for the 

over-representation of sets of genes for specific GO annotations. To ensure that 

the analysis was not biased towards GO term annotations enriched amongst 

genes whose promoters interact with greater numbers of CREs, individual CRE-

promoter interactions with the GO terms associated with the contacted genes 

were annotated, and the enrichment analysis was completed at the level of the 

CRE-promoter interaction for CREs and all TSS defined for a gene, rather than 

the gene level. Hence, all promoters and CRE-promoter interactions were used 

as the background set. Enrichment of GO term annotations obtained from 

GO.db176 were tested using a hypergeometric test. The 37 GO terms spanning 

10 previously defined cancer hallmarks177 and in signalling pathways involved 
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MM, including NIK/NF-κB signalling, MAPK signalling, B-cell proliferation, and B-

cell activation and differentiation were tested. 

 

2.2.10 Analysis of mutational signatures 

Analysis of mutational signatures were carried out using deconstructSigs178 and 

Palimpsest179. 

 

2.2.10.1 deconstructSigs 

Contribution of known mutational processes to a tumour can be determined using 

deconstructSigs. The method allows fitting of 96-trinucleotide SBS mutational 

catalogue (section 1.3.2) of tumours to a pre-selected mutational signatures 

framework. Assignment to the 30 COSMIC mutational signatures proposed by 

the Wellcome Trust Sanger Institute was performed using the R package 

deconstructSigs with default parameters178.  

 

2.2.10.2 Palimpsest 

Palimpsest includes functions to extract SBS and SV signatures based on pre-

defined framework (e.g. 30 COSMIC signatures) or de novo based on the NMF 

framework87. It also estimates the probability each individual mutation is due to a 

mutational signature, assisting identification of driver events origin.  

 

2.2.10.3 Mutational contribution normalisation 

Regional differences in trinucleotide composition were accounted for when 

comparing the contribution of mutational signatures between two genomic 

regions (regions 𝑋𝑋 and 𝑌𝑌). Such normalisation was conducted by changing the 

number of mutations from each mutational category in region 𝑋𝑋 to that expected 

if the trinucleotide composition of region 𝑋𝑋 was identical to the trinucleotide 

composition of region 𝑌𝑌, assuming a constant rate of mutation at positions of each 
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trinucleotide context. The normalised number of mutations 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐶𝐶,𝑋𝑋  of category 𝐶𝐶 

in region 𝑋𝑋 was calculated as:  

 

𝑼𝑼𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏
𝑪𝑪,𝑿𝑿 =  𝑼𝑼𝑪𝑪,𝑿𝑿  

𝑽𝑽𝑪𝑪,𝒀𝒀𝑾𝑾𝑿𝑿

𝑽𝑽𝑪𝑪,𝑿𝑿𝑾𝑾𝒀𝒀 

 

where 𝑈𝑈𝐶𝐶,𝑋𝑋 is the number of mutations of category 𝐶𝐶 observed in region 𝑋𝑋, 𝑉𝑉𝐶𝐶,𝑋𝑋 

is the number of positions at which a mutation of category 𝐶𝐶 can occur in region 

𝑋𝑋, and 𝑊𝑊𝑋𝑋 is the size of region 𝑋𝑋 (in base pairs). As 𝑈𝑈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐶𝐶,𝑋𝑋  is not necessarily an 

integer, it is rounded to the closest integer before comparisons are completed. 

Mutation numbers were normalised within each tumour. Since small numbers of 

mutations may impact on normalisation, in each comparison the larger region 

was designated as region 𝑋𝑋, the smaller region designated as region 𝑌𝑌. 

 

2.2.11 Clonality analysis with Battenberg pipeline 

Reconstruction of clonality was conducted using Battenberg v2.2.8 pipeline and 

DPClust180. There are several steps to the standard pipeline of running the 

workflow:  

2.2.11.1 Allele-specific copy number analysis of tumours (ASCAT) 

Battenberg uses ASCAT for allele specific copy number estimation97. Allele 

counting is performed with default settings by the alleleCount package v4.0.0.0 

(https://github.com/cancerit/alleleCount), which outputs the reads and genotype 

of each position in a known SNP list. The genomic coordinates of the original 

SNP list (from 1000 Genomes project, section 2.2.3.4) in hg37 were converted to 

hg38 by UCSC LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). The 

ASCAT algorithm uses the allele counts to generate normalised log transform of 

read depth (LogR) B allele frequencies (BAF) for both tumour and normal. BAF 

is a normalised measure of allelic intensity ratio of two alleles (A and B), with a 

BAF of 1 or 0 indicates complete absence of one allele (AA or BB) and a BAF of 

0.5 indicates equal presence of both copies (AB). The ‘B allele’ is the non-

reference allele observed in heterozygous SNP, which is also observed in most 

tumours. The allelic frequency of SNPs may change in tumour due to allele-

http://genome.ucsc.edu/cgi-bin/hgLiftOver
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specific CNVs, loss of heterozygosity (LOH), or allelic imbalance. By comparing 

to matched normal BAF, such changes can provide evidence of gain or loss of 

germline copies in tumour. For instance, a 3-copy segment in a diploid genome 

would have BAF of 67% (ABB) or 33% (AAB) for pure tumour cell.  

LogR is corrected for the GC content as genomic regions with extreme GC 

content are less amenable to hybridization, amplification and sequencing. Hence, 

these regions will appear to have lower coverage than regions of average GC 

content. LogR and BAF are then filtered and segmented using alle-specific 

piecewise constant fitting algorithm97.   

 

2.2.11.2 Calling clonal and subclonal copy number profiles  

Battenberg algorithm takes output generated from ASCAT for subclonal copy 

number analysis180. Battenberg phases SNPs using IMPUTE2181, which is 

implemented for hg37. To call CNVs, SNP positions were converted to hg37 

before running Battenberg and the output segment positions were converted 

back to hg38. 

  

2.2.11.3 Estimation of ploidy and tumour purity 

As part of Battenberg pipeline, ASCAT plots the segmented logR/BAF to estimate 

the best solution for copy number of the whole sample (ploidy) and normal cell 

contamination (tumour purity)182. Tumour purity estimated by Battenberg was 

compared against and corrected using Ccube v1.0183.  

  

2.2.11.4 Assessing clonality 

Clonality reconstruction was conducted with DPClust v2.2.8180 using SNVs from 

autosomes and X chromosomes. Analysis of clonality was conducted using only 

SNVs in diploid regions, as miscalled copy number states can confound such 

analyses. Potential neutral tail mutations were identified using MOBSTER184 and 

excluded prior to clustering procedure to minimise calling false positive clones. 

For each primary and relapse tumour pair, two-dimensional variant clustering 
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using a Bayesian Dirichlet process implemented in DPclust5, 180 were performed. 

Only those clusters with > 1% of total mutations and > 100 SNVs were 

considered. Clonal SNVs were defined as those with a cancer cell fraction (CCF) 

> 0.9185. 

 

2.2.12   Mitochondrial analysis 

2.2.12.1 Mitochondrial variant calling 

Mitochondrial somatic and germline variants from matched tumour-normal pairs 

were called using MuTect2 (v4.0.3.0)158 according to best practices (Section 

2.2.4.5), using gnomAD139 file in hg38 provided as part of the GATK resource. 

Additional somatic variants called from 850 WGS tumour-normal pairs, generated 

as part of the MMRF CoMMpass Study (release IA10)4, 127, were used to 

independently validate mutational spectrum and strand biases. Somatic variants 

were filtered for cross-sample contamination, oxidation artefact, alternative allele 

frequency > 2.5%, base quality score > 20, mapping quality score > 20, and at 

least one alternative read in each strand direction186. Variants in known false 

positive regions based on revised Cambridge Reference Sequence (rCRS) 

(rCRS 302-315, rCRS 513 – 525, and 3105-3110)124 were also excluded. 

Recurrent germline variants (present in > 10% of samples) were further 

removed186 if they are not reported in MitoMap database187. All variants were 

annotated for functional and pathogenic implications using Mitochondrial Disease 

Sequence Data Resource (MSeqDR)188. Functional implication of tRNA variants 

was evaluated using MitoTIP189, with likely pathogenic variants are those with 

MitoTIP score > 16.25 and > 75% quartile of pathogenicity score database. 

 

2.2.12.2 Mitochondrial copy number and heteroplasmy estimation 

Mitochondrial copy number were estimated using fastMitoCalc with default 

parameters190, with tumour mitochondrial DNA copy number (𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) corrected 

for tumour ploidy (𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and tumour purity (𝜌𝜌) using the following formula:  

𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝜌𝜌 × 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + (1 −  𝜌𝜌) × 2)   
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Tumour ploidy and purity were estimated by Battenberg180, with purity compared 

and corrected using Ccube183 (Section 2.2.11.3). When comparing variant allele 

frequency (VAFs) between shared primary and relapse mutations of patient 𝑖𝑖 

(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖), VAF were normalised for purity as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 =

𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎
(𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓)   

×
𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖

𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  
 

 

where 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are number of alternative reads and reference reads respectively. 

 

2.2.12.3 Somatic mitochondrial transfer 

Identification of mitochondria somatic nuclear transfer integration to nuclear 

genome was performed using MitoSeek191. To minimise false positives, only 

events supported by at least 5 reads125 were considered and events with the 

same breakpoints present in ≥ 3 samples were excluded. 
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    Identification of novel coding and 
non-coding drivers from CoMMpass 

 

3.1 Overview and rationale 

Large-scale sequencing of MM exomes from recent studies1-3, 5 have largely 

focussed on searching for driver mutations in the protein-coding components of 

the genome. With the increasing availability and affordability of WGS, there is an 

opportunity for the remaining 98% non-coding regions to be further systematically 

examined for driver mutations. 

Mutation recurrence is an indication for positive selection in tumours, hence often 

used to define mutation drivers. However, the vast size of the non-coding genome 

presents a challenging statistical burden on robustly establishing recurrent 

mutations. CREs and promoters modulating gene expression represent a highly 

enriched subset of regulatory regions in the non-coding genome in which to 

search for driver mutations. Therefore, to both reduce the search space and 

segment the genome into functional blocks, information from promoter CHi-C in 

naïve B-cells154 and TSS proximity were used in an analysis of WGS data. By 

linking these data to gene expression, recurrently mutated non-coding regulatory 

regions could be identified. Here I performed analysis on WES and WGS data of 

804 and 765 MM tumour-normal pairs respectively generated by CoMMpass 

Study (IA9 release)192 to search for novel coding and non-coding drivers (Figure 

3.1) as well as pathways disrupted. 
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Figure 3.1: Overview of analysis workflow to identify coding and non-coding drivers. P, patient. TSS, transcription start site. CNV, copy 
number variant. SNV, single nucleotide variant.
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3.2 Study design 

3.2.1 Sequencing dataset 
All data analysed in this chapter were generated as part of the MMRF CoMMpass 

Study (release IA9). WGS raw fastq data on 765 matched tumour-normal 

baseline newly diagnosed bone-marrow samples, WES somatic variants, 

matched tumour RNA-seq (606 of the 765 WGS patients) processed by HTseq, 

CNVs, and Seq-FISH data for karyotype classification were obtained as 

described in section 2.1.1. Processed promoter CHi-C data was obtained from 

Javierre et al.154 Histone ChIP-seq sequencing data for H3K4me1, H3K27ac, 

H3K4me3, and H3K27me3 were downloaded from BLUEPRINT under accession 

number EGAD00001002466, sample S00XAQH1 (section 2.2.3.8). UCSC 

LiftOver tool was used to derive genome coordinates ChIP-seq coordinates in 

hg37. Replication timing data of five cancer cell lines Hela, K562, HEPG2, MCF7, 

and SKNSH cell lines were downloaded from the UCSC Genome Browser. 

 

3.2.2 Statistical and bioinformatics analysis 
Quality control, sequence alignment to hg37, and variant calling were performed 

using FastQC v.0.11.4/BWA v0.7.12/GATK/Mutect v1.1.7 software as described 

in section 2.2.4. Somatic SNVs were filtered further to minimise false positive as 

detailed in section 2.2.7.1.  

 

3.2.2.1 Assessment of variant calling 
Sensitivity and specificity to detect clonal mutations in the low-coverage WGS 

CoMMpass dataset were estimated by comparing called variants from WGS with 

those identified in the high-coverage WES data in IA9 dataset (alternate allele 

ratio > 0.2). SNVs detected from both WES and WGS were considered true 

positives. SNVs identified from WGS but not in WES were considered false 

positives. Variants detected by WES but not WGS were considered false 

negatives. Specificity and sensitivity were calculated for all patients with available 

matched WES and WGS data as follow:   

Sensitivity = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
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Specificity = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 

 

3.2.2.2 Significantly mutated coding genes 
Somatic mutations from WES data of 805 patients were annotated using 

Oncotator161 and applied MutSigCV160 v1.2 adopting default settings (section 

2.2.7.2). Genes with Q < 0.05 were considered significantly mutated. 

 

3.2.2.3 Analysis of copy number variants 
Deletions and amplifications were defined as abs(log2ratio) ≥ 0.1613 based on 

circular binary segmentation defined copy number segments (Jonathan Keats, 

personal communication). A chromosome was considered amplified if at least 

90% of the chromosome overlapped with an amplification. Cytoband definitions 

(hg19) were downloaded from UCSC. Gene exon boundaries were downloaded 

from RefSeq (hg19). Affected genes and cytobands were identified by overlaying 

CNVs using bedtools193. CNV plots were produced using the package 

karyoploteR9. 

 

3.2.2.4 Analysis of structural variants 
BAM files were analysed and annotated using Illumina’s MANTA162 and 

NIRVANA194 software with default settings, allowing identification of SVs falling 

within gene boundaries. To search for genes in the vicinity of breakpoints whose 

expression may be affected by SVs, the composite chromosome (as per 

SAMtools variant call format v4.1 specifications) was first assembled and then 

genes within 1 Mb of the breakpoints were identified using the RefGene 

database. The immunoglobulin loci IGH, IGK and IGL were defined to occur at 

14q32.33, 2p11.2, and 22q11.22 respectively. SV plots were produced using 

Circos R package195. 

 

3.2.2.5 Non-coding drivers analysis 
Non-coding drivers were identified as detailed in section 2.2.8. 
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3.2.2.6 Subgroup analysis 
Subgroup analysis was restricted to the main groups for which there was 

reasonable power to detect a relationship. Specifically, the most frequent 

myeloma subtypes were included – HD, t(4:14), t(11:14) and t(14:16) - along with 

the t(8:14) MYC translocation subgroup. The enrichment by subgroup of (i) 

frequently mutated genes (defined by analysis in this thesis section 3.2.3 and 

previously published work1, 3, 5) and (ii) those CREs identified as recurrently 

mutated and differentially expressed were assessed based on Fisher’s exact 

tests. Furthermore, to confirm the combined analysis had not missed any 

subgroup specific effects, coding and non-coding SNV analyses (section 3.2.3 

and 3.2.6) were performed separately for each subgroup. 

 

3.2.2.7 Gene-set enrichment analysis 
Over-representation of sets of genes for specific GO annotations was performed 

as detailed in section 2.2.9. 

 

3.2.2.8  Integrated pathway analysis 
The Reactome tool196 was used to evaluate pathways significantly altered by 

coding and non-coding drivers identified, with Q values < 0.05 being considered 

statistically significant. 

 

3.2.2.9  Analysis of mutational signatures 
All somatic variants from WES and WGS passing filtering were considered for 

mutational signature analysis. Assignment to the 30 mutational signatures 

proposed by the Wellcome Trust Sanger Institute was performed using the R 

package deconstructSigs with default parameters178 (section 2.2.10.1). Non-

coding variants disrupting CREs corresponding to PAX5 were analysed. 

Associations between APOBEC mutations and MM translocation subgroups, as 

well as recurrently mutated genes and regulatory regions identified as statistically 

altering gene expression, were performed using Fisher’s exact test. A P < 0.05 

(one-sided) was considered statistically significant. 
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3.3 Results 
The median age of patients at diagnosis was 64 years (range 31 – 93). The 

frequency of MM translocation subgroups in the CoMMpass series is similar to 

that reported in unselected patients2 (Table 3.1). The median exonic mutation 

rate across all tumour samples was 1.95 mutations/Mb consistent with published 

literature2, 87, with t(16;14) MM displaying the highest mutation rate84 (P = 2.2 × 

10-6, Wilcoxon rank-sum test; Table 3.1). Whilst the low coverage WGS data 

(average 6-12×) was not primarily produced for mutational analysis, an estimated 

average sensitivity of 20% to detect clonal SNVs based on comparisons between 

paired WGS and WES (average 120–150×) data available for 734 samples. A 

global whole-genome comparison with previously published mutation rate in MM2, 

87 suggests up to 35% sensitivity. Given this limitation, the analysis is therefore 

expected to provide insights into mostly clonal mutation associated with early 

events underlying tumorigenesis197. 

 

3.3.1 Recurrently mutated non-coding regulatory regions 
Quality control and filtering of WGS data resulted in a total of 71,573 SNVs across 

all tumours. Recurrently mutated regions were identified as those containing 

highly-clustered mutations and a greater number of mutations than that expected 

given the background mutation rate (section 2.2.8.2). To identify somatic 

mutations in the non-coding regulatory regions, I defined 28,629 regions 

associated with 23,635 genes as promoters171. Promoters associated with 34 

target genes were identified as recurrently mutated (Q < 0.05). Using promoter 

CHi-C in naïve B-cells154, I then defined 79,894 fragments containing putative 

CREs identifying 221,380 unique significant interactions with promoters. These 

CRE fragments (median size 2 Kb with median linear distance to respective 

interacting promoter of 300 Kb) constituted 15% of the genome and were 

enriched for ATAC-seq accessibility and regulatory histone marks154. Among the 

CRE regions, 114 recurrently mutated CRE regions interacting with the promoters 

of 271 genes were identified (Q < 0.05). These genes were over-represented for 

pathways associated with cell adhesion (P = 4.4 × 10-4), inflammatory response 

(P = 5.6 × 10-4), NIK/NF-κB signalling (P = 1.7 × 10-2), regulation of B-cell 



71 
 

activation (P = 3.6 × 10-2), and B cell differentiation (P = 4.7 × 10-2), including 

PAX5 and BCL6 (Table 3.2)
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Subgroups No. of samples Percentage Published literature* Mean WES Median WES Mean WGS Median WGS Mutation enrichment P -value**
t(11;14) 150 19.6% 15-20% 162 128 1322 1220 7.0E-03
t(4;14) 93 12.1% 15% 156 146 1609 1551 5.0E-03
t(14;16) 31 4.1% 5% 622 412 4200 2620 2.2E-06
t(6;14) 11 1.4% 1-2% 167 149 2002 1270 9.0E-01
t(14;20) 9 1.3% 1% 483 152 2933 2212 4.0E-02
MYC -translocation 109 14.2% 15-20% 179 156 1547 1288 5.9E-01
Hyperdiploidy 423 55.3% 50% 175 153 1461 1288 3.0E-02

Somatic Mutation CountsMMRF CoMMpass karyotype classification

Table 3.2: Significant gene-set enrichment for recurrently mutated cis-regulatory elements. Only significant gene ontology (GO) terms 
are shown (P < 0.05). 
 

Table 3.1: CoMMpass karyotype classification and average somatic mutations (release IA9).  *, the data was taken from Manier et al.2. 
**, associations between the number of somatic mutations and MM karyotype were performed using a Wilcoxon rank-sum test comparing the 
distribution of mutations for each karyotype with all other samples. 

 

GO term ID GO term name Cancer hallmark category

Number of 
occurences of 
annotation in 
candidate set

Expected 
number of 

occurences of 
annotation in 
candidate set

Number of 
occurences of 
annotation in 

background set

P -value

GO:0007155 Cell adhesion Activating invasion 25 12.270 251 4.38E-04
GO:0006954 Inflammatory response Tumour-promoting inflammation 14 5.182 106 5.61E-04
GO:0038061 NIK/NF-kappaB signaling Sustaining proliferative signaling 4 1.027 21 1.72E-02
GO:0050864 Regulation of B-cell activation Sustaining proliferative signaling 4 1.271 26 3.56E-02
GO:0030183 B-cell differentiation Sustaining proliferative signaling 3 0.831 17 4.72E-02
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3.3.2 Effect of regulatory SNVs on gene expression 

To identify non-coding driver mutations in regulatory regions, the expression 

levels of respective target genes in mutated and non-mutated tumours were 

compared. Tumours having copy number changes overlapping either the 

regulatory region or target gene were excluded from the analysis. Recurrent 

mutation of the NBPF1 promoter was identified (20 tumours, Q = 1.3 × 10-15); 

these mutations were associated with increased NBPF1 expression (Q = 7.9 × 

10-4, 1.7-fold; Figure 3.2). NBPF1 belongs to the neuroblastoma breakpoint 

family, members of which have been observed to be overexpressed in 

sarcomas198 and non-small-cell lung cancer199. NBPF1 is directly regulated by 

NF-κB200, whose signalling pathway is recurrently affected in MM, suggesting the 

relevance of this novel candidate in MM development. Six recurrently mutated 

CREs associated with differential expression of their respective target genes 

were identified (PAX5, ST6GAL1, CALCB, COBLL1, HOXB3, and ATP13A2), 

four annotated by epigenetic marks indicative of active enhancers (Q < 0.1, Table 

3.3, Figure 3.3). The PAX5 CRE (71 clustered mutations across 55 tumours, 7% 

of all tumours) maps 3 Kb downstream of the PAX5 chronic lymphocytic 

leukaemia (CLL) enhancer201 (Figure 3.3g). The 4.6-fold reduced expression 

associated with CRE mutation is consistent with PAX5 functioning as a tumour 

suppressor in MM, as in other B-cell malignancies201-203. This CRE forms part of 

a cluster of 12 recurrently mutated CRE fragments interacting with the PAX5 

promoter. While 28% (212/765) of tumours harboured mutations in at least one 

of these PAX5 CREs, the mutations were not always associated with a significant 

change in PAX5 expression. Five CREs, interacting with the ST6GAL1 promoter, 

were recurrently mutated in 8% (64/765) of samples. Although the mutated CREs 

showed an overall consistent trend of association between mutation and 

upregulation of ST6GAL1, only one CRE was significantly associated with 

increased gene expression (3% of samples, Q = 0.036, 1.4-fold upregulation, 

Table 3.3, Figure 3.3). ST6GAL1, which primarily generates α2,6 linked sialic, is 

overexpressed in multiple cancers204 and the increased expression may 

contribute to aberrant immunoglobulin-G glycosylation seen in MM 

development205, 206. 

Mutations of the COBLL1 CRE were associated with increased gene expression 

(Table 3.3, Figure 3.3). COBLL1 plays a role in NF-κB pathway activation, is 
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important for normal hematopoiesis207, and is upregulated in MM208. Conversely 

mutations in the HOXB3 CRE were associated with reduced expression (Table 

3.3, Figure 3.3), consistent with HOXB3 acting as a tumour suppressor in MM, 

as in acute myeloid leukemia209.  

By restricting analysis to subgroups of MM, a CRE interacting with the TPRG1 

promoter was identified as recurrently mutated, resulting in significant differential 

gene expression in HD and MYC-translocation MM (Table 3.4). Although mutated 

in only 2% of HD (9/423) and 3% (3/109) of MYC-translocation samples, these 

were associated with 6.3-fold and 3.6-fold upregulation in gene expression 

respectively (based on 4/118 and 3/34 tumours respectively; Table 3.4, Figure 

3.4). Relative paucity of mutations in regulatory regions of PAX5 in t(11:14) MM 

(P = 2.7 × 10-3, Table 3.5) was also identified. Intriguingly, since this subgroup is 

enriched for coding mutations in IRF4, it suggests complementary genomic 

alteration impacting on the plasma cell differentiation pathway in MM (Table 3.6). 

 

Figure 3.2: Mutations in the promoter region affect gene expression of 
NBPF1. (n = 461 versus n = 14).  **, Q < 0.05; mut, mutated. 
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Table 3.1: CREs whose mutations are associated with altered expression of the contacted gene. (Q < 0.1) 

Table 3.2: CREs whose mutations are associated with altered expression of the contacted gene by subtypes. (Q < 0.1) 

Fragment Size 
(bp) Gene

Total 
number of 
mutations

Total 
number of 
mutated 
samples

Number of 
mutated 

samples in 
differential 
expression 

analysis

Number of 
unmutated 
samples in 
differential 
expression 

analysis

Mean log2 gene 
expression in 

mutated 
samples

Mean log2 

gene 
expression in 

unmutated 
samples

Fold 
change

Differential 
expression Q -

value

chr11:14579387-14583849 4462 CALCB 7 7 4 365 7.884 6.159 3.375 9.46E-08
chr2:165615060-165624028 8968 COBLL1 12 8 8 491 12.296 11.418 1.762 3.61E-02
chr17:46094139-46103073 8934 HOXB3 6 5 5 453 -0.857 4.233 0.037 3.61E-02
chr3:186739608-186745052 5444 ST6GAL1 32 25 15 315 14.363 13.893 1.440 3.61E-02
chr9:37375172-37395282 20110 PAX5 71 55 13 197 4.471 7.187 0.216 8.39E-02
chr1:16944603-16958779 14176 ATP13A2 23 21 14 461 9.594 9.272 1.249 8.83E-02

Subtype Fragment Size 
(bp) Gene

Total 
number of 
mutations

Total 
number of 
mutated 
samples

Number of 
mutated 

samples in 
differential 
expression 

analysis

Number of 
unmutated 
samples in 
differential 
expression 

analysis

Mean log2 gene 
expression in 

mutated 
samples

Mean log2 

gene 
expression in 

unmutated 
samples

Fold 
change

Differential 
expression Q -

value

Hyperdiploid chr3:187635970-187636359 389 TPRG1 9 9 4 114 5.234 2.568 6.347 1.75E-02
chr3:186739608-186745052 5444 ST6GAL1 6 5 4 30 14.650 13.734 1.887 3.29E-02
chr3:187635970-187636359 389 TPRG1 3 3 3 31 4.627 2.787 3.580 5.17E-02

MYC -translocation
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Figure 3.3: SNVs at CREs affect gene expression in multiple myeloma. Mutations in the CRE significantly alter (a) PAX5 (n = 197 versus 
n = 13), (b) ST6GAL1 (n = 315 versus n = 15) expression. (c) COBLL1 (n = 491 versus n = 8), (d) HOXB3 (n = 453 versus n = 5), (e) CALCB (n = 
365 versus n = 4) and (f) ATP13A2 (n = 461 versus n = 14). *, Q < 0.1, **, Q < 0.05, ***, Q < 0.01 (g) Chromatin looping interactions between PAX5 
promoter and differentially expressed CRE. Also shown are the ChIP-seq signals and relative positions of SNVs. Mut, mutated. 
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Table 3.3: Subtype analysis to identify associations between the main 
translocation subtypes and SNVs influencing non-coding CREs. Values in 
bold indicate statistical significance after adjustment for multiple testing. OR, odd ratio. 
 

 
 

 

Table 3.4: Subgroup analysis to identify associations between the major 
MM subgroups and significantly mutated genes. Values in bold indicate 
statistical significance after adjustment for multiple testing. Only genes with significant 
association with at least one subtype are shown. OR, odd ratio. 
 

OR P -value OR P -value OR P -value OR P -value OR P -value
HOXB3 1.767 4.87E-01 2.657 2.66E-01 0.00 1.00E+00 0.00 1.00E+00 0.18 1.67E-01
PAX5 1.864 8.83E-02 0.212 2.65E-03 1.42 4.78E-01 1.70 1.62E-01 1.40 3.08E-01
NBPF1 1.794 2.98E-01 1.329 5.75E-01 1.27 5.64E-01 0.00 5.81E-02 0.52 1.65E-01
ST6GAL1 0.631 7.57E-01 0.785 8.00E-01 3.70 6.66E-02 1.56 3.78E-01 0.78 5.43E-01
COBLL1 2.375 2.62E-01 0.562 1.00E+00 3.51 2.80E-01 0.00 6.12E-01 0.10 1.13E-02
CALCB 1.174 1.00E+00 1.589 6.34E-01 4.10 2.50E-01 0.97 1.00E+00 0.29 1.37E-01

Gene t(4;14) t(11;14) t(14;16) MYC  translocation Hyperdiploidy

OR P -value OR P -value OR P -value OR P -value OR P -value
MAX 1.894 2.83E-01 1.846 2.45E-01 1.343 5.45E-01 0.000 9.36E-02 0.038 1.30E-06
DIS3 2.487 5.55E-03 1.970 2.34E-02 4.184 2.84E-03 0.913 1.00E+00 0.285 1.64E-06
PRKD2 7.244 1.01E-05 1.896 2.01E-01 0.999 1.00E+00 0.497 5.62E-01 0.179 2.04E-04
IRF4 0.428 7.10E-01 10.169 8.02E-06 0.000 1.00E+00 0.358 4.91E-01 0.197 2.61E-03
CCND1 0.000 2.37E-01 inf 1.21E-10 0.000 1.00E+00 0.000 2.42E-01 0.126 2.67E-03
NRAS 0.138 1.32E-06 1.333 1.84E-01 0.389 1.69E-01 1.453 1.30E-01 1.780 2.68E-03

Gene t(4;14) t(11;14) t(14;16) MYC  translocation Hyperdiploidy

Figure 3.4: CRE mutations affect gene expression of TPRG1. (a) Hyperdiploid 
subtype (n = 114 versus n = 4) and (b) MYC-translocation subtype (n = 31 versus n = 3). 
*, Q < 0.1; **, Q < 0.05. 
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3.3.3 Copy number variants at CREs regulate gene expression 

To examine the relationship between CNV at CREs and expression of interacting 

genes, CNVs that contained both the CRE and its respective target gene from 

the analysis were excluded. The MYC promoter showed both upstream and 

downstream interactions with 69 CREs; 24 were amplified across 51 tumours and 

these had significantly higher MYC expression (Q < 0.05, Table 3.7). These 24 

CRE regions clustered within a 110 Kb region forming 10 non-contiguous regions 

500 Kb downstream of MYC annotated by epigenetic marks indicative of active 

enhancers (i.e. overlapping with strong signals of H3K4me1, H3K27ac, and weak 

signals of repressive H3K27me3) (Figure 3.5a). Five CRE regions upstream of 

MYC interacting with MYC promoter were deleted in 10 tumours (distinct from the 

51 tumours with CREs amplified) which were associated with higher MYC 

expression (Q < 0.1, Table 3.8). These CREs, clustered within a 13 Kb region, 

850 Kb upstream of MYC, form two non-contiguous regions with weaker signals 

for H3K4me1, H3K4me3 and H3K27ac, and stronger signals for repressive mark 

H3K27me3, consistent with putative silencers of MYC (Figure 3.5a). Since MYC 

is translocated in 15-20% of newly diagnosed MM2 (14% of CoMMpass samples, 

Table 3.1) the possibility that upregulation of MYC expression associated with 

CRE CNVs might be the consequence of translocation of MYC to proximal super-

enhancers was examined. A broader set of 209 samples with putative MYC 

translocations (24% of total tumours) was defined and 51 samples with amplified 

CREs are indeed highly enriched for translocations (34/51, P = 1.2 × 10-11, 

Fisher’s exact test), with the breakpoints mapping to the region of amplification. 

The deletions at CREs were not, however, enriched for translocations (1/10, P = 

0.9) and in MYC-translocation negative cases the CNVs at MYC CREs were still 

associated with significantly increased MYC expression (Figure 3.5b, P = 8.6 × 

10-3, 2.3-fold).  

Six other novel candidate genes whose expression was significantly altered by 

CNVs at respective interacting CREs were identified: PACS2, TEX22, KDM3B, 

RAB36, PLD4, and SP110 (Table 3.7, Table 3.8, Figure 3.6). While each of the 

respective CREs were annotated by epigenetic marks indicative of functional 

regulatory regions these genes reside close to regions of common structural 

variation, making interpretation of their specific relevance problematic. 
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Table 3.5: CREs whose amplification is associated with significantly altered 
gene expression. (Q < 0.1) 
 
  

  

Fragment Gene
Number of 

mutated 
samples

Number of 
unmutated 

samples

Log2 fold-
change in 

expression

Differential 
expression 

Q -value

chr14:106003753-106005907 PACS2 21 333 0.654 3.34E-12
chr14:106003753-106005907 TEX22 12 333 0.888 1.27E-02
chr8:129213699-129215844 MYC 18 375 0.996 1.27E-02
chr8:129215845-129218722 MYC 18 376 0.992 1.27E-02
chr8:129218723-129220126 MYC 18 376 0.992 1.27E-02
chr8:129220127-129222593 MYC 18 376 0.992 1.27E-02
chr8:129222594-129223807 MYC 19 375 0.986 1.27E-02
chr8:129223808-129225891 MYC 19 375 0.986 1.27E-02
chr8:129283627-129290175 MYC 35 359 0.757 1.27E-02
chr8:129290176-129291125 MYC 36 358 0.811 1.27E-02
chr8:129303419-129306797 MYC 41 354 0.783 1.27E-02
chr8:129241713-129243523 MYC 21 373 0.907 1.30E-02
chr8:129340049-129341634 MYC 30 365 0.844 1.30E-02
chr8:129341635-129344398 MYC 30 365 0.844 1.30E-02
chr8:129281412-129283626 MYC 33 361 0.737 1.61E-02
chr14:105814065-105821419 PLD4 8 352 2.332 1.61E-02
chr8:129256404-129257791 MYC 26 368 0.800 1.65E-02
chr8:129200591-129213698 MYC 16 377 0.979 1.89E-02
chr8:129273487-129276207 MYC 30 364 0.736 1.89E-02
chr8:129276532-129278298 MYC 30 364 0.736 1.89E-02
chr8:129278299-129278864 MYC 30 364 0.736 1.89E-02
chr8:129278865-129281411 MYC 30 364 0.736 1.89E-02
chr8:129314900-129319098 MYC 37 358 0.687 2.14E-02
chr8:129314402-129314899 MYC 36 359 0.659 3.08E-02
chr8:129306798-129308447 MYC 37 358 0.647 3.40E-02
chr8:129319128-129321850 MYC 35 360 0.666 3.40E-02
chr8:129324805-129327116 MYC 34 361 0.657 4.24E-02
chr5:138607458-138607716 KDM3B 9 285 0.261 4.27E-02
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Table 3.6: CREs whose deletion is associated with significantly altered 
gene expression. (Q < 0.1) 
 
  

Fragment Gene
Number of 

mutated 
samples

Number of 
unmutated 

samples

Log2 fold-
change in 

expression

Differential 
expression 

Q -value

chr8:127886760-127889453 MYC 10 388 1.012 8.00E-02
chr8:127889454-127891696 MYC 10 388 1.012 8.00E-02
chr8:127891697-127895194 MYC 10 388 1.012 8.00E-02
chr8:127895195-127897477 MYC 10 388 1.012 8.00E-02
chr8:127897662-127899869 MYC 10 388 1.012 8.00E-02
chr2:231268251-231269730 SP110 7 462 0.578 8.00E-02
chr2:231269731-231271492 SP110 7 462 0.578 8.00E-02
chr2:231282634-231286088 SP110 7 462 0.578 8.00E-02
chr2:231286089-231290028 SP110 7 462 0.578 8.00E-02
chr2:231296729-231301548 SP110 7 462 0.578 8.00E-02
chr2:231301549-231311636 SP110 7 462 0.578 8.00E-02
chr2:231311637-231316348 SP110 7 462 0.578 8.00E-02
chr2:231316445-231318918 SP110 7 462 0.578 8.00E-02
chr2:231318919-231321183 SP110 7 462 0.578 8.00E-02
chr22:23300832-23302691 RAB36 133 236 0.360 8.00E-02
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Figure 3.5: Copy number variations at cis-regulatory elements affect MYC gene expression. (a) Upper panel shows MYC gene expression 
may be regulated by CREs; CNVs at either the upstream putative silencers or downstream putative enhancers causing upregulation of MYC. Middle panel 
shows chromatin looping interactions between MYC promoter and CREs. Lower panel details ChIP-seq signals and relative positions of CNVs at these 
CREs in naïve B-cells. (b) CNV status at CREs and MYC expression. Difference in expression was assessed pairwise between samples with different 
CNVs status and the same translocation status. ***, P < 0.01. Trans, translocation. Del, deletion. From left to right n = 345, n = 9, respectively. 



82 
 

  

Figure 3.6: The effects of CNVs at CREs on gene expression in MM. Boxplots show 
differential gene expression between CNV unaffected (blue) versus CNV affected samples 
(red) at CREs interacting with promoters of (a) PACS2 (n = 333 versus n = 21); (b) TEX22 (n 
= 333 versus n = 12); (c) PLD4 (n = 352 versus n = 8); (d) KDM3B (n = 285 versus n = 9); (e) 
RAB36 (n = 236 versus n = 133); and (f) SP110 (n = 462 versus n = 7). *, Q < 0.1; **, Q < 0.05; 
****, Q < 0.001. Amp, amplification. Del, deletion. 
 
 a b 

c d 

e f 
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3.3.4 Chromosomal copy number alterations 
Multiple frequent copy number alterations were detected in MM tumours (Figure 

3.7). Pre-eminently, gain of odd numbered chromosomes, characteristic of HD 

MM2, was seen in 59% of the tumours, with chromosome 9, 15, and 19 most often 

amplified (83-86% HD, Table 3.9); concordant with published observations2. 

Deletion of chromosomal cytobands containing IG loci IGK (2p11.2), IGH 

(14q32.33) and IGL (22q11.22) were present in 95%, 98% and 57% of the 

tumours respectively (Figure 3.7), consistent with the rearrangements expected 

at IG loci during normal B-cell development210. Common deletions were also seen 

at 13q (63%), 14q (43%), 16q (38%) and 8p (38%). Despite the relatively low 

overall level of chromosome 8 amplification, 28% of the tumours exhibited 

amplification overlapping 8q24.21 that incorporates MYC (13%) and PVT1 

(16%)211, 212. 
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Figure 3.7: Summary of amplifications and deletions in 725 MM samples. 
The proportion of samples with amplifications (cyan) and deletions (orange) overlapping 
each cytoband is plotted by karyoplotR9. The frequent deletions (orange peaks) at 
2p11.2, 14q32.33 and 22q11.22 overlap with the immunoglobulin loci IGK, IGH, and IGL 
respectively. 
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Table 3.7: Copy number alterations in 725 MM samples 
 

 

  

Chromosome amplification and hyperdiploidy

Amplified  Hyperdiploidy
chr1 5 5
chr2 41 41
chr3 270 261
chr4 40 40
chr5 319 317
chr6 81 81
chr7 240 239
chr8 14 14
chr9 381 366
chr10 19 19
chr11 256 255
chr12 7 7
chr13 5 5
chr14 17 16
chr15 361 355
chr16 2 2
chr17 50 49
chr18 90 86
chr19 373 365
chr20 19 19
chr21 123 119
chr22 6 6

Number of samplesChromosome
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3.3.5 Structural variation 
The median rate of SVs was 10 across tumours; four translocations (range 0-

147) and six inversions (range 0-2,790). Considering SVs falling within gene 

boundaries, on average six genes were disrupted per tumour. SVs were also 

identified as affecting genes commonly mutated in MM1, 3, 5 including CYLD with 

inversions disrupting the protein sequence in five samples (Table 3.10). Widening 

the definition of SVs to genes within a 1 Mb window of translocation breakpoints 

identified multiple recurrent rearrangements including MYC, CCND1 and FGFR3, 

detected in 173 (23%), 124 (16%) and 46 (6%) of samples, respectively. MYC 

rearrangements involved a plethora of partner sites including IGH (32/765), IGL 

(32/765), IGK (11/765), and cytobands encompassing BMP6 (21/765), FAM46C 

(9/765), CCND1 (1/765) and MAF (1/765). Novel MYC translocations disrupting 

CD96 (immune checkpoint receptor target) were identified in eight tumours and 

translocations intergenic to PRDM1 and FBXW7 in eight and five tumours, 

respectively. Restricting this analysis to translocations incorporating the IGH, IGK 

and IGL loci, common translocations were identified affecting 17q21.31, 

encompassing MAP3K14, in 16 tumours, and 10 tumours with translocations 

affecting 12p13.32, encompassing CCND2 (Figure 3.8). Tumours with these 

translocations were associated with upregulation of MAP3K14 (7.4-fold 

upregulation, P = 5.05 × 10-41), and CCND2 (11.9-fold upregulation, P = 7.5 × 10-

5). 
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Table 3.8: Structural variants affecting genes reported as recurrently mutated in 
MM. Gene lists were combined from Walker et al.1, Lohr et al.3, Bolli et al.5, and 
CoMMpass study. 

Within gene boundary Within 1Mb
KRAS 12p12.1 0 10
NRAS 1p13.2 1 18
FAM46C 1p12 6 32
BRAF 7q34 0 9
TP53 17p13.1 1 19
DIS3 13q22.1 0 6
PRDM1 6q21 1 23
SP140 2q37.1 2 14
EGR1 5q31.2 0 10
TRAF3 14q32.32 4 11
ATM 11q22.3 2 9
CCND1 11q13.3 3 124
HIST1H1E 6p22.2 0 4
LTB 6p21.33 0 14
IRF4 6p25.3 1 7
FGFR3 4p16.3 0 46
RB1 13q14.2 3 15
ACTG1 17q25.3 0 9
CYLD 16q12.1 5 14
MAX 14q23.3 2 17
ATR 3q23 0 7
SAMHD1 20q11.23 2 23
PRKD2 19q13.32 1 11
PTPN11 12q24.13 0 4
TGDS 13q32.1 0 3
DNAH5 5p15.2 2 4
MYH2 17p13.1 0 9
BMP2K 4q21.21 2 10
ZNF208 19p12 0 28
RPL10 Xq28 0 11
TBC1D29 17q11.2 0 12
FBXO4 5p13.1 0 5
RASA2 3q23 2 13
OR5M1 11q12.1 0 16
RPS3A 4q31.3 0 6
PTH2 19q13.33 0 18
BAX 19q13.33 0 22
C8orf86 8p11.22 0 12
CELA1 12q13.13 0 6
FCF1 14q24.3 0 10
FTL 19q13.33 0 22
OR9G1 11q12.1 0 15
TNFSF12 17p13.1 0 18
FAM154B 15q25.2 0 0
HIST1H4H 6p22.2 0 3
LEMD2 6p21.31 0 4
TRAF2 9q34.3 1 5
SGPP1 14q23.2 0 7
RPN1 3q21.3 1 7
PABPC1 8q22.3 6 11

Number of samplesGene Chromosome 
location
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Figure 3.8: Circos plot of common translocations (> 5 samples). IGK (chr2) 
IGH (chr14) and IGL (chr22) translocations are depicted in red, green and orange, 
respectively. MYC translocations in blue. The ribbon is centred on the cytoband 
implicated with the ribbon width proportional to the number of affected samples. 
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3.3.6 Significantly mutated protein-coding genes 
To gain insight into mutations affecting the protein-coding regions, MutSigCV160 

was applied to variants identified from WES data. I identified 33 significantly 

mutated genes (Q < 0.05, Table 3.11). These were over-represented in pathways 

involved in sustaining proliferative signalling, activating invasion, evading growth 

suppressors, tumour-promoting inflammation, resisting cell death, enabling 

replicative immortality, and angiogenesis (P < 0.05, Table 3.12). While 16 of the 

33 genes have previously been documented to be recurrently mutated in MM 

(KRAS, NRAS, HIST1H1E, MAX, SP140, RASA2, FCF1, DIS3, BRAF, TP53, 

SAMHD1, TRAF3, PRKD2, TGDS, CYLD, and RB1; Table 3.13)1-3, 5, 192, 17 novel 

significantly mutated genes were identified. These included 12 genes previously 

reported as recurrently mutated, albeit not significantly (PTPN11, DNAH5, MYH2, 

BMP2K, ZNF208, RPL10, FBXO4, OR5M1, PTH2, CELA1, OR9G1, and 

TNFSF12)1, 3, 5-8 and five novel genes (TBC1D29, RPS3A, BAX, C8orf86, and 

FTL) (Table 3.11). 

 

Stratifying MM according to its major subgroups (HD, MYC-translocation, t(4;14), 

t(11;14), t(14;16)) allowed identification of additional drivers; FAM154B, 

HIST1H4H, LEMD2 and PABPC1 in HD; RPN1 and TRAF2 in MYC-translocation; 

SGPP1 in t(11;14); and TRAF2 in t(14;16) (Table 3.14). Furthermore, t(4;14) MM 

was identified as being enriched for PRKD2 mutations (13% of subtype, P = 1.0 

× 10-5) but having a paucity of NRAS mutations (P = 1.3 × 10-6); possibly reflecting 

dysregulation of the MAPK-signalling, a consequence of the translocation-

mediated FGFR3 overexpression (Table 3.6). As previously reported, t(11:14) 

MM was identified as associated with CCND1 mutation84 (10%, P = 1.2 × 10-10) 

and IRF4 mutation (8%, P = 8.0 × 10-6). In contrast, mutations in PRKD2 (P = 2.0 

× 10-4), MAX (P = 1.3 × 10-6) and DIS3 (P = 1.6 × 10-6) were infrequent in HD. 

Finally, somatic mutations in the following genes had low alternative allelic 

fraction - RPS3A (range 0.1 – 0.5), TBC1D29 (range 0.1 – 0.5), PABPC1 (range 

0.1 – 0.4), and TRAF2 (range 0.1 – 0.9), reflecting the heterogeneity of MM. 
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Table 3.9: Significantly mutated genes identified in 804 tumours from 
CoMMpass (IA9 dataset). (Q < 0.05). 
 
 

  

Gene
Chromosome 

location Start (bp) End (bp)
No. non-silent 

mutations Q- value
KRAS 12p12.1 25357723 25403870 221 2.22E-16
NRAS 1p13.2 115247090 115259515 195 2.22E-16
HIST1H1E 6p22.2 26156559 26157343 33 2.22E-16
MAX 14q23.3 65472892 65569413 26 2.22E-16
SP140 2q37.1 231067826 231223762 26 2.22E-16
TBC1D29 17q11.2 28884130 28890511 14 2.22E-16
RASA2 3q23 141205889 141334184 13 2.22E-16
RPL10 Xq28 153618315 153637504 13 2.22E-16
RPS3A 4q31.3 152020725 152025804 11 2.22E-16
C8orf86 8p11.22 38368352 38386180 6 2.22E-16
FBXO4 5p13.1 41925356 41941845 6 2.22E-16
OR5M1 11q12.1 56380031 56380978 6 2.22E-16
OR9G1 11q12.1 56467864 56468781 5 2.22E-16
PTH2 19q13.33 49925671 49926698 5 2.22E-16
CELA1 12q13.13 51722227 51740463 4 2.22E-16
FCF1 14q24.3 75179847 75203394 4 2.22E-16
FTL 19q13.33 49468558 49470135 3 2.22E-16
TNFSF12 17p13.1 7452208 7464925 3 2.22E-16
BAX 19q13.33 49458072 49465055 2 2.22E-16
DIS3 13q22.1 73329540 73356234 85 5.86E-12
BRAF 7q34 140419127 140624564 62 9.07E-12
TP53 17p13.1 7565097 7590856 46 4.47E-09
SAMHD1 20q11.23 35518632 35580246 19 8.29E-09
TRAF3 14q32.32 103243813 103377837 72 1.12E-06
PTPN11 12q24.13 112856155 112947717 19 4.72E-05
PRKD2 19q13.32 47177532 47220384 26 9.91E-05
TGDS 13q32.1 95226308 95248511 14 5.49E-04
CYLD 16q12.1 50775961 50835846 22 1.18E-03
MYH2 17p13.1 10424465 10453274 24 9.13E-03
DNAH5 5p15.2 13690440 13944652 46 1.07E-02
BMP2K 4q21.21 79697496 79837526 16 1.37E-02
RB1 13q14.2 48877887 49056122 15 1.82E-02
ZNF208 19p12 22115760 22193751 28 2.92E-02



91 
 

Table 3.10: Gene-set enrichment analysis of significantly mutated genes. GO, gene ontology. 

GO term ID GO term Cancer hallmark category

Number of 
occurences of 
annotation in 
candidate set

Expected number of 
occurences of 
annotation in 
candidate set

Number of 
occurences of 
annotation in 

background set

P -value

GO:0007166 Cell surface receptor signalling pathway Sustaining proliferative signaling 16 4.793 2548 3.70E-06
GO:0070848 Response to growth factor Sustaining proliferative signaling 7 1.653 879 1.05E-03
GO:0016477 Cell migration Activating invasion 7 2.069 1100 3.79E-03
GO:0008283 Cell proliferation Evading growth suppressors 9 3.422 1819 5.21E-03
GO:0045321 Leukocyte activation Tumor-promoting inflammation 5 1.258 669 7.78E-03
GO:0002326 B-cell lineage commitment Sustaining proliferative signaling 1 0.009 5 9.37E-03
GO:0012501 Programmed cell death Resisting cell death 8 3.297 1753 1.40E-02
GO:0010941 Regulation of cell death Resisting cell death 7 2.703 1437 1.57E-02
GO:0030183 B-cell differentiation Sustaining proliferative signaling 2 0.203 108 1.75E-02
GO:0090399 Replicative senescence Enabling replicative immortality 1 0.019 10 1.87E-02
GO:0001525 Angiogenesis Angiogenesis 3 0.754 401 3.90E-02
GO:0007155 Cell adhesion Activating invasion 6 2.573 1368 3.99E-02
GO:0060548 Negative regulation of cell death Resisting cell death 4 1.621 862 7.67E-02
GO:0090398 Cellular senescence Enabling replicative immortality 1 0.096 51 9.17E-02
GO:0042100 B-cell proliferation Sustaining proliferative signaling 1 0.162 86 1.50E-01
GO:0032200 Telomere organization Enabling replicative immortality 1 0.166 88 1.53E-01
GO:0007049 Cell cycle Evading growth suppressors 5 3.002 1596 1.77E-01
GO:0000819 Sister chromatid segregation Genome instability 1 0.211 112 1.91E-01
GO:0006091 Generation of precursor metabolites and energy Disrupting cellular energetics 2 0.813 432 1.95E-01
GO:0000187 Activation of MAPK activity Sustaining proliferative signaling 1 0.275 146 2.41E-01
GO:0006281 DNA repair Genome instability 1 0.775 412 5.44E-01
GO:0006954 Inflammatory response Tumor-promoting inflammation 1 1.117 594 6.79E-01
GO:0001910 Regulation of leukocyte mediated cytotoxicity Avoiding immune destruction 0 0.090 48 1.00
GO:0002507 Tolerance induction Avoiding immune destruction 0 0.049 26 1.00
GO:0002767 Immune response-inhibiting cell surface receptor signaling pathway Avoiding immune destruction 0 0.009 5 1.00
GO:0007065 Sister chromatid cohesion Genome instability 0 0.000 0 1.00
GO:0010695 Regulation of spindle pole body separation Genome instability 0 0.000 0 1.00
GO:0010718 Positive regulation of epithelial to mesenchymal transition Activating invasion 0 0.058 31 1.00
GO:0019882 Antigen processing and presentation Avoiding immune destruction 0 0.408 217 1.00
GO:0030997 Regulation of centriole-centriole cohesion Genome instability 0 0.006 3 1.00
GO:0031577 Spindle checkpoint Genome instability 0 0.092 49 1.00
GO:0034330 Cell junction organization Activating invasion 0 0.463 246 1.00
GO:0038061 NIK/NF-kappaB signaling Sustaining proliferative signaling 0 0.188 100 1.00
GO:0046605 Regulation of centrosome cycle Genome instability 0 0.060 32 1.00
GO:0051383 Kinetochore organization Genome instability 0 0.024 13 1.00
GO:0051988 Regulation of attachment of spindle microtubules to kinetochore Genome instability 0 0.019 10 1.00
GO:0090224 Regulation of spindle organization Genome instability 0 0.038 20 1.00
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Gene Walker et al.  % 
(n = 463)

Lohr et al. 
%(n = 203)

Bolli et al. 
%(n = 67)

CoMMpass 
%(n = 804) Other study

KRAS 21* 23* 25* 24*
NRAS 19* 20* 25* 22*
FAM46C 6* 11* 12* 9
BRAF 7* 6* 15* 7*
TP53 3* 8* 15* 5*
DIS3 9* 11* 1 10*
PRDM1 2 5* 0 2
SP140 2 4 7* 3*
EGR1 4* 4 7 4
TRAF3 4* 5* 3 7*
ATM 3 4 3 3
CCND1 2* 3 4 2
HIST1H1E 3* 0 0 4*
LTB 3* 1 4* 3
IRF4 3* 2 0 3
FGFR3 3* 2 0 3
RB1 2 3* 0 2*
ACTG1 5 2* 0 3
CYLD 2* 2* 3 2*
MAX 2* 1 0 3*
ATR 1 1 1 1
SAMHD1 <1 2 1 2*
PRKD2 2 3 4 3* 2/22 (Walker et al . 2012)
PTPN11 2 2 0 2* 2% (Kortum et al .)
TGDS 1 0 4 2*
DNAH5 3 5 6 5* 3/22 (Walker et al. 2012)
MYH2 2 1 0 3*
BMP2K 1 1 0 2* 1/22 (Walker et al . 2012)
ZNF208 1 3 4 3*
RPL10 1 2 0 2* 2% (Hofman et al .)
TBC1D29 2 0 0 2*
FBXO4 0 1 1 1*
RASA2 1 3 3 1*
OR5M1 0 1 0 1*
RPS3A 0 0 0 1*
PTH2 0 1 0 1*
BAX <1 0 0 <1*
C8orf86 <1 0 0 <1*
CELA1 0 <1 0 <1*
FCF1 <1 0 0 <1*
FTL 0 0 0 <1*
OR9G1 <1 <1 0 <1*
TNFSF12 0 <1 0 <1*
TRAF2 1 2 0 2*
FAM154B <1 <1 0 <1*
HIST1H4H 1 <1 0 <1*
LEMD2 <1 0 0 <1*
PABPC1 1 1 0 4*
RPN1 0 0 0 <1*
SGPP1 <1 1 0 1*

Table 3.11: Significantly mutated genes in MM identified in different studies. Walker 
et al.1, Lohr et al.3, Bolli et al.5, Kortum et al.6, Hofman et al.7, Walker et al. 20128, CoMMpass (this 
study). *, identified as significantly mutated in the study. 
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Table 3.12: Significantly mutated genes identified through CoMMpass (IA9 
dataset) by major subgroups. (Q < 0.05). *, genes that were not previously identified as 
significantly mutated in general analysis. 

Subtype Gene Chromosome 
location Start (bp) End (bp) Number of non-

silent mutations Q- value

BRAF 7q34 140419127 140624564 30 2.22E-16
FAM154B* 15q25.2 82555151 82577271 2 2.22E-16
HIST1H4H* 6p22.2 26281283 26285762 4 2.22E-16
LEMD2* 6p21.31 33738979 33756913 2 2.22E-16
NRAS 1p13.2 115247090 115259515 119 2.22E-16
OR9G1 11q12.1 56467864 56468781 5 2.22E-16
RASA2 3q23 141205889 141334184 9 2.22E-16
RPL10 Xq28 153618315 153637504 12 2.22E-16
RPS3A 4q31.3 152020725 152025804 9 2.22E-16
TRAF3 14q32.32 103243813 103377837 28 2.22E-16
KRAS 12p12.1 25357723 25403870 108 1.01E-11
TP53 17p13.1 7565097 7590856 17 4.47E-06
DIS3 13q22.1 73329540 73356234 23 5.48E-06
PABPC1* 8q22.3 101698044 101735037 21 1.55E-03
HIST1H1E 6p22.2 26156559 26157343 15 3.49E-03
C8orf86 8p11.22 38368352 38386180 2 2.22E-16
KRAS 12p12.1 25357723 25403870 36 2.22E-16
NRAS 1p13.2 115247090 115259515 35 2.22E-16
RPN1* 3q21.3 128338817 128399918 3 2.22E-16
RPS3A 4q31.3 152020725 152025804 5 2.22E-16
TRAF2* 9q34.3 139776364 139821059 2 2.22E-16
BRAF 7q34 140419127 140624564 9 4.13E-03
RPL10 Xq28 153618315 153637504 4 1.35E-02
DIS3 13q22.1 73329540 73356234 10 1.53E-02
NRAS 1p13.2 115247090 115259515 4 2.22E-16
PRKD2 19q13.32 47177532 47220384 12 2.22E-16
KRAS 12p12.1 25357723 25403870 19 5.58E-12
DIS3 13q22.1 73329540 73356234 17 1.74E-04
TRAF3 14q32.32 103243813 103377837 10 1.92E-03
BRAF 7q34 140419127 140624564 6 2.01E-02
TBC1D29 17q11.2 28884130 28890511 5 2.57E-02
MAX 14q23.3 65472892 65569413 4 2.57E-02
HIST1H1E 6p22.2 26156559 26157343 11 2.22E-16
MAX 14q23.3 65472892 65569413 8 2.22E-16
NRAS 1p13.2 115247090 115259515 47 2.22E-16
SGPP1* 14q23.2 64150932 64194757 2 2.22E-16
TP53 17p13.1 7565097 7590856 17 2.22E-16
KRAS 12p12.1 25357723 25403870 49 2.44E-12
DIS3 13q22.1 73329540 73356234 25 6.82E-09
BRAF 7q34 140419127 140624564 12 1.08E-06

t(14;16) TRAF2* 9q34.3 139776364 139821059 6 1.10E-03

Hyperdiploidy

MYC -translocation

t(4;14)

t(11;14)
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3.3.7 Pathways targeted by both coding and non-coding mutations 

Pathways targeted by coding and non-coding mutations were identified using 

the Reactome pathway tool196. These included MAPK signalling, NF-κB 

signalling, cytokine signalling, GPCR signalling, transcriptional and post-

translational expression regulation, hematopoietic development, DNA damage, 

and apoptosis (Q < 0.05, Appendix 1). Many of the genes in these pathways 

are targeted by both coding and non-coding drivers (Table 3.15, Figure 3.9), 

exemplified by IRF4 and PRDM1, along with BCL6 and PAX5, genes central to 

plasma cell differentiation2. 

 

3.3.8 Mutational signatures 

To gain insight into the aetiological basis of MM mutations, mutational signatures 

were analysed87. Mutational signature 2 (C > T/G in TC dinucleotide motif), a 

consequence of the activity of the APOBEC family of cytidine deaminases87, 

associated with poor prognosis84, 87, was seen in 30% (230/765) of tumours 

(Appendix 2) and associated with coding mutations in DNAH5 (P = 8.8 × 10-7), 

SAMHD1 (P = 7.2 × 10-4), TP53 (P = 9.3 × 10-3), and BRAF (P = 3.7 × 10-2). This 

signature was primarily enriched in MAF translocations t(14;16) (30/31, P = 1.2 × 

10-15, mean mutational contribution 0.37) and t(14;20) (7/9, P = 4.1 × 10-3, mean 

mutational contribution 0.28)  and to a lesser extent with t(4;14) (46/93, P = 1.1 × 

10-5, mean mutational contribution 0.07).   

Other mutational signatures previously reported in MM5, 84, 87, 213 were also 

identified, including signature 1, 5, 9, and 13 in 18% (135/765), 73% (557/765), 

96% (737/765), and 5% (36/765) of tumours, respectively (Appendix 2). Almost 

all samples (35/36) with signature 13 also exhibited signature 2, consistent with 

the published literature87. Mutational signatures not previously reported in MM 

included signatures 3, 8, 16, and 30 seen in more than 30% of tumours (Appendix 

2). No additional signatures were identified when analysing the high coverage 

WES data. Signature 9 (T > G in WT motif with W = A or T), a consequence of 

activation-induced cytidine deaminase (AID) activity87, is also a feature of chronic 

lymphocytic leukemia (CLL) and B-cell lymphomas. The fact that, despite its 

prevalence, this signature had not previously been identified in earlier large scale 
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analyses, agrees with the assertion that AID related mutations are enriched in 

non-coding regions and early mutation events213. Since signature 9 suggests AID 

off-target activity, the mutational patterns of somatic variants affecting the PAX5 

CREs, known off-targets of AID in B-cell malignancies214, were examined. 

Somatic mutations in CREs interacting with PAX5 promoters showed both 

canonical AID (C > T/G in WRCY motifs with R = purine, Y = pyrimidine, W = A 

or T) and non-canonical AID (A > C/G in WA motifs)215 mutational signatures 

(Figure 3.10), in agreement with PAX5 enhancers mutated by AID in mouse B-

cells and diffuse large B-cell lymphoma214.
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Genes disrupted by structural variants Genes disrupted by SNVs and indels Promoters disrupted by SNVs CREs disrupted by SNVs CREs disrupted by CNVs
CD96 BAX NBPF1 CALCB MYC

PRDM1 C8orf86 COBLL1 PLD4*
FBXW7 FAM154B HOXB3 KDM3B*

MAP3K14 FTL ST6GAL1 SP110*
CCND2 HIST1H4H PAX5 RAB36*

LEMD2 ATP13A2 PACS2*
PABPC1 TPRG1 TEX22*

RPN1
RPS3A
SGPP1

TBC1D29

Novel genes disrupted by mutations in non-coding regionsNovel genes disrupted in coding regions

Table 3.13: Summary of novel findings from the study. *, these genes reside close to regions of common structural variation, making 
interpretation of their specific relevance problematic. 
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Figure 3.9: Several key pathways in MM are disrupted by a range of mechanisms. Figure adapted from Manier et al.2 and Kumar et al.216 
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Figure 3.10: Mutational signatures in MM affecting PAX5 CREs. Mutational patterns of somatic mutations in CREs interacting with 
PAX5 promoters display both canonical (C > T/G in WRCY motifs with R = purine, Y = pyrimidine, W = A or T) and non-canonical (A > C/G 
in WA motifs) activation-induced cytidine deaminase (AID) signatures. 
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3.4 Discussion 

This analysis has identified new coding and non-coding drivers as well as 

highlighting that pathways, key to the development of MM, can be targeted 

somatically through a range of mechanisms (Figure 3.9). Strikingly, although 

upregulation of MYC through gene amplification or translocation is well 

established in MM2, it was demonstrated that MYC can be dysregulated by 

alternative mechanisms. These include CNVs altering MYC non-coding 

regulatory regions and specifically, the data implicates a region syntenic to the 

murine Myc enhancer cluster that has recently been reported to be essential for 

the maintenance of MLL–AF9-driven leukemia in mice217. 

The downregulation of tumour suppressors PAX5201-203 and HOXB3209 by CRE 

mutations in MM is entirely consistent with their decreased expression 

contributing to development and progression of MM as is the case with other B-

cell malignancies. It has previously been demonstrated that disruption of the NF-

κB pathway in MM can be the consequence of coding mutations and loss of 

genes. Here the study adds TWEAK, TRAF2 and PRKD2 to the list of genes 

disrupted via coding mutations, demonstrates COBLL1 as dysregulated via 

mutations of a non-coding regulatory region, and identifies MAP3K14 as 

upregulated via translocation to the IG loci218.  

Whilst utilizing WGS data facilitates the identification of signatures enriched in the 

non-coding genome it also, by nature of the low coverage data, focuses the 

analysis on early mutational processes. Accepting this limitation, I identified a 

number of mutational signatures previously unreported in MM, and strikingly 

the AID-attributed signature 9 being detectable in a high proportion of MM, a 

finding consistent with a contemporaneous report213. Although mutational 

patterns suggestive of AID activity have been documented in certain genes in 

MM such as EGR13 and CCND15, the findings suggest that off-target AID activity 

could be more widespread than previously envisaged. Moreover, as off-target 

AID activity is associated with genomic instability and chromosomal translocation 

in B-cells219, it may be a major aetiological factor driving mutation of MM. 

It should be, however, acknowledge that the present analysis has limitations. 

Firstly, a cellular model of naïve B-cells was used to map the CREs, which is 
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unlikely to fully and specifically recapitulate the spectrum of pathogenic SNVs 

and CNVs seen in MM. Secondly, the low coverage of CoMMpass WGS data 

means that the data have likely underestimated the somatic variants in the 

tumours, and increased noise to gene expression analysis. The sensitivity of the 

analysis is dependent on the clonal architecture of the samples, and it is likely 

that this analysis is limited to the identification of clonal, early drivers of MM. 

Thirdly, inevitably as CNVs are highly recurrent in MM2, this has restricted the 

study power of the gene expression analysis as samples were excluded. Lastly, 

non-coding RNAs were not considered in gene expression analysis although 

many have been identified as recurrently mutated in their regulatory regions. 

Despite the restricted sensitivity, I have identified multiple targets of non-coding 

mutations, highlighting the importance of broadening the search for cancer 

drivers into the regulatory genome. Validation of the candidates that were 

identified in this study will be contingent on functional studies including, for 

example, CRISPR-mediated genome editing, in vitro reporter assays, and 

proliferation assays coupled with transcriptional profiling. 

In conclusion, the findings provide integrated analysis of novel coding and non-

coding drivers in MM, demonstrating the genetic complexity contributing to this 

malignancy. Thus by developing a more comprehensive picture of the underlying 

genetic basis of MM, I extend the list of genes and pathways for which novel 

therapeutic agents may be identified through network-based drug search 

methodologies220, 221, offering the prospect of future individualized therapy in MM. 
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    Mutational processes 
contributing to the development of multiple 
myeloma 

 

4.1 Overview and rationale 

Cancers have variable numbers of somatic mutations that have accumulated 

during the life history of the tumours as a consequence of diverse cellular 

processes, including defective DNA replication or DNA repair, and exposure to 

endogenous or exogenous DNA-damaging agents10, 87. Each of these processes 

results in mutational signatures, which can serve as proxy for the cellular 

processes that have gone amiss. Mathematical deconvolution88 of these 

mutational signatures in large pan-cancer series has revealed multiple distinct 

signatures87, several of which are associated with known aetiologies, but many 

remain unexplained87, 90, 222.  Hence studying the mutational signatures of cancers 

provides a mechanism for gaining insight into the aetiological basis of tumour 

development. 

Whole-exome and whole-genome sequencing studies from my study (Chapter 3) 

and others have so far identified over 40 driver genes that are recurrently altered 

in MM1-5. However, the molecular mechanisms giving rise to these mutations are 

yet to be fully elucidated. 

Here I report a comprehensive analysis of the mutation signatures of over 800 

MM genomes. Major mutational signatures in MM reflective of three known 

principle mutational processes were identified: aging87, 92, 223, DNA repair 

deficiency87, 166, 223-227, and AID/APOBEC activity87, 166, 201, 228. These mutational 

signatures tend to show subgroup specificity and are reflective of the molecular 

mechanisms involved in tumorigenesis. Additionally, this study shows that 

information on mutational signatures beyond that associated with APOBEC has 

relevance to predicting patient prognosis and defining high-risk MM. 
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4.2 Study design 

4.2.1 Samples and dataset 

All data analysed in this chapter were generated as part of the MMRF CoMMpass 

Study release IA10. WGS data on 850 matched tumour-normal baseline newly 

diagnosed bone-marrow samples were downloaded from dbGaP as detailed in 

section 2.1.1. WES variants (detected by at least two out of three variant callers 

– MuTect, Seurat, and Strelka) from 874 samples, RNA-seq, CNV, clinical data, 

and Seq-FISH data (MMRF IA10 dataset) were downloaded from MMRF web 

portal (https://research.themmrf.org/) (section 2.1.1). WES and WGS data were 

available for 824 samples. 

 

4.2.2 Statistical and bioinformatics analysis 

Quality control, sequence alignment to hg37, and variant calling performed using 

FastQC v.0.11.4/BWA v0.7.12/GATK/Mutect v1.1.7 software as described in 

section 2.2.4. Somatic SNVs were filtered for oxidation artefacts158 and by quality 

score as detailed in section 2.2.7.1. Mutations mapping to immune hypermutated 

regions (429 immunoglobulin and the major histocompatibility complex loci, each 

region extended by 50 Kb, as defined in Ensembl v73)174, were excluded to avoid 

bias from mutation as a consequence of normal B-cell development. 

 

4.2.2.1 Determination of myeloma karyotype 

Translocation status of MM tumours was based on Seq-FISH131 (section 2.1.1). 

HD was defined as amplification of 90% of the chromosome in at least two 

autosomes4. Prognostic chromosome-arm events (>1 Mb) were defined as 

deleted or amplified with abs(log2ratio) ≥ 0.1613 occurring at 1p12, 1p32.3, 

1q21.1, 1q23.3, and 17p132. 

 

 

 



103 
 

4.2.2.2 Mutational signatures 

Characterisation of the 30 COSMIC mutational signatures and de novo extraction 

of signatures was performed using Palimpsest92, 179 with default parameters 

(section 2.2.10.2). De novo mutational signatures were compared with 30 pre-

defined COSMIC signatures by computing their cosine similarities87. A de novo 

mutational signature was assigned to a COSMIC signature if the cosine similarity 

was > 0.75 as previously advocated92. If multiple COSMIC signatures passed this 

threshold, then the most-similar COSMIC signature was assigned to the de novo 

signature. Proportion of COSMIC mutational signatures was compared between 

high-coverage WES clonal mutations (alternate allele ratio > 0.9) and low-

coverage WGS mutations restricted to exome regions; as well as between 

CoMMpass exome and Walker et al.1 exome mutations. Correlations were tested 

using Spearman’s correlation. For those signatures with an apparent flat profile 

these were considered in concert, by combining the respective contributions of 

signatures 3, 5 and 8.  

MANTA was used to identify somatic structural variants (SVs) from the WGS data 

adopting default settings162 (section 2.2.7.3). The same statistical framework 

used for signature analysis of SVs implemented in Palimpsest179 was applied to 

extract de novo rearrangement signatures (as previously described in sections 

1.3.2 and 2.2.10.2)92. Correlations between SV signatures and major COSMIC 

pre-defined SNV signatures (>1% mutational contribution in WGS) were tested 

using Spearman’s correlation. No significant correlation was seen after adjusting 

for multiple testing (i.e. Q > 0.05). 

The relationship between mutational signatures and clinico-pathological 

parameters was examined confining the analysis to the major MM subgroups - 

HD, t(4;14), t(11;14), t(14;16), t(14;20) and t(8;14) MYC. Test of association 

between each signature and subgroups was based on a two-tailed Fisher’s exact 

test using Benjamini-Hochberg FDR procedure to address multiple testing.   

Contribution of each mutational signature to coding and non-coding regions was 

compared using WGS data. To calculate contribution of a mutational signature to 

a genomic region, first the probability that each mutation was due to the process 

underlying each signature was estimated and the cumulative probability of all 
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mutations in each region was calculated, as per Letouze et al.92 After computing 

these probabilities, the regional differences in trinucleotide composition were 

normalised as detailed in section 2.2.10.3.  

 

4.2.2.3 Replication timing and replication strand bias 

Replication sequencing (Repli-seq) data generated by the ENCODE consortium 

for the lymphoblast cell lines with GM12878, GM06990, GM12801, GM12812, 

and GM12813 were used to define early and late-replicating regions; as well as 

leading and lagging DNA strands using Repli-Seq signal peaks from GM12801 

as previously described92, 223. Mutation rates across deciles of replication timings 

were estimated globally using WGS data and for each signature, with each 

mutation assigned to a single signature by Palimpsest92, 179. The replication timing 

slope was estimated by linear regression model. To test the null hypothesis that 

the slope gradients equal zero, the replication timing deciles were permuted 

10,000 times. Empirical P-values were calculated as the fraction of permutations 

with absolute slope values at least as great as the absolute slope value computed 

using the true replication timing deciles. 

Analysis of mutational replication strand bias between leading and lagging 

strands was performed across all 30 COSMIC signatures as previously 

described92, using WGS data. The Wilcoxon rank-sum test was used to 

determine significant difference of mutational contribution from each COSMIC 

signature between leading and lagging strands. Levels of asymmetry were 

considered significant if strand imbalances were > 30%223 and Q < 0.05. 

 

4.2.2.4 Transcriptional levels and strand bias 

To correlate mutational processes with gene expression, RNA-seq data were 

normalised to FPKM (fragments per kilobase of exons per million reads)92. For 

each tumour, genes were partitioned into pentiles based on respective FPKM. 

Immunoglobulin-related genes and genes known to be highly upregulated in MM 

as a result of translocations (CCND1, CCND3, FGFR3, MMSET, MAF, MAFB, 

and MYC)2 were excluded to mitigate against bias. Mutation rates of genes within 
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each of the 5 transcriptional level categories were estimated per tumour based 

on WES called mutations. Average alignability score for highly expressed genes 

was based on alignability of 75mers defined by the ENCODE/CRG GEM 

mappability tool159. Mutation rates were examined on transcribed and non-

transcribed strands globally and for each signature as described previously92 

using Palimpsest92, 179. Wilcoxon rank-sum tests, corrected for multiple testing, 

were used to determine significant difference of mutational contribution from each 

COSMIC signature between transcribed and non-transcribed strands. Levels of 

asymmetry were again considered significant if strand imbalances were > 30%223 

and Q < 0.05. 

 

4.2.2.5 Kataegis 

Kataegis analysis was restricted to high-coverage WES data, where there was 

sufficient coverage to detect local hypermutation. Kataegis foci were defined and 

identified as detailed in section 2.2.7.4. Co-localization of kataegis and structural 

rearrangements was assessed based on the proportion of SV regions having 

kataegis foci residing within 10 Kb. To examine enrichment of a mutational 

signature at kataegis regions, mutational contribution of each signature was 

compared across all mutations at kataegis foci with other mutations in tumours 

with and without kataegis being detected using Wilcoxon rank-sum test, corrected 

for multiple testing and imposed a threshold of Q < 0.05. 

 

4.2.2.6 Association of mutational signatures with the mutation of driver 
genes 

For SNV mutational signatures, Wilcoxon rank-sum tests were used to compare 

contribution of each mutational signature in coding drivers1, 3-5 and other exonic 

mutations, normalising for trinucleotide composition as described in section 

2.2.10.3. For each somatic mutation, the probability that it was the result of each 

mutational process was estimated considering the tri-nucleotide context and the 

number of mutations attributed to each process in the respective tumour as per 

Letouze et al92. I then compared, for each driver gene and mutational signature, 
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the probability distribution in mutations affecting the driver gene as compared to 

all other mutations in tumours with and without the driver gene mutated using 

Wilcoxon rank-sum tests, imposing Benjamini-Hochberg correction for multiple 

testing. All driver genes identified in chapter 3 and previous studies1, 3-5 were 

evaluated with Q < 0.05. 

 

4.2.2.7 Association of signatures with clinical features 

Multivariable Cox-regression was performed to adjust for covariates including 

age at diagnosis, sex, translocation status, and APOBEC mutational contribution 

(COSMIC signature 2 and 13). The ConsensusClusterPlus R package229 was 

used to hierarchically cluster patients based on de novo SV and major COSMIC 

SNV signatures (> 1% contribution) extracted from WGS with default settings91. 

Fisher’s exact test was used to test whether clusters were associated with MM 

subgroups or driver gene mutations, imposing Benjamini-Hochberg correction for 

multiple testing. The log-rank test was used to assess the differences in 

progression free survival (PFS) and overall survival (OS) between all cluster 

groups. To delineate clusters into low- and high-risk groups, pairwise 

comparisons in survival distributions were performed using the pairwise_survdiff 

function implemented in the survminer R package61. 

Multivariable Cox-regression was performed for each subgroup versus other 

subgroups, adjusting for age at diagnosis, sex, translocation status, APOBEC 

contribution, 1p deletion, 1q gain, 17p deletion, and TP53 non-synonymous 

mutations. 
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4.3 Results 

4.3.1 Genome sequencing of multiple myeloma 

To examine the diversity of mutational signatures, I analysed overlapping WGS 

and WES data on 850 and 874 MM tumour-normal pairs respectively, generated 

by CoMMpass (IA10 release). The frequency of the MM major subgroups – HD, 

t(11;14), t(4;14), t(14;16), t(14;20) and t(8;14) MYC-translocation - is similar to 

other unselected series of patients that have been reported from CoMMpass IA9 

dataset2 (Chapter 3) (Table 4.1). The high-coverage WES data (120-150×, 

136,074 SNVs) were used to analyse coding regions and the low-coverage WGS 

data (6-12×, 1,348,881 SNVs and 44,155 SVs) to provide genome-wide insights 

into clonal mutations associated with early processes underlying tumorigenesis4, 

197. 

Table 4.1: CoMMpass IA10 karyotype classification (n = 814). Karyotypes data 
were only available for 814 samples. *, published literature was based on Manier et al.2 
 

 

  

Subgroups Number of samples IA10 percentage Published literature*
t(11;14) 160 19.7% 15-20%
t(4;14) 102 12.5% 15%
t(14;16) 32 3.9% 5%
t(6;14) 15 1.8% 1-2%
t(14;20) 10 1.2% 1%
t(8;14) MYC -translocation 120 14.7% 15-20%
Hyperdiploidy 469 57.6% 50%
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4.3.2 Mutational signatures in multiple myeloma 

Application of the NMF framework92 (Figure 4.1) to extract de novo SNV 

mutational signatures did not identify any novel mutational signatures (Figure 4.2, 

Figure 4.3), consistent with a recent analysis on CoMMpass exome dataset230. 

Overall a total 9 of the 30 mutational signatures referenced by COSMIC were 

seen at >1% mutational contribution in the WGS data (Table 4.2) - signature 1 

related to aging87; 2 and 13 to activity of the APOBEC family of cytidine 

deaminases87, 166, 228; 9 to polymerase η implicated with the activity of AID during 

somatic hypermutation87, 201, 228; signature 30 reflective of mismatch repair 

deficiency227, and signature 16 which has as yet an unknown aetiology. I also 

extracted flat signatures, which cannot be unambiguously assigned to signatures 

3, 5, or 8 in tumours but all are indicative of DNA repair deficiency (homologous 

recombination deficiency and nucleotide repair deficiency)87, 166, 223-226. 

However, five novel de novo structural RS were identified (Figure 4.4): RS1 (19% 

of SVs across samples) – characterised by non-clustered deletions, large-scale 

tandem duplications and inversions; RS2 (17%) – characterised by clustered 

translocations; RS3 (13%) – characterised by inversions; RS4 (21%) – 

characterised by non-clustered small-scale deletions and tandem duplications; 

RS5 (30%) – characterised by non-clustered translocations. The study therefore 

focussed on the 9 major SNV and 5 de novo SV mutational signatures for 

subsequent analyses. 

Following on from this, the contributions of the 9 major COSMIC SNV mutational 

signatures in both WES and WGS dataset were examined. The signature profiles 

recovered from analysis of clonal WES and exome-restricted WGS data were 

highly correlated (r = 1, P < 2.2 × 10-16, Spearman’s correlation, Figure 4.5). 

Hence, while the average sensitivity to detect clonal SNVs from the WGS data is 

20-35%4 (Chapter 3), these findings indicate the mutational signatures identified 

by WGS are valid and representative of early mutational processes in MM. A high 

concordance of mutational signature was also observed in WES data from 

CoMMpass and that reported by Walker et al.1 (r = 0.86, P = 0.014, Spearman’s 

correlation, Figure 4.6), reflecting the generalizability of the observations. No 

significant association between the major COSMIC SNV signatures and those 

associated with rearrangements was seen (Table 4.3).
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SNV Signature A 

SNV Signature B 

SNV Signature C 

SV Signature X 

SV Signature Y 

SV Signature Z 

Figure 4.1 Summary of mutational signatures extraction in the study. WES, Whole-exome sequencing. WGS, 
Whole-genome sequencing. SNV, single nucleotide variant. SV, structural variant. Figure adapted from Helleday et al.10 
:  
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Resembling 

COSMIC 

Signature 1 

Figure 4.2: De novo extraction of WES single nucleotide variants 
signatures using non-negative matrix factorization algorithm. (a) Summary 
of three de novo mutational signatures extracted. (b) Cosine similarity heatmap. De 
novo extracted mutational signatures are compared against 30 COSMIC mutational 
signatures. The colour code (0 to 1) represents the resemblance between each pair of 
signatures. Signatures are grouped together by hierarchical clustering. Figures are 
generated using Palimpsest R package. NE, de novo exome signature. 
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Figure 4.3: De novo extraction of WGS single nucleotide variants 
signatures using non-negative matrix factorization algorithm. (a) Summary 
of three de novo mutational signatures extracted. (b) Cosine similarity heatmap. De 
novo extracted mutational signatures are compared against 30 COSMIC mutational 
signatures. The colour code (0 to 1) represents the resemblance between each pair of 
signatures. Signatures are grouped together by hierarchical clustering. NG, de novo 

  
Resembling 

COSMIC 

Signature 9 

COSMIC 

Signature 5 

COSMIC 

Signature 2 

COSMIC 

Signature 17 

COSMIC 

Signature 8 



112 
 

Table 4.2: COSMIC mutational contribution in WGS (n = 824). Both WGS and 
WES data were available for 824 tumours. In bold, these mutational signatures have > 
1% mutational contributions. 
 

COSMIC signatures WGS contribution (%)
Signature 1 2.199
Signature 2 4.803
Signature 3 7.015
Signature 4 0.000
Signature 5 7.782
Signature 6 0.008
Signature 7 0.031
Signature 8 9.654
Signature 9 45.975
Signature 10 0.008
Signature 11 0.214
Signature 12 0.783
Signature 13 1.000
Signature 14 0.000
Signature 15 0.009
Signature 16 11.466
Signature 17 0.935
Signature 18 0.000
Signature 19 0.831
Signature 20 0.010
Signature 21 0.037
Signature 22 0.000
Signature 23 0.000
Signature 24 0.000
Signature 25 0.871
Signature 26 0.165
Signature 27 0.000
Signature 28 0.284
Signature 29 0.000
Signature 30 5.918
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Figure 4.4: De novo structural rearrangements signatures. (a) Five de novo structural rearrangement signatures (RS) extracted in multiple 
myeloma. (b) Cumulative mutational contribution of the structural rearrangements across 850 WGS samples. Del, deletions; tds, tandem duplications; 
inv, inversions; trans, translocations.   
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WES clonal mutations 
WGS exome mutations 

Figure 4.5: Concordance between clonal whole-exome and exome-
restricted whole-genome single nucleotide variants mutational signatures 
(n = 525). (a) Cumulative mutational contributions of major COSMIC mutational 
signatures in clonal whole-exome sequencing (WES, blue) mutations and exome-
restricted whole-genome sequencing (WGS, orange). (b) Scatter plot showing high 
concordance (Spearman’s correlation) between mutational signatures identified in 
clonal WES mutations and exome-restricted WGS. Flat signatures include COSMIC 
signatures 3, 5, and 8. Sig, signature. 

 

r = 1, P < 2.2 × 10
-16
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a CoMMpass exome mutations 

Walker et al. exome mutations 

r = 0.86, P = 0.014 

Figure 4.6: Concordance between CoMMpass and Walker et al.2 exome 
single nucleotide variants mutational signatures. (a) Cumulative mutational 
contributions of major COSMIC mutational signatures in exome variants from 
CoMMpass (blue, n = 874) and Walker et al. exome study (orange, n = 463); and (b) 
Scatter plot showing high concordance (Spearman’s correlation) between mutational 
signatures identified in CoMMpass and Walker’s exome mutations. Flat signatures 
include COSMIC signatures 3, 5, and 8. Sig, signature. 

Table 4.3: Association between major COSMIC SNV and de novo SV 
signatures (Spearman's correlation Q-values). 
Rearrangment 

signatures Signature 1 Signature 2 Flat signatures Signature 9 Signature 13 Signature 16 Signature 30

RS1 9.17E-01 6.26E-01 5.48E-01 6.26E-01 9.17E-01 9.83E-01 8.38E-01
RS2 9.83E-01 8.38E-01 9.83E-01 9.03E-01 5.48E-01 9.17E-01 6.58E-02
RS3 8.78E-01 8.39E-01 9.57E-01 8.39E-01 5.48E-01 8.39E-01 8.39E-01
RS4 9.57E-01 8.39E-01 5.48E-01 9.17E-01 5.48E-01 5.48E-01 7.41E-01
RS5 9.57E-01 5.48E-01 8.38E-01 5.48E-01 8.38E-01 8.89E-01 6.58E-02
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4.3.3 Influence of DNA replication and transcription on mutational 
signatures 

The impact of DNA replication and transcription on mutational signatures was 

broadly consistent with observations previously made in analyses of other 

cancers92, 223, 231. Specifically, an overall increased mutation rate in late-

replicating regions was shown (P < 1 × 10-4) (Table 4.4, Figure 4.7a), with the 

exception of signature 13 having higher mutation rate in early-replicating regions 

(P < 1 × 10-4, Table 4.5, Figure 4.8), consistent with generalized replication time-

dependent DNA damage mechanisms that operate in other cancers such as 

those of the breast223 and liver92. The difference in how replication timing 

influences mutation rates in signatures 2 and 13, both of which are associated 

with APOBEC activity, suggests they are intrinsically different replication-linked 

mutational processes223. 

Similarly, as previously documented, strong replicative strand asymmetry (>30% 

imbalances)223  was shown with respect to signatures 2 (Q = 4.0 × 10-16) and 13 

(Q = 4.0 × 10-16)  with higher mutation proportion in the lagging strand (Figure 

4.7b). These findings are consistent with APOBEC activity primarily affecting 

lagging strands.  

Overall, increased mutation rate was associated with increased transcription, 

suggesting the mutagenic role of the transcriptional process in MM (Figure 4.7c). 

This contrasts markedly to hepatocellular carcinoma92, suggesting that 

transcription-associated mutagenesis may overwhelm transcription-coupled 

repair in MM232. Moreover, strikingly elevated mutation rates of both SNVs and 

indels were shown for highly expressed genes (Figure 4.7c). A number of these 

highly expressed genes (i.e. FPKM > 100), which are also frequently mutated, 

including EGR1233, XBP1234, BTG2235, DDX5236, and NFKBIA5, have well-

established roles in plasma cell differentiation and MM. The strong replicative, 

but weak transcriptional mutational asymmetry (Figure 4.7d) seen in MM is 

consistent with the mutual exclusivity trend of replicative and transcriptional 

asymmetries shown in many cancers231. 
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Table 4.4: Mutation rate (SNV mutations/Mb) and DNA replication time 
 

 

 
Table 4.5: Major COSMIC mutational signatures and DNA replication time.  

     Flat signatures include COSMIC signatures 3, 5, and 8. 
 

  

DNA replication time deciles WGS mutation rate (mutations/Mb) WES mutation rate (mutations/Mb)
1 (Earliest) 0.214 0.518
2 0.237 0.440
3 0.278 0.445
4 0.292 0.489
5 0.330 0.524
6 0.377 0.515
7 0.479 0.599
8 0.682 0.666
9 0.868 0.834
10 (Latest) 0.901 1.141
Slope (mutations/decile) 80 59
P -value <1.0E-4 <1.0E-4

Slope (mutations/decile) Q -values Slope (mutations/decile) Q -values
Signature 1 0.433 <1.0E-4 13.191 <1.0E-4
Signature 2 5.426 <1.0E-4 3.717 <1.0E-4
Flat signatures 12.887 <1.0E-4 15.548 <1.0E-4
Signature 9 52.430 <1.0E-4 7.037 <1.0E-4
Signature 13 0.012 <1.0E-4 -2.179 <1.0E-4
Signature 16 3.529 <1.0E-4 4.117 <1.0E-4
Signature 30 3.780 <1.0E-4 1.520 <1.0E-4

COSMIC signatures WGS WES
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Figure 4.7: Relationship between replication and transcription in mutational processes. (a) Mutation rates across different 
DNA replication timing bins for SNVs. WGS mutation rate (blue) was estimated from low-coverage WGS data (6–12×). WES mutation rate 
(orange) was estimated from high-coverage WES data (120-150×) with variants called by at least two variant callers (b) Proportion of 
mutations on leading and lagging strands per signature based on WGS data. Asterisks indicate significant asymmetry (Q < 0.05 and strand 
imbalances >30%). (c) Relationship between transcriptional level and mutation rate. The range of number of genes across all samples 
included in each FPKM category (from low to high gene expression) are category 1: 4062 - 6800 (median 4209); category 2: 1323 - 4062 
(median 3914); category 3: 4060 - 4062 (median 4061); category 4: 4060 - 4061 (median 4061); category 5: 4062. Error bars represent 
the 95% confidence intervals (d) Proportion of mutations on transcribed and non-transcribed strands across major signatures based on 
WES data. WGS, whole-genome sequencing; WES, whole-exome sequencing; SNVs, single nucleotide variants. FPKM, fragments per 

               



119 
 

 
 

 

  

 

  

  

  

   

C
O

SM
IC

 S
ig

na
tu

re
 1

 

WGS WES 

C
O

SM
IC

 S
ig

na
tu

re
 2

 

M
ut

at
io

ns
/M

b 

Early to late replicating timing deciles Early to late replicating timing deciles 

Figure 4.8: Correlation between DNA replication timing and SNV mutation 
rates per major COSMIC signatures. Flat signatures include COSMIC signatures 
3, 5, and 8. 
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4.3.4 Mutational signatures in coding and non-coding regions 

A significant difference in all mutational signatures within coding and non-coding 

regions was shown (Figure 4.9), implying different genomic regions are subject 

to specific mutational processes, consistent with earlier observations213. AID-

attributed signature 9 predominates in non-coding regions, whereas exonic 

mutations are dominated by signatures 1, 2, 13 implicating aging and APOBEC 

signatures as important.  

 

4.3.5 Relationship between mutational signatures and kataegis 

Local hypermutated regions of tumour genomes, or kataegis, has been observed 

in MM5, 237 and other B-cell malignancies87. I examined COSMIC mutational 

signatures contributing to kataegis (defined on the basis of average inter-

mutation distance ≤ 1 Kb88, 91; Table 4.6), which were detected in 9% of samples 

(71/874). I did not observe significant and consistent enrichment of mutational 

contribution at kataegis foci compared to other mutations in tumours with and 

without kataegis detected (Table 4.7). I identified 70 genes disrupted by kataegis 

(Table 4.8), including CCND1, CCND3, MAF, and FZD2 which are often affected 

by chromosomal rearrangements2, 61. Globally, 62% of kataegis foci co-localize 

with 5% of somatic structural arrangement sites (Figure 4.10), consistent with 

previous finding that most genomic rearrangements do not feature kataegis in 

nearby regions87. 

 

4.3.6 Mutational signatures and myeloma subgroups 

Significant association between specific mutational signatures and MM 

subgroups was observed (Table 4.9). Signature 1 was enriched in HD MM (Q = 

3.2 × 10-4) consistent with the correlation between age and frequency of HD238 

(Table 4.9). APOBEC-attributed signatures 2 and 13 were enriched in MAF-

translocation subgroups - t(14;16) (Q = 1.7 × 10-15 and Q = 3.5 × 10-19 

respectively), t(14;20) (Q = 1.4 × 10-3 and Q = 6.4 × 10-6 respectively) - and to a 

lesser extent in t(4;14) (only signature 2, Q = 9.3 × 10-6) consistent with previous 

reports4, 84. Flat COSMIC signatures, attributable to DNA repair deficiency, were 
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enriched in t(11;14) MM (Q = 3.3 × 10-4).  An enrichment of non-clustered 

deletions, large-scale tandem duplications, and inversions RS1 (Q = 3.8 × 10-6); 

and clustered translocation RS2 (Q = 0.010) signatures was observed in t(4;14) 

MM (Table 4.10). Although speculative it is possible that the t(4;14) translocation, 

which leads to up-regulation of histone methyltransferase (MMSET), may affect 

genomic instability through some as yet undisclosed epigenetic mechanism.   

The links between established prognostic mutational events (1p deletion, 1q gain, 

17p deletion, and TP53 mutations) with mutational signatures were further 

explored (Table 4.11). Associations between chromosome-arm events at 1p and 

1q with COSMIC signatures 2, 13, and RS1 (Q < 0.05), and between TP53 

mutations tumours with RS1 (Q = 0.033) and RS2 (Q = 7.4 × 10-3) raising the 

possibility of causal relationships. 
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Figure 4.9: Contribution of each single nucleotide variant mutational 
signature in coding (blue) and non-coding (orange) regions. Flat signatures 
include COSMIC signatures 3, 5, and 8. Sig, signature. 

 

Table 4.6: Mutational contribution at exonic kataegis foci. Flat signatures 
include COSMIC signatures 3, 5, and 8. 
 

COSMIC signatures Mutational contribution (%)
Signature 1 19.635
Signature 2 27.892
Flat signatures 20.813
Signature 9 6.719
Signature 13 16.368
Signature 16 5.414
Signature 30 3.158
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Table 4.7: Enrichment of mutational signatures at kataegis foci. COSMIC signatures contribution was compared at kataegis foci. 
 

 
 

  

COSMIC Signature Kataegis mutations 
mean

Other mutations in 
tumours without 

kataegis detected mean
Q -value

Other mutations in 
tumours with kataegis 

detected mean
Q -value

Signature 1 0.143 0.235 4.63E-15 0.151 7.09E-16
Signature 2 0.203 0.136 1.32E-19 0.325 4.32E-23
Flat signatures 0.151 0.164 8.53E-01 0.084 2.22E-36
Signature 9 0.049 0.058 8.53E-01 0.033 1.86E-12
Signature 13 0.119 0.062 5.21E-13 0.125 6.94E-22
Signature 16 0.039 0.042 3.33E-03 0.024 1.40E-27
Signature 30 0.023 0.021 8.53E-01 0.021 1.21E-01
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Figure 4.10: Examples of kataegis plots (a) MMRF 1579: the kataegis focus on chromosome 1 and 22 detected co-localize with del 
1p and an inversion on chromosome 12 respectively; (b) MMRF 2186: the kataegis foci on chromosome 11 co-localises with t(11;14) 
(q13;q32). Bolder arrows indicate regions with higher confidence being identified as kataegis. 
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Table 4.8: Genes affected by kataegis and their frequency 
 

 

Gene Number of affected 
samples Gene Number of affected 

samples
BCL7A 3 EGLN1 1
CCND1 3 WFDC9 1
OR1S2 2 ZNF292 1
OR10G8 2 SLC44A2 1
NFKB2 2 CLNK 1
MAF 2 RPS11 1
CCND3 2 hsa-mir-150 1
WNT2 1 C11orf74 1
OR5AR1 1 DTX1 1
OSGIN2 1 SHANK2 1
RSPRY1 1 PSD 1
DEF8 1 ZBTB39 1
SPTLC2 1 MERTK 1
CLSTN3 1 ZRANB3 1
TTC40 1 ERC1 1
PRR14L 1 AEN 1
CREBRF 1 COL1A1 1
INPP4B 1 PLEKHG1 1
ZFP36L1 1 FMNL1 1
WNT5B 1 FZD2 1
RHCE 1 SDK2 1
IL17RA 1 MYO1E 1
ATG16L1 1 FAM81A 1
DOC2A 1 BIRC3 1
STAT5B 1 VPS8 1
RUNDC3A 1 ARHGAP27 1
BMP6 1 CTDSP2 1
MUC16 1 SYBU 1
TECPR2 1 PPRC1 1
NAV2 1 ICK 1
AKR1C1 1 MAX 1
AKR1C2 1 NLRC5 1
KIAA1456 1 GAPVD1 1
RNF150 1 YIPF2 1
TYMP 1 C19orf52 1
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Table 4.9: Association of COSMIC mutational signatures in MM subgroups. (a) Summary statistics, in bold: significant values (Q < 0.05); 
and (b) summary of enrichment and the associated aetiologies. OR, odd ratio. Sig, Signature. MYC, t(8;14) MYC-translocation subgroup. HD, 
Hyperdiploid. NA, not available.  

 

 

 

Subgroup Signature enrichment Suggested aetiologies 

Hyperdiploid Signature 1 Aging 

t(11;14) Flat signatures Potentially DNA repair deficiency 

t(4;14) Signature 2, 30, and flat signatures APOBEC and potentially DNA repair deficiency 

t(14;16) Signature 2 and 13 APOBEC 

t(14;20) Signature 2 and 13 APOBEC 

MYC NA NA 

Q- value OR Q- value OR Q- value OR Q- value OR Q- value OR Q- value OR Q- values OR
HD 3.24E-04 1.978 2.92E-05 0.476 2.06E-01 0.734 2.01E-01 2.075 1.25E-04 0.205 4.15E-01 1.157 1.69E-01 1.285
t(11;14) 6.22E-01 1.147 5.59E-05 0.357 3.32E-04 3.367 2.24E-01 4.752 3.57E-01 0.516 3.57E-01 1.223 3.80E-03 0.561
t(4;14) 3.75E-08 0.084 9.30E-06 2.944 3.26E-02 2.428 2.31E-01 Inf 3.68E-01 0.412 2.10E-01 1.420 1.88E-03 2.114
t(14;16) 2.77E-01 0.452 1.74E-15 51.011 1.69E-03 0.258 8.97E-08 0.037 3.45E-19 68.171 5.37E-02 0.431 2.99E-05 0.130
t(14;20) 7.82E-01 1.394 1.40E-03 12.116 2.77E-01 0.438 5.07E-02 0.092 6.37E-06 39.343 7.92E-01 1.526 2.49E-02 0.105
MYC 1.62E-01 1.477 1.00E+00 0.974 2.13E-01 0.678 7.92E-01 1.570 1.00E+00 0.962 6.97E-01 0.897 2.01E-01 0.730

Sig16 Sig30Subgroups Sig1 Sig2 Flat signatures Sig9 Sig13

a 

b 
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Table 4.10: Association of myeloma subgroups and structural rearrangement signatures (RS) 
 

 

Table 4.11: Association of established poor prognostic markers and mutational signatures. (a): COSMIC signatures and (b) rearrangement 
signatures (RS). Sig, signature. 

 

 
 

 

 

Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR
HD 2.93E-01 1.31 7.56E-02 0.68 1.00E+00 0.99 4.70E-01 1.40 1.00E+00 1.01
t(11;14) 3.14E-05 0.41 8.16E-02 1.56 8.42E-01 0.83 2.06E-01 2.06 9.24E-01 1.27
t(4;14) 3.76E-06 5.28 1.01E-02 2.04 1.97E-01 1.59 6.10E-01 0.69 1.00E+00 1.11
t(14;16) 1.00E+00 1.00 8.16E-02 2.45 8.95E-01 1.31 8.16E-02 0.32 9.91E-01 0.77
t(14;20) 8.84E-01 0.58 1.00E+00 0.89 1.00E+00 0.71 9.24E-01 0.87 1.00E+00 Inf
MYC 9.43E-01 0.90 5.15E-01 1.30 8.84E-01 1.15 1.00E+00 1.08 7.44E-01 1.63

Subgroups RS1 RS2 RS3 RS4 RS5

a 

b 

Q- value OR Q- value OR Q- value OR Q- value OR Q- value OR Q- value OR Q- value OR
1p deletion 3.59E-01 0.75 2.41E-06 2.50 3.62E-01 1.33 3.62E-01 0.69 1.83E-02 2.62 3.59E-01 0.81 3.62E-01 1.17
1q gain 5.46E-04 0.51 5.39E-18 4.24 4.60E-02 1.59 7.70E-01 0.76 4.60E-02 2.11 9.00E-01 0.96 1.00E+00 1.00
17p deletion 4.69E-01 0.00 4.69E-01 2.98 6.61E-01 0.74 5.27E-01 0.30 5.27E-01 2.34 6.21E-01 0.66 5.27E-01 2.29
TP53  mutations 6.04E-01 1.43 7.44E-02 2.45 6.04E-01 2.09 8.57E-01 Inf 6.04E-01 1.96 8.63E-01 0.93 8.57E-01 0.86

Sig16 Sig30Prognostic 
events

Sig1 Sig2 Flat signatures Sig9 Sig13

Q- value OR Q- value OR Q- value OR Q- value OR Q- value OR
1p deletion 1.96E-05 2.61 1.26E-01 1.37 7.12E-01 1.12 6.30E-02 0.55 1.00E+00 1.04
1q gain 1.47E-04 1.99 1.18E-01 1.36 2.38E-01 1.27 2.39E-01 1.40 1.00E+00 1.02
17p deletion 2.10E-01 Inf 2.10E-01 3.21 9.04E-01 1.24 9.04E-01 Inf 1.00E+00 Inf
TP53  mutations 3.26E-02 3.36 7.42E-03 3.12 2.45E-01 0.56 3.26E-02 0.36 2.16E-01 0.46

Prognostic 
events

RS1 RS2 RS3 RS4 RS5
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4.3.7 Mutational signatures and driver genes 

To identify the aetiological mutational processes underlying driver mutations in 

MM, mutational contribution in driver genes was compared to other exonic 

mutations. Overall, the same diversity of processes in driver mutations was seen 

as in other coding mutations, but with differences: lower contribution of signatures 

2 and 13; and higher contribution of signatures 1, 9, 16, 30, and flat signatures in 

coding regions of driver genes, compared to other exonic mutations (Figure 4.11). 

Notably, an over-representation of signatures reflective of aging in CCND1 and 

DNAH5 mutations, and AID in EGR1 mutations was observed (Table 4.12, Figure 

4.11). In contrast, a relative under-representation of signatures 2 and 13 suggests 

APOBEC mutations are ubiquitous mutational processes and they do not 

specifically affect driver genes. Driver genes were replicated earlier than other 

coding genes (P < 2.2 × 10-16, Wilcoxon rank-sum test) and I therefore assessed 

whether this difference could explain enrichment of the signatures. APOBEC 

signature 2 is enriched in late replicating regions (Figure 4.8), hence the tendency 

of driver genes to be replicated early may explain the lower frequency of signature 

2 mutations associated with driver genes. Signatures 1, 9, 16, 30, and the flat 

signatures were also associated with late replicating regions (Figure 4.8) but 

conversely were more frequently associated with driver gene mutations. To test 

if the enrichment of mutational processes in driver genes were due to positive 

selection of certain mutations, I excluded all mutations that occurred at the exact 

same position in multiple tumours (46% of mutations) and repeated the analysis. 

Exclusion of recurrent mutations did not change the overall results, inferring that 

positive selection of specific mutations did not bias the analysis. No significant 

transcriptional strand bias across mutational signatures was observed (Figure 

4.7d), suggesting that the differences in mutational contribution between driver 

genes and other exonic mutations are unlikely to be influenced by transcription.
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Figure 4.11: Mutational signatures associated with driver genes. (a) Cumulative mutational contribution of mutational signatures across 50 
MM driver genes1, 3-5 (blue, 1679 mutations in total) and other exonic mutations (orange). (b) Normalised cumulative mutational contribution of 
signatures with top ten contribution for most frequently mutated MM driver genes (+) versus other mutations (-) in tumours with the corresponding 
driver gene being mutated: KRAS (n = 247), NRAS (n = 204), DIS3 (n = 104), TRAF3 (n = 83), CCND1 (n = 78), BRAF (n = 70), FAM46C (n = 70), 
EGR1 (n = 65), TP53 (n = 52), SP140 (n = 30), PRDM1 (n = 26), ATM (n = 19); n, number of mutations. Flat signatures include COSMIC signatures 
3, 5, and 8. 
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Table 4.12: Driver genes significantly preferentially targeted by certain mutational processes (Q < 0.05). wt, wild-type. 
 
 

 

Q -values Mean mutated gene Mean other mutations Q -values Mean mutated gene Mean other mutations
1 2.46E-19 0.224 0.079 3.86E-02 0.224 0.171
2 7.23E-18 0.030 0.467 3.41E-07 0.030 0.204

13 2.11E-16 0.006 0.153 2.00E-03 0.006 0.102
16 5.23E-15 0.086 0.022 8.94E-04 0.086 0.019
1 9.73E-12 0.263 0.093 3.15E-02 0.263 0.180
2 1.14E-11 0.088 0.422 2.79E-02 0.088 0.179
2 1.24E-08 0.015 0.370 3.54E-04 0.015 0.212
9 9.06E-04 0.093 0.063 1.12E-02 0.093 0.062

13 1.11E-07 0.015 0.115 1.86E-03 0.015 0.106
FAM46C 13 5.91E-12 0.042 0.195 2.79E-02 0.042 0.087

HIST1H1E 13 7.57E-05 0.037 0.139 2.73E-02 0.037 0.104
MAX 16 5.09E-85 0.146 0.004 5.46E-03 0.146 0.044

2 3.59E-02 0.111 0.189 2.41E-02 0.111 0.233
13 3.81E-03 0.054 0.096 2.77E-02 0.054 0.108

DNAH5

EGR1

TP53

Mutated gene vs gene-mutated tumours Mutated gene vs gene-wt tumoursGene Signature

CCND1
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4.3.8 Prognostic impact of mutational signatures    

The prognostic impact of mutational signatures was next investigated using the 

prospective data from CoMMpass. The APOBEC signature has previously been 

reported to be associated with a worse patient outcome84, 230. In this study after 

adjusting for age, sex, translocation status, chromosome-arm events, and TP53 

status no statistically significant association was shown suggesting that APOBEC 

status does not represent an independent biomarker of patient outcome; 

progression free survival (PFS: hazard ratio [HR] = 2.45, 95% confidence interval 

[CI] = 0.94 – 6.37, P = 0.066) and overall survival (OS: HR = 2.81, CI = 0.96 – 

10.10, P = 0.10) (Table 4.13). I next explored whether incorporating information 

on major SNVs and SVs mutational signatures could further enhance the 

prediction of patient outcome after taking into account of the established 

prognostic factors. Unsupervised hierarchical clustering provided evidence for 7 

distinct groups (A-G) associated with both PFS (log-rank P = 3.4 × 10-4) and OS 

(log-rank P = 0.011) (Figure 4.12, Figure 4.13, Table 4.14); with group C being 

enriched for hyperdiploid MM, group G is featuring tumours with 1p deletion, while 

group D being characterised by APOBEC mutation, enrichment for MAF-

translocation subgroups, 1p deletion, and 1q gain (Table 4.15). Post-hoc 

delineation allowed stratifications of patients in 7 groups into low- (A, B, C, and 

E) and high-risk groups (D, G, and F) (Table 4.16). Classification of MM based 

on mutational signatures captured by these 7 groups are independent prognosis 

factors. Notably, group F was independently associated with adverse prognosis 

(PFS: HR = 1.95, 95% CI = 1.35 – 2.81, P = 3.3 × 10-4; OS: HR = 1.47, 95% CI = 

1.02 – 2.13, P = 0.039) (Table 4.17), despite not being associated with the high-

risk features of APOBEC, t(14;16)/t(14;20), 1p/1q/17p chromosome-arm events 

or TP53 mutation status; but was typified by non-clustered structural 

rearrangements (Figure 4.12a, Figure 4.13, Table 4.14). 
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Table 4.13: Multivariable Cox regression analysis of progression free and overall survival with APOBEC mutational contribution. 
HR, hazard ratio. 
 

  

HR Lower 95% Upper 95% P -value HR Lower 95% Upper 95% P -value
APOBEC mutation 2.45 0.94 6.37 6.62E-02 2.81 0.96 10.10 1.04E-01
Age 1.04 1.02 1.05 4.18E-08 1.04 1.03 1.06 3.49E-06
Male/Female 1.57 1.18 2.10 2.03E-03 1.97 1.30 3.00 1.54E-03
Hyperdiploidy 0.93 0.65 1.33 6.99E-01 1.09 0.68 1.76 7.12E-01
t(11;14) 1.23 0.79 1.92 3.49E-01 0.80 0.42 1.54 5.09E-01
t(4;14) 1.06 0.69 1.64 7.85E-01 0.93 0.51 1.70 8.17E-01
t(14;16) 0.67 0.28 1.64 3.83E-01 0.81 0.25 2.58 7.17E-01
t(6;14) 1.04 0.32 3.35 9.44E-01 1.29 0.30 5.44 7.33E-01
t(14;20) 0.87 0.26 2.90 8.15E-01 1.31 0.36 4.84 6.82E-01
MYC -translocation 1.65 1.17 2.33 3.93E-03 1.39 0.87 2.24 1.69E-01
1p del 1.28 0.94 1.75 1.20E-01 1.89 1.26 2.82 1.89E-03
1q gain 1.68 1.27 2.20 2.15E-04 1.59 1.09 2.32 1.64E-02
17p del 0.62 0.15 2.51 5.00E-01 0.52 0.07 3.80 5.23E-01
TP53  mutations 1.77 1.05 2.96 3.10E-02 1.59 0.78 3.24 1.98E-01

Progression Free Survival Overall survivalVariates
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Figure 4.12: Integrative clusters based on mutational signatures and patient prognosis. (a) Heatmap showing proportions of 
rearrangement signatures and major COSMIC signatures in unsupervised hierarchical clusters. Flat signatures include COSMIC signatures 3, 5, and 
8. The lower panel shows distribution of translocations, prognostic chromosome-arm events, and TP53 non-synonymous mutations across all samples. 
(b) Progression free survival and (c) overall survival across different cluster groups. The global P-values across all cluster groups were calculated to 
assess whether there is survival difference between groups. 
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Figure 4.13: Contribution of mutational signatures in each of the unsupervised 
hierarchical clustered subgroups (A – G). (a) Structural rearrangements and (b) COSMIC 
single nucleotide variant signatures (>1% contribution across all subgroups). RS, structural 
rearrangement signatures. Sig, signature. 

 



135 
 

 
Table 4.14: Summary of characteristics of the seven cluster subgroups. SV, 
structural variant; SNV, single nucleotide variant. 
 

Cluster n SV features SNV 
features 

Subgroup 
association 

Known 
prognostic 

events 

A 155 Clustered 
translocations  

Enriched for 
t(11;14) and 

t(4;14)  

TP53 
mutations 

B 172 

Non-clustered 
small-scaled 

deletions & tandem 
duplications 

  

 

C 138 Mixture of non-
clustered SVs  Enriched for 

hyperdiploidy 
 

D 35 Mixture of non-
clustered SVs 

APOBEC 
mutations 

Enriched for 
t(14;16) and 

t(14;20) 

1p deletion 
and 1q 

gain 

E 99 Non-clustered 
translocations    

F 97 Mixture of non-
clustered SVs    

G 154 

Large-scaled non-
clustered deletions, 

tandem 
duplications, and 

inversions 

 Enriched for 
t(4;14) 1p deletion 
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Table 4.15: Association of myeloma subgroups and known prognostic events with unsupervised hierarchical clusters. OR, odd 
ratios. In bold, significant values. 
 

 

Table 4.16: Multiple pair-wise comparisons between unsupervised hierarchical clusters using log-rank test (P-values).  (a) Overall 
survival and (b) progression-free survival. In bold: significant values. 
   

  

  

a b 

Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR Q -value OR
A 9.08E-01 0.96 2.69E-02 1.86 1.36E-02 2.20 6.19E-01 0.48 4.76E-01 0.00 6.53E-01 1.21 8.94E-01 1.05 6.06E-01 1.20 1.00E+00 1.12 4.58E-02 2.67
B 3.58E-01 1.32 8.94E-01 1.05 1.48E-01 0.52 5.89E-02 0.13 4.76E-01 0.00 8.27E-01 1.11 2.42E-01 0.67 2.58E-01 0.73 8.26E-01 0.44 4.76E-01 0.48
C 4.60E-02 1.66 7.90E-01 0.86 6.34E-01 0.74 6.69E-01 0.53 6.34E-01 0.00 1.00E+00 0.99 1.05E-01 0.56 2.14E-02 0.54 6.34E-01 0.00 7.06E-01 0.63
D 1.33E-02 0.29 2.13E-01 0.27 6.53E-01 0.46 5.27E-20 81.86 1.42E-05 44.23 1.00E+00 0.83 3.37E-02 2.82 1.08E-02 3.52 6.19E-01 2.63 4.52E-01 2.22
E 8.51E-01 1.09 4.76E-01 1.39 1.44E-01 0.39 1.44E-01 0.00 7.85E-02 5.61 7.42E-01 1.19 5.09E-01 0.71 7.96E-01 0.90 6.19E-01 1.91 6.53E-01 0.44
F 9.52E-01 0.97 1.29E-01 1.78 7.82E-01 0.80 1.44E-01 0.00 7.82E-01 0.00 5.32E-01 0.65 8.94E-01 0.92 7.82E-01 1.14 7.82E-01 0.00 7.82E-01 1.27
G 6.34E-01 1.19 2.14E-02 0.43 1.09E-02 2.35 8.94E-01 1.10 4.76E-01 0.00 6.53E-01 1.22 1.09E-02 1.98 3.12E-01 1.34 2.58E-01 3.06 7.96E-01 0.72

MYC -translocation 1p deletion 1q gain 17p deletion TP53  mutationsCluster HD t(11;14) t(4;14) t(14;16) t(14;20)

Clusters A B C D E F
B 5.51E-02 - - - - -
C 1.15E-01 8.09E-01 - - - -
D 3.51E-01 1.40E-02 3.30E-02 - - -
E 6.92E-02 7.82E-01 6.61E-01 2.01E-02 - -
F 4.95E-02 9.50E-05 7.00E-04 5.35E-01 4.20E-04 -
G 8.51E-01 2.19E-02 4.78E-02 3.49E-01 2.90E-02 6.01E-02

Clusters A B C D E F
B 3.52E-01 - - - - -
C 5.71E-01 7.10E-01 - - - -
D 6.21E-02 7.10E-03 1.88E-02 - - -
E 9.69E-02 3.78E-01 2.66E-01 2.30E-03 - -
F 1.42E-01 1.98E-02 4.92E-02 4.73E-01 5.40E-03 -
G 5.12E-01 9.79E-02 1.22E-01 1.86E-01 2.41E-02 5.20E-01
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Table 4.17: Multivariable Cox regression analysis of progression free and overall survival for subgroup F versus other subgroups. 
In bold, significant values. HR, hazard ratio. 
 

 

 

  

HR Lower 95% Upper 95% P -values HR Lower 95% Upper 95% P -values
Subgroup F/Non-F 1.95 1.35 2.81 3.32E-04 1.47 1.02 2.13 3.89E-02
Age 1.04 1.02 1.05 7.75E-08 1.03 1.02 1.05 8.07E-07
Male/Female 1.55 1.16 2.07 2.90E-03 1.52 1.14 2.02 4.59E-03
Hyperdiploidy 0.93 0.65 1.32 6.66E-01 0.96 0.66 1.39 8.18E-01
t(11;14) 1.25 0.81 1.94 3.17E-01 1.17 0.74 1.83 5.05E-01
t(4;14) 1.09 0.70 1.68 7.08E-01 0.92 0.59 1.44 7.17E-01
t(14;16) 0.73 0.29 1.80 4.92E-01 0.75 0.29 1.96 5.63E-01
t(6;14) 1.02 0.32 3.26 9.75E-01 0.99 0.31 3.21 9.89E-01
t(14;20) 0.95 0.28 3.18 9.28E-01 0.80 0.23 2.83 7.31E-01
MYC -translocation 1.75 1.24 2.47 1.47E-03 1.59 1.12 2.25 9.18E-03
APOBEC mutation 2.44 0.91 6.56 7.64E-02 2.24 0.77 6.52 1.37E-01
1p del 1.34 0.98 1.83 7.04E-02 1.38 1.00 1.89 4.66E-02
1q gain 1.64 1.24 2.16 4.49E-04 1.60 1.21 2.11 9.22E-04
17p del 0.68 0.17 2.78 5.91E-01 0.79 0.19 3.24 7.46E-01
TP53  mutations 1.73 1.03 2.90 3.73E-02 1.97 1.17 3.33 1.12E-02

Progression Free Survival Overall survivalVariates
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4.4 Discussion 

The analysis of over 800 myeloma genomes has afforded a global overview of 

the mutational processes in MM tumorigenesis. A major finding of this study is 

that a combination of signatures linked to aging, APOBEC/AID and indicative 

DNA repair deficiency - account for around 80% of mutations in MM. Despite the 

difficulty of assigning flat signatures (signatures 3, 5, and 8)178, 239, their detection 

of such profiles in large patient series supports the role of defective DNA repair 

in MM. By utilizing both WES and WGS data, I was able to extract five novel 

structural rearrangement signatures and identify differential prevalent mutational 

processes in coding (aging and APOBEC) and non-coding regions (AID), 

consistent with a previous report213. The work supported previous findings213 in 

implying an early role for AID in shaping the MM mutational landscape. I also 

identified new and validated previously reported subgroup associations with 

mutational signatures, allowing further categorization of MM beyond simple 

translocation status and providing additional insight in the aetiological processes 

implicated in tumorigenesis (Figure 4.14).  

Mutations do not occur uniformly over the genome and local mutation rates are 

modulated by replication, transcription, and chromatin organisation223. An 

enrichment of somatic mutations in late replicating regions, as seen across 

several cancers240, and highly expressed regions was observed. Previous 

analyses which have sought to establish the mutational profile of myeloma 

genomes have been based on data solely from exome sequencing projects. Here 

I sought to provide a more comprehensive analysis however, I acknowledge that 

the low coverage of CoMMpass WGS raises the possibility that the global 

mutation rate may have been underestimated. The strong replicative asymmetry 

observed is consistent with mutations in MM being predominantly associated with 

APOBEC-family of mutations231. In addition, I identified that coding drivers are 

likely to be originated from a number of mutational processes including aging and 

DNA repair deficiency. In contrast, while APOBEC enzymes appear to act more 

ubiquitously within coding regions, they do not specifically affect coding drivers.  

The different MM translocation subgroups showed striking differences in their 

mutational signatures, reflective of the cellular processes driving respective 

clonal expansions (Figure 4.14). As previously reported, t(14;16) and t(14;20) MM 
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were enriched with APOBEC signatures 2 and 134, 84. This is a consequence of 

the over-expression of APOBEC genes, specifically APOBEC3A and 

APOBEC3B, mediated through the over-expression of MAF transcription 

factors84. The t(4;14) subgroup was also enriched with APOBEC mutational 

patterns, although only for signature 2 and to a lesser extent as compared to 

MAF-translocation subgroups. Since signatures 2 and 13 are reflective of 

different mutational processes223 I speculate that the mutational processes 

associated with t(4;14) are likely to be different from those with MAF-translocation 

subgroups. In contrast signatures indicative of homologous recombination and 

aging were associated with t(11;14) and HD respectively. DNA breaks 

unsuccessfully repaired due to defective DNA repair  may facilitate the generation 

of chromosomal translocations241. Because of the flat structure of signatures 3, 5 

and 8, robust insight into the aetiological contribution of homologous 

recombination deficiency to MM tumorigenesis requires assiduous signature 

fitting and adjustment for confounding covariates239. The molecular mechanisms 

responsible for initiating HD in MM are unknown. However, by inference from 

childhood acute lymphoblastic leukemia242, it is likely it is a consequence of the 

simultaneous gain of chromosomes in a single abnormal cell division. Cells failing 

to execute programmed cell death in response to mitotic failure are likely to divide 

asymmetrically, resulting in generation of aneuploidy cells243. The association 

between aging with increased cell division errors244 and decreased apoptosis245, 

further supports a relationship between hyperdiploid MM and aging. Signatures 

defined by large-scale structural aberrations were associated to varying degrees 

with MM subgroups but clustered translocations and non-clustered deletions, 

large-scale tandem duplications and inversions showed a significant association 

in t(4;14) MM. 

The APOBEC mutational signatures are inextricably linked to a high mutation 

load4, 84 and the adverse t(14;16) and t(14;20) MAF-translocation subgroups. The 

study shows that molecular classification based solely on APOBEC signatures 

do not fully differentiate the underlying genomic complexity in MM relevant to 

predicting patient outcome. Hence while APOBEC activity is an adverse 

prognostic factor in MM84, 230, using it as a sole classifier does not fully capture 

high-risk MM which with genetically unstable genome is typified by complex 
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structural variants. The findings support the need for considering other mutational 

signatures to refine prediction of patient prognosis.  

This study does, however suggest that analysis of APOBEC activity together with 

other molecular features at diagnosis should allow for the identification of high-

risk MM patients that may benefit from more intensive treatment. Collectively 

these data shed new light on the diversity of cellular processes generating 

somatic mutations in MM. Moreover, they provide a strong rationale for 

integration of mutational signatures data in conventional molecular profiling of 

patient tumours to tailor therapy.
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Figure 4.14: Contribution of major mutational processes operative in MM. This model represents differential contribution of various identified 
mutational processes in myeloma. For early mutational processes, AID has the overall largest contribution to mutational processes across all subgroups 
represented by a larger oval. For late mutational processes, major mutational processes with known aetiologies associated with aging, APOBEC, DNA 
repair defects (DRD), and AID are depicted. Larger oval sizes indicate larger relative contribution of the mutational process.
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    An enhanced genetic model of 
multiple myeloma evolutionary dynamics at 
relapse 

 

5.1 Overview and rationale 

Despite recent advances, MM is essentially an incurable malignancy, and most 

patients die from progressive disease after multiple relapses irrespective of 

treatment. Our limited knowledge of the molecular changes associated with 

relapse is a barrier to developing new therapeutic strategies to overcome drug 

resistance. Therefore, there is a need to understand the mutational spectrum, 

together with clonal dynamics and evolution from primary to relapsed tumours for 

future molecularly targeted therapy.  

To advance our understanding of MM tumour evolution and the mutational 

mechanisms that shape their history, analysis was performed on WGS of 80 

newly diagnosed MM tumour-normal pairs, of which 25 also had matched 

relapsed tumours from Myeloma XI trial patients132, in this chapter. Through 

comprehensive characterisation and comparison between MM primary and 

relapsed genomes, I identified patterns of genetic alterations acquired at relapse, 

inferred the order of mutational events, and showed that relapse is associated 

with acquisition of new mutations and clonal selection, in part shaped by patient 

therapy. I also provided evidence for distinct patterns of clonal evolution, a finding 

that has important implications in guiding future therapy choices. 
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5.2 Study design 

5.2.1 Samples and dataset 

Myeloma XI trial dataset were obtained as detailed in section 2.1.2. 

 

5.2.2 Statistical and bioinformatics analysis 

5.2.2.1 Whole genome sequencing analysis 

Quality control and sequence alignment to hg38 were performed using FastQC 

v.0.11.4/BWA v0.7.13/GATK v4.0.3.0 software as described in section 2.2.4. 

SNVs and indels were called using MuTect2 according to best practices151, using 

gnomAD139 file in GRCh38 provided as part of the GATK resource. Variants were 

filtered for cross-sample contamination, oxidation artefacts158, quality score4, and 

using a panel of normals generated from 80 germline samples. Variants with a 

germline population allele frequency > 0.1% gnomAD or in repetitive regions 

defined by UCSC were excluded. Somatic indels were excluded if they were 

supported by < 20% of tumour sample reads overlapping the position92 or were 

located within 10 base pairs of a germline indel catalogued by gnomAD. 

Reconstruction of clonal and subclonal CNVs for primary and relapsed tumours 

was conducted using Battenberg180 as described in section 2.2.11. Tumour purity 

estimated by Battenberg was compared against and corrected using Ccube183 as 

detailed in section 2.2.11.3. Somatic SVs were identified taking a consensus 

approach, as implemented by The Pancancer Analysis of Whole Genomes246 

(PCAWG), considering only variants identified by at least two of SV callers 

MANTA162 v1.2.0, LUMPY163 v0.2.13, or DELLY164 v0.7.9 (section 2.2.7.3). 

Chromothripsis was identified using ShatterSeek with default parameters169. 

Chromoplexy was detected using ChainFinder v1.0.1 with default parameters167 

and hg38 UCSC cytoband definitions 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/). Telomere length 

was estimated using Telomerecat152 with default parameters. Kataegis foci were 

identified using the KataegisPortal with default parameters excluding immune 

hypermutated regions127 (section 2.2.7.4).  
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5.2.2.2 Identifying driver mutations 

Coding drivers were identified using dNdScv with default parameters76. Non-

silent mutations in 87 established coding drivers (identified in chapter 3 and other 

studies)4, 247, and all coding genes were compared in matched primary and 

relapsed tumours. To identify non-coding drivers, promoter and CREs were 

analysed as described in section 2.2.8. Promoters were defined as intervals 

spanning 400 bp upstream and 250 bp downstream of TSS from GENCODE 

(release 25)248. CREs were defined using promoter CHi-C data generated on 

naïve B-cells154, with raw sequencing reads from EGA (accession code 

EGAS00001001911) were aligned to hg38 using HiCUP (v0.6.1)153 and 

promoter-CRE interactions were called with CHiCAGO (v1.8)155 (section 2.2.5). 

Only interactions with linear distance < 1Mb and CHiCAGO score > 5 were 

considered4. 

Recurrently mutated promoters and CREs were identified using a Poisson 

binomial model as previously described4, 172 (section 2.2.8.2), taking into account 

tumour ID, trinucleotide context, and replication timing. Replication timing with 

hg38 coordinates was estimated as the average of two B-lymphocyte replicates 

(downloaded from https://www.replicationdomain.com). For those promoters and 

CREs mutated in > 3 samples, the clustering of mutations was examined using a 

permutation approach considering the number of mutations occurring at the same 

nucleotide position as previously described4 (section 2.2.8.2). For each promoter 

and CRE, a combined P-value from the mutational recurrence and clustering 

analyses were obtained using Fisher’s method4, 171. Only CREs and promoters 

mutated in at least 3 tumours were reported. To test for the effects of focal CNV, 

focal deletion and amplification were defined from Battenberg output and size < 

3 Mb. Gene expression was compared using edgeR175 between mutated and 

unmutated samples, excluding those with CNV at the target gene4. Regulatory 

regions were only tested if they were mutated in at least two samples. P-values 

were adjusted for FDR thresholded at Q < 0.05. 

  



145 
 

5.2.2.3 Chronology of mutational events 

The relative chronological timing of SNVs and CNVs was estimated 

independently for 80 primary tumours as previously described249. For SNVs only 

driver genes mutated in > 4 samples were considered to allow reliable estimation 

of relative timing. For CNVs only large-scale autosomal events (> 3Mb) present 

in > 8 samples were considered249. Cytobands were assigned based on UCSC 

hg38 definitions. One sample (8573) displayed hyperdiploid characteristics and 

this was excluded from the analysis. Each cytoband or driver gene was ordered 

by mean of CCF from highest to lowest. The Tukey’s range test and a stepwise 

approach were used to test for difference between the means of consecutive 

cytoband/driver gene to establish distinct clonality groups249. 

 

5.2.2.4 Mapping evolutionary trajectories 

Analysis of clonality was conducted using only SNVs in diploid regions, as 

miscalled copy number states can confound such analyses. Potential neutral tail 

mutations were identified using MOBSTER184 and excluded prior to clustering 

procedure to minimise calling false positive clones. For each primary and relapse 

tumour pair, two-dimensional variant clustering was performed using a Bayesian 

Dirichlet process implemented in DPclust5, 180 (section 2.2.11). Only those 

clusters with > 1% of total mutations and > 100 SNVs were considered. Muller 

plots were generated with Timescape R package 

(http://bioconductor.org/packages/release/bioc/html/timescape.html). Clonal 

SNVs were defined as those with a CCF > 0.9185. For each cluster in primary 

tumour and matched relapse, the proportion of SNVs shared was calculated. 

 

5.2.2.5 Mutational signatures 

De novo extraction of signatures was performed on 80 primary and 25 relapse 

genomes separately using NMF implemented in Palimpsest R package179. De 

novo mutational signatures were compared and assigned to 30 COSMIC 

signatures87 as detailed in section 2.2.10.2. Signature fitting was performed using 

deconstructSigs178 (section 2.2.10.1) considering only those COSMIC signatures 
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extracted de novo, as previously recommended239. Novel signature M1 was 

primarily detected in only one tumour and therefore was not included it when 

fitting signatures92. In view of potential ambiguous assignment with respect to 

homologous recombination, the contributions of the flat profile signatures 3, 5 and 

8127, 178, 239 were combined as described in section 4.2.2.2. The Benjamini-

Hochberg FDR procedure was used to adjust for multiple hypothesis testing with 

significance thresholded at Q < 0.05. Mutational signature proportions in paired 

primary and relapse samples were compared using the chi-squared test180. 
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5.3 Results 

5.3.1 Overview of primary tumours mutational landscape 

WGS was carried out on 80 newly diagnosed MM tumour-normal pairs from the 

Myeloma XI trial, and matched relapsed tumours from 25 patients. The 80 

patients had either t(4;14) (n = 38), t(11;14) (n = 38), or t(14;16) (n = 4) MM, with 

one patient carrying both t(4;14) translocation and trisomy of chromosomes 9 and 

15 (Appendix 3). WGS resulted in a median of 38x coverage for normal samples 

(30 – 44x), 111× for primary tumours (82 – 155x), and 114x for the 25 relapsed 

tumours (102 – 156x) (Appendix 3). I began by surveying for important genetic 

alterations in the 80 primary MM tumours through considering the contribution of 

both protein-coding and non-coding SNVs and indels. As expected, significantly 

mutated genes (Q < 0.05) at presentation were DIS3, KRAS, NRAS, FGFR3, 

MAX, CCND1, TP53, IGLL5, IRF4, and PRKD2 (Table 5.1). The promoters of 17 

genes including BCL6, CXCR4, BIRC3, MYO1E, CRIP1, FLT3LG, and DPP9 

were also significantly mutated as well as 9 CREs interacting with genes including 

PAX5, BCL6, ZCCHC7, and IFNGR1 (Table 5.2, Table 5.3, Figure 5.1). Focal 

deletions of CREs resulting in decreased BIRC2 (25 fold, Q = 2.4 × 10-3) and 

IGLL5 (414 fold, Q = 1.1 × 10-3) expression were also identified (Figure 5.1). 

Chromothripsis was only observed in 3 tumours (3.8%) (Figure 5.2) affecting 

chromosomes 1q, 3, 8, 11, and 12; whereas 78% (62/80) of tumours featured 

chromoplexy. The driver genes4, 247 most commonly disrupted by chromoplexy 

were SP140, SF3B1, IDH1, and DUSP2 (Table 5.4). Overall across the 80 

tumours, high-risk subtypes MM t(4;14) and t(14;16) were associated with a 

higher number of chromoplexy events (P = 3.9 × 10-3, Wilcoxon rank-sum test) 

and shorter telomeres (P = 9.2 × 10-5) (Figure 5.3)
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Table 5.1: Significantly mutated genes identified from 80 primary tumours. (Q < 0.05). n, number. 
 

 

Table 5.2: Recurrently mutated cis-regulatory elements from 80 primary tumours. (Q < 0.05) 
 

Gene n synomynous n missesnse n nonsense n splice site n indel P -value Q -value
DIS3 0 17 0 1 0 2.22E-16 2.22E-16
KRAS 1 13 0 0 0 2.22E-16 2.22E-16
NRAS 0 15 0 0 0 2.22E-16 2.22E-16
FGFR3 0 13 0 0 0 1.18E-13 5.37E-10
MAX 0 6 0 0 0 1.52E-08 5.52E-05
CCND1 2 6 0 0 0 5.94E-07 1.80E-03
TP53 1 3 1 0 1 1.74E-06 4.53E-03
IGLL5 2 5 0 0 0 2.51E-06 5.71E-03
IRF4 1 6 0 0 0 4.05E-06 8.19E-03
PRKD2 1 7 0 0 0 1.33E-05 2.42E-02

Fragment Size Target gene Number of 
mutations

Number of 
mutated 
samples

Q -value

chr9:37375175-37395285 20110 PAX5; AL161781.2 27 15 2.15E-11
chr9:37369119-37373681 4562 PAX5; AL161781.3 20 13 1.89E-10
chr9:37406897-37411656 4759 PAX5; AL161781.4 14 11 1.89E-10
chr9:37025270-37031362 6092 ZCCHC7; AL512604.2 14 8 1.02E-09
chr3:188747605-188754794 7189 BCL6; LPP; LPP-AS2 16 11 2.00E-09
chr3:187746361-187747275 914 BCL6; AC022498.2; LPP; LPP-AS1; LPP-AS2; miR28 6 4 3.92E-04
chr15:74772989-74775174 2185 CSK; FAM219B; MPI; SEMA7A 6 3 1.41E-02
chr17:68772663-68776750 4087 ABCA10; ABCA5 5 4 3.10E-02
chr6:137413091-137415723 2632 IFNGR1 4 3 3.10E-02
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Table 5.3: Recurrently mutated promoters from 80 primary tumours. (Q < 
0.05) 
 

Fragment Size Target 
gene

Number of 
mutations

Number of mutated 
samples Q -value

chr3:187745209-187745859 650 BCL6 9 7 1.43E-15
chr3:187745187-187745837 650 BCL6 11 9 1.77E-15
chr2:136117487-136118137 650 CXCR4 11 6 1.15E-12
chr3:187745222-187745872 650 BCL6 7 6 3.67E-12
chr11:102317163-102317813 650 BIRC3 6 4 3.87E-11
chr15:59372277-59372927 650 MYO1E 6 5 2.08E-09
chr15:59372293-59372943 650 FAM81A 6 5 2.08E-09
chr14:105487454-105488104 650 CRIP1 5 4 2.08E-09
chr14:105487821-105488471 650 CRIP1 4 3 9.43E-08
chr14:105487784-105488434 650 TEDC1 4 3 9.43E-08
chr14:105487812-105488462 650 TEDC1 4 3 9.43E-08
chr11:102317095-102317745 650 BIRC3 4 3 1.26E-07
chr11:102317102-102317752 650 BIRC3 4 3 1.26E-07
chr3:187745477-187746127 650 BCL6 4 3 3.28E-06
chr3:187745475-187746125 650 BCL6 4 3 3.56E-06
chr19:49473852-49474502 650 FLT3LG 3 3 3.75E-06
chr19:49473828-49474478 650 FLT3LG 3 3 3.75E-06
chr19:49473834-49474484 650 FLT3LG 3 3 3.75E-06
chr19:49473836-49474486 650 FLT3LG 3 3 3.75E-06
chr19:49473807-49474457 650 FLT3LG 3 3 3.75E-06
chr11:102317084-102317734 650 BIRC3 3 3 3.75E-06
chr19:4723532-4724182 650 DPP9 3 3 3.75E-06
chr19:4723500-4724150 650 DPP9 3 3 3.75E-06
chr19:4723613-4724263 650 DPP9 3 3 3.75E-06
chr19:4723547-4724197 650 DPP9 3 3 3.75E-06
chr19:4723580-4724230 650 DPP9 3 3 3.75E-06
chr19:4723570-4724220 650 DPP9 3 3 3.75E-06
chr19:4723592-4724242 650 DPP9 3 3 3.75E-06
chr19:4723563-4724213 650 DPP9 3 3 3.75E-06
chr19:4723585-4724235 650 DPP9 3 3 3.75E-06
chr19:4723556-4724206 650 DPP9 3 3 3.75E-06
chr5:159100222-159100872 650 LINC02202 3 3 4.53E-06
chr5:159100282-159100932 650 LINC02202 3 3 4.53E-06
chr11:132211340-132211990 650 NTM 3 3 6.93E-06
chr11:132211357-132212007 650 NTM 3 3 6.93E-06
chr11:132211399-132212049 650 NTM 3 3 7.03E-06
chr5:147906240-147906890 650 C5orf46 3 3 1.36E-05
chr5:147906288-147906938 650 C5orf46 3 3 1.36E-05
chr5:147906252-147906902 650 C5orf46 3 3 1.36E-05
chr4:177442159-177442809 650 AGA 4 4 1.09E-04
chr19:10230013-10230663 650 MIR4322 5 3 6.40E-04
chr14:94475735-94476385 650 SERPINA9 5 5 1.01E-03
chr4:177442253-177442903 650 AGA 3 3 1.50E-03
chr17:58331075-58331725 650 MIR142 4 4 1.14E-02
chr19:17776226-17776876 650 FCHO1 3 3 1.17E-02
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Figure 5.1: Non-coding drivers identified in 80 primary tumours. Recurrently mutated promoters (a) and cis-regulatory elements (b). Plots 
annotated with the target genes of the most significantly mutated non-coding elements. Effect of CRE focal deletion on expression of (c) BIRC2 (n = 
2 vs n = 9) and (d) IGLL5 (n = 2 vs n = 9). Boxplots show gene expression in tumours with and without copy number alterations. **: Q < 0.001. Del, 
deletion; CRE: cis-regulatory element. 
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Figure 5.2: Chromothripsis events in primary tumours. Chromothripsis events detected in samples (a) 6016, (b) 9166, and (c) 7801.  Each 
block of diagram represents chromothripsis event at individual chromosome. For each block, the top panel indicates genomic location of the 
chromothripsis event, the middle panel shows consensus structural variants, and the bottom panel shows total copy number calls for the genomic 
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Table 5.4: Frequency of coding drivers disrupted by chromoplexy. SV, 
structural variant. 
 

 

Driver 
gene

Number of 
samples affected 
by chromoplexy

Number of samples 
affected by non-

chromoplexy SVs

Driver 
gene

Number of samples 
affected by 

chromoplexy

Number of samples 
affected by non-

chromoplexy SVs

SP140 12 7 PRKD2 1 1
DUSP2 11 6 DNAH5 1 1
SF3B1 12 7 BMP2K 2 2
IDH1 12 7 ZNF208 0 0
NRAS 5 3 RPL10 0 0
DIS3 5 3 FBXO4 2 2
TRAF3 6 4 RASA2 3 3
MAX 5 3 OR5M1 0 0
TGDS 5 3 PTH2 1 1
TBC1D29 2 0 BAX 1 1
FCF1 5 3 CELA1 4 4
TRAF2 5 3 FTL 1 1
PABPC1 2 0 OR9G1 0 0
SGPP1 5 3 TNFSF12 1 1
UBR5 2 0 FAM154B 0 0
NF1 2 0 HIST1H4H 2 2
TET2 4 2 LEMD2 2 2
NFKBIA 4 2 RPN1 3 3
ZFP36L1 5 3 HUWE1 0 0
BRAF 1 0 ZNF292 4 4
RB1 3 2 KLHL6 2 2
ACTG1 3 2 MLL3 0 0
PTPN11 6 5 ARID1A 1 1
MYH2 2 1 CREBBP 0 0
RPS3A 3 2 KMT2B 0 0
C8orf86 2 1 ATRX 0 0
KMT2C 1 0 SETD2 2 2
EP300 3 2 RFTN1 0 0
XBP1 3 2 DNMT3A 1 1
NCOR1 2 1 KDM5C 0 0
C8orf34 1 0 KDM6A 0 0
KRAS 7 7 ARID2 4 4
FAM46C 0 0 FUBP1 2 2
TP53 1 1 MAF 1 1
PRDM1 4 4 CDKN1B 6 6
EGR1 3 3 MAN2C1 1 1
ATM 1 1 NFKB2 2 2
CCND1 1 1 ABCF1 2 2
LTB 2 2 MAML2 2 2
IRF4 0 0 CDKN2C 2 2
FGFR3 0 0 MAFB 1 1
CYLD 1 1 PIK3CA 2 2
ATR 3 3 IDH2 1 1
SAMHD1 1 1
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Figure 5.3: Comparison of (a) number of chromoplexy events and (b) telomere lengths between subtypes. Boxplots show (a) 
number of chromoplexy events and (b) log2 of telomere length base pairs (bp) of high-risk subtypes t(4;14) and t(14;16) versus lower-risk t(11;14). 
**: P < 0.01, ***: P < 0.001. 
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5.3.2 Chronology of mutational events in primary tumours 

By integrating somatic mutations and copy number profiles, the relative timing of 

important molecular alterations in MM was inferred. Mutations of CCND1, MAX, 

PRKD2, DIS3, and NRAS were identified as early events whereas mutations of 

KRAS, IRF4, FGFR3, TP53, and TET2 occurred as late events (Figure 5.4a). The 

most frequent large-scale CNVs were deletion of 13q (59%) or 1p (35%), and 

gain of 1q (46%). (Table 5.5, Appendix 4). Copy number neutral loss of 

heterozygosity (nLOH) at 13q was seen in 21% of tumours (Table 5.5). 

Aberrations of 13q was enriched in high-risk t(4;14) and t(14;16) MM (P = 3.5 × 

10-5, OR = 16.2, Fisher’s exact test). Chronological timing of major CNVs (present 

in > 10% of total samples)249 identified 21q gain, 22q nLOH, 19 gain, and 13q 

nLOH, and 1q nLOH as being early events (Figure 5.4b). In contrast to previous 

reports250, 13q deletion was observed to be a subclonal event (Figure 5.4b). 1p 

deletion and 1q gain, which has been linked to patient prognosis were identified 

as occurring post 13q deletion (Figure 5.4b).
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Figure 5.4: Chronology of (a) coding drivers and (b) major copy number events. Red dots denote mean of relative timing for each event 
with blue lines indicating 95% confidence intervals of the relative timing. Dotted red lines denote discrete clonality events. Frequency, number of 
tumours with each mutational event; Del, deletion; LOH, loss of heterozygosity. 
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Table 5.5: Frequency of large-scale copy number alterations events in 80 
primary tumours. Only events occur in at least 5 tumours are shown. LOH, loss of 
heterozygosity. 
 

 

Chromosome arm events No. of samples affected Proportion(%)
13q deletion 47 59
1q gain 37 46
1p deletion 28 35
22q deletion 20 25
14q deletion 19 24
15q gain 18 23
13q neutral LOH 17 21
8p deletion 16 20
9q gain 15 19
6q deletion 15 19
11q gain 14 18
3q gain 14 18
12p deletion 13 16
16q deletion 13 16
12q deletion 13 16
14q gain 11 14
8q gain 11 14
22q neutral LOH 10 13
11q deletion 10 13
5q deletion 10 13
21q gain 9 11
1q neutral LOH 8 10
19 gain 8 10
3p gain 7 9
9p gain 7 9
2p deletion 7 9
18 gain 7 9
9 gain 7 9
4q gain 6 8
17p deletion 6 8
12q gain 6 8
2q deletion 6 8
1p neutral LOH 6 8
2p gain 6 8
20q gain 6 8
3 gain 6 8
1q deletion 5 6
6q gain 5 6
17q gain 5 6
4q deletion 5 6
6q neutral LOH 5 6
7p deletion 5 6
5p gain 5 6
1p gain 5 6
10q deletion 5 6
8q deletion 5 6
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5.3.3 Mutational landscape of relapse 

Following on from the analysis, the molecular features of MM relapse of the 25 

primary-relapse pairs were investigated. Relapse was associated with a higher 

mutational burden than primary tumours (Figure 5.5a-b, P < 0.01, paired 

Wilcoxon rank-sum test). Varied proportions (9 - 99%) of SNVs and indels 

identified in primary tumours were not detectable at relapse (Figure 5.5c), 

suggesting eradication and heterogenous clonal dynamics of the respective 

clone. Despite the increased mutational burden, relapsed tumours did not exhibit 

significantly more kataegis (Figure 5.6, Table 5.6). Only one of the 25 relapsed 

tumours showed additional chromothripis (Figure 5.7). Although both primary and 

relapsed tumours had shorter telomeres compared to plasma cells (P < 0.01, 

paired Wilcoxon rank-sum test), relapse was associated with longer telomeres (P 

= 3.4 × 10-3) (Figure 5.8).  

A translocation bringing the IGH loci in proximity to MAP3K14 was gained at 

relapse in one tumour, which was associated with a six-fold upregulation of 

MAP3K14 expression to primary tumour (Figure 5.9). Driver genes only mutated 

at relapse included FAM46C, TRAF2, LTB, OR9G1, FAM154B, NF1, XBP1, and 

IDH2 (Figure 5.10). Other driver mutations acquired at relapse were those in 

KRAS and NRAS genes, detected in three and two tumours respectively. 

Extending the analysis to all coding genes, non-silent mutations frequently gained 

at relapse included those in SYNE1, MTCL1, ABCA13, ADAMTS9, and ZNF521 

(Table 5.7). As expected from tracking of driver mutations, the increase in CCF 

of TET2, ZNF292, MYH2, and DNAH5 mutations implied selection of subclones 

(Figure 5.11). The promoters and CREs of an additional 16 genes were 

significantly mutated at relapse including genes with established roles in the 

biology of MM or other B-cell malignancies such as XBP1, BCL7A, and BCL9 

(Table 5.8, Table 5.9).  

Relapse was associated with additional CNVs, notably for 13q and 17p deletions 

(Figure 5.12a, Appendix 5). In addition, subclonal 22q deletion at diagnosis 

emerged as clonal at relapse (Figure 5.13). Other relapsed CNV-associated 

changes, which occurred at pre-existing unstable genomic regions, include the 

progression of nLOH to LOH and LOH to complete deletion at 13q; as well as 

further copy number gains at 1q and 10p (Figure 5.12b-c, Figure 5.14). High-risk 
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t(4;14) and t(14;16) MM are associated with higher increased number of CNV 

events at relapse compared to t(11;14) (Appendix 5), consistent with previous 

observation105. 
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Figure 5.5: Mutational burdens in primary versus relapse tumours. Boxplots show (a) log2 of point mutation counts and (b) indel counts in 
primary and matched relapsed tumours. (c) Proportions of shared, relapse-specific and primary-specific mutations across samples. **, P < 0.01. 
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Figure 5.6: Kataegis events in primary versus relapse. (a) Circos plot summarising kataegis foci detected in 25 primary (inner circle) and their 
matched relapse tumours (outer circle). Each dot represents a kataegis event, positioned by distinct samples based on height and genomic location 
based on width of the circle. (b) Boxplot show number of kataegis events detected in per primary versus relapse tumours. ns, not significant. 
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Table 5.6: Kataegis foci for 25 (a) primary and (b) matched relapsed 
tumours. 

a) Primary tumours 

 

 

 

 

 

 

 

 

b) Relapsed tumours 

 

Sample Chromosome Start End Chromosome arm Length(bp) No. of mutations
1305 chr4 46010942 46012271 4p 1330 6
7240 chr6 36250372 36254274 6p 3903 12
7240 chr15 67693030 67694624 15q 1595 10
7240 chr15 74771964 74776186 15q 4223 13
7240 chr15 77047614 77048969 15q 1356 8
7240 chr15 101347313 101349534 15q 2222 11
7842 chr8 144267366 144268884 8q 1519 6
7842 chr8 144272319 144275023 8q 2705 7
8237 chr11 92135792 92137526 11q 1735 6
8237 chr11 111009010 111011030 11q 2021 8
8237 chr12 4955664 4958055 12p 2392 9
8237 chr12 4979157 4980818 12p 1662 11
8237 chr12 5013623 5015268 12p 1646 7
8237 chr12 25465952 25466877 12p 926 6
8237 chr19 5010478 5012392 19p 1915 7
8237 chr19 5791420 5792816 19p 1397 6
8237 chr19 8131086 8132082 19p 997 7
9126 chr11 69638929 69641461 11q 2533 11
9721 chr21 17796091 17797631 21q 1541 7
10365 chr3 96980348 96981090 3q 743 6
10365 chr6 12531671 12533555 6p 1885 6
10365 chr8 94948159 94950081 8q 1923 8
10365 chr8 116656213 116659446 8q 3234 9
10365 chr8 127987546 127990685 8q 3140 6
10365 chr11 49487717 49489171 11p 1455 7
10365 chr14 55618500 55622471 14q 3972 10
10365 chr15 67132673 67137210 15q 4538 19
11506 chr16 56837018 56839208 16q 2191 7
11506 chr17 45288300 45290339 17q 2040 7
11668 chr1 188776810 188778335 1q 1526 6
12546 chr12 116285797 116286657 12q 861 6
13029 chr1 147661939 147664918 1q 2980 8
13029 chr1 204316137 204317777 1q 1641 6
13029 chr4 115478347 115479773 4q 1427 6

Sample Chromosome Start End Chromosome arm Length(bp) No. of mutations
1305 chr4 46010942 46012272 4p 1330 6
6178 chr6 14925742 14926804 6p 1062 6
7240 chr15 67693030 67694400 15q 1370 8
7240 chr15 74771964 74776187 15q 4223 12
7240 chr15 77047614 77048970 15q 1356 7
7240 chr15 101347313 101349535 15q 2222 11
7842 chr8 83722033 83725013 8q 2980 8
9126 chr11 69638929 69641462 11q 2533 11
9721 chr12 110870086 110873251 12q 3165 8
9721 chr21 17796091 17797632 21q 1541 7
10365 chr2 154804979 154806162 2q 1183 6
10365 chr8 116656213 116659447 8q 3234 9
10365 chr8 128250536 128251990 8q 1454 7
10365 chr11 49488216 49489172 11p 956 6
10365 chr14 55618500 55622472 14q 3972 10
11506 chr16 56837018 56838397 16q 1379 6
11506 chr17 45288300 45290340 17q 2040 7
11668 chr1 188776810 188778426 1q 1616 7
13029 chr1 147661939 147664919 1q 2980 8
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Figure 5.7: Additional chromothripsis events detected in relapsed tumour. Chromothripsis previously unidentified in primary detected in 
relapse tumour sample 7842. Each block of diagram represents chromothripsis event at individual chromosome. For each block, the top panel indicates 
genomic location of the chromothripsis, the middle panel shows consensus structural variants, and the bottom panel shows total copy number calls 
for the genomic region. 
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  Figure 5.8: Telomere length comparison. Boxplots show log2 (base pair) of telomere lengths of 25 matched 
normal, primary, and relapse samples. **, P < 0.01; ***, P < 0.001. 
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Figure 5.9: Acquisition of chromosomal translocation in proximity to MAP3K14 at relapse in sample 8237. Upper panel shows 
relative location of chromosomal translocation to MAP3K14. Lower panels show IGV screenshots indicating de novo acquisition of chromosomal 
translocation (14q32;17q21) at relapse (right panel) not present in primary (left panel). 



165 
 

Figure 5.10: Non-silent single nucleotide variants and indels disrupting established driver genes, and established translocations, 
in primary and matched relapsed tumours. 
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Table 5.7: Net increase in number of non-silent coding mutations in relapse. 
Only genes additionally acquired in at least 2 tumours are shown. 

 

Genes No. of samples mutated in primary No. of samples mutated in relapse Net increase
SYNE1 0 5 5
MTCL1 0 3 3
KRAS 5 8 3
ABCA13 1 3 2
ADAMTS9 0 2 2
C1orf168 0 2 2
C1orf27 0 2 2
C2orf16 1 3 2
CCDC108 0 2 2
CD163L1 0 2 2
CENPF 0 2 2
CEP295 0 2 2
CHD6 0 2 2
CHD7 0 2 2
CPZ 0 2 2
CRYBG3 0 2 2
CUL3 0 2 2
EFCAB5 1 3 2
GALNT13 0 2 2
GLOD4 0 2 2
GPR75 0 2 2
HCN2 0 2 2
HEATR7A 0 2 2
HELZ 0 2 2
HERC2 0 2 2
IFNA21 0 2 2
IGLL5 0 2 2
ITGB3 0 2 2
JPH4 0 2 2
KIAA0947 0 2 2
LAMA1 0 2 2
LAMA2 0 2 2
LTK 0 2 2
MDN1 0 2 2
MS4A12 0 2 2
MYO18B 1 3 2
MYO9B 0 2 2
NID1 0 2 2
PTPN23 0 2 2
RAPGEF1 0 2 2
RGS3 1 3 2
SCG2 0 2 2
SEMA4D 0 2 2
SI 0 2 2
TARBP1 0 2 2
TNKS 0 2 2
TTN 1 3 2
UHRF1BP1L 0 2 2
ZNF460 0 2 2
ZNF521 0 2 2
RAGE 0 2 2
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Figure 5.11: Cancer cell fractions (CCFs) of coding driver genes in primary 
and relapsed tumours. Each dot represents a non-silent mutation in a driver gene. 
Relationships between CCF of a driver gene mutation in primary and relapse are 
indicated by the lines linking them. Genes with a large increase in CCF at relapse (i.e. 
clonal expansion of subclones carrying the mutations) are annotated by symbol. 
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Table 5.8: Significantly mutated promoters in 25 relapsed tumours. (Q < 
0.05). In bold, genes additionally significantly mutated at relapse. 
 

 

 
Table 5.9: Recurrently mutated cis-regulatory elements in 25 relapsed 
tumours. (Q < 0.05). In bold, genes additionally significantly mutated at relapse. 
 

Fragment Size (bp) Target gene Number of 
mutations

Number of 
mutated samples Q -value

chr2:136117487-136118137 650 CXCR4 7 3 4.80E-13
chr1:25820428-25821078 650 MTFR1L 5 3 3.79E-10
chr1:25820362-25821012 650 MTFR1L 5 3 3.72E-09
chr19:49473807-49474457 650 FLT3LG 3 3 3.73E-07
chr19:49473828-49474478 650 FLT3LG 3 3 3.73E-07
chr19:49473834-49474484 650 FLT3LG 3 3 3.73E-07
chr19:49473836-49474486 650 FLT3LG 3 3 3.73E-07
chr19:49473852-49474502 650 FLT3LG 3 3 3.73E-07
chr3:159988350-159989000 650 IL12A 3 3 3.80E-07
chr15:89334567-89335217 650 POLG 3 3 4.16E-07
chr15:89334597-89335247 650 POLG 3 3 4.16E-07
chr15:89334611-89335261 650 POLG 3 3 4.16E-07
chr22:28800319-28800969 650 XBP1 3 3 4.18E-07
chr22:28800322-28800972 650 XBP1 3 3 4.18E-07
chr22:28800347-28800997 650 XBP1 3 3 4.18E-07
chr3:161104890-161105540 650 B3GALNT1 3 3 8.03E-07
chr12:38316439-38317089 650 ALG10B 3 3 1.03E-06
chr12:38316362-38317012 650 ALG10B 3 3 1.11E-06
chr12:38316367-38317017 650 ALG10B 3 3 1.11E-06
chr22:40950947-40951597 650 RBX1 3 3 1.47E-05
chr22:40950959-40951609 650 RBX1 3 3 1.71E-05
chrX:12975258-12975908 650 TMSB4X 4 3 5.02E-05
chr15:59372293-59372943 650 FAM81A 3 3 7.13E-05
chr15:59372277-59372927 650 MYO1E 3 3 7.34E-05
chr16:29925986-29926636 650 KCTD13 3 3 6.33E-03
chr12:122021486-122022136 650 BCL7A 3 3 6.41E-03
chr16:29925962-29926612 650 KCTD13 3 3 6.55E-03
chr16:29925959-29926609 650 KCTD13 3 3 6.59E-03
chrX:17737049-17737699 650 SCML1 3 3 3.54E-02
chrX:17737068-17737718 650 SCML1 3 3 3.55E-02
chrX:17737069-17737719 650 SCML1 3 3 3.55E-02
chrX:17737151-17737801 650 SCML1 3 3 3.69E-02
chrX:17737325-17737975 650 SCML1 3 3 3.74E-02

Fragment Size Target gene Number of 
mutations

Number of 
mutated 
samples

Q -value

chr15:74772989-74775174 2185 CSK;FAM219B;MPI;SEMA7A 7 3 1.47E-06
chr9:37406897-37411656 4759 AL161781.2;PAX5 7 5 1.31E-04
chr6:154713487-154721838 8351 SCAF8 8 3 2.12E-04
chr17:68772663-68776750 4087 ABCA10;ABCA5 5 5 7.14E-04
chr7:44631701-44638839 7138 H2AFV;LINC01952 6 3 1.98E-02
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Figure 5.12: Copy number alterations associated with relapse. (a) Net change of CNV frequency in primary and matched relapse tumours; 
red and blue bars represent positive and negative changes respectively. (b) Copy number profiles of patients 7842, 9166 and 9515. In 7842 copy 
number neutral loss of heterozygosity (nLOH) at 13q becomes LOH at relapse. In 9166 LOH at 13q progresses to complete loss of 13q. In 9515 copy 
number gain at chromosome 10 and 11 progresses to additional chromosome gain. Thick and thin lines represent clonal and subclonal copy number 
states respectively. Yellow and blue lines denote total and minor copy number respectively. Blue arrows indicate regions with copy number change at 
relapse (copy number states > 5 not shown). (c) Patterns of copy number change across paired primary-relapse samples at 1q, 10p, and 13q. Lines 
indicate relationship between primary and matched relapse tumours, with width being proportional to event frequency. Only chromosome arms with 
CNVs are plotted, with a copy number of 2 corresponding to nLOH. 
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Figure 5.13: Cancer cell fractions (CCF) of major chromosome arm events in primary and relapse. The number above each bar 
indicates the number of patients having the chromosome arm event. Only major chromosome arm events occurring in at least 4 primary and relapse 
tumours are considered. Del, deletion. 
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Figure 5.14: Patterns of major copy number changes in primary and relapsed tumours. Lines connecting dots indicate relationship 
between primary and matched relapse tumours. The intensity of lines is proportional to frequency (freq) of events. Only chromosomes or chromosome 
arms with copy number variations are plotted, thus copy number of 2 is copy number neutral loss of heterozygosity (LOH). 
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5.3.4 Mutational processes active at relapse  

At diagnosis the major mutational signatures in tumours were those indicative of 

aging (COSMIC Signature 5), AID/APOBEC (COSMIC Signatures 2, 9, and 13) 

and DNA repair deficiency (COSMIC Signatures 3, 5, and 8) in MM87, 127, 224-226, 

251 (Figure 5.15, Figure 5.16). At relapse, the increased mutational burden was 

associated with increased APOBEC activity and DNA repair deficiency signatures 

(Figure 5.17). An increased C•G>G•C transversion rate in relapse-specific 

mutations was observed (Q = 0.015, paired Wilcoxon rank-sum tests) (Figure 

5.18), a feature previously reported in relapsed acute myeloid leukaemia252. 

Additionally, a novel signature (M1) was identified at relapse, primarily in one 

patient, characterised by C•G>T•A mutations, which has been associated with 

alkylating agents253, and thymidine mutations at specific contexts (Figure 5.19, 
Table 5.10).  

 

5.3.5 Evolutionary trajectories of relapse  

Three patterns of clonal evolution were apparent at relapse (Figure 5.20). In 

Pattern 1 (3/25 patients), the dominant clone in primary survives treatment and 

gains additional mutations at relapse (Figure 5.20a, Figure 5.21a). Tumours with 

Pattern 1 are characterised with no change in clonal composition of the dominant 

clones, suggesting that they were potentially unaffected by treatment. Pattern 2 

(4/25 patients) is featured by subclonal expansion whereby a subclone in the 

primary survives treatment and expands to become the dominant clone at relapse 

(Figure 5.20b, Figure 5.21b). I suspect these clones might have mutations (e.g. 

TET2, ZNF292, MYH2, DNAH5, 6q deletion) giving them survival and selective 

advantage. Pattern 3 (18/25 patients) is characterised by the emergence of new 

clones at relapse, accompanied by the disappearance or decline of primary 

clones (Figure 5.20c, Figure 5.21c). One patient (sample 9524) had no clonal 

mutations shared between the primary and the relapse tumour (Figure 5.21c); 

however, this observation may reflect low tumour purity (Appendix 3). The three 

patterns of clonal evolution were not associated with therapy or molecular 

karyotype. It was, however, of note that time to relapse was shorter with Pattern 

2 (median 11.6 versus 19.3 months, P = 0.019, Wilcoxon rank-sum test).
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Figure 5.15: De novo extraction of WGS single nucleotide variants signatures using non-negative matrix factorization algorithm 
in 80 primary tumours. (a) Summary of five de novo mutational signatures extracted. (b) Cosine similarity heatmap. De novo extracted mutational 
signatures are compared against 30 COSMIC mutational signatures. The colour code (0 to 1) represents the resemblance between each pair of 
i t  
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Figure 5.16: Mutational signatures contribution across 80 primary tumours. Mutational signatures contribution fitting from 
deconstructSig. Only major COSMIC mutational signatures extracted de novo were considered. APOBEC signature includes COSMIC signatures 
2 and 13. Flat signature includes COSMIC signatures 3, 5, and 8. AID, activation-induced deaminase. 
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Figure 5.17: Mutation signatures contribution in primary versus relapsed tumours. Stacked bar charts showing comparisons of major 
mutational signatures between primary versus relapse-specific mutations. The P-values refer to the overall difference in distribution between primary 
and relapse-specific mutations (chi-squared test). n = number of mutations. Flat signatures include COSMIC signatures 3, 5, and 8. 
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Figure 5.18: Mutation types in primary versus relapse-specific mutations.  Boxplots show proportions of different mutation types in primary 
and relapse-specific mutations. *, Q < 0.05 
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Figure 5.19: De novo extraction of WGS single nucleotide variants signatures using non-negative matrix factorization algorithm 
in 25 relapsed tumours. (a) Summary of four de novo mutational signatures extracted. (b) Cosine similarity heatmap. De novo extracted mutational 
signatures are compared against 30 COSMIC mutational signatures. The colour code (0 to 1) represents the resemblance between each pair of 
signatures. 
 
a 

b 
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Table 5.10: Fitting of mutational signatures with M1 signature included in 25 relapsed tumours. Signature M1 is mostly confined to 
relapsed tumour 9524. 

  

Samples Signature M1 Signature 2 Flat signatures Signature 9Signature 13 Unknown
10068 0.09 0.09 0.69 0.13 0.00 0.00
10365 0.00 0.53 0.00 0.00 0.43 0.04
11506 0.07 0.39 0.35 0.00 0.16 0.02
11668 0.14 0.09 0.55 0.23 0.00 0.00
11949 0.10 0.00 0.83 0.00 0.00 0.08
12546 0.15 0.31 0.43 0.09 0.00 0.02
13029 0.00 0.08 0.53 0.29 0.00 0.09
1305 0.07 0.00 0.68 0.21 0.00 0.03
1334 0.11 0.00 0.78 0.07 0.00 0.04
5834 0.09 0.07 0.74 0.00 0.00 0.10
6030 0.13 0.06 0.34 0.39 0.00 0.08
6178 0.09 0.07 0.70 0.14 0.00 0.00
6229 0.12 0.00 0.79 0.00 0.00 0.09
6706 0.10 0.00 0.78 0.08 0.00 0.05
6988 0.13 0.00 0.57 0.25 0.00 0.05
7020 0.11 0.07 0.66 0.15 0.00 0.02
7240 0.06 0.41 0.36 0.08 0.00 0.08
7801 0.00 0.32 0.37 0.16 0.00 0.15
7842 0.00 0.45 0.25 0.14 0.00 0.16
8237 0.09 0.09 0.63 0.14 0.00 0.05
9126 0.15 0.00 0.66 0.16 0.00 0.03
9166 0.11 0.15 0.54 0.15 0.00 0.05
9515 0.09 0.00 0.70 0.16 0.00 0.05
9524 1.00 0.00 0.00 0.00 0.00 0.00
9721 0.00 0.69 0.24 0.00 0.00 0.07
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Figure 5.20: Evolutionary trajectories of relapse. (a) Pattern 1 (3/25), dominant clone in primary survives treatment and gains additional 
mutations at relapse; (b) Pattern 2 (4/25), subclone in primary survives treatment and expands to become dominant clone at relapse; (c) Pattern 3 
(18/25), eradication or decrease in frequency of one or more clones in primary and emergence of new clones not previously detected in primary. Left 
panel, two-dimensional density plots showing clustering of mutations by cancer cell fraction (CCF) in primary and relapse tumours. Darker red areas 
indicate location of a high posterior probability of a cluster. Clusters are annotated with coding driver mutations and major copy number alterations. 
Central panels, chromosomal copy-number profiles of primary (upper) and relapse (lower) tumours. Thick and thin lines represent clonal and sub-clonal 
copy number states respectively. Yellow and dark blue lines denote total and minor copy number alleles. Right panels, Muller plots of evolutionary 
trajectories. P, primary; R, relapse. 
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Pattern 1 

Pattern 2 

a 

b 

Figure 5.21: Evolutionary trajectories of relapse in 25 relapsed tumours. Two-dimensional density plots showing the clustering of mutations 
(black dots) by cancer cell fraction (CCF) in primary (x-axis) and relapsed tumours (y-axis). Darker red areas denote high posterior probability of a 
cluster (i.e. a clone). Clusters are annotated with coding driver mutations and major copy number alteration events. (a) Pattern 1: Dominant clone in 
primary gains additional mutations at relapse. (b) Pattern 2: A subclone survives and expands to become the dominant clone at relapse. (c) Pattern 
3: Eradication or decline of one or more of primary clones and emergence of new clones not previously detected in primary. CCF, cancer cell fraction. 
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5.4 Discussion 

Using high-depth WGS, this study provides for an enhanced genetic model of the 

development and progression of MM. This study expands upon previous findings 

which have been based on WES/targeted sequencing5, 6, 8, 102, 103, low coverage 

sequencing104, or fluorescence in situ hybridization and/or array technology102, 

105. While the analysis was restricted to MM with initiating translocation, it 

provides clear evidence for a common origin of tumour subpopulations with many 

tumours being composed of at least one subclone, reflecting the clonal 

heterogeneity present in both primary and relapse MM.  

In addition to known coding drivers, the study extends the number of potential 

non-coding drivers in MM, including those associated with CXCR4, BIRC2, 

BIRC3, and IGLL5. Non-coding regulatory regions were additionally disrupted at 

relapse, included those influencing expressions of XBP1, RBX1, and SCML1. 

Common pathways affected by coding and non-coding mutations arising in MM 

relapse included those associated with WNT-, MAPK- and NOTCH-signalling, 

base excision repair, cell cycle, telomere maintenance, and cellular senescence 

(Table 5.12). Notably, relapse was characterised by frequent CNVs, the most 

common being 13q and 17p deletion. Since the additional CNVs often occurred 

at unstable genomic regions, it suggests increased chromosome instability and 

chromothripsis are important means to escape therapy, analogous to that seen 

with chronic myeloid leukaemia in response to imatinib254.  While 21q gain, 22q 

nLOH, 1q nLOH and mutation of CCND1, MAX, PRKD2, DIS3, and NRAS are 

early events; my findings suggest that 13q deletion is preceded by nLOH.  

Overall, the mutational load was higher in relapse MM and aberrations previously 

linked to MM resurfaced in both primary pre-treatment and relapsed tumours in 

the cohort, including mutations in RAS genes, DIS3, TP53, FGFR3, and PAX5 

CRE mutations. As well as highlighting mutation of genes with established roles 

in MM, a number of frequently acquired de novo coding mutations was identified 

(e.g. FAM46C, TRAF2, NF1, XBP1, SYNE1, MTCL1, ABCA13, ADAMTS9, 

ZNF521), de novo translocation (MAP3K14) and pre-existing mutations (e.g. 

TET2, ZNF292, MYH2, DNAH5 and 22q deletion) as potentially important in 

enhancing survival and chemo-resistance at relapse. SYNE1 missense 

mutations have previously been reported  in drug-resistant MM255. MTCL1 
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regulates microtubule organisation, whose disruption could lead to defect in cell 

division256. Mutations in cereblon (CRBN) and those associated with Cullin-RING 

E3 ubiquitin ligase complex have been reported as a feature of relapse MM with 

immunomodulatory (IMiD) therapy6.  While all of the patients studied were treated 

with thalidomide or lenalidomide the emergence of mutations in these genes was 

not observed, consistent with a recent exome-based analysis103. The data are 

therefore consistent with the assertion that IMiD resistance is mediated through 

alternative mechanisms.  

With high-depth WGS, I have been able to refine complex genomic evolution 

patterns at relapse in MM compared to previous study, which had relied on WES5. 

For instance, the ‘branching evolution’ model described previously often co-

occurs with the ‘differential clonal response’ model as identified by the dataset. 

In addition, I did not find association between t(11;14) subtypes with ‘no 

change/linear’ models5 and I suspect model reconstruction might have been 

confounded due to limited number of mutations of previous studies using WES5. 

In addition, with more refined evolutionary pattern classification, I observed an 

unprecedented association between patients with subclonal expansion patterns 

and significantly shorter time to relapse.  

Higher proportion of C•G>G•C at relapse is associated with DNA damage by 

oxidative stresses257, possibly due to oncogene activation and/or enhanced 

metabolism in relapsed MM258.  The increased mutational burden in relapse was 

associated with increased APOBEC/AID and DNA repair deficiency. 

Chemotherapeutic agents potentially contribute to emergence of additional 

subclonal mutations at relapse, bearing DNA repair deficiency characteristics, 

through induction of DNA inter-strand cross-links causing stalling or incomplete 

resumption of DNA repair during regeneration of surviving tumour cells259. 

Inevitably, due to technical limitations, the ability to detect mutations in rare cells 

(mostly related to currently achievable levels of coverage with WGS) and spatial 

sampling constraints, the models potentially underestimate clonal heterogeneity 

in MM. However the loss of primary tumour clones was observed at relapse in 22 

of 25 cases, suggesting that some subclones are eradicated by therapy (Figure 

5.21). Nevertheless, treatment failed to eradicate the founding clones in many 

cases. The data also imply the acquisition of new mutations in the founding clone 
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or one of its subclones, which subsequently undergo selection and clonal 

expansion contributing to disease progression. It is likely that some mutations 

gained at relapse may alter the growth properties of MM cells, or confer 

resistance to additional chemotherapy.  

Presently strategies to improve the poor cure rates of relapsed MM are limited. 

Here the study has demonstrated that relapsed MM harbour significantly more 

mutations than primary tumours and clonal selection of mutations occurs at 

relapse, which are accompanied by subclonal heterogeneity. MM cells routinely 

acquire a small number of additional mutations at relapse, and some of these 

mutations may contribute to clonal selection and chemotherapy resistance. 

Theoretically, these data provide a rationale for identifying disease-causing 

mutations for MM, which may be amenable to targeted therapies to avoid the use 

of cytotoxic drugs, many of which are mutagens. However, it remains to be 

determined whether the current arsenal of therapies directed against downstream 

effectors of mutated genes will be effective given that the MM genome in an 

individual patient is likely to be continuously evolving. Hence, it can be asserted 

that eradication of the founding clone and all of its subclones will be required to 

achieve complete cure.
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Table 5.11: Summary of relapse-specific coding driver mutations, promoter mutations, CRE mutations, driver translocations, and 
copy number alterations identified in 25 primary tumour-relapse pairs grouped by subtype. CRE: cis-regulatory element. 
 

Subtype Coding drivers Promoters CREs 
Driver 

translocations 

Frequent  
copy number 

alterations 

t(4;14) KRAS; TP53; FGFR3; 
FAM46C; TRAF2; NF1; XBP1 

MTFRL1; FLT3LG; 
IL12A; POLG; XBP1; 
B3GALNT1; ALG10B 

ABCA10; 
ABCA5 

MAP3K14 
t(17,14)(q21,q32) 

13q deletion 

17p deletion 

 

Further copy 
number 

changes at 
unstable 
genomic 
regions 

t(11;14) 
PRDM1; LTB; IDH2; KRAS; 

NRAS; CCND1; ATM; 
DNAH5; OR9G1; FAM154B; 

MLL3 

RBX1; FAM81A; 
POLG; KCTD13; 

SCML1 
SCAF8  

t(14;16) NRAS; TET2 
MYO1E; ALG10B; 
TMSB4X; KCTD13; 

SCML1 
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    Impact of mitochondrial DNA 
mutations in multiple myeloma 

 

6.1 Overview and rationale 

Mitochondria have long been considered important for tumour transformation and 

treatment response112. The majority of cancers have altered metabolism260 and 

increased uptake of glucose (i.e. the ‘Warburg effect’) attributed to defective 

mitochondria113. In addition, mitochondria are associated with multiple key 

processes linked to tumourigenesis including apoptosis, cell cycle, cell growth, 

and signalling117.  

Recent evidence indicates mitochondria dysfunction is important in defining 

chemotherapy resistance and disease progression in MM118, 119. In addition, pre-

clinical studies have suggested agents targeting mitochondria in relapsed MM 

can improve patient outcome120, 121. Despite this, the spectrum of mtDNA 

mutations and their functional implications in MM have not been well 

characterised, partly due to limited sample size and WES depth124. Furthermore, 

any characteristics specific to MM mitochondria have largely been dismissed due 

to overwhelmingly dominant number of other cancer types included in previous 

pan-cancer studies124. By analysing WGS data from the Myeloma XI trial128, the 

somatic mutation landscape, mutation selection at relapse, nuclear genome 

integration and copy number of MM mitochondria were characterised in this 

chapter. 
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6.2 Study design 

6.2.1 Samples and dataset 

Myeloma XI trial samples and dataset were obtained as detailed in section 2.1.2.  

 

6.2.2 Statistical and bioinformatics analysis 

Raw WGS sequencing data were quality checked using FastQC v.0.11.4 and 

aligned using the Burrows-Wheeler Alignment tool261 BWA v0.7.13 to the human 

genome hg38 assembly and human mtDNA rCRS262 using default parameters. 

Somatic and germline variants calling were performed as described in section 

2.2.12.1. Mitochondrial copy number and heteroplasmy estimation were carried 

out as detailed in section 2.2.12.2. Identification of somatic mitochondrial transfer 

was performed as described in section 2.2.12.3. 

 

6.2.2.1 Strand bias and mutational signatures analysis 

Analysis of replication and transcriptional strand bias was performed as 

previously described124. Substitution rates for each of the 96 trinucleotide context 

on L and H strands were calculated and normalised for trinucleotide context127 

(section 2.2.10.3). To examine replication and transcriptional strand biases, I 

considered 12 substitution classes: 6 possible base substitution × 2 strands (H/L 

strand or transcribed/non-transcribed strand)185. I included all substitutions for 

replication bias analysis, while transcriptional strand bias was considered for 

substitutions residing in mtDNA genes (13 protein-coding, 22 tRNA, and 2 rRNA 

genes). The proportion test was used to determine significant difference in strand 

biases. 

Signature fitting of all primary and relapse somatic mutations against 30 COSMIC 

signatures were carried out using deconstructSigs178 with default settings 

(section 2.2.10.1). 
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6.2.2.2 dN/dS analysis 

dN/dS values for somatic variants were calculated globally and across 13 

mitochondrial coding genes using dNdScv R package with default parameters76. 

To minimise the effect of extreme replication bias124, MT-ND6 on H strand was 

excluded when estimating global dN/dS values. The Benjamini-Hochberg FDR 

procedure was used to adjust for multiple hypothesis testing with coding genes 

with significance thresholded at Q < 0.05. 

 

6.3 Results 

To investigate mtDNA somatic mutations in MM, WGS of the 80 matched tumour 

and normal blood of newly diagnosed patients, of which 25 also had matched 

relapsed tumours, were utilised128. Due to high cellular copy number of mtDNA 

genomes, far greater mtDNA genome coverage was obtained (normals: median 

2149×, range 1015-7777×; primary tumours: median 7836×, range 2376-7938×; 

relapsed tumours: median 7826×, range 4678-7929×) compared to the nuclear 

genome (Table 6.1, Appendix 3).   
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Table 6.1: Mitochondrial coverage, purity, karyotype, and clinical 
information for all samples from Myeloma XI study 
 

 

Normal Primary Relapse Normal Primary Relapse

1305 3146.49 7911.41 7715.81 7005 2105.563 7753.149 NA
1334 4954.99 7667.44 7769.75 7164 1819.997 7868.564 NA
5834 2599.06 7901.01 7776.38 7348 3226.039 7764.438 NA
6030 2351.02 7932.07 7928.95 7729 2061.198 7887.94 NA
6178 2609.91 4736.47 7788.26 7794 2768.001 7877.458 NA
6229 2162.77 7907.74 7876.58 7880 1848.325 5041.794 NA
6706 2043.31 7920.90 7891.89 7915 7615.676 7758.537 NA
6988 1488.16 7810.58 7914.46 7925 7327.606 5046.893 NA
7020 1903.45 6763.04 7873.73 7950 2123.583 7412.19 NA
7240 3217.18 7901.02 4718.03 7956 5583.107 7762.829 NA
7801 2304.20 6295.85 4677.96 8043 3636.235 7795.991 NA
7842 3552.01 7773.31 7631.30 8245 2293.997 7873.637 NA
8237 3512.01 7636.62 7902.83 8567 2461.213 4546.482 NA
9126 2064.85 7921.43 7880.12 8573 1690.852 7494.349 NA
9166 2843.02 7922.27 7866.82 8928 1014.808 7897.757 NA
9515 2788.05 7937.64 7916.00 8979 1382.481 7907.568 NA
9524 1388.47 7919.95 7789.75 9069 1164.399 7822.628 NA
9721 5029.26 4354.25 7886.04 9176 1926.553 7830.108 NA

10068 2466.19 7909.97 7825.64 9210 2284.554 7899.118 NA
10365 7776.70 7373.59 7536.41 9249 1527.055 7864.805 NA
11506 2952.32 7901.00 7825.34 9289 1641.367 7905.844 NA
11668 3404.18 7898.25 7915.56 9292 1883.016 7822.762 NA
11949 2542.27 7879.31 7900.26 9337 1627.241 7919.883 NA
12546 3041.40 7235.25 7759.24 9376 1630.022 7841.582 NA
13029 2502.02 7850.08 7824.53 9409 2074.175 7919.635 NA
5695 1660.269 7699.335 NA 9544 1489.989 7820 NA
5699 1952.174 7816.793 NA 9623 2919.537 7630.801 NA
5836 1919.918 7898.204 NA 9718 1264.072 7650.709 NA
5939 2207.42 7907.82 NA 9917 1683.971 7745.494 NA
6016 1311.494 7850.447 NA 9931 1027.767 7732.399 NA
6076 2549.937 7883.836 NA 10085 2074.804 7885.826 NA
6163 1922.513 4035.634 NA 10212 1889.014 7784.58 NA
6277 1758.064 7905.633 NA 10597 1405.381 7756.545 NA
6279 2319.718 7867.252 NA 10772 7663.268 7843.713 NA
6345 1571.32 2375.531 NA 10801 3120.295 7824.747 NA
6415 2134.605 7914.818 NA 11029 2132.637 7867.625 NA
6425 2383.117 4245.959 NA 11897 1758.225 7742.244 NA
6501 3277.534 7866.631 NA 12101 1433.479 5210.757 NA
6702 1391.19 3516.607 NA 12227 2798.262 7922.649 NA
7000 6500.789 7898.802 NA 12541 2352.256 7577.769 NA

Sample ID mtDNA mean coverage Sample ID mtDNA mean coverage



196 
 

6.3.1 Somatic mitochondrial mutation landscape in multiple myeloma 

I identified 210 mtDNA SNVs in 80 primary tumours (median 3 SNVs/tumour). 

These showed strong replicative strand bias, predominantly C>T on heavy strand 

and T>C on light strand (Figure 6.1), which was previously ascribed to replication-

coupled process partly due to the lack of transcriptional strand bias observed124. 

Examining the sequence context of mutations revealed the contribution of 

defective transcription-coupled DNA repair COSMIC signatures 12 (16%), 21 

(15%), 23 (11%), and 26 (48%) (Figure 6.2a). In concordance, transcriptional 

strand bias was observed across all genes (Figure 6.2b), with the strongest signal 

for C>T where transcribed strand is more frequently repaired263. The weaker 

transcriptional strand bias for T>C is likely due to the neutralising effects from 

COSMIC signatures with opposing transcriptional strand biases (Figure 6.3).  

Collectively, these findings are consistent with the contribution of transcription-

coupled DNA repair defects in MM mtDNA. 

I identified 14/210 (6%) somatic mutations as pathogenic (Table 6.2). A number 

of these variants occur in more than one patient and associated with established 

diseases188 including m.4136A>G (Leper’s optic atrophy), m.9185T>C (Charcot-

Marie-Tooth disease, Leigh syndrome, complex V deficiency), m.15246G>A 

(development delay, hearing impairment, macrocephalus), and m.15287T>C 

(familial breast cancer). Since mitochondrial disease is rare in general population 

(around 1 in 5000)264, it is likely these variants have a direct effect on gene 

function.
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  Figure 6.1: Mutational patterns by 96 trinucleotide context across 80 primary tumours from Myeloma XI 
trial. Substitution rate is normalised for trinucleotide context difference between mitochondrial light and heavy chains. 
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Figure 6.2: Mutational signatures in mitochondrial DNA of 80 primary tumours from Myeloma XI trial. (a): Contribution of COSMIC 
mutational signatures extracted by deconstructSigs178. (b) Transcriptional strand biases across all mitochondrial genes. Significant difference in strand 
bias was assessed by proportion tests. **, P < 0.01; ***, P < 0.001. 
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Figure 6.3: Transcriptional strand bias contributed by various COSMIC mutational signatures extracted in 80 Myeloma XI 
primary tumours. Left panel: Number of substitutions observed on transcribed and untranscribed strand. Significant strand bias difference was 
assessed by proportion tests. ***, P < 0.001. Right panel: Screenshots of from COSMIC website 
(https://cancer.sanger.ac.uk/cosmic/signatures/SBS/) indicating transcriptional strand bias of COSMIC mutational signatures extracted from this 
study. COSMIC single base substitution (SBS) signatures 21 and 26 have opposing transcriptional strand bias with signature 12 for T>C. 
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Table 6.2: Mitochondrial somatic variants in 80 patients from Myeloma XI trial associated with pathogenicity. 

 

  

Mito variants Clinical significance Known disease associated
m.14319T>C risk factor Parkinson disease 6, autosomal recessive early-onset
m.14846G>A Pathogenic Exercise intolerance
m.15246G>A Likely pathogenic Developmental delay; Hearing impairment; Macrocephalus
m.15287T>C Likely pathogenic Familial cancer of breast
m.3946G>A Pathogenic Juvenile myopathy, encephalopathy, lactic acidosis and stroke
m.4136A>G Pathogenic Leber's optic atrophy
m.5591G>A Pathogenic Mitochondrial myopathy
m.5628T>C Likely pathogenic Ophthalmoplegia, deafness, gout
m.5637T>C Likely pathogenic
m.5703G>A Pathogenic Ophthalmoplegia
m.5703G>A Pathogenic Ophthalmoplegia, mitochondrial myopathy
m.5920G>A Pathogenic Recurrent myoglobinuria
m.9185T>C Pathogenic Charcot-Marie-Tooth disease, Leigh syndrome, Mitochondrial complex v (ATP synthase) deficiency
m.9379G>A Pathogenic Hepatic failure, early-onset, and neurologic disorder due to cytochrome C oxidase deficiency
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6.3.2 Positive selection of mtDNA mutations is a feature of relapse 

Significant difference in mtDNA somatic mutational burdens was not observed 

between MM subtypes, or between primary and relapsed tumours (Figure 6.4). 

Most germline variants are homoplasmic while somatic variants are more variable 

in their heteroplasmic level (P < 2.2 × 10-16, Wilcoxon rank-sum test) (Figure 6.5). 

The majority of germline mutations are located outside protein-coding regions or 

synonymous mutations, with no loss-of-function (i.e. truncating) variants detected 

(Figure 6.6a). In contrast, somatic mutations are more enriched for missense and 

truncating variants (P < 2.2 × 10-16) (Figure 6.6a), suggesting germline and 

somatic variants are under different selection constraints. The most frequently 

disrupted mtDNA coding genes by non-synonymous somatic mutations include 

MT-ND5 (29% of primary tumours), MT-ND4 (24%), MT-CO1 (20%), and MT-

ND1 (15%) (Table 6.3). 

The dN/dS ratio shows no evidence of positive or negative selection for somatic 

mutations in primary tumours (dN/dS = 1.24, 95% CI: 0.76 – 2.03; P = 0.39) 

(Figure 6.6b), consistent with the observation that missense and truncating 

mutations do not have significantly different heteroplasmic levels compared to 

silent mutations (Figure 6.6c). However, non-synonymous mutations are 

positively selected at relapse (dN/dS = 3.01, 95% CI: 1.09 – 8.25; P = 0.033) 

(Figure 6.6b), in concordance with significant increase in homoplasmy of non-

synonymous mutations at relapse (Figure 6.7). Notably, missense mutations in 

mitochondrial genes composing of the NADH dehydrogenase complex (MT-ND2, 

MT-ND4, and MT-ND5) have higher than expected rate of missense mutations 

(i.e. positively selected) at relapse (Q < 0.05) (Figure 6.6d) with non-synonymous 

mutations in MT-ND5 and MT-CO3 being most frequently acquired at relapse 

(Table 6.4), implying potential survival advantage rendered through disruption of 

these genes. 
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Figure 6.4: Mitochondrial mutational burdens (a) across multiple myeloma subtypes and (b) between primary and relapsed 
tumours. Significant difference was assessed using Wilcoxon rank-sum test. ns, not significant. 
 

 

  

Figure 6.5: Heteroplasmic level comparison between mitochondrial germline (n = 2137) and somatic mutations (n = 223). 
Significant difference was assessed using Wilcoxon rank-sum test. ***, P < 0.01. VAF, variant allele frequency. 
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Figure 6.6: Selection of mtDNA somatic mutations in primary and relapse multiple myeloma tumours. (a): Proportion of mutation type 
in mitochondrial germline and somatic mutations. Difference on mutation type contribution was assessed by chi-squared test. (b) Global dN/dS ratio for 
all 80 primary tumours, 25 matched primary tumours, and 25 relapsed tumours. *, P < 0.05. Vertical lines depict 95% CI. (c) Heteroplasmic level 
comparison between silent (n = 26), missense (n = 102), and truncating mutations (n = 23) in 80 primary tumours. (d) Missense dN/dS ratio for MT-
ND2, MT-ND4, and MT-ND5 suggest positive selection of missense mutations in these genes at relapse. *, Q < 0.05; ***, Q < 0.001; Vertical lines depict 
95% CI. LOF: loss of function (i.e. truncating mutations), VAF: variant allele frequency, ns: not significant. 
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Table 6.3: Frequency of non-synonymous somatic mutations disrupting 
mtDNA coding gene in 80 primary tumours from Myeloma XI trial. 
 

 

 

Table 6.4: Net increase of non-synonymous mutations disrupting mtDNA 
coding genes at relapse from Myeloma XI trial. 
 

Gene Non-synonymous mutations frequency Proportion (%)
MT-ND5 23 29
MT-ND4 19 24
MT-CO1 16 20
MT-ND1 12 15
MT-CYB 11 14
MT-ND2 9 11
MT-CO3 7 9
MT-ATP6 5 6
MT-CO2 5 6
MT-ND6 4 5
MT-ATP8 2 3
MT-ND3 2 3

Gene Primary frequency Relapse frequency Net increase frequency
MT-ND5 7 10 3
MT-CO3 2 4 2
MT-CO2 1 2 1
MT-ND2 6 7 1
MT-ND3 1 2 1
MT-ND6 1 2 1
MT-CYB 2 2 0
MT-ATP6 4 3 -1
MT-ND1 2 1 -1
MT-CO1 7 5 -2
MT-ND4 7 5 -2
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Figure 6.7: Heteroplasmic level comparison between shared (a) silent mutations (n = 20) and (b) non-synonymous mutations (n 
= 47) in primary and matched relapsed tumours. Significant different was assessed using paired Wilcoxon rank-sum test. **: P < 0.01, ns: not 
significant. VAF, variant allele frequency. 
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6.3.3 mtDNA copy number and somatic transfer 

The effects of mtDNA copy numbers in MM were next examined. No significant 

association was observed between mtDNA copy number of tumours and their 

matched normal, relapsed tumours versus primary tumours, or between high- and 

low-risk MM subtypes (Figure 6.8). The results therefore do not support 

pathogenic and prognostic contribution of mtDNA copy number in MM. 

Somatic transfer of mtDNA to nuclear DNA was observed in 11/80 primary 

tumours and 6/25 relapsed tumours (Table 6.5). Transfer breakpoints disrupt 

open reading frames known oncogenes including CENPP, FOXK1, MGAT5, 

ST8SIA1, and RAB4A, suggesting their potential contribution in MM 

tumourigenesis.
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Figure 6.8: Comparison of average mtDNA copy number between (a) normal and tumour, (b) primary and matched relapse 
tumours, and (c) high-risk [t(4;14) and t(16;14)] and low-risk [t(11;14)] multiple myeloma subtypes. Significant different was assessed 
using paired Wilcoxon rank-sum test. Ns, not significant. 
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Table 6.5: Somatic nuclear transfer for (a) 80 primary tumours and (b) 25 relapsed tumours from Myeloma XI trial.  Mito, mitochondria. 
 

Sample Mito position Nuclear chromosome Nuclear position Mito gene Nuclear genes disrupted
1305 15066 chr2 213419203 CYTB SPAG16
6076 5427 chr4 75352750 ND2 AC025244.1;AC025244.2
6076 11723 chr7 4767594 ND4 FOXK1
6076 12835 chr4 29439843 ND5
6076 14611 chr4 144032722 ND6 AC139713.2
7240 10303 chr4 33818874 ND3 AC016687.3
7240 12567 chr4 62999060 ND5
7240 13790 chr3 157535410 ND5
7915 10372 chr12 22293349 ND3 ST8SIA1
8043 11499 chr11 100144656 ND4 CNTN5
8043 14079 chr2 134151058 ND5 MGAT5
8237 16388 chr9 92344406 CENPP
9210 12835 chr4 29439433 ND5
9524 568 chr2 32916230 LINC00486
9544 15178 chr5 144790245 CYTB
10597 16199 chr15 90244106 GDPGP1;AC091167.8
12227 10879 chr8 86639771 ND4 CNGB3

Sample Mito position Nuclear chromosome Nuclear position Mito gene Nuclear genes disrupted
6706 568 chr2 32916253 LINC00486
7801 12853 chr4 29439122 ND5
9166 14777 chr2 33667485 CYTB
9524 12406 chr10 20469830 ND5
11949 9698 chr11 67779748 COX3
12546 170 chr1 229287938 RAB4A
12546 12013 chr8 60096505 ND4
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6.4 Discussion 

In this chapter, I present mtDNA mutational spectrum, the potential underlying 

mutational processes, and mechanisms in which they could contribute to MM 

development. I observed transcriptional strand bias of somatic mutations, 

suggesting transcription-coupled DNA repair defects as one of the main 

contributing mutational processes in MM mtDNA. This observation is consistent 

with the general observation of mitochondria having reduced DNA repair 

pathways265-267. As different defective transcription-coupled DNA repair 

processes have opposing transcriptional strand biases263 and their contribution 

are varied across tumour types, the transcriptional strand bias might have been 

neutralised in previous pan-cancer study124. 

While mtDNA mutations are under strong negative selection in normal cells186, 

there was no evidence supporting either negative or positive selection in primary 

MM. However, my results do support positive selection at relapse, potentially 

providing survival and resistance advantage for MM tumours. In consistent with 

this, significant dN/dS ratio was observed for missense mutations for genes 

comprising complex I (MT-ND2, MT-ND4, and MT-ND5); and mutations 

disrupting MT-ND5 and MT-CO3 (cytochrome c oxidase) are frequently acquired 

at relapse. Functional studies have suggested mutations impacting mitochondrial 

genes can recapitulate the Warburg effect and provide an alternative mechanism 

for tumour growth268, 269. Although mtDNA copy numbers do not have pathogenic 

or prognostic implication in MM, mitochondria-nuclear genome integration could 

potentially contribute to tumourigenesis through disruption of oncogenic genes 

(e.g. CENPP, FOXK1, MGAT5, ST8SIA1, RAB4A). 

In summary, the findings provide evidence for altered metabolism through 

mitochondrial mutations disrupting electron transport chain, providing potential 

growth and resistance at relapse MM. Further studies are required to examine 

the clinical value of mitochondrial mutations as biomarkers and explore the 

therapeutic potential of targeting dysregulated metabolism in MM. 
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   General discussion, future work, 
and concluding remarks 

 

7.1 Coding and non-coding drivers in multiple myeloma 
The work presented in chapter 3 represents the first comprehensive study on 

non-coding drivers in MM using a large cohort from MMRF’s CoMMpass study. 

Many of these targets have been validated subsequently in high-depth WGS data 

from Myeloma UK trial in chapter 6, including those associated with key genes in 

plasma cell differentiation pathway PAX5 and BCL6.The lower coverage nature 

(8-12×) of the WGS dataset does, however, mean that many non-coding drivers 

identified are likely to arise during early tumourigenesis and with high mutational 

frequency. 

While dysregulation of MYC through gene amplification and translocation 

mechanisms is well-established in MM2 and various cancers270, the work 

presented herein demonstrated novel alternative mechanisms including CNVs 

altering MYC non-coding regulatory regions (Chapter 3). It is therefore possible 

that many of the non-coding drivers in MM identified in chapter 3 and 6 could also 

be potential targets in other cancers. 

From the integrative analysis of coding and non-coding drivers presented in 

chapter 3, I have highlighted several pathways key to MM, and that they can be 

targeted somatically through a range of mechanisms. This is notably exemplified 

by the plasma cell differentiation pathway, in which IRF4 and PRDM1 are 

frequently targeted in the coding regions, while PAX5 and BCL6 are primarily 

disrupted in the non-coding regulatory regions. The complementary genomic 

alteration impacting the same pathway was also demonstrated through the 

relative paucity of mutations in PAX5 regulatory regions of in t(11:14) MM, but 

enrichment of IRF4 coding mutations. Therefore, the findings from this study 

further highlight the importance to examine non-coding drivers in cancer to 

characterise targets for personalised treatment. In addition, it opens up potential 

opportunities for identifying novel therapeutic agents in MM through network-

based drug search methodologies220, 221. 
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In terms of future studies, it will be important to perform functional validations, 

including luciferase reporter assay and CRISPR-Cas9 knockout to confirm the in 

vivo regulatory roles of identified CREs. Furthermore, target genes could be 

knocked out or knocked in to analyse their effects of cell proliferation. Higher 

priority for functional validation would be given to more well-known targets 

implicated in MM and B-cell malignancies such as MYC and PAX5.  

In addition, defining CREs through utilisation of patient-specific or MM cellular 

models, integrated with various ChIP-seq information, would enable us to fully 

and specifically recapitulate CREs spectrum relevant to MM. To take this forward 

at the Institute of Cancer research, promoter CHi-C are being performed on MM 

cellular models and ChIP-seq data are being collected from patient samples. 

Once the current methodology described in this thesis is established and 

validated with functional works, similar strategies could potentially be applied to 

identify non-coding mutation drivers on various types of cancers. Ideally, 

promoter CHi-C data could be generated from cancer cell lines while somatic 

mutations, RNA-seq, CNVs could be potentially be obtained from public dataset 

such as TCGA. Recent studies have also demonstrated an association between 

germline and somatic variants in various cancers271-273. It would be interesting to 

investigate in future studies whether such association exists in MM and which 

genes/pathways are complementarily affected by germline and somatic 

mechanisms. 

 

7.2 Mutational processes in multiple myeloma 
Prior to the work in this thesis, mutational signature analyses in MM were mostly 

restricted to WES data2, 5, 84. Therefore, through utilisation of large WGS dataset, 

my analysis has represented a comprehensive characterisation of mutational 

processes underlying MM development, with the contribution of varied processes 

in different MM subtypes and their implication in refining patient prognosis. The 

flat signatures (3, 5, and 8) account for > 20% of MM mutational contribution, 

suggesting DRD playing an important role in MM tumourigenesis. It will be 

important to develop algorithms to accurately resolve these flat COSMIC 

signatures as each could be extrinsically linked to deficiency in a specific DNA 

repair pathway. Successful differentiation of the flat signatures would, therefore, 
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provide further insight into pathway disrupted in MM and narrow down therapeutic 

targets.  

Additionally, the work presented in chapter 4 suggests different MM subtypes are 

specifically associated with different mutational processes. However, further 

studies are required to elucidate the mechanistic insights on such association, 

i.e. whether the mutational processes are simply passive consequences or 

playing an active role in driving MM subtype differentiation.  

Recently, mutational signatures extraction from large cohort of cancer WGS from 

PCAWG study has revealed novel signatures263, with some are imprints of 

patients’ therapies274. Many previously unknown COSMIC signatures have also 

been better established from functional studies224-227, 275. It is expected that future 

work will be involved with functional studies to fully elucidate and refine mutational 

signatures and their associated aetiologies. In addition, it will also be important 

to apply the extended COSMIC signatures framework on larger cohort of high-

coverage WGS primary and relapsed tumours. Such efforts could lead to 

identification of novel mutational processes, especially those associated with 

later tumour development and specific treatment.  

 

7.3 Tumour evolution at relapse 
My study in chapter 6 on clonal evolution at relapse expands upon previous 

findings that have been based on WES/targeted sequencing5, 6, 8, 102, 103, low 

coverage sequencing104, or FISH/array technology102, 105. With larger cohort and 

high-depth WGS data from Myeloma XI trial128, my data has afforded to identify 

frequently acquired coding and non-coding drivers, and refine complex genomic 

evolution patterns at relapse in MM. For instance, CRBN and those associated 

with Cullin-RING E3 ubiquitin ligase complex are unlikely a feature of relapse MM 

with immunomodulatory drugs therapy. Additionally, with more refined 

evolutionary pattern classification, an unprecedented association between 

subclonal expansion patterns and significantly shorter time to relapse was 

observed. To better understanding tumour evolution in MM, single-cell genomic 

sequencing methods276 would be important to enable delineation of smaller 

subclones, spatial architecture of tumours277, and differentiation of driver versus 
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passenger by quantifying fitness contribution of each individual mutation2. In 

addition, due to limited sample size and lack of WGS data8, 106, there remains a 

knowledge gap in characterising genomic landscape present in the pre-malignant 

states MGUS and MM, and the mechanisms resulting in progression to MM 

across all disease subtypes. 

The results from chapter 7 demonstrate the likely contributing roles of 

mitochondrial mutations in treatment-resistance and proliferation at MM relapse. 

Further functional studies, such as CRISPR-Cas9 knockout of mtDNA genes, will 

be required to fully establish the roles on mtDNA in MM.  

  

7.4 Concluding remarks 
Work carried out in this thesis has provided for a more comprehensive 

characterisation of the somatic mutations landscape across large MM cohorts 

and the aetiological mutational processes contributing to tumourigenesis. Firstly, 

the results presented have highlighted MM as a complex heterogenous 

malignancy with multiple oncogenic pathways are disrupted via various coding 

and non-coding somatic mutation mechanisms, as supported by data in chapter 

3. Secondly, there are three principle mutational processes underlying MM 

tumourigenesis, namely AID/APOBEC, aging, and DRD. Intriguingly, although 

AID has large contribution in early mutational process, each MM subtype is 

predominantly associated with distinct mutational processes. In addition, 

incorporating mutational signatures information could potentially refine patient 

prognosis, beyond previously established risk factors. These are supported by 

data in chapter 4. Thirdly, the work presented in chapter 5 feature three distinct 

clonal evolutionary patterns at relapse, with one pattern is associated with worse 

prognosis. Relapsed MM is characterised with frequent acquisition of various 

coding and non-coding mutations, as well as CNVs at pre-existing unstable 

genomic regions. The findings from chapter 5 also suggest that the use of any 

targeted therapies would need to take into account of heterogenous clonal 

dynamics and the potential mutations acquired at relapse shaped in part by 

therapies. Fourthly, data detailed in chapter 6 do suggest the implication of 

targeting mitochondria specifically for relapsed MM. 
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While the results presented in this thesis are unlikely to constitute a complete 

model that explains MM tumourigenesis, they have provided a greater insight in 

describing and understanding the disease. Looking forward, further advancing 

the understanding of the genomic basis of MM offers clear opportunity for clinical 

benefits, in terms of identifying patients with high risk disease progression, 

devising kinder and more effective treatments using precision medicine, as well 

as developing strategies to overcome therapy-resistance. For instance, subgroup 

of patients with BRAF V600E activating mutation could potentially be treated with 

BRAF inhibitor vemurafenib278. However, BRAF inhibitors could activate the 

MAPK pathway resulting in treatment resistance if coexistent subclones harbour 

KRAS/NRAS mutations or wild-type BRAF3, 279. Such signalling interactions could 

be tackled by combining BRAF and MEK inhibitors280, 281. Therefore, a 

comprehensive molecular knowledge of clonal heterogeneity and evolution is 

crucial in aiding future targeted therapy approach in MM.   
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Appendix 1: Results of Reactome integrated pathway analysis (Chapter 
3). (Q < 0.05) 

 

 

Pathway name Q -value Pathway classification
Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon 1.08E-02 Toll-like receptors cascade
Formation of Senescence-Associated Heterochromatin Foci (SAHF) 1.08E-02 DNA damage
MAPK family signaling cascades 1.08E-02 MAPK signalling pathway
Regulation of TP53 Expression 1.08E-02 TP53 regulation pathway
Signaling by FGFR1 1.08E-02 FGFR signalling pathway
Signaling by FGFR3 1.08E-02 FGFR signalling pathway
Signaling by FGFR4 1.08E-02 FGFR signalling pathway
Signaling by RAS mutants 1.08E-02 MAPK signalling pathway
Tie2 Signaling 1.08E-02 Signalling for vascular and hematopoietic development
TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway 1.08E-02 Non-canonical NF-kB signaling pathway
Deubiquitination 1.10E-02 Post-translational protein modification
FRS-mediated FGFR1 signaling 1.10E-02 FGFR signalling pathway
FRS-mediated FGFR3 signaling 1.10E-02 FGFR signalling pathway
FRS-mediated FGFR4 signaling 1.10E-02 FGFR signalling pathway
RAF activation 1.10E-02 MAPK signalling pathway
RAS signaling downstream of NF1 loss-of-function variants 1.10E-02 MAPK signalling pathway
Regulation of RAS by GAPs 1.10E-02 MAPK signalling pathway
Ub-specific processing proteases 1.10E-02 Post-translational protein modification
Transcriptional regulation by RUNX3 1.15E-02 Transcriptional regulation
Cytokine Signaling in Immune system 1.18E-02 Cytokine signalling in immune system/Immune system
Downstream signaling of activated FGFR3 1.18E-02 FGFR signalling pathway
FRS-mediated FGFR2 signaling 1.18E-02 FGFR signalling pathway
TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 1.18E-02 Apoptosis
Cyclin A:Cdk2-associated events at S phase entry 1.22E-02 Cell cycle
Cyclin E associated events during G1/S transition 1.22E-02 Cell cycle
DDX58/IFIH1-mediated induction of interferon-alpha/beta 1.22E-02 Immune system
Downstream signal transduction 1.22E-02 FGFR signalling pathway
Downstream signaling of activated FGFR4 1.22E-02 FGFR signalling pathway
GRB2 events in EGFR signaling 1.22E-02 MAPK signalling pathway
Oncogenic MAPK signaling 1.22E-02 MAPK signalling pathway
Signaling by FGFR2 1.22E-02 FGFR signalling pathway
Signalling to ERKs 1.22E-02 MAPK signalling pathway
SOS-mediated signalling 1.22E-02 MAPK signalling pathway
Activation of RAS in B cells 1.29E-02 Signalling in B cells
Binding of TCF/LEF:CTNNB1 to target gene promoters 1.29E-02 MYC regulation
Downstream signaling of activated FGFR1 1.29E-02 FGFR signalling pathway
Downstream signaling of activated FGFR2 1.29E-02 FGFR signalling pathway
Apoptosis 1.39E-02 Apoptosis
Calcitonin-like ligand receptors 1.39E-02 GPCR signalling pathway
EGFR Transactivation by Gastrin 1.39E-02 MAPK signalling pathway
MAP2K and MAPK activation 1.39E-02 RNA metabolism
Negative regulation of MAPK pathway 1.39E-02 MAPK signalling pathway
RUNX3 regulates WNT signaling 1.39E-02 Transcriptional regulation
SHC1 events in EGFR signaling 1.39E-02 MAPK signalling pathway
Signaling by high-kinase activity BRAF mutants 1.39E-02 MAPK signalling pathway
Signaling by moderate kinase activity BRAF mutants 1.39E-02 MAPK signalling pathway
TNFR2 non-canonical NF-kB pathway 1.39E-02 Non-canonical NF-kB signaling pathway
Diseases of signal transduction 1.42E-02 Signalling pathway
Paradoxical activation of RAF signaling by kinase inactive BRAF 1.43E-02 MAPK signalling pathway
Signaling by FGFR 1.49E-02 Receptor tyrosine kinase signalling pathways
MAPK1/MAPK3 signaling 1.53E-02 MAPK signalling pathway
Programmed Cell Death 1.53E-02 Apoptosis
Signaling by SCF-KIT 1.53E-02 SCF/KIT signalling pathway
Signaling by EGFR 1.59E-02 EGFR signalling pathway
TICAM1-dependent activation of IRF3/IRF7 1.66E-02 Toll-like receptors cascade
TNFR1-induced proapoptotic signaling 1.66E-02 Death receptor signalling
Interleukin-20 family signaling 1.66E-02 Cytokine signalling in immune system/Immune system
MET activates RAS signaling 1.66E-02 MAPK signalling pathway
SHC-related events triggered by IGF1R 1.66E-02 MAPK signalling pathway
Repression of WNT target genes 1.88E-02 MYC regulation
Signaling by FGFR3 fusions in cancer 1.88E-02 FGFR signalling pathway
IRS-mediated signalling 2.18E-02 Cytokine signalling in immune system/Immune system
IRS-related events triggered by IGF1R 2.26E-02 Insulin receptor signalling pathway
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Pathway name Q -value Pathway classification
p38MAPK events 2.26E-02 MAPK signalling pathway
PTK6 Regulates RHO GTPases, RAS GTPase and MAP kinases 2.26E-02 MAPK signalling pathway
Signaling by FGFR4 in disease 2.26E-02 FGFR signalling pathway
Spry regulation of FGF signaling 2.26E-02 FGFR signalling pathway
DNA Damage/Telomere Stress Induced Senescence 2.38E-02 DNA damage
GRB2 events in ERBB2 signaling 2.38E-02 MAPK signalling pathway
IGF1R signaling cascade 2.38E-02 Insulin receptor signalling pathway
Insulin receptor signalling cascade 2.38E-02 Insulin receptor signalling pathway
SHC1 events in ERBB4 signaling 2.38E-02 MAPK signalling pathway
Signaling by BRAF and RAF fusions 2.38E-02 MAPK signalling pathway
Signaling by Interleukins 2.38E-02 Cytokine signalling in immune system/Immune system
Signaling by PDGF 2.38E-02 Receptor tyrosine kinase signalling pathways
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 2.38E-02 Insulin receptor signalling pathway
TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 2.38E-02 Cell cycle
Transcriptional regulation by RUNX2 2.46E-02 Transcriptional regulation
G1/S Transition 2.71E-02 Cell cycle
SHC-mediated cascade:FGFR3 3.20E-02 FGFR signalling pathway
Signalling to RAS 3.20E-02 MAPK signalling pathway
Transcription of E2F targets under negative control by DREAM complex 3.20E-02 Cell cycle
S Phase 3.33E-02 Cell cycle
Constitutive Signaling by EGFRvIII 3.45E-02 Sigalling pathway
SHC-mediated cascade:FGFR4 3.45E-02 FGFR signalling pathway
Signaling by EGFRvIII in Cancer 3.45E-02 EGFR signalling pathway
CD209 (DC-SIGN) signaling 3.63E-02 Immune system
Mitotic G1-G1/S phases 3.63E-02 Cell cycle
RAF/MAP kinase cascade 3.63E-02 MAPK signalling pathway
SHC-mediated cascade:FGFR1 3.63E-02 FGFR signalling pathway
Signaling by MET 3.63E-02 Receptor tyrosine kinase signalling pathways
TNFR1-induced NF-kB signaling pathway 3.63E-02 Death receptor signalling
TP53 Regulates Transcription of Cell Death Genes 3.63E-02 Apoptosis
VEGFR2 mediated cell proliferation 3.63E-02 Receptor tyrosine kinase signalling pathways
Degradation of beta-catenin by the destruction complex 3.64E-02 Signalling by WNT
NGF signalling via TRKA from the plasma membrane 3.64E-02 Receptor tyrosine kinase signalling pathways
Activation, translocation and oligomerization of BAX 3.77E-02 Apoptosis
Downstream signaling events of B Cell Receptor (BCR) 3.86E-02 Signalling in B cells
Signaling by Insulin receptor 3.98E-02 Cytokine signalling in immune system/Immune system
SHC-mediated cascade:FGFR2 4.10E-02 FGFR signalling pathway
Class B/2 (Secretin family receptors) 4.47E-02 GPCR signalling pathway
Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 4.47E-02 MAPK signalling pathway
DAP12 signaling 4.47E-02 MAPK signalling pathway
G0 and Early G1 4.47E-02 Cell cycle
Generic Transcription Pathway 4.47E-02 Transcriptional regulation
Major pathway of rRNA processing in the nucleolus and cytosol 4.47E-02 Insulin receptor signalling pathway
MAPK6/MAPK4 signaling 4.47E-02 MAPK signalling pathway
Negative regulation of FGFR1 signaling 4.47E-02 FGFR signalling pathway
Negative regulation of FGFR3 signaling 4.47E-02 FGFR signalling pathway
Negative regulation of FGFR4 signaling 4.47E-02 FGFR signalling pathway
Negative regulators of DDX58/IFIH1 signaling 4.47E-02 Immune system
Regulation of TNFR1 signaling 4.47E-02 Death receptor signalling
SHC1 events in ERBB2 signaling 4.47E-02 MAPK signalling pathway
Signaling by EGFR in Cancer 4.47E-02 EGFR signalling pathway
Signaling by Ligand-Responsive EGFR Variants in Cancer 4.47E-02 EGFR signalling pathway
SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 4.47E-02 Transcriptional regulation
TRAF3 deficiency - HSE 4.47E-02 Disease associated with TLR signalling cascade
TRAF6 mediated IRF7 activation 4.47E-02 Immune system
MyD88-independent TLR4 cascade 4.66E-02 Toll-like receptors cascade
TRIF(TICAM1)-mediated TLR4 signaling 4.66E-02 Toll-like receptors cascade
Association of TriC/CCT with target proteins during biosynthesis 4.69E-02 Protein folding
Signaling by FGFR3 in disease 4.69E-02 FGFR signalling pathway
Signaling by FGFR3 point mutants in cancer 4.69E-02 FGFR signalling pathway
Negative regulation of FGFR2 signaling 4.92E-02 FGFR signalling pathway
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Appendix 2: Contribution of each mutational signature proposed by the 
Wellcome Trust Sanger Institute per sample (Chapter 3). The file is 
included in the CD-R attached with this thesis.  

 

Appendix 3: Coverage, purity, karyotype, and clinical information for all 
samples in Myeloma XI study (Chapter 5). CTD: cyclophosphamide, 
thalidomie, and dexamethasone; RCD: Lenalidomide (Revlimid), cyclophosphamide, 
and dexamethasone; CCRD: carfilzomib, cyclophosphamide, lenalidomide, and 
dexamethasone; Intensive pathway: treatment with high dose melphalan after 
induction. HD: hyperdiploid. NA: not available 
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Normal Primary Relapse Primary Relapse

1305 38.05 125.66 106.44 0.94 0.52 11;14 Male 51 38.34 CTD No maintenance Intensive
1334 41.38 117.96 118.87 0.90 0.99 11;14 Female 43 24.00 CTD Missing Intensive
5834 38.31 117.53 116.79 0.98 0.31 11;14 Female 69 29.93 CTDa No maintenance Non-intensive
6030 39.08 106.03 119.35 0.94 0.73 4;14 Female 36 19.75 CTD No maintenance Intensive
6178 39.92 110.32 103.75 0.98 0.82 11;14 Female 67 18.40 RCD Missing Intensive
6229 43.91 120.53 107.41 0.72 0.59 11;14 Male 74 9.23 CTDa Missing Non-intensive
6706 42.72 120.92 114.44 0.92 0.71 11;14 Male 59 25.43 RCD No maintenance Intensive
6988 37.54 121.95 107.64 0.80 0.83 11;14 Male 69 12.26 RCDa No maintenance Non-intensive
7020 38.96 111.10 122.49 0.93 0.92 4;14 Female 58 14.69 CTD Missing Intensive
7240 37.57 131.00 102.37 0.63 0.86 4;14 Male 55 11.30 RCD Lenalidomide maintenance Intensive
7801 39.48 116.50 106.97 0.54 1.00 14;16 Female 48 14.49 CTD Missing Intensive
7842 38.23 112.19 113.46 0.92 0.86 4;14 Male 66 17.64 CTD No maintenance Intensive
8237 36.54 102.98 110.72 0.91 0.86 4;14 Female 49 14.00 CTD No maintenance Intensive
9126 42.02 110.75 120.59 0.87 0.95 11;14 Male 64 16.23 CTDa Missing Non-intensive
9166 42.11 115.52 113.68 0.97 0.51 14;16 Female 68 27.24 CCRD No maintenance Intensive
9515 40.86 120.94 110.38 0.89 0.61 11;14 Male 68 26.15 RCDa Lenalidomide maintenance Non-intensive
9524 40.40 155.44 156.08 0.95 0.09 4;14 Male 51 33.81 RCDa Lenalidomide maintenance Non-intensive
9721 37.93 117.26 115.58 0.73 0.75 14;16 Male 64 29.44 CTD Lenalidomide maintenance Intensive

10068 37.23 112.08 108.68 0.92 0.59 4;14 Male 71 13.77 RCDa Lenalidomide and vorinostat maintenance Non-intensive
10365 40.43 114.99 114.13 0.93 0.85 11;14 Male 76 9.33 CTD Missing Intensive
11506 43.51 115.19 119.67 0.96 0.49 14;16 Male 77 11.83 CTDa Lenalidomide maintenance Non-intensive
11668 38.04 118.52 118.81 0.95 0.88 4;14 Male 49 19.29 RCDa Missing Non-intensive
11949 41.50 116.51 114.17 0.96 0.98 11;14 Male 76 14.65 CTD Missing Intensive
12546 39.82 153.13 153.71 0.99 0.88 4;14 Male 77 30.59 RCD Missing Intensive
13029 37.36 112.96 104.78 0.89 0.93 4;14 Male 62 6.90 CTD Missing Intensive
5695 35.75 101.44 NA 0.98 NA 11;14 Male 64 15.61 CTD No maintenance Intensive
5699 36.84 108.95 NA 0.94 NA 11;14 Female 68 6.24 CTD Missing Intensive
5836 35.21 112.77 NA 0.89 NA 11;14 Male 77 36.07 CTDa No maintenance Non-intensive
5939 40.32 109.19 NA 0.96 NA 4;14 Male 65 34.30 CTD Missing Intensive
6016 36.74 108.30 NA 0.92 NA 11;14 Female 55 71.39 RCD Missing Intensive
6076 38.51 103.46 NA 0.91 NA 4;14 Male 72 11.53 RCDa Lenalidomide maintenance Non-intensive
6163 34.25 103.88 NA 0.97 NA 4;14 Male 75 6.90 RCDa Missing Non-intensive
6277 38.07 121.51 NA 0.47 NA 11;14 Male 56 77.86 RCD Lenalidomide maintenance Intensive
6279 33.10 110.18 NA 0.89 NA 4;14 Male 62 21.91 RCD Lenalidomide maintenance Intensive
6345 32.48 94.20 NA 0.94 NA 4;14 Female 72 10.58 CTDa Missing Non-intensive
6415 36.76 105.25 NA 0.96 NA 11;14 Female 68 5.42 RCDa Missing Non-intensive
6425 37.31 104.87 NA 1.00 NA 4;14 Male 67 23.95 RCD Lenalidomide and vorinostat maintenance Intensive
6501 37.56 110.79 NA 0.92 NA 11;14 Female 51 13.11 RCD Missing Intensive
6702 30.68 107.23 NA 0.90 NA 4;14 Female 78 2.30 CTDa Missing Non-intensive
7000 37.47 109.85 NA 0.91 NA 11;14 Female 78 1.87 CTDa Missing Non-intensive

Maintenance PathwayCoverage PuritySample ID Karyotype Gender Age Elapsed time 
(months) Induction
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Normal Primary Relapse Primary Relapse

7005 36.88 105.23 NA 0.98 NA 4;14 Male 74 8.38 CTDa Missing Non-intensive
7164 37.27 110.13 NA 0.99 NA 11;14 Female 80 0.72 RCDa Missing Non-intensive
7348 36.11 110.24 NA 0.95 NA 4;14 Male 67 10.65 RCDa No maintenance Non-intensive
7729 32.76 119.42 NA 0.89 NA 4;14 Male 65 37.72 RCD Lenalidomide and vorinostat maintenance Intensive
7794 32.11 117.88 NA 0.94 NA 4;14 Female 52 15.15 CTD No maintenance Intensive
7880 37.80 105.38 NA 1.00 NA 4;14 Female 82 6.11 RCDa Missing Non-intensive
7915 38.20 97.07 NA 0.93 NA 4;14 Male 59 40.71 CTD Lenalidomide and vorinostat maintenance Intensive
7925 36.21 81.62 NA 0.83 NA 4;14 Male 59 6.41 CTD Missing Intensive
7950 38.58 116.13 NA 0.87 NA 4;14 Male 49 33.05 CTD Lenalidomide and vorinostat maintenance Intensive
7956 38.67 116.29 NA 0.94 NA 4;14 Female 56 6.34 CTD Missing Intensive
8043 37.02 97.85 NA 0.93 NA 4;14 Female 81 8.51 CTDa Missing Non-intensive
8245 38.07 102.24 NA 0.86 NA 11;14 Female 63 55.85 RCD Lenalidomide maintenance Intensive
8567 37.32 123.34 NA 0.47 NA 11;14 Female 66 19.38 RCDa Lenalidomide and vorinostat maintenance Non-intensive
8573 38.19 111.54 NA 0.93 NA 4;14/HD Female 82 10.22 CTDa Missing Non-intensive
8928 32.98 96.98 NA 0.97 NA 4;14 Male 52 7.36 CTD Missing Intensive
8979 36.54 117.56 NA 0.38 NA 4;14 Male 76 26.22 CTDa Missing Non-intensive
9069 37.30 97.76 NA 0.95 NA 11;14 Male 73 0.99 RCDa Missing Non-intensive
9176 38.27 103.83 NA 0.93 NA 11;14 Male 78 3.42 RCDa Missing Non-intensive
9210 37.48 109.25 NA 0.91 NA 11;14 Male 69 10.55 CTD Missing Intensive
9249 37.51 105.83 NA 0.94 NA 11;14 Male 58 54.60 RCD Lenalidomide maintenance Intensive
9289 36.46 103.20 NA 0.75 NA 11;14 Male 56 24.08 CTD No maintenance Intensive
9292 38.92 103.79 NA 0.98 NA 4;14 Female 74 3.71 CTDa Missing Non-intensive
9337 37.87 110.25 NA 0.49 NA 11;14 Female 71 26.05 CTDa Missing Non-intensive
9376 37.21 111.57 NA 0.78 NA 4;14 Female 64 48.00 RCD Missing Intensive
9409 37.54 112.13 NA 0.83 NA 11;14 Male 73 26.91 CTDa Missing Non-intensive
9544 38.36 111.21 NA 0.93 NA 11;14 Male 67 54.24 RCDa No maintenance Non-intensive
9623 38.53 118.15 NA 0.84 NA 11;14 Male 58 36.57 RCD Lenalidomide maintenance Intensive
9718 35.55 85.51 NA 0.95 NA 4;14 Male 66 8.18 RCDa No maintenance Non-intensive
9917 37.89 106.90 NA 0.95 NA 11;14 Male 76 0.00 CTDa Missing Non-intensive
9931 36.08 100.36 NA 0.86 NA 11;14 Female 55 15.74 RCD Missing Intensive

10085 37.48 113.93 NA 0.89 NA 11;14 Female 59 27.27 CCRD Lenalidomide maintenance Intensive
10212 37.06 104.96 NA 0.91 NA 11;14 Female 79 48.66 RCDa Lenalidomide maintenance Non-intensive
10597 30.59 114.68 NA 0.89 NA 4;14 Male 59 22.51 CCRD No maintenance Intensive
10772 39.40 113.42 NA 0.85 NA 4;14 Female 63 17.25 CCRD Missing Intensive
10801 37.37 111.23 NA 0.96 NA 11;14 Male 77 23.79 RCDa Missing Non-intensive
11029 38.80 111.50 NA 0.92 NA 4;14 Female 73 11.43 RCDa Missing Non-intensive
11897 40.44 90.88 NA 0.87 NA 4;14 Male 58 12.49 CCRD Lenalidomide maintenance Intensive
12101 34.41 85.24 NA 0.91 NA 4;14 Male 62 8.05 CCRD Missing Intensive
12227 36.99 88.91 NA 0.92 NA 11;14 Male 57 30.95 CCRD No maintenance Intensive
12541 30.07 99.29 NA 0.95 NA 11;14 Male 56 30.42 CTD Missing Intensive

Maintenance PathwayCoverage PuritySample ID Karyotype Gender Age Elapsed time 
(months) Induction
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Appendix 4: Copy number plots for 80 primary tumours organised by karyotypes (Chapter 5). Clonal copy numbers are 
represented as solid line with higher intensity than subclonal copy number changes represented as thin line. Yellow: total copy number, dark 
blue: copy number of the minor allele. Copy number > 5 is not shown. Y-axis: copy number, x-axis: chromosomes. 
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Appendix 5: Copy number plots for 25 matched primary (left) and relapsed (right) tumours organised by karyotypes (Chapter 
5). Clonal copy numbers are represented as solid line with higher intensity than subclonal copy number changes represented as thin line. Yellow: 
total copy number, dark blue: copy number of the minor allele. Copy number > 5 is not shown. Y-axis: copy number, x-axis: chromosomes. 
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