
Deciphering genetic susceptibility to 
multiple myeloma 

MOLLY WENT 

Division of Genetics and Epidemiology 
Institute of Cancer Research 

SM2 5NG 

Submitted for the degree of Doctor of Philosophy in 
accordance with the regulations of the 

University of London 
2020 



2 

 

Declaration 

The work presented in this thesis is entirely my own work, except where clearly stated in the 

‘Statement of independent work attributable to candidate’ on page 9, and has not been 

submitted for a degree or comparable award to this or any other university or institution. 



3 

 

Abstract 

Multiple myeloma (MM) is a malignancy characterised by the clonal expansion of plasma cells 

primarily from the bone marrow. The two- to four-fold increased risk observed in relatives of 

MM patients provides support for inherited susceptibility to the disease. Genome-wide 

association studies (GWAS) have implicated common, low penetrance variants in MM 

susceptibility, however much of the heritability remains unexplained. To search for novel risk 

loci, a new GWAS and a meta-analysis with previous GWAS and a replication series, totalling 

9,974 MM cases and 247,556 controls of European ancestry was performed. These data provide 

evidence for six new MM risk loci, bringing the total number to 23. Information from gene 

expression, regulatory profiling and in situ Hi-C data was integrated for the 23 risk loci. 

Collectively these data implicate disruption of developmental transcriptional regulators as a 

basis of MM susceptibility, compatible with altered B-cell differentiation, dysregulation of 

autophagy/apoptosis and cell cycle signalling as key mechanisms. To identify candidate causal 

genes at GWAS loci and search for novel risk regions, a multi-tissue transcriptome-wide 

association study (TWAS) was performed by integrating GWAS data with Genotype-Tissue 

Expression Project (GTEx) data assayed in 48 tissues. 108 genes at 13 independent regions 

associated with MM risk were identified, all of which were within 1 Mb of known MM GWAS risk 

variants. Of these, 94 genes, located in eight regions, had not previously been considered as a 

candidate gene for that locus. Clustering of chronic lymphocytic leukaemia (CLL) and MM is 

observed in families, suggesting an element of shared inherited susceptibility. To examine this, 

cross-trait linkage disequilibrium (LD)-score regression of MM and CLL GWAS data sets was 

performed. A significant genetic correlation between these two B-cell malignancies was shown 

(Rg= 0.4, P= 0.0046). Furthermore, nine loci pleiotropic to MM and CLL were identified and 

integration of regulatory and expression data demonstrated that these pleiotropic risk loci were 

enriched for B-cell regulatory elements, and implicated B-cell developmental genes. No lifestyle 

or environmental exposures have been consistently linked to an increased risk of MM. Summary 

data from GWAS of multiple phenotypes can be exploited in a Mendelian randomisation (MR) 

phenome-wide association study (PheWAS) to search for factors influencing MM risk. An MR-

PheWAS was performed analysing 249 phenotypes, proxied by 10,225 genetic variants, and 

summary GWAS data. Although no significant associations with MM risk were observed among 

the 249 phenotypes, 28 phenotypes showed evidence suggestive of association, including 

increased levels of serum vitamin B6 and blood carnitine (P= 1.1×10-3) with greater MM risk, and 
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increased levels of total cholesterol, blood esterified cholesterol and omega-3 fatty acids (P= 

5.4×10-4) with reduced MM risk. Collectively these findings provide insight into genetic and 

genomic architecture, as well as the aetiology of MM.
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 Introduction 

1.1 Overview of multiple myeloma 

Multiple myeloma (MM) is a haematological malignancy with an annual incidence of 8.5 

individuals per 100,000 in the UK [1-3]. The disease is caused by the clonal expansion of plasma 

cells infiltrating the bone marrow [4]. Plasma cells result from the terminal differentiation of B-

cells and are the mediators of long-term humoral immunity, producing and releasing antibody 

[5]. Patients typically present with monoclonal immunoglobulin protein, produced by the 

aberrant plasma cells, in serum and urine [6]. Despite improvements in therapy, MM essentially 

remains an incurable disease; in patients under the age of 60, 10-year survival is only around 

30% [7]. 

 

1.1.1 Epidemiology of multiple myeloma 

The global burden of MM has significantly increased over the last 30 years [8]. Incidence of the 

disease is, however highly variable between different countries, with MM being more common 

in economically developed countries (Figure 1.1) though some of the differences in incidence 

may be due to lack of diagnostic abilities in less economically developed countries compared 

with more economically developed countries and do not necessarily reflect differences in 

disease biology [8, 9]. The incidence of MM increases with age with the median age of diagnosis 

for MM being 70 years [10]. As with other B-cell malignancies MM is more common in men than 

in women [11-13]. Both MM and its precursor lesion, monoclonal gammopathy of undetermined 

significance (MGUS), have a higher incidence in those with African than Caucasian ancestry [13-

15] (Figure 1.2).  

 

Multiple lifestyle and dietary factors have been variously purported to affect the risk of MM or 

MGUS, including obesity [16-20], diet [21-23], vitamin D [24, 25] and immune dysfunction [26]. 

Environmental factors proposed to influence MM risk include herbicide [27] or pesticide [28] 

exposure, occupation as a farmer or firefighter [29, 30], exposure to radiation [31, 32] and 

exposure to industrial solvent methylene chloride [33]. To date none of these findings have been 

independently validated and the aetiological basis of MM largely remains unexplained. 
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Figure 1.1 World age-standardised incidence rates of multiple myeloma in 2018.  GLOBOCAN 
[34] 
 

 
Figure 1.2 Age-specific incidence rate of multiple myeloma per 100,000 by race and sex.  
Incidence data from the SEER 18 Registries 2007-2011 [35]. EA, European ancestry; AA, African 
ancestry.  
 

1.1.2 Cellular origin of multiple myeloma 

Plasma cells are terminally differentiated cells of B-cell lineage, which develop from 

haematopoietic stem cells in the bone marrow. Commitment to the B-cell lineage is  dependent 

on transcription factors including PU.1, E2A and paired box protein 5 (PAX5) [36].  

 

Naïve B-cells that exit the bone marrow continue to undergo maturation in the spleen. Here 

they pass through transitional stages, to form long-lived naïve follicular B-cells with a minority 

also forming naïve marginal-zone (MZ) B-cells [36]. B1 cells, present in the peritoneal and pleural 
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a) 

b) 

cavities of the gut lamina propria, represent another type of mature naïve B-cell [37]. Follicular 

B, marginal zone B and B1 cells all possess antigen-independent self-renewing ability [5]. B1-

cells develop into antibody-secreting cells (ASCs) when challenged with antigens, often from 

bacterial pathogens or viruses, and form part of the innate immune system [38] (Figure 1.3). 

Similarly, MZ B-cells contribute to the innate immunity by differentiating into ASCs upon 

exposure to polymeric epitopes of bacteria or viruses [38] (Figure 1.3). ASCs developed from B1-

cells and MZ B-cells are normally short-lived.  Follicular B-cells, as the most abundant mature B-

cell subset, can generate ASCs in an early response like B1-cells and MZ B-cells when they 

encounter foreign antigens. With T-cell involvement follicular B-cells can also undergo a clonal 

expansion to form a germinal centre (GC) within secondary lymphoid organs (Figure 1.4) [5, 36].  

 

 

 

Figure 1.3 Key steps in normal B-cell differentiation formation of a) marginal zone B and b) B1 
cells. 
 

The GC is composed of the light and dark zones. Within the dark-zone, activated B-cells undergo 

somatic hypermutation (SHM) of the immunoglobulin genes to generate diverse antibodies. 

Dark-zone B-cells differentiate into light-zone B-cells, where those cells expressing a high-affinity 

antibody either recirculate to the dark zone to undergo further rounds of SHM or differentiate 

further. During development, B-cells also undergo class switch recombination (CSR). Class 

switching, the result of CSR, changes the expressed isotype from low-affinity immunoglobulin M 

(IgM), which characterises an antigen experienced B-cell, to IgG-, IgA-, or IgE-, generating specific 

antibodies with different functional characteristics [39]. CSR was thought to occur in GCs 

however recent research revises this previously held assumption, suggesting that CSR can occur 

prior to SHM in a pre-GC reaction [40].  B-cells that bear high-affinity antibodies of various 

isotypes, as a result of these selection processes, differentiate into memory B-cells or ASCs, with 

some plasma cells becoming long-lived and residing in the bone marrow to provide long-lived 

antibody response [36, 41]. Upon antigen rechallenge, the memory B-cells can differentiate into 
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plasma cells rapidly or form secondary germinal centre to generate higher-affinity antibodies 

[42]. The plasma cells associated with MM are by convention termed post-germinal centre B-

cells since they have undergone immunoglobulin gene SHM, VDJ recombination (where exons 

encoding the antigen binding domains are assembled from Variable, Diversity and Joining gene 

segments), antigen selection and (usually) isotype switch recombination [43].  

 

Plasma cells in the bone marrow can undergo a clonal expansion to form MGUS, the 

asymptomatic precursor lesion to MM. Progression of MGUS to MM occurs at a rate of 1% per 

year [44]. Smouldering MM (SMM) is an intermediary state between MGUS and MM, with 

annual risk of 10% in first five years of progressing to MM, 3% per year in the subsequent five 

years and 1% per year thereafter [45]. Symptomatic MM is typified by the presence of 

monoclonal protein (M protein) in the blood or urine produced by the clonally-expanded plasma 

cells, as well as the associated organ dysfunction [46]. Clonal plasma cells can progress into 

plasma cell leukaemia (PCL) or extramedullary myeloma (EMM), migrating outside the bone 

marrow to the peripheral blood.  Genetic aberrations, which have been characterised in MM, 

are considered to disrupt the intrinsic biological pathways of B-cells and plasma cells resulting 

in the initiation and development of MM [47]. 
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Figure 1.4 Germinal centre reaction. Upon antigen stimulation, mature naïve follicular B-cells undergo clonal expansion in GCs. This is followed by somatic hypermutation, 
with B-cells bearing the highest affinity antibodies being preferentially selected. B-cells expressing high-antigen-affinity antibodies that have survived the GC reaction 
differentiate into long-lived memory B-cells, antibody-secreting plasmablasts or plasma cells. Short-lived antibody-secreting plasmablasts and plasma cells can also develop 
from mature naïve marginal-zone B-cells and B1-cells. B-cell malignancies can arise at various stages of B-cell development. Putative cell of origin of the various B-cell 
malignancies are indicated, including MM, which is thought to arise from a terminally differentiated plasma cell. 
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1.1.3 The multiple myeloma genome 

Multiple myeloma is a biologically heterogenous disease. Accumulation of genetic 

abnormalities, including hyperdiploidy (HRD), chromosomal translocations, copy number 

changes, gene mutations, aberrant methylation and microRNA deregulation [47] characterise 

the initiation and progression of MM (Figure 1.5). 

 

Primary genetic events associated with the development of the MM precursor states are 

chromosomal translocations (non-HRD) and hyperdiploidy (HRD). HRD is present in 55-60% of 

MM patients, involving trisomies of odd numbered chromosomes - specifically chromosomes 3, 

5, 7, 9, 11, 15, 19 and 21 [48-50]. Non-HRD can be subdivided based on translocations of the IGH 

locus at 14q32; this process is thought to be the consequence of aberrant CSR during antigen 

stimulated B-cell proliferation [39]. Normal B-cells undergo CSR to alter the antibody class 

expressed, mediated by double-strand DNA breaks (DSBs) with the expression of activation-

induced deaminase (AID) [43, 51, 52]. Successful recombination results in a B-cell which 

produces a functional heavy chain in its secreted immunoglobulin. Errors in the process of CSR 

can result in DNA from another chromosome being translocated and juxtaposed with strong IGH 

enhancer on chromosome 14 [43]. Recurrent chromosomal translocations observed in MM are 

summarised in Table 1.1. 

 

Primary translocation Frequency Translocated gene partner 
t(11;14) 15-20% CCND1 
t(4;14) 10-15% FGFR3, MMSET 
t(6;14) 2-5% CCND3 

t(14;16) 5% c-MAF 
t(14;20) 1-2% MAFB 

Table 1.1 The main primary chromosomal translocations in multiple myeloma. 
 

Secondary chromosomal events in MM include deletion of 1p (30%), 6q (33%), 8p (25%), 12p 

(15%), 13q (59%), 14q (39%), 16q (35%), 17p (7%), 20 (12%) and 22 (18%) and gain of 1q (40%) 

[53].  A number of these changes have clinical relevance, with del(17p), which involves loss  of 

TP53, and MYC translocation being associated with progression from newly diagnosed MM to 

refractory disease and plasma cell leukaemia [54-57]. Gain of 1q21, which implicates the 

oncogene CKS1B, has been shown to be strongly associated with adverse patient prognosis [2, 

58, 59]. In addition to copy number changes, gene mutations in RAS/MAPK signalling pathway 

(e.g. NRAS and KRAS), aberrant methylation and microRNA deregulation are all features of MM 

[47].  
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Figure 1.5 Pathogenesis of multiple myeloma.  The initial deregulated plasma cell in the bone 
marrow belongs to MGUS, which develops further genetic abnormalities in the progression to 
symptomatic MM, EMM/PCL. MGUS, monoclonal gammopathy of undetermined significance; SMM, 
smouldering multiple myeloma; MM, multiple myeloma; EMM, extramedullary multiple myeloma; PCL, 
plasma cell leukaemia. Adapted from [47]. 
 
1.1.4 Diagnostic classification of multiple myeloma 

Diagnostic classification of MM was established by the International Myeloma Working Group 

(IMWG) (Table 1.2) [60]. Serum and urine M proteins (an abnormal immunoglobulin fragment) 

are measured from patients by electrophoresis and immunofixation. Presence of CRAB 

symptoms are also evaluated in patients, which assess Calcium levels (hypercalcemia; serum 

calcium > 2.75 mmol/L), Renal impairment (serum creatinine > 177 µmol/L, or creatinine 

clearance < 40 ml/min), Anaemia (haemoglobin level < 100 g/L) and Bone lesions (defined as ≥ 

1 osteolytic lesions detected on skeletal radiography, computed tomography (CT) or positron 

emission tomography–computed tomography (PET-CT)) [60]. 

 

These diagnostic criteria have recently been revised to reflect changes in available therapy and 

improvements in accurate biomarker identification, with an aim to identify and treat those 

individuals at high risk of progression from SMM or MGUS to MM [60]. Specifically, patients with 

clonal bone marrow plasma cell percentage ≥60%, involved:uninvolved serum free light chain 

ratio ≥100, or >1 focal lesions on MRI, studies who do not yet show the presence of CRAB 

features, are now among those eligible for treatment. 
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Clinical stage Diagnostic criteria 

Monoclonal gammopathy of 
undetermined significance 
(MGUS) 

• Serum M protein < 30 g/L, and 
• Clonal plasma cells < 10% in bone marrow, and 
• Absence of myeloma-related end-organ damage or tissue 

impairment or CRAB 
 

Asymptomatic/smouldering 
multiple myeloma (SMM) 

• Serum M protein level ≥ 30 g/L or urinary M protein ≥ 500mg 
per 24 hours, and/or clonal plasma cells 10%-60% in bone 
marrow, and 

• Absence of myeloma-defining events (i.e. no myeloma-related 
end-organ damage or tissue impairment or CRAB, involved: 
uninvolved serum free light chain ratio < 100, no focal lesions 
identified by magnetic resonance imagining (MRI)) 

Symptomatic MM • Clonal plasma cells ≥ 10% in bone marrow or biopsy-proven 
bony or extramedullary plasmacytoma, and any one of the 
following: 

• Clonal plasma cells in bone marrow ≥ 60%, or 
• Involved: uninvolved serum free light chain ratio ≥ 100 

(providing involved FLC ≥ 100mg/L) , or 
• Evidence of end-organ damage related to myeloma or CRAB, 

or 
• > 1 MRI focal lesion  

Table 1.2 IMWG diagnostic criteria of multiple myeloma. 
 

1.1.5 Prognostic factors 

As a disease, MM is clinically heterogenous with patient survival being affected by host factors 

including tumour burden (stage), tumour biology (cytogenetic abnormalities), and response to 

therapy. Traditionally, survival in MM patients has been based on the Durie-Salmon Staging 

System (DSS) and International Staging System (ISS) [61, 62], but both these systems have 

limitations [63]. The DSS classifies patients based on tumour burden, but suffers from a lack of 

reproducibility due to varied interpretation of MM bone disease. While the ISS classification 

includes measurement of serum albumin and beta2-microglobulin and is generally considered 

to be more reproducible, these biomarkers can be disproportionately affected by factors that 

are not disease-specific [63].  

 

Recognising that the molecular subtype and cytogenetic abnormalities in MM have prognostic 

relevance, a Revised International Staging System (RISS) was created that combines elements of 

tumour burden (ISS) and disease biology (presence of high-risk cytogenetic abnormalities (Table 

1.3) or elevated lactate dehydrogenase level) [63].  Gene expression signatures, generated by 

unsupervised clustering of mRNA expression, are increasingly being used to risk stratify patients 

[64]. For example, MAFB and c-MAF overexpression as a consequence of t(14;20) and t(14;16) 



 

33 

 

respectively, cluster as one subgroup designated “MF”, on the assumption that over-expression 

of the MAF family results in deregulation of mutual downstream genes in MM [64]. Different 

molecular subgroups have demonstrated differences in event-free and overall survival, and 

mutational load have also been linked to a poorer outcome [64, 65]. Risk stratification, which 

combines the mutational load, molecular subtype classification and gene expression profiling is 

increasingly being used to define patient treatment, for example, in the Mayo Stratification of 

Myeloma and Risk-Adapted Therapy (mSMART) [66] and ongoing clinical trials Total Therapy 4 

and 5 [67] conducted by the University of Arkansas. 

 

Standard risk Intermediate risk High risk 
HRD 

t(4;14) 
t(14;16) 

t(11;14) t(14;20) 
t(6;14) 17p deletion 

Table 1.3 Cytogenetic risk-stratification of multiple myeloma.  Adapted from ref. 59. 
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1.1.6 Treatment of multiple myeloma 

Asymptomatic precursors to MM, including MGUS and SMM, typically do not require treatment. 

However a subgroup of patients with SMM, who are at high risk of progression to MM, are now 

being considered for therapy [60]. Treatment for MM generally involves chemotherapy, with 

radiotherapy, as appropriate, for pathological bone lesions. Patients who are younger (usually < 

70 years) without co-morbidities, are typically treated with high-dose therapy, followed by an 

autologous stem cell transplantation (ASCT), otherwise, chemotherapy only is used [68, 69].  

 

Treatment with bortezomib (Velcade), lenalidomide (Revlimid) and dexamethasone in 

combination (VRd) is a standard course of therapy for MM, as induction prior to high-dose 

therapy and stem cell transplantation, as an initial treatment for older and less fit patients, or at 

relapse [70]. Bortezomib is one of a group of drugs called proteasome inhibitors. Others in this 

group include carfilozomib and ixazomib, which are also used in treatment of MM. Alternatives 

to lenalidomide, which is an immunomodulatory agent, are pomalidomide or thalidomide. 

Combination treatments rely on the synergistic effects of the therapy agents, including targeting 

the tumour microenvironment.  For example, bortezomib targets pathways which are both 

intrinsic and extrinsic to the plasma cell [71], while dexamethasone targets only intrinsic 

pathways [72]. 

 

DNA damaging agents such as alkylating agent melphalan and cyclophosphamide, and 

anthracycline agents such as doxorubicin are also treatment options for MM, though stem cell 

toxins may be avoided in patients who will undergo ASCT [69, 70].  

 

New treatments include repurposed alkylating agents, kinesin spindle protein inhibitors, histone 

deacetylase inhibitors, and inhibitors of key complexes in MM development and progression, 

namely cyclin-dependent kinase, IL-6, Bruton’s tyrosine kinase, B-cell lymphoma 2, protein 

kinase B and phosphoinositide 3-kinase pathway components. Novel immunotherapies using 

monoclonal antibodies (e.g. daratumumab, elotuzumab, indatuximab, SAR650984) are also 

treatment options currently being investigated in clinical trials for those with 

relapsed/refractory MM [73]. Many of these treatments benefit from fewer, milder side effects 

than conventional treatment and thus may be advantageous for long-term management of 

patients [60].  

Currently, MM is essentially an incurable disease and the majority of patients will relapse. 

Treatment for relapsed patients is informed by the quality and duration of response to previous 
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drug regimens, timings of relapse and patients health (e.g. age, renal function, bone marrow 

function, and presence of comorbidities). A regimen of formerly administered chemotherapy 

drugs or novel agents with or without stem cell transplantation is given at relapse.  

 

1.2 Evidence for familial predisposition to multiple myeloma 

Evidence for inherited predisposition to MM comes from increased risk of MM seen in relatives 

of MM patients [74]. The largest study to date investigated familial risk in a range of 

haematological malignancies, including 25,787 patients diagnosed with a MM. This study 

quantified familial relative risks (RRs) in 59,413 of the first-degree relatives of MM patients, 

finding a familial RR of 2.24 (95% CI 1.81-2.75) [74, 75]. This estimate is consistent with earlier 

studies using the same cancer registry which demonstrated a RR in first-degree relatives of 2.45 

and 2.1. Clustering of MM with the precursor condition MGUS is also observed in families, with 

first-degree relatives of MM patients having a two-fold elevated risk of MGUS (RR 2.1; 95% CI 

1.5-3.1). Two further studies have demonstrated a three-fold elevated risk of developing MM 

and MGUS among relatives of MGUS patients [76, 77]. In addition, there is evidence for 

clustering of MM with other tumour types including haematological malignancies. An increased 

risk among relatives of patients with MM has been found for chronic lymphocytic leukaemia 

(CLL) (RR = 1.33–2.45) [78, 79], Waldenström’s macroglobulinemia (RR = 4.0) [79], acute 

lymphoblastic leukaemia (ALL) (RR = 2.1) [80], and non-Hodgkin lymphoma (NHL) (RR = 1.34–

1.35) [78, 81]. Notably, these are all of lymphoid origin. 

 

1.3 Models of inherited genetic predisposition 

The two- to three-fold familial risks associated with MM and other cancers are compatible with 

a range of effect sizes and frequencies of predisposition alleles. Studies have detected two main 

classes of cancer susceptibility alleles with different levels of risk and prevalence in the general 

population. First, rare moderate-penetrance variants (risk allele frequency <2%; odds ratios 

(ORs) >2.0) have been identified through investigation of candidate genes. Second, common 

low-penetrance alleles (risk allele frequency >5%; ORs <1.5) have been identified by genome-

wide association studies (GWAS). The penetrance and frequency spectrum of cancer risk alleles, 

in general, likely exists on a continuum and the observed dichotomy aforementioned may reflect 

the methods used to detect risk alleles, rather than the underlying biology [82]. 
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1.3.1 Rare, highly penetrant alleles 

Successful identification of cancer susceptibility genes has been dominated by linkage studies of 

highly selected families. These analyses have led to the identification of most of the currently 

known high-penetrance susceptibility genes (e.g. BRAC1 and BRAC2 associated with breast and 

ovarian cancer [83, 84], APC, MLH1 and MSH2 with colorectal cancer (CRC) [85-88]). While 

mutations of such genes produce highly penetrant phenotypes, these mutations are rare and 

explain only a minor component of disease susceptibility in these instances.  

 

To date no linkage studies exist in MM high-risk families, though Waller et al developed a gene 

mapping strategy to search for shared genomic segments, using data from 11 MM high-risk 

families from Utah [89]. This study identified a 1.8-Mb shared segment on 6q16, harbouring nine 

genes, in one pedigree. Exome sequencing in this region revealed predicted deleterious variants 

in USP45 (p.Gln691* and p.Gln621Glu), a gene involved in DNA repair through endonuclease 

regulation. Additionally, a 1.2 Mb segment at 1p36.11 was identified in two Utah high-risk 

pedigrees, with coding variants found in ARID1A (p.Ser90Gly and p.Met890Val), a gene in the 

SWI/SNF chromatin remodelling complex. However, these findings have not yet been replicated. 

 

An example of a rare low-penetrance susceptibility allele in MM is provided by the germ-line 

mutations observed in CDKN2A (p16INK4A), a tumour suppressor gene encoding a cell cycle 

inhibitor. However, this was described in a single family with four individuals affected with 

melanoma and only one fifth family member affected with MM [90]. 

 

1.3.2 Common, low penetrance alleles 

To date, high penetrance mutations in more than 72 genes [91] have been associated with 

susceptibility to cancer, but these account for only a small fraction of the familial risks of the 

respective cancers, leaving much of the heritability unexplained. It is likely that most of the 

inherited genetic susceptibility to common cancers result from multiple inherited genetic 

variants. The “common disease, common variant” hypothesis posits that a substantial 

proportion of the genetic risk of common diseases can be accounted for by the action of multiple 

low-penetrance alleles that have a relatively high population frequency [92] (Figure 1.6). 

Although such alleles confer small effects individually, they could contribute significantly to 

disease susceptibility in the general population. These alleles are highly unlikely to cause 

multiple cases in families and therefore would have eluded prior detection through linkage 

studies [93]. 



 

37 

 

1.3.3 Candidate gene association studies 

Until more recently, the search for common genetic variants influencing MM have been based 

on analyses of polymorphisms in pre-selected candidate genes. Hypotheses, which have been 

examined in candidate gene association studies include the role of cytokines and immune 

response, DNA repair, folate metabolism, ADME (absorption, distribution, metabolism and 

excretion), insulin-like growth factors, and apoptosis [94-99]. While some studies report positive 

associations, these have not been replicated in an independent cohort. These findings are 

characterised by small case-control studies, whose low power to detect true associations 

therefore increase the risk of false-positive discoveries and are limited in their ability to 

appropriately account for population substructures [100, 101]. Prior knowledge of specific 

disease-related candidate genes, together with the prioritisation of alleles with respect to these 

genes, form the basis of candidate gene association studies; however current knowledge about 

the disease aetiology make pre-selection of genes inherently difficult. 

 

 

Figure 1.6 Polygenic model of disease susceptibility.  The distribution of risk alleles in both cases 
and controls follows a normal distribution. However, cases have a shift towards a higher number 
of risk alleles. Figure adapted from [102].  
 

1.4 Genome-wide association studies 

The advent of genome-wide association studies (GWAS) has provided a powerful approach in 

the identification of common, low-penetrance risk alleles for MM and these studies have 

transformed our understanding of susceptibility to the disease. GWAS generally use single 

nucleotide polymorphisms (SNPs) as marker variants of investigation [103]. SNPs are common 

variants in the genome which occur approximately every 300-1,000bp [103]. A SNP marker allele 

is associated with a disease if one allele is found significantly more frequently in cases than in 

cancer-free controls. SNPs are inherited in blocks, with SNPs in closer proximity more likely to 

be inherited together [92]. This non-random association between alleles at loci on the same 
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chromosome occurs during meiosis and is referred to as linkage disequilibrium (LD) (Figure 1.7) 

[92, 104]. Correlated SNPs co-segregate into a haplotype and this allows certain SNPs across the 

genome to be selected as ‘tag SNPs’, which can capture the majority of sequence variation in a 

given region [105]. 

 

The number of SNPs that require genotyping to capture most common variants across the 

human genome (that is, those with a minor allele frequency >5%) is therefore reduced to around 

300,000. Arrays that assess for common genetic variations in the form of SNPs across the entire 

human genome typically directly genotype 300,000-1,000,000 tagging SNPs. This allows for 

identification of regions associated with a disease or trait (termed “risk loci”) without prior 

knowledge of genomic location or function. The power of an association study is the likelihood 

of detecting an effect if there is a true genetic effect present to detect. It is dependent on many 

factors, including the sample size, the genetic model used, the frequency of the disease allele 

under study, the effect size of the variant on the trait of interest, and the significance threshold 

required to declare a true association [106]. In the case of MM especially, GWAS provide a 

significant advantage over linkage studies as single cases are much more readily available than 

large extended pedigrees. This allows large enough sample sizes, and therefore increased 

power, to detect variants with small effects. Furthermore, international collaborations of MM 

studies can be combined in a meta-analysis of GWAS to greater increase power [107]. An 

alternative approach is to select cases that are genetically enriched for disease, such as those 

with a family history or early age of disease onset [108].  

 

 

Figure 1.7 Principle of linkage disequilibrium.  It is possible to identify genetic variation without 
genotyping every SNP in a chromosomal region. For example, through genotyping SNP 2 it is 
possible to infer the genotypes of SNP 1, SNP 4 and SNP 7. SNP 2 therefore can be a ‘tag’ SNP. 
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1.4.1 Imputation 

Risk SNPs identified through GWAS represent proxies for the association signal and while a 

minority of GWAS tag SNPs are directly functional, the majority are not themselves necessarily 

the functional or causative variant at the risk locus. The causative SNP in the association is likely 

to be correlated with the sentinel tagSNP at the GWAS association peak while not being directly 

genotyped on a GWAS array. A key step in deciphering the causative SNP at a risk locus is fine-

mapping, which is aided by imputation of untyped genotypes (Figure 1.8).  

 

Imputation is a computational method that aims to predict the likely genotypes at un-genotyped 

loci across the genome and makes use of the information provided by haplotypes in a reference 

panel of sequenced samples such as the 1000 Genomes project [109] and UK10K project [110]. 

Imputation can boost power of up to 10% over testing only genotyped SNPs and aid in identifying 

new regions of association at variants that are incompletely tagged by GWAS tagSNPs or at 

insertion/deletions (indels) that are not fully captured by GWAS arrays [111]. Furthermore, 

where different genotyping arrays are used in different cohorts, imputation can allow for 

harmonization of SNPs across the cohorts, so that meta-analysis can be performed. Imputation 

is limited by the choice of reference panel, the quality and size of which can impact the 

imputation fidelity.  

 

 

Figure 1.8 Overview of imputation. Imputation utilises a reference panel of phased haplotypes 
to infer the genotypes at un-typed positions in GWAS datasets, increasing the number of 
variants that can be tested for an association with disease. Red “?” indicate variants not 
genotyped on the GWAS array. The most likely haplotype is chosen from the reference panel to 
predict the genotypes at these variants. 
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1.4.2 Association studies in multiple myeloma 

The first GWAS was carried out by Broderick et al. [112] and comprised 1,675 cases from the UK 

and Germany. The study identified risk loci at 3p22.1 (ULK4), 7p15.3 (CDCA7L, DNAH11), and a 

promising (5×10-6> P >5×10-8) locus at 2p23.3 (DNMT3A, DTNB). This dataset was extended to 

4,692 cases, by Chubb et al [113] who identified four risk loci at 3q26.2 (TERC and other genes), 

6p21.33 (HLA), 17p11.2 (TNFRSF13B), and 22q13.1 (CBX7). An independent GWAS carried out 

by Swaminathan et al [114], comprising 3,031 MM and MGUS cases from a Swedish/Norwegian, 

Danish, and Icelandic dataset, reported risk loci 5q15 and a promising locus at 22q13. From 

Weinhold et al [115], a subset of 1,655 MM cases from Chubb et al, with linked fluorescence in 

situ hybridisation (FISH) data, was assessed for subtype analysis to identify the risk for 

developing a specific tumour karyotype in MM. The 11q13.3 locus was identified to be 

associated with the t(11;14) translocation in which CCND1 is placed under the control of the 

immunoglobulin heavy chain enhancer. Mitchell et al [116] performed a meta-analysis on 9,866 

cases from the data sets from United Kingdom, Germany, and Scandinavia, including two new 

data sets from the Netherlands and USA. This meta-analysis identified eight new loci at 6p22.3 

(JARID2), 6q21 (ATG5), 7q36.1 (SMARCD3 and other genes), 8q24.21 (CCAT1), 9p21.3 (CDKN2A), 

10p12.1 (WAC), 16q23.1 (RFWD3) and 20q13.13 (PREX1) and brought the 22q13 (TOM1, 

HMGXB4) association from the Scandinavian association study to genome-wide significance 

(Section 2.3.2). 

 

3p22.1 

The 3p22.1 association signal spans ULK4, which encodes a serine/threonine-protein kinase. The 

G-to-A transition at rs1052501 results in Ala542Thr which was predicted by the authors to be 

tolerated from in silico SIFT (sorting intolerant from tolerant) analysis or benign from Polyphen2. 

Although the exact function of ULK4 is not known, the Atg1-ULK complex with ULK1 and ULK2 

regulates mTOR-mediated autophagy, a pathway critical in MM biology [117, 118]. In addition 

to ULK4, the region of LD encompasses TRAK1, which regulates the endocytic trafficking of the 

GABAA receptors [119]. 

 

7p15.3 

At 7p15.3, CDCA7L (Cell division cycle-associated 7-like protein) has been implicated as a 

candidate gene as it encodes a cell division-associated protein that binds the transcriptional co-

activator p75, and is thought to potentiate MYC-mediated transformation events [120-122]. In 

addition, CDCA7L is highly expressed in plasma cells, and Weinhold et al [123] and Li et al [124] 
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demonstrated in follow-up studies that the MM risk allele increases CDCA7L expression in 

plasma cells as a result of the lead variant rs4487645 creating a new binding site for the 

transcription factor IRF4. 

 

2p23.3 

DTNB (β-dystrobrevin), a component of the dystrophin-associated protein complex has been 

implicated at 2p23.3. The LD region also encompasses DNMT3A (DNA (cytosine-5)-

methyltransferase 3A), a de novo DNA methyltransferase lowly expressed in MM.  Epigenetic 

changes are observed in the transition from normal plasma cells, MGUS, MM to relapsed MM, 

specifically global DNA hypomethylation and gene-specific DNA hypermethylation, suggesting a 

role of epigenetic deregulation in MM development [125]. 

 

3q26.2 

rs10936599 at 3q26.2 results in a synonymous mutation in MYNN (myoneurin), a zinc finger 

protein that is expressed abundantly in muscle. 3q26.2 encompasses TERC (telomerase RNA 

component). Telomerase activity and telomerase-mediated elongation of shorter telomeres is a 

feature of MM [126]. Sequence variation at TERC associates with several other cancer types, 

including CLL [127], glioma [128-130], CRC [131], and thyroid [132] cancer. Notably, the 

rs10936599 G risk allele is associated with significantly longer telomeres in CRC patients and has 

been shown to increase CRC risk [131]. 

 

6p21.33 

The HLA region contains numerous genes relevant to B- and T-cell development and function, 

and the MM risk allele seems to represent HLA-DRB5*01. This region spans PSORS1C1 (psoriasis 

susceptibility 1 candidate 1) and POU5F1 (POU domain, class 5, transcription factor 1), which 

regulates stem cell pluripotency, lineage commitment and tissue-specific gene expression [133]. 

However there is currently no association between POU5F1 and MM pathogenesis. 6p21.33 has 

been shown to be associated with follicular lymphoma [134] and Hodgkin's lymphoma risk [135], 

defined by variants in the HLA class I and II regions. The MM risk associated with these SNPs was 

non-significant. 

 

17p11.2 

The association at 17p11.2 encompasses TNFRSF13B (tumour necrosis factor receptor 

superfamily member 13B). TNFRSF13B is required for transitional and mature B-cell 
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development and normal B-cell homeostasis. TNFRSF13B −/− mice demonstrate an increase in 

the number of B-cells in the lymph nodes and spleen, an infiltration of lymphocytes in the liver 

and kidneys, and increased lymphoma risk [136]. 

 

22q13.1 

The association at 22q13.1 spans CBX7 (chromobox homolog 7), which encodes a polycomb 

group protein. Proteins from this group regulate cell fate determination during normal and 

pathogenic cell growth and differentiation [137]. CBX7 mediates transcription repression on 

CDKN2A, transcription of which is required for replicative or oncogene-induced senescence 

[138]. CBX7 also cooperates with MYC to promote aggressive B-cell lymphomagenesis [139]. 

 

5q15 

The association at 5q15 spans ELL2 (elongation factor, RNA polymerase II 2). This gene encodes 

a key component of the super-elongation complex, which mediates rapid gene induction by 

suppressing transient pausing of RNA polymerase II [140]. In mature and memory B-cells, which 

express ELL2 at a low level, IGH-mRNA is translated to membrane-bound Ig [141]. In plasma 

cells, ELL2 is highly expressed and helps RNA polymerase II find a promoter-proximal weak 

poly(A)-site, allowing IGH-mRNA to be translated to secreted Ig. Both Li et al [142] and Ali et al 

[143] have investigated the functional basis of the association at this locus. Li et al [142] propose 

the causal SNP as rs6877329, which forms a chromatin looping interaction with the ELL2 

promoter, with the C allele reducing enhancer activity in MM and conferring lower ELL2 

expression in MM patients. Li et al [142] also provided data suggesting that the ELL2 allele 

preferentially predisposes for the hyperdiploid MM subtype. Ali et al [143] identified rs3777189 

as a likely candidate causal variant that perturbs a binding site for MAFF/G/K transcription 

factors, and also found that the ELL2 risk allele increases ribosomal gene expression, proposing 

this as a possible compensatory reaction. Both studies showed that the ELL2 MM risk allele 

reduces ELL2 expression in CD138+ plasma cells. 

 

22q13  

At 22q13, TOM1 (target of myb1 membrane trafficking protein) was implicated as a candidate 

gene. TOM1 encodes an adapter protein required for the maturation of autophagosomes and 

their fusion with lysosomes, and also displays higher expression in plasma cells relative to other 

blood cell types [114]. The LD region at 22q13 association also comprises HMGXB4 (HMG-box 

containing 4).  A dominant mutation in TOM1 has recently been identified in a family with early-
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onset autoimmunity and combined immunodeficiency with decreased levels of 

immunoglobulins as well as several lymphocyte subsets, including switched memory B-cells 

[144]. 

 

6q21 

The 6q21 association marked by rs9372120 maps to intron 6 of ATG5 (Homo sapiens autophagy 

related 5). ATG5 is highly expressed in plasma cells and essential for autophagy and plasma cell 

survival [145, 146]. Using data from lymphoblastoid cell lines (LCLs), it was shown that the region 

at 6q21 (rs9372120, ATG5) participates in intra-chromosome looping with the transcriptional 

repressor PRDM1 (alias BLIMP1) [116], which has an established role in plasma cell development 

and survival [36, 37, 147]. 

 

6p22.3 

The 6p22.3 (rs34229995) association is 2.2-kb telomeric to the 5′ of JARID2 (jumonji, AT-rich 

interactive domain 2). JARID2 functions as a transcriptional repressor through recruitment of 

Polycomb repressive complex 2 and has recently been identified as a regulator of 

haematopoietic stem cell function [148]. Furthermore, the 6p22.3-p21.31 region is commonly 

gained in MM tumours [53]. 

 

7q36.1 

The 7q36.1 (rs7781265) association localizes to intron 2 of SMARCD3 (swi/snf-related, matrix-

associated, actin-dependent regulator of chromatin, subfamily d, member 3). SMARCD3 recruits 

BAF chromatin remodelling complexes to specific enhancers. 

 

8q24.21 

The 8q24.21 variant rs1948915 maps to CCAT1 (colon cancer-associated transcript 1). The same 

region at 8q24.21 harbours multiple independent loci with different tumour specificities, 

including the B-cell malignancies diffuse B-cell lymphoma [149], Hodgkin’s lymphoma [135] and 

chronic lymphocytic leukaemia [150]. With the exception of CLL, the SNPs underlying these 

associations have been shown to reside in distinct LD blocks [82].  

 

9p21.3 

The 9p21.3 variant rs2811710 maps to intron 1 of CDKN2A/p16INK4A (cyclin-dependent kinase 

inhibitor 2A). This region is a susceptibility locus for multiple tumour types including breast and 
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lung cancer [151], glioma [152] and acute lymphoblastic leukaemia [153]. Furthermore, the 

9p21.3 locus interacts with the genomic region containing MTAP (methylthioadenosine 

phosphorylase) and deletion of MTAP is common in cancer, being closely linked to homozygous 

deletion of p16 [154]. 

 

10p12.1  

The 10p12.1 (rs2790457) association localizes to intron 3 of the gene encoding WAC (ww 

domain-containing adaptor with coiled-coil region), which has been shown to be part of an 

extended autophagy network [155]. 

 

16q23.1  

The region at 16q23.1 encompasses RFWD3, a gene encoding an E3 ubiquitin ligase that 

positively regulates p53 stability by forming an RFWD3–MDM2–p53 complex, thereby 

protecting p53 from degradation by MDM2-mediated polyubiquitination. Variation at 16q23.1 

defined with the correlated SNP rs4888262 has previously been shown to influence testicular 

cancer risk [156].  

 

20q13.13  

The 20q13.13 (rs6066835) association mapped to intron 3 of PREX1 (phosphatidylinositol-3, 4, 

5-trisphosphate-dependent Rac exchange factor 1), a Rac guanine exchange factor that 

coordinates signalling inputs from G protein-coupled receptors and receptor tyrosine kinases. 

Due to its role in the PI3K/AKT pathway and MEK/ERK signalling, PREX1 has been proposed as a 

biomarker and therapeutic target in breast cancer [157]. 

 

1.4.3 Perspectives from GWAS 

So far, MM GWAS provide evidence to support a polygenic model of MM and have identified 17 

risk loci [112-114, 116], with one additional risk locus specific for t(11,14) translocations [115]. 

These risk SNPs are common (European minor allele frequency [MAF] >0.01) and have modest 

effect sizes (1.12 < OR < 1.38). In addition, the loci encompass genes which are known to be 

important in plasma cell or cancer biology, for example TNFRSF13B at 17p11.2, TERC at 3q26.2, 

ELL2 at 5q15 and MYC at 8q24.21.  

 

It is estimated that the heritability explained by the nine previously identified common MM risk 

SNPs from GWAS was 2.9%, whereas the heritability explained by all common SNPs was 15.2% 
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[158]. Comparing the heritability explained by the common variants with that from family 

studies, a fraction of the heritability may be explained by other genetic variants, such as rare 

variants [158]. In summary, much of the heritable risk of MM remains unexplained and statistical 

modelling indicates that further common risk variants remain to be discovered [158]. 

 

1.5 Strategies to identify novel myeloma susceptibility loci 

1.5.1 Meta-analysis of GWAS  

Given that many GWAS exhibit long tails of associations with small effect sizes, much of the 

underlying genetic architecture of cancer susceptibility may be due to a large number of 

common susceptibility alleles, which individually account for a very small proportion of the 

inherited risk. New susceptibility loci could therefore potentially be identified through a new 

generation of larger GWAS, involving large-scale meta-analysis and replication. Additionally, 

given that variation at 11q13.3 is driven by the association with the MM subtype t(11;14) [115], 

it is possible that further studies combining pre-existing and potentially additional GWAS 

datasets with linked karyotype information will identify further subtype-specific MM risk loci. 

 

1.5.2 Next generation arrays 

Another possibility is that low-frequency risk variants (MAF ~0.01) contribute significantly to the 

familial risk of MM. While current GWAS arrays are designed to capture common risk variants, 

they do not adequately capture variation at MAF < 0.05 [159, 160]. Using pools of reference 

haplotypes such as that provided by the 1000 Genomes Project and UK10K Project, whole-

genome imputation may extend the frequency range for which associations can be detected 

from existing datasets [110, 161]. However, it is likely that the discovery of this class of 

susceptibility allele will be reliant on next-generation SNP arrays, for example, the recently 

developed genotyping microarray, the OncoArray. This array includes a genome-wide backbone, 

comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping 

of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic 

markers and cancer related traits [162]. 

 

Given low-frequency risk variants are likely to be highly population-specific, they are more 

difficult to detect by generic array-based technologies. Such considerations, as well as the 

likelihood that many risk variants have insufficient frequency to be detectable through scans of 

the general population [163], increasingly suggest that comprehensive characterisation of the 

contribution of genetic variation to MM risk will rely on sequencing data. This data can be 
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potentially generated from whole exome sequencing (WES) or whole genome sequencing (WGS) 

studies of MM individuals in families. This will additionally allow the interrogation of more 

complex forms of genetic variation to MM risk, such as structural variation and copy number 

variants (CNVs), which are not as amenable to capture by array-based technologies. Germline 

high-coverage WES study has been conducted on a general population of 513 MM cases and 

1,569 healthy controls [164]. However no protein-coding low-frequency alleles (MAF of 0.01-

0.05) were statistically associated with MM risk due to limited power in the study, though a 

suggestive association with KIF18A was found by employing gene burden testing (which 

collapses information for multiple genetic variants into a single genetic score [165]) . The use of 

familial cases provides a means of significantly empowering the search for rare disease-causing 

alleles for cancer. A potentially deleterious missense variant in EP300 (p.Arg695His) was found 

using WES in a family with multiple cases of MM and MGUS [166]. As the number of familial MM 

cases are few, the practicality of adopting this as a means of gene identification for MM and 

replicating associations is problematic. 

 

1.6 Functional annotation of GWAS risk loci 

To date, GWAS have produced risk loci for various diseases.  A key task in post-GWAS analysis is 

to decipher the biological effect these loci confer in disease susceptibility [167]. Consideration 

of the functional effect of risk SNPs is important in prioritisation of potential causal variants in 

fine-mapped GWAS association signals, as well as determining the mechanistic effect of the risk 

locus in disease origin and/or progression. Given the plethora of possibilities by which a variant 

may functionally act, elucidating the mechanistic basis by which a given SNP exerts its effect on 

disease risk remains a considerable challenge. 

 

Variants can broadly be classified into those that are coding (i.e. directly affect protein function) 

and non-coding. Only a small number of variants identified from cancer GWAS lie in exons and 

have been shown to directly impact the amino acid sequence of an expressed protein e.g. BRCA2 

p.Lys3326Ter (rs11571833) and CHEK2 p.Ile157Thr (rs17879961) for lung cancer [168].  The 

majority of GWAS loci discovered to date map to non-coding regions of the genome (e.g. gene 

introns, promoters or intergenic regions) and are understood to exert their effect by regulation 

of gene expression, with a variety of models having been proposed. Variants may affect correct 

mRNA processing; an example of this is the SNP in the 3′ untranslated region (poly(A) tail) of 

TP53 (rs78378222) associated with prostate cancer and glioma risk [169, 170] or cause a splice 

site e.g. the rs10069690 variant at 5p15.33 (TERT), resulting in decreased telomerase activity 
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[130, 171, 172]. Notably rs603965, which is associated with t(11,14) CCND1 translocation in MM, 

has been shown to differentially influence the alternative splicing of CCND1 mRNA, the 870G 

allele creating an optimal splice donor site at the exon 4/intron4 boundary resulting in the cyclin 

D1a transcript.  The 870A allele hinders splicing allowing for read-through into intron 4 and 

production of the variant cyclin D1b transcript, though is not fully penetrant [115]. In addition, 

variants discovered though GWAS may affect protein translation via binding of microRNAs and 

altered expression of large intergenic noncoding RNAs. Furthermore, variants may affect gene 

transcription through disruption of local promoter-transcription complex interactions or 

potentially long-range enhancer-complex interactions [167, 173]. These proposed mechanisms 

are summarised in Figure 1.9. 

 

1.6.1 Assessing the impact of protein-coding variants on disease predisposition 

Coding changes can affect function by altering amino acid sequence (missense changes) and 

causing protein truncation (creation of premature stop sequence, aberrant splicing of exons) 

[167]. For protein truncating variants the likely impact on protein function is potentially severe, 

however, the potential functional impact of missense variants is less clear. In silico prediction 

algorithms, such as SIFT [174] and PolyPhen-2 [175], are available which primarily make use of 

protein sequence conservation information to decide on the deleteriousness of a query amino 

acid substitution. 

 
Figure 1.9 Possible basis by which polymorphisms mediate cancer susceptibility.  1a- Affecting 
gene transcription through disrupting local promoter-transcription complex interactions, 1b- 
Affecting gene transcription through potentially long-range enhancer-complex interactions, 2- 
Affecting correct mRNA processing (e.g. splicing, poly-adenylation), 3- Affecting protein 
translation (e.g. microRNAs, stop-gain changes) and 4- Affecting protein sequence (amino acid 
substitution). TF, transcription factor. 
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1.6.2 Assessing the impact of non-coding variants on disease predisposition 

As the majority of variants identified through GWAS localise to non-coding regions, there have 

been major efforts which aim to inform the regulatory mechanisms perturbed at cancer risk loci. 

Knowledge of cell-type-specific transcription factor binding, histone mark characterisation, 

expression quantitative trait loci, methylation quantitative trait loci and chromatin 

conformation, can all be used to annotate GWAS loci. Indeed, large consortia such as ENCODE 

[176], NIH Roadmap Epigenomics [177, 178] and Blueprint [179] have catalogued such 

experiments which map regulatory regions. Programs such as ChromHMM, which uses a 

multivariate Hidden Markov Model that explicitly models the presence or absence of chromatin 

marks in different cell types [180] have enabled understanding of higher-order structures 

governing disease susceptibility.  In parallel to the increasing availability of regulatory data from 

a range of cell types statistical methods which integrate gene expression with GWAS datasets 

such as Summary-data-based Mendelian Randomization (SMR) [181] and transcriptome-wide 

association studies (TWAS), aid in identification of candidate causal genes. Furthermore, since 

TWAS aggregates the effects of multiple variants into a single testing unit, and facilitates 

prioritisation of genes at known risk regions for functional validation, it potentially also affords 

increased study power to identify new risk regions. 

 

1.7 Further applications of GWAS 

As well as informing cancer biology, GWAS can assist in identifying individuals at increased risk 

of cancer, aid in drug discovery and repositioning (via understanding of the genes and pathways 

identified) and can elucidate aetiological risk factors for cancer.  

 

1.7.1 Polygenic risk scores 

Polygenic risk scores (PRS) are the weighted sum of the number of risk alleles carried by an 

individual. While previous clinical applications have focussed on rare, highly penetrant 

mutations which confer increased risk (e.g. BRCA1 and TP53 in breast cancer [182]), there is 

increasing evidence that PRS of complex disease can be used to identify individuals at higher risk 

and have been considered as an aid in stratified screening [183]. This has been demonstrated 

for colorectal cancer (CRC) as well as breast and prostate cancers [184] [185, 186].   

 

1.7.2 Informing therapy 

Knowledge of germline genetic variation is demonstrating increased potential to inform 

treatment. For example, GWAS has been used to identify individuals at risk of treatment related 
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toxicity [187, 188]. Furthermore, in the case of MM, germline genetic variation has been linked 

to survival [189], indicating that inherited genotypes could provide prognostic information in 

the context of this disease. 

 

1.7.3 Mendelian randomisation 

Mendelian randomisation (MR) analysis uses genetic markers (termed instrumental variables 

[IVs]) known to be associated with a potential risk factor in the assessment of that risk factor's 

effect on another trait or disease [190, 191]. The availability of large GWAS data sets has 

established robust IVs in the form of genetic risk variants and MR offers the ability to identify 

non-genetic risk factors using these IVs [192]. For example, increased body mass index (BMI) has 

recently been implicated as a risk factor for CRC using MR [192]. Such studies have also identified 

chemopreventive agents [193] and performed safety analysis of therapies [194]. MR provides 

an advantage over conventional observational studies as genetic variants are randomly assigned 

at conception so they are not influenced by reverse causation and can provide unconfounded 

estimates of disease risk. 

 

1.8 Study aims and scope of enquiry 

The inherited predisposition to MM is currently understood to involve multiple low-penetrance 

risk SNPs, however a large proportion of the genetic risk to MM currently remains unaccounted 

for. 

 

The work detailed in this thesis aims to demonstrate further insight into genetic predisposition 

to MM, making use of currently available technologies and analytical methods. It is anticipated 

that research into the genetic basis of this plasma cell malignancy will lead to increased insight 

into MM biology and potentially identify novel therapeutic strategies. 

 

Specifically: 

• Chapter 3 details a new GWAS and meta-analysis with previously existing datasets, 

performed to identify new risk loci. Estimation of the contribution of common 

variation to the narrow-sense heritability of MM is calculated and PRS are constructed 

using GWAS datasets. New and established risk loci are functionally annotated using 

regulatory data, including information from ChIP, to identify enhancer histone marks, 

and Hi-C, to identify long range interactions. 

• Chapter 4 describes a TWAS to identify candidate causal genes for MM. 
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• Chapter 5 investigates genetic correlation between CLL and MM, identifies pleiotropic 

risk loci between the two haematological malignancies and characterises these regions 

using regulatory data from B-cells, in order to gain insight in the cellular aetiology of 

MM. 

• Chapter 6 uses MR to investigate potential risk factors for MM in a phenome-wide 

association study. 
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 Materials and methods 

2.1 Subjects 

Datasets used in this thesis are detailed within this section. The diagnosis of MM (International 

Classification of Diseases, 10th Revision (ICD-10) C90.0) was established in accordance with 

World Health Organization guidelines [195]. All samples from patients for genotyping were 

obtained before treatment or at presentation. Collection of patient samples and associated 

clinicopathological information was undertaken with written informed consent and relevant 

ethical review board approval at respective study centres in accordance with the tenets of the 

Declaration of Helsinki. 

 

2.1.1 Genome-wide association study datasets 

UK OncoArray GWAS  

Cases 

Post-QC, the OncoArray GWAS series comprised 878 cases ascertained through the UK Myeloma 

XI trial [196].  The Myeloma-XI (MyXI) [196] Phase III clinical trial was set up in 2007 and recruited 

4,400 patients. The trial was designed to test different combinatorial drug schemes in patients 

involving lenalidomide, cyclophosphamide, dexamethasone, carfilzomib and vorinostat. All 

cases were UK residents and had self-reported European ancestry. Samples were collected from 

patients aged 18 years or older and newly diagnosed as having symptomatic MM or non-

secretory MM. Samples were subject to SNP and sample quality control (QC) as described in 

Section 2.3.1. 

 

Controls 

The OncoArray GWAS control series comprised (i) 2,976 cancer-free men (age <65 years) 

recruited by the PRACTICAL Consortium [197],  the UK Genetic Prostate Cancer Study (UKGPCS), 

and (ii) 4,446 cancer-free women from across the UK recruited via the Breast Cancer Association 

Consortium (BCAC) [198]. The UKGPCS established in 1993, is a nationwide study of inherited 

risk to prostate cancer, which aims to find genetic changes which are associated with prostate 

cancer risk. Prostate Cancer Association Group to Investigate Cancer Associated Alterations in 

the Genome (PRACTICAL) is a collaboration of researchers investigating the inherited risk of 

prostate cancer. Formed in April 2005, BCAC is an international multidisciplinary consortium 

which investigates the inherited risk of breast cancer.  
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Dutch GWAS  

Cases 

Post-QC, the Dutch GWAS consisted of a total of 555 cases, recruited from three clinical trials: 

HOVON 65/GMMG-HD4 (restricted to Dutch cases; n = 158), HOVON 87/NMSG18 (n = 292) and 

HOVON 95/EMN02 (n = 105) [199-201]. DNA was extracted from EDTA-venous blood samples. 

The multi-centre HOVON Foundation, from which Dutch GWAS samples were recruited, was set 

up in 1985 and has run several clinical trials of MM [199-201]. The HOVON Foundation has 

collaborated with the GMMG Study Group, Nordic Myeloma Study Group (NMSG) and the 

European Myeloma Network (EMN) for multiple clinical trials. 

 

Controls 

The Dutch GWAS controls consisted of 2,669 individuals recruited from the B-vitamins for the 

Prevention of Osteoporotic Fractures (B-PROOF) Dataset [202]. The B-PROOF study is a multi-

centre study initiated in 2008 in The Netherlands [202] to investigate bone fracture risk. The 

study population involved 2,919 individuals aged 65 years or older with homocysteine 

concentration above a defined threshold. Controls for this GWAS were from the placebo-

controlled group of the B-PROOF study. 

 

German GWAS  

Cases 

Post-QC, the German GWAS comprised 1,508 cases recruited by the German-Speaking Multiple 

Myeloma Multicenter Study Group (GMMG). DNA was prepared from EDTA-venous blood or 

CD138-negative bone marrow cells (< 1% tumour contamination). Patients were recruited from 

GMMG-HD3 (2001-2005, n=550), GMMG-HD4 (2005-2011, n=399), and GMMG-HD5 (2010-

2016, n=604) trials [199, 200, 203, 204]. In GMMG-HD3/4 patients were aged 18-65, diagnosed 

of stage II/III MM according to the Salmon and Durie criteria [204]. In GMMG-HD5 patients were 

aged 18-70 and diagnosed with MM requiring systemic therapy. 

 

Controls 

The German GWAS comprised 2,107 healthy individuals as controls, who were enrolled in the 

Heinz Nixdorf Recall (HNR) study [205]. The HNR was a population-based, prospective cohort 

study which investigated the ability of a coronary artery calcification scoring system in predicting 
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the risk of developing major cardiovascular events. It was initiated in the late 1990s and 

recruited 4,814 German residents, aged 45- 75 years, between 2000 and 2003 [205]. 

 

Icelandic GWAS  

Cases 

The Icelandic GWAS comprised 480 MM cases from the Icelandic Cancer Registry [206]. The 

Icelandic Cancer Registry was established in 1955 with the aim of registering all cancers 

diagnosed in Iceland, collecting histological, cytological, hematological and/or autopsy data on 

registered patients [206, 207].  

 

Controls 

The Icelandic GWAS comprised 212,164 controls ascertained from different research projects at 

deCODE Genetics [207].  

 

Swedish GWAS  

Cases 

Post-QC, the Swedish/Norwegian GWAS consisted of 1,714 cases from the Swedish National 

Myeloma Biobank (Skåne University Hospital, Lund, Sweden) and the Norwegian Biobank for 

Myeloma (Trondheim, Norway) [208]. 

 

Controls 

Post-QC the Swedish GWAS controls comprised genotype data on 10,391 individuals, obtained 

from previously published studies of schizophrenia [209] and TWINGENE [210]. The 

schizophrenia GWAS in the Swedish population was conducted in 2013, recruiting 6,243 

individuals as controls. The control individuals had not been hospitalised for schizophrenia or 

bipolar disorder, with Scandinavian parents and aged over 18 years [211]. The TWINGENE Study 

was conducted from 2004 to 2008 in the Swedish population on twins born between 1911 and 

1958 [210]. Samples were obtained from the control arm of the schizophrenia GWAS and one 

individual from each twin pair was used from the TWINGENE study. 

 

UK GWAS  

Cases 

Post-QC, the UK GWAS comprised 2,282 cases ascertained through the UK Medical Research 

Council (MRC) UK Myeloma IX (MyIX) [212, 213] and UK Myeloma XI (MyXI) trials [196]. The 



MyIX [212, 214, 215] Phase III clinical trial was set up between 2003 and 2014 and recruited 

1,970 patients through over 120 centres in the UK. Patients were randomised for intensive or 

non-intensive therapy, followed by stem cell transplantation with or without thalidomide 

maintenance therapy. All cases were UK residents and had self-reported European ancestry. 

Samples were collected from patients aged 18 years or older and newly diagnosed as having 

symptomatic MM or non-secretory MM. 

Controls 

Post-QC, 5,197 controls were used from publicly accessible genotype data generated by the 

Wellcome Trust Case Control Consortium (WTCCC). Specifically, controls for the UK GWAS were 

selected from the 1958 Birth Cohort [216] (also known as the National Child Development Study) 

and the UK National Blood Service (UKBS) [217]. 

USA GWAS 

Cases 

Post-QC, the US GWAS comprised 780 incident cases. These were recruited from Total Therapy 

clinical trials UAMS-TT2 (1998-2004), TT3 (2004-2014), TT3b (2006-2017) and TT4 (2008-2017), 

which were coordinated by the University of Arkansas for Medical Science (UAMS) Myeloma 

Institute [11]. Total Therapy trials combine chemotherapy in patients with autologous stem cell 

transplantation, followed by maintenance strategy. Germline DNA was extracted from 

leukapheresis products of patients aged 18-75.  

Controls 

Post-QC the USA GWAS controls comprised data on 1,857 healthy individuals from the Cancer 

Genetic Markers of Susceptibility Study (CGEMS) [218]. The NCI CGEMS study comprised several 

population-based studies and was used to investigate common genetic variations in breast and 

prostate cancers [218].  

Chapter 3 details a meta-analysis of the OncoArray GWAS with the above GWAS conducted in 

the UK, Germany, Sweden/Norway, the US, the Netherlands and Iceland, which had been 

previously published in their entirety with strict QC procedures [112-114, 116]. Post-QC case 

and control sample numbers and genotyping array for the GWAS datasets are detailed in Table 

2.1. 
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Numbers Genotyping arrays 

Cases Controls Cases Controls 

UK 2,282 5,197 Illumina Human OmniExpress-
12 v1.0 

Illumina Human 1-2M-Duo Custom 
v1.0 

Germany 1,508 2,107 Illumina Human OmniExpress-
12 v1.0 

Illumina Human Omni1-Quad v1.0;    
Illumina Human OmniExpress-12 

v1.0 

Sweden/        
Norway 1,714 10,391 Illumina Human OmniExpress-

Exome 

TWINGENE: Illumina 317K; Illumina 
Human OmniExpress 700K; 

Schizophrenia GWAS: Illumina 
Human OmniExpress; Affymetrix 

5.0; Affymetrix 6.0  

US 780 1,857 
Illumina Human OmniExpress-

12 v1.0; Illumina 
HumanOmni1-Quad 

Illumina Sentrix HumanHap550 

Netherlands 555 2,669 Illumina Human OmniExpress-
12 v1.0  

Illumina Human OmniEpress 
Exome-8 v1.1  

Iceland 480 212,164 Illumina microarrays Illumina microarrays 

Oncoarray 878 7,083 Illumina Infinium OncoArray-
500K Illumina Infinium OncoArray-500K 

Table 2.1 Details of datasets used in GWAS.  Post QC quality control sample number and 
genotyping arrays for the UK, German, Sweden/Norway, US, Netherlands and Iceland GWAS 
datasets. The OncoArray GWAS, analysed in Chapter 3 is highlighted in grey. 

2.1.2 Replication datasets 

Informed consent was obtained from all study participants and each study was carried out with 

ethical review board approval. Cases for replication of promising (5×10-6> P >5×10-8) genetic 

associations with MM were obtained from the Germany, Sweden and Denmark. Replication 

genotyping was performed using allele-specific PCR KASPar chemistry (LGC, Hertfordshire, UK).  

Call rates for SNP genotypes were > 95% in each of the replication series. To ensure the quality 

of genotyping in all assays, at least two negative controls and duplicate samples (showing a 

concordance of > 99%) were genotyped at each centre. The fidelity of imputation was assessed 

by directly sequencing a set of 147 randomly selected samples from the UK OncoArray case 

series. Imputation was found to be robust; concordance was > 90%. Genotyping and sequencing 

primers are detailed in Appendix 1. 

Germany 

The German replication series comprised 911 cases collected by the German Myeloma Study 

Group (Deutsche Studiengruppe Multiples Myeloma (DSMM)), GMMG, University Clinic, 

Heidelberg and University Clinic, Ulm. Controls comprised 1,477 healthy German blood donors 

recruited between 2004 and 2007 by the Institute of Transfusion Medicine and Immunology, 

University of Mannheim, Germany.  
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Sweden  

The Swedish replication series comprised 534 MM cases from the Swedish National Myeloma 

Biobank. As controls 2,382 Swedish blood donors were analysed.  

 

Denmark 

The Danish replication series comprised 332 MM cases from the University Hospital of 

Copenhagen. As controls 2,229 individuals from Denmark and Skåne County, Sweden (the 

southernmost part of Sweden adjacent to Denmark) were analysed.  

 

2.1.3 Chronic Lymphocytic Leukaemia (CLL) datasets 

In Chapter 5, genetic correlation between MM and CLL was investigated. For this, data from 

three previously reported CLL GWAS [127, 150, 219, 220] were used. All these studies were 

based on individuals of European ancestry and comprised: CLL UK1 (505 cases and 2,698 

controls), CLL UK2 (1,236 cases and 2,501 controls) and CLL US (2,174 cases and 2,682 controls). 

The diagnosis of CLL (ICD-10-CM C91.10, ICD-O M9823/3 and 9670/3) was established in 

accordance with the International Workshop on Chronic Lymphocytic Leukaemia guidelines 

[221]. After application to NCBI database of Genotypes and Phenotypes (dbGaP), these samples 

were downloaded and were subject to SNP and sample QC as described in Section 2.3.1 

 

2.1.4 Datasets for expression and survival analysis 

Gene expression array data used in Chapter 3 were obtained pre-treatment from CD138+ bone 

marrow plasma cell samples from MyIX trial generated using Affymetrix Human Genome U133 

2.0 Plus Array data. This data is publicly available from the National Center for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) with accession number GSE21349. 

Expression data from newly diagnosed MM patients were also obtained from UAMS TT2/3 trials 

(Section 2.1.1Error! Reference source not found.) with expression data generated using 

Affymetrix GeneChip® Human Full Length arrays (GSE2658, n=559; GSE31161, n=1,038) [222-

225], and the HOVON65/GMMG-HD4 trial (Section 2.1.1) with expression data from Affymetrix 

GeneChip® Human Genome U133 plus 2.0 arrays (GSE19784, n=328) [226]. Expression array 

data was obtained from relapsed MM plasma cell samples in the Assessment of Proteasome 

Inhibition for Extending Remissions (APEX) trial generated by Affymetrix GeneChip® Human 

Genome U133 A/B arrays (GSE9782, n=528) [227]. Expression data from CD138+ bone marrow 

plasm cells from previously untreated MM patients were obtained from GMMG trials (Section 

2.1.1) with Affymetrix GeneChip Human Genome U133 Plus 2.0 array (E-MTAB-372, n=280; E-



 

57 

 

MTAB-2299, n=665) [228, 229]. Overall survival analyses in Chapter 3 were obtained from each 

of the patient datasets listed above.  

 

A summary of the datasets used can be found in Table 2.2. Briefly, expression quantitative trait 

locus (eQTL) analyses were carried out using Affymetrix Human Genome U133 2.0 Plus Array 

data for CD138+ plasma cells from 183 MRC Myeloma IX trial patients, 658 Heidelberg GMMG 

patients and 608 US UAMS patients (Section 2.1.1). 

 

Dataset accession 
number 

Clinical trial Sample 
size 

Type of MM 
cases 

Analysis 

GSE21349 MyIX 491 Newly 
diagnosed  

Expression profiling, clinical 
outcome 

EGAS00001001147 MyXI 463 Newly 
diagnosed 

Whole exome sequencing  

EGAS00001001, 
EGAD00001001021 

MyIX, MyXI 513 Newly 
diagnosed 

Whole exome sequencing 

GSE2658 TT2/TT3 559 Newly 
diagnosed  

Expression profiling, clinical 
outcome 

GSE31161 TT2/TT3 1,038 Newly 
diagnosed & 

Relapsed 

Expression profiling, clinical 
outcome (Newly diagnosed 

patients) 
GSE9782 APEX 528 Relapsed   Expression profiling, clinical 

outcome 

GSE19784 HOVON65/             
GMMG-HD4 

328 Newly 
diagnosed  

Expression profiling, clinical 
outcome 

E-MTAB-372 GMMG-HD3/ 
GMMG-HD4/ 
GMMG-HD5 

280 Newly 
diagnosed 

Expression profiling, clinical 
outcome 

E-MTAB-2299 GMMG-HD3/ 
GMMG-HD4/ 
GMMG-HD5 

665 Newly 
diagnosed 

Expression profiling, clinical 
outcome 

     

Table 2.2 Clinical datasets used in this study.  Patients in this study are of HapMap Utah 
residents of Western and Northern European ancestry. 
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2.2 Molecular Methods 

2.2.1 DNA extraction 

Genomic DNA was extracted from EDTA-venous blood, as per standard protocol, unless 

otherwise stated in Section 2.1 [230]. 

 

2.2.2 DNA quantification 

 Picogreen 

Extracted DNA was quantified using Picogreen dsDNA quantitation (Invitrogen Molecular 

Probes, Paisley, UK). First, stock DNA was diluted 1:225 in TE buffer, before 5µl of the diluted 

DNA was mixed with 95µl Picogreen dsDNA quantitation reagent dye solution (1:200 TE; pH 7.5, 

Invitrogen Molecular Probes, Paisley, UK). DNA samples were scanned using Labsystems Ascent 

Fluoroscan (Life Sciences International, Basingstoke, UK) and concentrations calculated using 

Ascent Software v2.6 (Life Sciences International, Basingstoke, UK). 

 

 Qubit 

DNA concentrations were measured using Qubit Fluorometric dsDNA Quantitation (Q33216, 

ThermoFisher Scientific, Waltham, USA) according to manufacturer’s guidelines. The broad 

range (BR) and high sensitivity (HS) assay kits were both used depending on the sensitivity 

requirement for measuring DNA concentrations (BR: 100pg/µl–1µg/µl; HS: 10pg/µl–100ng/µl). 

The technology relies on dsDNA-selective fluorescent dye to quantitate nucleic acids in solution. 

 

2.2.3 Genotyping 

 Array SNP microarrays 

GWAS datasets were genotyped on SNP arrays as detailed in Table 2.1Error! Reference source 

not found.. Prior to genotyping, the concentration of DNA samples were quantified, normalised 

and plated in 96-well plates at a final concentration of 50ng/µl. The principles of a BeadChip 

microarray can be illustrated by the Illumina Infinium II assay. Briefly, genomic DNA (≈750ng) is 

amplified with no allelic partiality. The amplified DNA is enzymatically fragmented and 

precipitated in alcohol, before resuspension. The DNA is then hybridised onto BeadChip arrays 

covalently linked to locus-specific 50-mer oligonucleotides. Allele detection occurs in a two-step 

process. First, a primer hybridises to the complementary region of DNA with the primer terminal 

3’ end directly adjacent to the SNP to be identified, forming a duplex. Following this, the primer 

oligonucleotide is enzymatically extended by one base, with the incorporated nucleotide base 

being covalently linked to a fluorescent tag (Figure 2.1). The intensity of this florescence is 
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detected by the Illumina BeadArray Reader, analysed using Illumina’s software and sample 

genotypes are called automatically. 

 
Figure 2.1 The Illumina Infinium II genotyping assay [231]. 
 

 KASPar genotyping 

Competitive allele-specific PCR (KASPar) was used to genotype replication samples. KASPar uses 

fluorescence resonance energy transfer chemistry to quantify the presence of a genotype at a 

locus within genomic DNA. Allele-specific primers are designed to incorporate a tail that is alike 

to either a VIC- or FAM-labelled oligonucleotide. Allele-specific primers are added to genomic 

DNA and KASPar mix, containing polymerase and VIC- and FAM- labelled oligonucleotide. In the 

first PCR step, genomic DNA is denatured and allele specific primers anneal along with the 

common primer before DNA is amplified across the target region. In the second round of PCR, 

the complement of the allele-specific tail sequence is generated. In subsequent rounds of PCR, 

the levels of allele-specific tail increase and VIC- or FAM-labelled oligonucleotide binds to its 

complement. This releases the fluorescent dye from its quencher, such that the presence of 

either VIC or FAM fluorescent signal acts as an indication of the specific allele present at a locus 

(Figure 2.2).  

 

Primer design 

Polymerase chain reaction (PCR) oligonucleotide primers for KASPar genotyping were designed 

using Primer Picker (KBiosciences, Hertfordshire, UK). To confirm specificity, primer sequences 

were searched against the human genome using BLAST and were subject to in silico PCR using 

UCSC Genome Browser [232]. Oligonucleotides were obtained from Invitrogen (Paisley, UK) and 

resuspended in dH2O (1μg/µl single stranded DNA). Details of oligonucleotide primers used are 
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provided in Appendix 1. To ensure sequences did not contain any SNPs present in the European 

population, target regions were surveyed using SNPmasker. 

 
Figure 2.2 The KASPar SNP genotyping system.  Two competitive allele-specific tailed forward 
primers (dark blue) incorporate a nucleotide sequence that is complementary to one of two 
fluorescently labelled primers (cyan and orange). Accumulation of the fluorescent signal enables 
quantification and scoring of the alleles. 
 
Amplification by polymerase chain reaction  

For every SNP genotyped an assay mix, consisting of 12μM of each allele-specific primer and 

30μM of the common primer, was prepared. In each well of a 384-well plate, 1μl of the 2x 

reaction mix (containing KTaq polymerase, ROX passive reference, VIC- and FAM-labelled 

primers), 0.055μl assay mix, 0.032μl 50mM MgCl2, and 0.9μl of dH2O was added to 2μl of DNA 

at a concentration of 2.5ng/μl. Cycling conditions were:  

1× cycle  - denaturation for 15 minutes at 94°C  

20× cycles  - denaturation for 10 seconds at 94°C  

- annealing for 5 seconds at 57°C  

- extension for 10 seconds at 72°C  

22× cycles  - denaturation for 10 seconds at 94°C  

- annealing for 20 seconds at 57°C  

- extension for 40 seconds at 72°C 
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2.2.4 Polymerase chain reaction 

Polymerase chain reaction (PCR) oligonucleotides for sequencing were designed using Primer 3 

[233] or manually. Predicted primers were subjected to BLAST searches and in silico PCR of the 

human genome using the online UCSC Genome Browser [232] to confirm specificity. Primer 

characteristics were checked in silico with the IDT OligoAnalyser [234]. The Gibbs free energy 

(∆G) of primer homo- and hetero-dimers was thresholded to > -10kcal/mol, and/or the 

difference in melting temperature (Tm) of the primer set to < 2-5 °C apart. Target regions were 

surveyed using SNPmasker (http://bioinfo.ut.ee/snpmasker/) to ensure primer sequences did 

not include SNPs present in the European population (e.g. MAF > 0.05).  Oligonucleotides were 

obtained from Sigma (Poole, UK) and re-suspended in TE buffer to a stock concentration of 

100µM and in distilled water to a working solution of 10µM. All primers used in this PCR are 

listed in Appendix 1. 

 

 Standard PCR protocol 

A total of 10-100ng genomic DNA was used for amplification by PCR prior to sequencing reaction 

with the ThermoPrime Taq DNA Polymerase kit (AB0301B; ThermoFisher Scientific, Waltham, 

USA). DNA was pipetted into a single well on a 96-well microtitre plate (I1402-9800; Star Lab, 

Milton Keynes, UK) containing a reaction mastermix with, at final concentration, 1 × reaction 

buffer IV, 0.2mM each deoxynucleotide triphosphate (dNTP), 0.5µM each of forward and 

reverse primer, 1.5mM MgCl2 and 0.625U Thermoprime Plus DNA polymerase. The microtitre 

plate was covered with an adhesive lid (AB-0580; ThermoFisher Scientific, Waltham, USA) and 

the plate was transferred to a thermocycler (Thermo-Hybaid, Middlesex, UK). The heated lid 

option was selected for all programs to prevent evaporation of products.  

 

The optimum annealing temperature for all primer pairs used was determined by PCR with 

control human placental DNA (D-3035; Sigma-Aldrich, Poole, UK) over a range of temperatures. 

“Touchdown” temperatures were used where the first annealing temperature was set to 68°C, 

60°C or 55°C. The annealing temperature was then reduced by 1°C every cycle until a 

temperature of 50°C was achieved (45°C if the initial temperature was 55°C).  This was done to 

increase binding specificity of the primer set to the DNA template. This was followed by 

amplification at a lower temperature at 60°C. 

 

Typically, PCR conditions were:  

1 × cycle  - denaturation for 5 mins at 94°C 
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18 × cycles - denaturation for 30 sec at 94°C 

  - annealing for 1 min at 68°C (-1°C/cycle) 

  - extension for 1 min/kb at 72°C 

17 × cycles - denaturation for 30 sec at 94°C 

  - annealing for 1 min at 60°C 

  - extension for 1 min/kb at 72°C 

1 × cycle - extension for 5 mins at 72°C 

 

Primers that failed to amplify satisfactorily were evaluated over a range of MgCl2 concentrations 

(0.5mM - 2.0mM), and in the presence of 1.0M - 1.7M aqueous Betaine (B0300; Sigma-Aldrich, 

Poole, UK). 

 

 Agarose gel electrophoresis 

UltraPureTM Agarose (16500500; Thermo Fisher Scientific, Waltham, USA) was dissolved in 1× 

Tris-acetate-EDTA (TAE) buffer (ICR Laboratory Support Services) in a microwave oven. To make 

1% agarose gel, 1 agarose was dissolved in 100ml TAE buffer. 2μl 10mg/ml solution of Ethidium 

Bromide (E1510; Sigma-Aldrich, Poole, UK) was added per 100ml gel. 1× loading buffer (B7024S; 

New England Biolabs, Beverly, MA) was added to each sample (e.g. PCR end reaction) prior to 

gel loading. 100bp ladder (N3231S) or 1kb DNA ladder (N3232S; New England Biolabs, Beverly, 

MA) were used as size standards. Electrophoresis was carried out in 1x TAE with a PowerPac™ 

Basic Power Supply (Bio-Rad, South San Francisco, USA) at 100V for 45 minutes or until all the 

products had migrated a sufficient distance to resolve the bands. After electrophoresis the gel 

was visualised by transillumination under ultra-violet light at 340nm and a photographic record 

was made using a Gel Doc-It Imagining Ultraviolet Trans-Illuminator system (BioImaging 

Systems, Cambridge, UK). 

 

2.2.5 Sanger sequencing 

 Generation and preparation of sequencing template 

Target DNA was amplified with PCR reaction (Section 2.2.4.1). After amplification, 5μl of each 

product was visualised by agarose gel electrophoresis to confirm successful amplification 

(Section 2.2.4.2). Removal of unincorporated primer oligonucleotides and dNTPs was performed 

using ExoSAP-IT PCR cleanup reagent (Exonuclease I, Shrimp Alkaline Phosphatase; 78200; USB, 

Ohio, USA). A combination of two hydrolytic enzymes, the Exonuclease 1 removes 

unincorporated single-stranded primers and shrimp alkaline phosphatase (SAP) removes 
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unincorporated nucleotides. One unit of ExoSAP enzyme was added to 5μl PCR product. The 

restriction digestion conditions were: 

 

1× cycle - digestion for 30 mins at 37°C 

1× cycle - ExoSAP inactivation for 15 mins at 80°C 

 

2.2.6 Cycle sequencing reaction 

Direct DNA sequencing was undertaken using fluorescent “terminator dyes” attached to each of 

the four dideoxynucleotides (ddNTPs). When these ddNTPs are incorporated into a PCR product 

during amplification, they prevent further DNA chain elongation [235]. By chance, at least one 

terminator nucleotide will be incorporated at each base position in a target sequence during 

amplification, resulting in a population of PCR products differing in size by one base pair. This 

mixture can then be separated by electrophoresis and the products excited by a laser. As the 

dye attached to each nucleotide fluoresces at a different wavelength, the end nucleotide of each 

PCR product can be identified and the sequence determined. 

 

Sequencing reactions were performed in a total reaction volume of 10μl consisting of 0.5μl 

BigDye version 3.1 (containing BigDye terminator fluorescently-labeled ddNTPs, dNTPs, 

AmpliTaq® DNA polymerase, MgCl2 and reaction buffer), 2μl BigDye version 3.1 5 × Sequencing 

buffer (Applied Biosystems, Foster City, CA, USA), 0.5μl 5µM sequencing primer, 1.5μl 

exosapped PCR product and 5.5μl RNAse/DNase-free deionised water (dH2O), placed in a 96-

well microtitre plate and covered with an adhesive lid. DNA was amplified using the following 

cycling conditions: 

 

1 x cycle - denaturation for 5 minutes at 96°C 

25 x cycles - denaturation for 30 seconds at 96°C 

- annealing for 15 seconds at 50°C 

  - extension for 1 minute at 60°C 

 

 Clean-up of sequencing reaction  

The sequencing products were purified by adding 1.2μl 125 mM EDTA (pH 8.0) (ICR Laboratory 

Support Services), 1.2μl 3 M sodium acetate, and 30μl 100% ethanol and incubating at room 

temperature for 15 minutes to precipitate the amplified DNA. The reaction mixture was 

centrifuged at 2600×g for 30 mins at 4°C, to pellet the DNA, and the supernatant removed by 
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centrifuging upside-down on tissue paper at 180×g for 1 min at 4 °C. Residual unincorporated 

primers and nucleotides were removed by the addition of 42μl 70% ethanol to each sample 

followed by centrifugation at 1,650×g for 15 mins at 4°C. The supernatant was removed by 

centrifuging upside-down on tissue paper as before, followed by incubating for 15 mins at 37°C 

to dry the DNA pellet. Samples were re-suspended in 12μl formamide Hi-Dye (Applied 

Biosystems, Foster City, CA, USA) and analysed using the ABI 3730 Automated Fluorescent DNA 

Sequencer (Applied Biosystems, Foster City, CA, USA). Resulting chromatograms were analysed 

using the SequencherTM version 4.8/ build 3767 software package (Gene Codes, Ann Arbor, USA). 

 

2.2.7 In situ promoter capture Hi-C 

In situ promoter capture Hi-C (CHi-C) was previously conducted in the MM cell line KMS11 to 

determine the 3D architecture of the genome. Briefly, in situ Hi-C libraries were prepared as 

previously described [236] and as depicted in Figure 2.3. To increase cell lysis efficiency, three 

aliquots of 8 million cells were fixed separately in 1% v/v formaldehyde for 10 mins, each aliquot 

lysed in 15 ml Hi-C lysis buffer (10mM Tris-HCl, pH8.0, 10mM NaCl,, 0.2% Igepal,  1× protease 

inhibitor) and incubated on ice for 1 hour before being combined. Cross-linked DNA was 

digested by restriction enzyme HindIII (R0104L, New England Biolabs, Ipswich, US). Digested 

chromatin ends were filled and marked with biotin-14-dATP (19524016, Thermo Fisher 

Scientific, Waltham, US). The resulting blunt end fragments were ligated at 16°C in the nucleus 

with T4 DNA ligase (M0202L, New England Biolabs, Ipswich, US).  DNA purified after crosslinking 

was reversed by Proteinase K (P8102, New England Biolabs, Ipswich, US) treatment. DNA was 

sheared by sonication (E220, Covaris, Massachusetts, USA) and approximately 200bp - 650bp 

fragments were selected. Biotin tagged DNA was pulled down with streptavidin beads and 

ligated with Illumina paired end adapters. Six cycles of PCR were performed to amplify libraries 

before capture. Promoter capture was based on 32,313 biotinylated 120-mer RNA baits (5190-

4396, Agilent, Santa Clara, USA) targeting both ends of HindIII restriction fragments that overlap 

Ensembl promoters of protein-coding, non-coding, antisense, snRNA, miRNA and snoRNA 

transcripts. After library enrichment, a post-capture PCR step was carried out using 5 

amplification cycles. Hi-C libraries were sequenced using Illumina HiSeq 2000 technology.  Reads 

were aligned to the GRCh37 build using bowtie2 v2.2.6 and identification of valid di-tags was 

performed using HICUP v0.5.9 [237]. To declare significant contacts, HiCUP output was 

processed using CHiCAGO v1.1.8 [238] (Section 2.4.3). Data from three independent biological 

replicates were combined to obtain a definitive set of contacts. A CHiCAGO score > 5 was taken 

to indicate a significant contact [238]. The interaction of MM risk SNPs with APOBEC genes in 
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Chapter 4 was plotted on WashU Epigenome Browser [239]. Promoter capture Hi-C on GM12878 

used in Chapter 4 was obtained from publicly available EMBL-EBI: E-MTAB-2323 [240]. 

 

 

Figure 2.3 General work-flow for CHi-C library generation and analysis.  Main steps for the 
generation of CHi-C libraries, illustrating the comprehensive of the Hi-C protocol and the capture 
of selected di-tags using custom RNA baits (adapted from Orlando et al [241]). 
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2.3 Statistical analyses 

Statistical analyses were primarily performed using PLINK v1.9 [242], R v3.1.3 [243] and custom 

perl scripts. 

 

2.3.1 Quality control in association studies 

 Software  

PLINK 
PLINK is a whole-genome analysis tool which can perform a range of large scale analyses on 

genomic data [242]. Specifically the following quality control steps in the GWAS analysis pipeline 

were performed using PLINK: 

 

•  Test for deviation of genotype frequencies from Hardy-Weinberg Equilibrium (HWE) 

•  Verifying that genetic sex as estimated from X-heterozygosity is consistent with 

phenotypic sex 

•  Calculating sample and SNP missing rates 

•  Tests for significant differences in missing data between cases and controls 

•  Calculation of pairwise identity by state  

 

R 
R v3.1.3 [243] is a publicly available software environment for statistical computing and graphics 

[243]. Installation of packages allows a large number of statistical and bioinformatics techniques 

to be performed. 

 

 Identity-by-state analysis 

Using PLINK, genotype data was analysed to search for duplicates and closely related individuals 

within and between datasets. Identity-by-state (IBS) values were calculated based on at least 

2,000 shared markers for each pair of individuals. For any pair with distance > 0.2 (a threshold 

estimated to remove all first-degree relatives) the control from a case-control pair was removed; 

otherwise, the individual with the lower call rate was removed from further analysis. 

 

 Quantile-quantile plots 

Quantile-quantile (Q-Q) plots were used to assess the adequacy of case-control matching and 

the possibility of differential genotyping of cases and controls by comparing the distribution of 

observed test statistics against that of values expected under a null hypothesis. A Q-Q plot is a 

probability plot comparing two probability distributions by plotting their quantiles against each 
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other. The highest observed value is plotted against the highest expected value. Deviation from 

the line y=x implies a consistent difference between cases and controls, suggesting bias by a 

confounder. The comparatively few variants with much higher observed than expected values 

are assumed to represent true associations. The inflation factor λ was calculated by dividing the 

median of the test statistics by the median expected values from a χ2 distribution with 1 degree 

of freedom (df). The inflation factor λ was based on the 90% least-significant SNPs [244]. Since 

λ scales with sample size, λ1000 can be calculated for an equivalent study of 1,000 cases and 1,000 

controls by rescaling λ [245].  

 

 Principal components analysis 

Principal components analysis (PCA) was used to identify and remove individuals with large scale 

differences in ancestry (i.e. not of European ancestry). The smartpca package, part of EIGENSOFT 

v4.2 [246], was used to perform PCA [247, 248]. For each dataset, SNP data was merged with 60 

European (CEU), 60 Nigerian (YRI), 90 Japanese from Tokyo (JPT) and 90 Han Chinese (CHB) 

individuals from the Phase II HapMap project. Due to large genetic differences between these 

three ancestral groups, a plot of the first two principal components was sufficient to identify any 

individual not within the main CEU cluster and exclude from further analyses. 

 

 Linkage disequilibrium-based SNP pruning 

Certain analyses, such as PCA require a set of uncorrelated SNPs. These were estimated in PLINK 

using the --indep flag. 

 

 Hardy-Weinberg equilibrium  

The Hardy-Weinberg principle states that the allele and genotype frequencies in a population 

will remain constant from generation to generation in the absence of evolutionary influences 

[249]. At a single locus with two alleles denoted A and B with frequencies f(A)=p and f(B)=q, 

respectively, expected genotype frequencies are f(AA)=p2, f(BB)=q2 and f(AB)=2pq for the AA 

homozygote, BB homozygote and AB heterozygote respectively. The sum of all genotype 

frequencies must equal 1 (i.e. p2 + 2pq + q2 = 1). If a genetic locus satisfies this equation it is said 

to be in Hardy-Weinberg equilibrium (HWE). The χ2-test was used to assess genotype 

frequencies in controls for evidence of departure from HWE [249], which may indicate 

population stratification. P < 1 ×10-5 was considered to be out of HWE. 
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2.3.2 Assessing statistical significance 

The P-value is defined as the probability of obtaining a value that is at least as extreme as that 

of the actual sample by chance. If the P-value is smaller than a pre-set threshold then the null 

hypothesis of no association is rejected and the result is considered significant. For a single test 

P < 0.05 is deemed significant in order to control the family wise error rate (FWER; the 

probability of making even one type I error) at 0.05. However, in GWAS where many SNPs are 

being tested simultaneously keeping the threshold for significance at 0.05 would lead a large 

number of false positives (if the null hypothesis is correct for 1,000,000 SNPs tested, then 5%, 

that is 50,000 SNPs, are expected to have P < 0.05 by chance). 

To minimise type I error and keep the FWER at 0.05, a Bonferroni correction of the P-value can 

be applied. The corrected P-value is given by the equation P = α/n, where α equates to the 

generally accepted level of significance (0.05) and n to the number of polymorphisms 

genotyped. This is likely an overcorrection when multiple tests can be correlated. Simulations 

generating an infinitely dense set of polymorphisms identified a P-value cut off of 5 ×10-8 as 

appropriate in genome-wide studies [250-252]. 

In the GWAS conducted in Chapter 3, the threshold for statistical significance in GWAS was taken 

to be P < 5 ×10-8. Additional analyses were explicitly corrected according to the number of tests 

carried out unless stated otherwise. 

Bayesian false-discovery probability 

A Bayesian approach to the false discovery rate, in which the probability of the null hypothesis 

(H0) is true, given the observed data, can be used to interpret findings from a GWAS. Calculation 

of the Bayesian false-discovery probability (BFDP) requires the P-value, the study power (Section 

2.3.3) and an estimate of the prior for a given SNP. This BFDP statistic is complementary to the 

P-value, which tests the probability of the data, given the null hypothesis (H0) is true.  For

borderline associations identified in the GWAS performed in Chapter 3, the BFDP was calculated

using the methodology of Wakefield et al [253]. The BFDP was calculated based on a plausible

OR of 1.2 (based on the 95th percentile of meta-analysis OR values) and a prior probability of

association of 0.0001.
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2.3.3 Calculation of study power 

Study power is defined as the probability of rejecting the null hypothesis (H0) of no association 

when the alternative hypothesis (H1) is true [106]. When the probability of rejecting H0 when it 

is true (type 1 error) is α, and the failure to reject H0 when it is false (type 2 error) is β, statistical 

power is defined as 1-β. Whilst α can be controlled by the study investigator, β is subject to 

factors outside the investigators control such as the effect size and frequency of the associated 

variant, the level of correlation between the typed marker and the true causal variants and the 

underlying disease model. Study power can be maximised by increasing the number of samples 

studied and using cases genetically enriched for disease susceptibility (i.e. early onset and with 

family history of disease). 

2.3.4 Estimating linkage disequilibrium 

During meiotic recombination, stretches of DNA are non-independently co-inherited. SNPs at 

different sites in the genome are not randomly inherited; they are strongly correlated and likely 

to co-segregate together in a haplotype. This non-random association of alleles, termed linkage 

disequilibrium (LD), allows certain SNPs to act as proxies, or tag SNPs, for correlated SNPs. This 

reduces the number of SNPs that need to be genotyped to capture most common variants (that 

is, those with a minor allele frequency > 5%) to around 300,000. 

The most common metrics of LD are D’ and the correlation coefficient (r2).  D’ varies between 0 

and 1 with a value of 1 corresponding to complete LD. Values less than one indicate disrupted 

LD and have no clear statistical interpretation particularly as D’ is strongly inflated in small 

sample sizes and only measures recombination history. Therefore, intermediate values should 

not be used to measure the extent of LD. The more stable r2 is the preferred measure of the 

extent of LD as it summarises both the recombination and the mutational history of the markers 

[254, 255]. The r2 statistic is equal to D’ divided by the product of the allele frequencies at the 

two loci with perfect LD indicated by r2 = 1. 

2.3.5 Haploview 

Haploview v4.2 is a Java software package used to compute LD and haplotype blocks [256]. It 

uses primary genotype data and data derived from publicly available databases. In addition to 

LD statistics and haplotype blocks, Haploview also generates marker quality statistics, 

population haplotype frequencies and single marker association statistics. It can also be used for 

haplotype association analysis.  
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 SNAP 

SNP Annotation and Proxy (SNAP) search is an annotation tool used to find proxy SNPs based on 

LD, physical distance and/or presence on commercial genotyping platforms [257]. SNAP 

implements Haploview 4.0 to calculate pairwise r2 and D’ measures of linkage disequilibrium 

based on data from the 1000 Genomes pilot project. This allows the user to generate plots of 

regional LD and query pair-wise LD metrics. Furthermore, the tool includes annotation 

information from multiple commercial arrays, so can be used to check for SNPid aliases across 

dbSNP builds. Plots can be created using publicly available R code. 

 

 The International HapMap project 

The International HapMap project [258] provides a haplotype map of the human genome [259]. 

By cataloguing the common genetic variants in the human genome, the resource contains high-

density SNP genotype data from individuals across four different populations (Caucasian, 

Chinese, Japanese, and African). 

 

 VCFtools 

VCFtools is a package of programs for working with VCF files [260]. It can be used to compute r2 

and D’ metrics when supplied with phased haplotype data (e.g. from the 1000 Genomes project 

or UK10K project). 

 

2.3.6 Imputation 

Imputation is a method used in GWAS to extrapolate genetic data from a densely characterised 

reference panel to a sparsely typed sample set [161, 261]. This method predicts (or ‘imputes’) 

the genotypes at untyped variants in each individual using a reference panel of known 

haplotypes sequenced or genotyped at a dense set of variants. Imputation methods identify 

stretches of shared haplotype in the reference dataset and study dataset and fill in missing 

genotypes in the study dataset by copying alleles observed in the matching haplotype of the 

reference dataset.  

 

 Imputation reference panels 

Accuracy of imputation is critically dependent on the reference panel used to infer missing 

genotypes, while identification of risk loci is dependent on the extent to which disease-causing 
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variation is catalogued within this reference panel. The GWAS performed in Chapter 3 utilised a 

merged reference panel, combining data from the 1000 Genomes and UK10K projects. 

 

1000 Genomes project 

Haplotype data from 1,092 individuals from Africa (n=246), Asia (n=286), Europe (n=379) and 

the Americas (n=181) produced in phase one of the project are available as a reference panel 

for imputation [262]. Only data from those of European ancestry were used in the GWAS in 

Chapter 3. 

 

UK10K project 

Phased haplotype data from 3,781 UK individuals was additionally available from the UK10K 

project for use as an imputation reference panel [110]. 

 

 SHAPEIT 

Generally, genotyping data is unphased; it is not directly observed which of the two parental 

chromosomes, or haplotypes, a particular allele falls on. Hence which alleles are co-localised on 

the same chromosome is unknown. This information is essential for imputation algorithms 

which look for haplotypes which are shared between a study dataset and the reference data. 

Segmented HAPlotype Estimation and Imputation Tool (SHAPEIT) is a fast and accurate method 

of estimating haplotypes from genotype data based on a Hidden Markov Model (HMM) [263]. 

This method can be used to create a set of phased haplotypes from genotype data which can 

subsequently be used as a reference panel for imputation. GWAS data can also be pre-phased, 

greatly increasing imputation speed. 

 

 IMPUTE 4 

IMPUTE 4 is a statistical program for imputing unobserved genotypes in SNP association studies 

utilising a reference panel of known haplotypes such as the 1000 Genomes project [264]. It uses 

an approximate population genetics model that gives more weight to genotypes that are 

consistent with the local patterns of LD. Use is made of information from all markers in LD with 

an untyped SNP in a way that decreases with genetic distance from the SNP being imputed. 

Marginal probabilities of each possible genotype for each unknown genotype under study are 

output, allowing for uncertainties in prediction to be taken into account in association testing. 

In addition, associated ‘information’ metrics are produced for each SNP reflecting the certainty 

of imputation, where a quality score of 1 corresponds to a near perfectly imputed SNPs [261]. 
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To guard against poorly imputed SNPs, only SNPs with an info score > 0.8 were retained. IMPUTE 

4 implements the haploid imputation options included in IMPUTE 2, but is much faster and more 

memory efficient. 

 

2.3.7  SNPTEST 

SNPTEST v2.5 is a program for the analysis of single SNP associations in GWAS [265]. It takes in 

the marginal probability output from IMPUTE and allows for conditioning on covariates. SNPs 

can be tested for association assuming an additive, dominant, recessive, general or heterozygote 

model. As with IMPUTE, an information score is output to reflect confidence in the imputation.  

 

2.3.8 META 

META is a program for meta-analysis of GWAS studies which reads in the output from SNPTEST 

[266]. Along with P-values of association, for each SNP META outputs Cochran’s Q and I2 

statistics of heterogeneity between datasets. A threshold imputation information score can be 

specified whereby for each SNP, only studies passing this threshold will be included in the P-

value estimate. Three different methods can be used to combine P-values; an inverse variance 

method under a fixed effects model, an inverse variance under a random effects model or a z-

statistics combination method based on a fixed effects model.  

 

Meta-analyses were undertaken to obtain pooled estimates using the Mantel-Haenszel method 

to combine raw data. Joint ORs and 95% confidence intervals (CIs) were calculated using META 

v1.7 assuming an inverse variance weighted, fixed-effects model, and tests of the significance of 

the pooled effect sizes were calculated using a standard normal distribution. Cochran's Q 

statistic to test for heterogeneity and the I2 statistic (where I2 = ((Q - df)/Q)*100 and df is number 

of studies -1) to quantify the proportion of the total variation due to heterogeneity were 

calculated. I2 values of ≥ 75% can be considered characteristic of large heterogeneity [267, 268]. 

 

2.3.9 Association analyses 

 Conditional analyses 

Conditional analyses were carried out to rule out the existence of multiple statistical signals at 

each risk locus. Association statistics were calculated for all SNPs conditioning on the top SNP in 

each locus showing genome-wide significance. The genome-wide complex trait analysis (GCTA) 

program [269] was used, employing the conditional and joint genome-wide association analysis 

tool with summary statistics. 



 

73 

 

 

 Subtype analysis 

FISH and ploidy classification of UK and German samples had previously been conducted by UK 

MyIX and MyXI trials and the German GMMG trial (Section 2.1.1) [270-272]. The XL IGH Break 

Apart probe (MetaSystems, Altlussheim, Germany) was used to detect any IGH translocation in 

the German samples. Association between SNP genotype and MM risk under a variety of 

molecular subtypes was tested under a logistic regression in case-only and case-control 

analyses.  

 

 Age and sex association analysis 

In Chapter 3, association between sex and genotype for the top SNP at each of the genome-wide 

significant regions was conducted with logistic regression, and with linear model for the 

association between age at diagnosis and genotype. All individuals in five of the six sample sets 

were used (UK n = 2,282, German n = 1,508, US n = 780, Sweden/Norway n = 1,714, Netherlands 

n = 555). 

 

2.4 Bioinformatic analysis 

2.4.1 Databases 

 University of California, Santa Cruz (UCSC) genome 

The University of California, Santa Cruz (UCSC) genome browser (http://genome.ucsc.edu/) is a 

virtual map of the human genome, annotated with known genes, transcripts, polymorphic 

variation, repeated sequences, conservation, structural variation and experimental data from 

external databases such as ENCODE (Section 2.4.1.3). These features are mapped against their 

physical positions in the genome. Various bioinformatics tools are contained within the website 

and were utilised as follows: 

 

• Genome Browser tool was used to query specific regions of DNA and visualise genes, 

introns, regulatory elements and other features of the genomic location. 

• BLAT tool was used to assess the binding accuracy of primers designed for PCR by finding 

possible spurious binding sites with > 95% similarity to the sequence of interest. 

• LiftOver tool was used to convert genome coordinates between different genome 

assemblies. Specifically, early GWAS SNPs may be mapped to NCBI Build 36 (hg18) 

whereas sequencing reads are mapped to the more recent Build 37 (hg19).  
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• Table Browser tool was used to download data associated with specific tracks in the 

genome browser. 

  

 National Centre for Biotechnology Information 

The National Centre for Biotechnology Information (NCBI) web server 

(http://www.ncbi.nlm.nih.gov/) hosts a multitude of databases and bioinformatics tools [273]. 

Specific tools used in this work are: 

 

• PubMed for literature searches and citations. 

• Basic Local Alignment Search Tool (BLAST) for nucleotide based searches. 

• RefSeq to obtain reference sequences of chromosomes, genomic contigs, mRNAs and 

proteins. These data can also be queried in UCSC. 

• dbSNP database of short genetic variations to query specific SNPs for position, allele and 

frequency information. 

 

 The Encyclopedia of DNA Elements  

The encyclopedia of DNA elements (ENCODE) [274, 275] aims to build a comprehensive list of 

functional elements in the human genome, including elements that act at the protein and RNA 

level, as well as DNA regulatory elements. The ENCODE project integrates genome-wide 

experimental data for over 100 different cell types. Data includes: chromatin structure (e.g. HiC), 

open chromatic prediction (e.g. DNase hypersensitivity), histone modifications and transcription 

factor binding prediction (ChIP-seq) and RNA transcription (RNA-seq and CAGE). All data is 

publicly available for download and can be viewed in the UCSC genome browser (Section 

2.4.1.1). From this data the functionality of specific genomic regions can be inferred which is 

critical in fine-mapping studies and prioritisation of sequence variants. 

 

 1000 Genomes project 

The 1000 Genomes Project aims to provide a comprehensive catalogue of human genetic 

variation with frequencies > 1% through sequencing large numbers of individuals at 4x coverage 

[109]. Combining data from all individuals will then allow for accurate imputation of variants not 

directly covered in this low coverage sequencing. Data from the pilot phase, phase one and 

phase three of the project have been made publicly available. It is currently the largest publicly 

available resource for genome-wide variant frequency data across different populations 
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worldwide. Variant data from individuals of European descent in the 1000 Genomes project 

were used, as part of a reference panel for imputation (Chapter 3). 

 

 UK10K project 

The UK10K project aims to sequence 10,000 phenotyped people at 6x coverage in order to 

better understand the link between low-frequency and rare genetic changes and human disease 

[110]. The 10,000 individuals are split into three cohorts; the Twins UK and ALSPAC cohorts 

comprise 1,854 and 1,927 whole-genome sequenced individuals respectively and a further 6,000 

individuals with extreme health problems (neurodevelopment, obesity and rare diseases) are to 

be exome sequenced. It is currently the largest publicly available resource for variant frequency 

data in the UK population. Variant data from the Twins UK and ALSPAC cohorts (3,781 

individuals) were used for haplotype data, as part of a reference panel for imputation (Chapter 

3). 

 

 The International HapMap project 

The international HapMap project aims to catalogue all common genetic variants in the human 

genome across different populations [259]. The resource allows the retrieval of high-density SNP 

genotype data from large numbers of individuals that are representative of different 

populations (Caucasian, Chinese, Japanese and African). 

 

 Ensembl genome browser 

The Ensembl genome browser [276] is a genome annotation database supported by the 

European Bioinformatics Institute. Along with the Ensembl Biomart, it is of particular use for 

retrieval of gene information including genomic organisation of exons, introns and known 

regulatory domains, known transcripts, proteins, homologues and recorded variation within the 

gene sequence [277, 278]. 

 

 WashU Epigenome Browser  

WashU Epigenome Browser allows visualisation of chromatin interaction data from a variety of 

chromatin conformation capture experiments [239]. In Chapter 4, WashU Epigenome browser 

was used to display chromatin looping interactions. 
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 Blueprint 

Blueprint is an epigenomic project specifically focusing on hematopoiesis [179]. It aims to 

generate epigenomic maps of a wide variety of cell types from blood, including both primary 

human cells from healthy individuals and blood-based diseases. A range of epigenomic and 

regulatory data is available including RNA-seq, DNase-seq, ChIP and histone modifications [179]. 

Blueprint data is available from other data portals including the Ensembl Biomart and UCSC 

browsers.  

 

2.4.2 Expression quantitative trait Locus (eQTL) analysis 

 

eQTL analysis aims to find associations between SNP genotypes and expression levels of genes 

in cis, by assessing mRNA levels for samples for which SNP genotype data are also available. In 

this thesis the following datasets were used for eQTL analysis: 

 

eQTL in MM patients 

eQTL analyses were performed using Affymetrix Human Genome U133 2.0 Plus Array data for 

plasma cells from 183 MRC Myeloma IX trial patients, 658 Heidelberg patients and 608 US 

patients (Section 2.1.4). German, UK and US data was separately pre-processed and analysed 

using a Bayesian approach to probabilistic estimation of expression residuals to infer broad 

variance components, thus accounting for hidden determinants influencing global expression 

such as copy number, translocation status and batch effects [279]. The association between 

genotype of the sentinel variant and gene expression of genes within 500 kb either side was 

evaluated by linear regression. Data from each study cohort was pooled under a fixed-effects 

model, controlling for FDR, and calling significant associations with a FDR ≤0.05.  

 

Genotype-Tissue Expression Consortium (GTEx) 

The GTEx (Genotype-Tissue Expression) Consortium is a tissue biobank for gene-expression 

levels across individuals for diverse tissues of the human body, with a broad sampling of normal, 

non-diseased human tissues from postmortem donors [280]. The GTEx project includes publicly 

available genotype, gene expression, histological and clinical data for 491 human donors across 

48 tissues. This enables the study of tissue-specific gene expression and the identification of 

genetic associations with gene expression levels (expression quantitative trait loci, or eQTLs) 

across many tissues, including both local (cis-eQTLs) and distal (trans-eQTLs) effects. For 

association analysis of predicted gene expression with MM risk in Chapter 4, SNP weights and 
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their respective covariance in 48 tissues from 80 to 491 individuals were obtained from 

predict.db, which is based on GTEx version 7 [280] eQTL data. 

 

2.4.3 Hi-C analysis 

Recent studies making use of techniques such as Hi-C have led to increased insights into three-

dimensional genome structure [236]. More recently, “topologically associating domains” (TADs) 

have been identified as megabase-sized local chromatin interaction domains, which are stable 

across different cell types and conserved across mammalian species [281]. Defining these 

interaction domains can aid in interpretation of DNA sequence function.  

 

Hi-C data was used to map the candidate causal SNPs to chromosomal TADs and identify 

patterns of relevant, local chromatin interactions using a range of cell lines. Hi-C data for the 

KMS11 cell line, used in Chapter 3, was generated in-house by Dr Scott Kimber. GM12878 Hi-C 

data used in Chapter 4 was publicly available [240]. Valid Hi-C pairs were generated aligning raw 

reads to the reference genome using Burrows-Wheeler alignment (BWA) [282], matching pairs 

of reads and filtering for biases. Bona fide Hi-C ditags were allocated to a contact matrix, with a 

predefined, uniform resolution of 5 kb. Experimental bias was corrected using the matrix 

balancing approach [283]. TADs were inferred from the contact matrix by means of the 

arrowhead algorithm for domain detection [236] 

 

2.4.4 Heritability estimation 

Linkage disequilibrium adjusted kinships (LDAK) [284] was used to estimate the polygenic 

variance (i.e. heritability) ascribable to all genotyped and imputed GWAS SNPs from summary 

statistic data. SNP-specific expected heritability, adjusted for LD, MAF and genotype certainty 

was calculated from the UK10K [110] and 1000 Genomes [109] data. Samples were excluded 

with a call rate <0.99 or if individuals were closely related or of divergent ancestry from CEU. 

Individual SNPs were excluded if they showed deviation from HWE with P < 1 × 10−5, an 

individual SNP genotype yield <95%, MAF <1%, SNP imputation score <0.99 and the absence of 

the SNP in the GWAS summary statistic data. This resulted in a total 1,254,459 SNPs which were 

used to estimate the heritability of MM. 

 

To estimate the sample size required for a given proportion of the GWAS heritability, a 

likelihood-based approach was implemented to model the effect-size distribution using 

association statistics, from the MM meta-analysis, and LD information, obtained from 
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individuals of European ancestry in the 1000 Genomes Project Phase 3 [109]. LD values were 

based on an r2 threshold of 0.1 and a window size of 1 MB. The goodness of fit of the observed 

distribution of P-values against the expected from a two-component model (single normal 

distribution) and a three-component model (mixture of two normal distributions) were assessed 

[285]. The percentage of GWAS heritability explained for a projected sample size was 

determined using this model and is based on power calculations for the discovery of genome-

wide significant SNPs. The genetic variance explained was calculated as the proportion of total 

GWAS heritability explained by SNPs reaching genome-wide significance at a given sample size. 

The 95% confidence intervals were determined using 10,000 simulations. 

 

2.4.5 Summary-data-based Mendelian Randomisation (SMR) 

The relationship between SNP genotype and gene expression was carried out using SMR analysis 

as per Zhu et al [181]. Briefly, if bxy is the effect size of x (gene expression) on y (slope of y 

regressed on the genetic value of x), bzx is the effect of z on x and bzy be the effect of z on y, bxy 

(bzy/bzx) is the effect of x on y. To distinguish pleiotropy from linkage where the top associated 

cis-eQTL is in LD with two causal variants, one affecting gene expression and the other affecting 

a trait, heterogeneity in dependent instruments (HEIDI) was tested for using multiple SNPs in 

each cis-eQTL region. Under the hypothesis of pleiotropy, bxy values for SNPs in LD with the 

causal variant should be identical. For each probe that passed significance threshold for the SMR 

test, the heterogeneity in the bxy values estimated for multiple SNPs in the cis-eQTL region was 

tested using HEIDI. 

 

GWAS summary statistics files were based on the meta-analysis performed in Chapter 3. A 

threshold for the SMR test of PSMR < 1 × 10−3 was set for the analysis performed in Chapter 3, 

corresponding to a Bonferroni correction for 45 tests, i.e. 45 probes which demonstrated an 

association in the SMR test. For the study of genetic correlation between MM and CLL in Chapter 

5, a threshold for the SMR test of PSMR < 2.5 × 10−5 was set. For all genes passing this threshold, 

we generated plots of the eQTL and GWAS associations at the locus, as well as plots of GWAS 

and eQTL effect sizes (i.e. input for the HEIDI heterogeneity test). HEIDI test P-values < 0.05 were 

considered as reflective of heterogeneity. This threshold is, however, conservative for gene 

discovery because it retains fewer genes than when correcting for multiple testing.  
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2.4.6 Transcriptome imputation 

MetaXcan is a suite of tools to perform integrative gene mapping studies. Amongst these, 

PrediXcan is a gene-level association approach that tests the effects of gene expression levels 

on phenotypes [286]. PrediXcan imputes transcriptome levels with models trained in measured 

transcriptome datasets. These predicted expression levels are then correlated with the 

phenotype in a gene association test. Associations between predicted gene expression and MM 

risk were examined using PrediXcan, which combines GWAS and eQTL data, accounting for LD-

confounded associations. Briefly, genes likely to be disease-causing were prioritised using S-

PrediXcan which uses GWAS summary statistics and pre-specified weights to predict gene 

expression, given co-variances of SNPs. SNP weights and their respective covariance in 48 tissues 

from 80 to 491 individuals were obtained from predict.db which is based on GTEx version 7 eQTL 

data [280]. A full list of the sample count by tissue can be found at the GTEx portal [287]. To 

combine S-PrediXcan data across the different tissues taking into account tissue-tissue 

correlations, S-MultiXcan [288] was used. 

 

To determine if associations between genetically predicted gene expression and MM risk were 

influenced by variants previously identified by GWAS, conditional analyses were performed 

adjusting for sentinel GWAS risk SNPs using GCTA-COJO [269]. Adjusted output files were 

provided as the input GWAS summary statistics for S-PrediXcan analyses as above. To account 

for multiple comparisons, a Bonferroni-corrected P-value threshold of 1.96 × 10−6 (i.e. 

0.05/25,520 genes) was considered as being statistically significant. 

 

2.4.7 Transcription factor and histone mark enrichment analysis 

To examine enrichment in specific TF binding across risk loci, the method of Cowper-Sal lari et 

al [289] was adapted. Briefly, for each risk locus, a region of strong LD (defined as r2 > 0.8 and D′ 

> 0.8) was determined, and these SNPs were considered the associated variant set (AVS). 

Publicly available data on TF ChIP-seq uniform peak data was obtained from ENCODE [274] for 

the GM12878 cell line, including data for 82 TF and 11 histone marks. In addition, ChIP-seq peak 

data for six histone marks from KMS11 cell line were generated in-house, and naïve B-cell ChIP-

seq data was downloaded from Blueprint Epigenome Project [179]. For each mark, the overlap 

of the SNPs in the AVS and the binding sites was assessed to generate a mapping tally. A null 

distribution was produced by randomly selecting SNPs with the same characteristics as the risk-

associated SNPs, and the null mapping tally calculated. This process was repeated 10,000 times, 

and P-values were calculated as the proportion of permutations, where null mapping tally was 
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greater or equal to the AVS mapping tally. An enrichment score was calculated by normalising 

the tallies to the median of the null distribution. Thus, the enrichment score is the number of 

standard deviations of the AVS mapping tally from the median of the null distribution tallies. 

 

2.4.8 Estimation of genetic correlation using LD score regression 

To investigate genetic correlation between MM and CLL (Chapter 5), cross-trait LD score 

regression by Bulik-Sullivan et al [290] was implemented. This method is an extension of single 

trait LD score regression; it estimates genetic correlation using only GWAS summary statistics 

and is not biased by sample overlap. Summary statistics from the CLL and MM GWAS meta-

analysis were used and filters as recommended by the authors were applied. Specifically, 

filtering SNPs to INFO > 0.9, MAF > 0.01, and harmonizing to Hap-Map3 SNPs with 1000 

Genomes EUR MAF > 0.05, removing indels and structural variants, removing strand-ambiguous 

SNPs and removing SNPs where alleles did not match those in 1000 Genomes. This was 

performed by running the munge-sumstats.pr script included with ldsc. The script, ldsc.py, part 

of the ldsc package was run, excluding the HLA region. Heritability estimates are reported on 

the observed scale. There is no distinction between observed and liability scale genetic 

correlation for case/control traits. 

 

 Stratified LD score regression 

A variation of LD score regression, namely stratified LD score regression, can be used to partition 

heritability according to different genomic categories. For both MM and CLL, stratified LD score 

regression was applied across the baseline model used in Finucane et al [291]. Enrichment of 

functional categories was plotted for each disease and is defined as the proportion of heritability 

divided by the total heritability. Additional flanking regions around each functional category, 

which authors designed to allow observation of enrichment of SNP heritability in intermediary 

regions, were excluded from plots. 

 

2.4.9 Chromatin state annotation 

ChromHMM is a software for learning and characterizing chromatin states [180]. Multiple 

genomic datasets (e.g. ChIP-seq, histone marks) are integrated into a hidden Markov model that 

models the presence or absence of each chromatin mark to demarcate the genome into a 

defined number of states corresponding to different biological functions (e.g. active promoter, 

strong enhancer or repetitive). This inference of regulatory elements aids in interpretation of 

SNP effect. Variant sets (i.e. sentinel risk SNP and correlated SNPs, r2 > 0.8) were annotated for 
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putative functional effect based upon histone mark ChIP-seq data for H3K27ac, H3K4me1, 

H3K27me3, H3K9me3, H3K36me3 and H3K27me3 from KMS11 cell lines, generated in-house 

and naïve B-cells from Blueprint Epigenome Project [179] using ChromHMM. The software 

package was used to infer chromatin states by integrating information on these histone 

modifications, training the model on three MM cell lines; KMS11, MM1S and JJN3. Genome-

wide signal tracks were binarised (including input controls for ChIP-seq data), and a set of 

learned models were generated using ChromHMM software. A 12-state model was suitable for 

interpretation, and biological meaning was assigned to the states based on chromatin marks 

that use putative rules as previously described [176, 292, 293]. 

 

2.4.10 Cell-type-specific analyses 

In Chapter 5, chromatin mark overlap enrichment for genome-wide significant loci in different 

cell types was performed using the methodology of Trynka et al [294]. This approach scores 

GWAS SNPs based on proximity to chromatin mark and fold-enrichment of respective chromatin 

mark, assessing significance using a tissue-specific permutation method. ChIP-seq data for 

H3K4me3 from primary blood cells and CLL samples was downloaded from Blueprint Epigenome 

project [179]. In addition, 4 MM cell lines, KMS11, JJN3, MM1-S, and L363, were included. 

 

2.4.11 Annotation of regulatory elements 

For the integrated functional annotation of risk loci in Chapter 3, variant sets (i.e. all SNPs in LD 

r2 > 0.8 with the sentinel SNP) were annotated with: (i) presence of a Hi-C contact linking to a 

gene promoter, (ii) presence of an association from SMR analysis, (iii) presence of a regulatory 

ChromHMM state, (iv) evidence of transcription factor binding and (v) presence of a 

nonsynonymous coding change. Candidate causal genes were then assigned to MM risk loci 

using the target genes implicated in annotation tracks (i), (ii), (iii) and (iv). If the data supported 

multiple gene candidates, the gene with the highest number of individual functional data points 

was considered as the candidate. Where multiple genes have the same number of data points, 

all genes are listed. Direct non-synonymous coding variants were allocated additional weighting. 

Competing mechanisms for the same gene (e.g. both coding and promoter variants) were 

permitted. 

 

2.4.12 Mendelian randomisation analyses 

Mendelian randomisation (MR) is an analytical method that exploits genetic variants as 

instrumental variables (IVs), to infer the causal relevance of an exposure to an outcome, such as 
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a disease [191]. Because the genetic variants are randomly assigned at conception they are not 

influenced by reverse causation and in the absence of pleiotropy (i.e. genetic variants being 

associated with the disease through alternative pathways) they can provide unconfounded 

estimates of disease risk [191]. An agnostic strategy to identify causal relationships has recently 

been proposed, integrating the phenome-wide association study (PheWAS) and MR 

methodology, termed MR-PheWAS [295].  

 

 Genetic instruments for phenotypes 

Two-sample MR was conducted using the TwoSampleMR R package [296]. Genetic instruments 

for each of the traits investigated were SNPs identified from recent meta-analyses, the largest 

studies published to date, or those curated by MR-Base. For each SNP, the chromosome 

position, the effect estimate expressed in standard deviations (SDs) of the trait per-allele and 

the corresponding standard errors (SEs) were recovered. SNPs were only considered as potential 

instruments if they were associated with each trait at P < 5 × 10-8 in GWAS of European 

populations and had a minor allele frequency > 0.01. To avoid co-linearity between SNPs for 

each trait, correlated SNPs within each trait were excluded (LD threshold, r2 ≥ 0.01). Only SNPs 

with the strongest effect on the trait were considered. The proportion of variance explained 

(PVE) by the associated SNPs were computed from the association statistics. Traits were only 

considered if the power to identify an ORSD of 0.67 or 1.50 was > 80%. As analysis of binary traits 

(such as disease status) with binary outcomes in two-sample MR frameworks can result in 

inaccurate causal estimates, only continuous traits were considered [297]. 

 

 Estimation of study power  

The power of MR to demonstrate a causal effect depends on the percentage of risk factor 

variance explained by the genetic variants used as instruments [107]. The study power was 

estimated, stipulating an alpha of 0.05, for each risk factor a priori across a range of effect sizes. 

 

 Mendelian randomization analysis 

The MR methodology assumes that genetic variants, used as instruments for a risk factor, are 

associated with the risk factor and not with confounders or alternative causal relationships 

[191]. Additionally, associations must be linear and unaffected by interactions. For each SNP, 

causal effects were estimated for MM as an odds ratio per one SD unit increase in the putative 

risk factor (ORSD), with 95% confidence intervals (CIs), using the Wald ratio. For traits with 

multiple SNPs as IVs, causal effects were estimated under inverse variance weighted random-



 

83 

 

effects (IVW-RE) and inverse variance weighted fixed-effects (IVW-FE) models. To assess the 

robustness of the findings, weighted median estimates (WME) [298] and mode-based estimates 

(MBE) [299] were obtained for results which were suggestively significant and had > 2 SNPs 

included in the analysis. Pleiotropy exists when a single genetic variant influences multiple 

phenotypes [300]. Horizontal pleiotropy refers to a situation where the genetic instrument 

influences the disease outcome via a different pathway which is not under investigation. Where 

pleiotropic effects are balanced and there exists no systematic bias across a set of genetic 

instruments, MR estimates remain valid. If horizontal pleiotropy is unbalanced (directional) it 

may result in a biased MR estimate [301]. Directional pleiotropy was therefore assessed using 

MR-Egger regression [302].  A consistent effect across these four complementary methods (IVW, 

MBE,WME and MR-Egger), which make different assumptions about horizontal pleiotropy, is 

less likely to be a false positive [303]. The potential impact of outlying and pleiotropic SNPs on 

causal estimates were examined by adopting a leave-one-out strategy, under the IVW-RE model 

[296]. This method performs the MR analysis, but leaves out each SNP in turn to identify whether 

a single SNP is driving the association. Heterogeneity (I2) was calculated from Cochran’s Q-value.  

To account for multiple correction testing, a Bonferroni-corrected P-value was considered as 

being statistically significant, while a P < 0.05 was considered to be suggestive evidence of a 

causal association. Statistical analyses were performed using R version 3.4.0 and MR-Base [296].  

 

 Availability of data 

Genetic instruments can be obtained through MR-Base [296] or from published work. Appendix 

19 lists the phenotypes which were investigated the MR analysis and details the publications 

they were obtained from. 

 

2.4.13 Primer design 

These programs and tools were used for designing primers in Chapters 3 and 4. 

 

   Primer 3 

Primer 3 [233] is a web-based program for designing PCR oligonucleotide primers allowing user 

parameter specification. It is essential in design of primers that do not misprime to the human 

genome.  
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   KBioSciences Primer Picker 

KBioSciences Primer Picker [304] is a web-based program provided by the manufacturer for 

designing KASPar SNP genotyping primers.
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 Identification of risk loci for multiple 
myeloma 

3.1 Overview and rationale 

Although no lifestyle or environmental exposures have been consistently linked to an increased 

risk of MM, the two- to four-fold increased risk observed in relatives of MM patients provides 

support for inherited genetic predisposition [78]. Understanding of MM susceptibility has 

recently been informed by genome-wide association studies (GWAS), which have so far 

identified 17 independent risk loci for MM [112-114, 116], with an additional locus being 

subtype-specific for t(11;14) translocation MM [115]. Much of the heritable risk of MM, 

however, remains unexplained and statistical modelling indicates that further common risk 

variants remain to be discovered [158]. 

 

To gain a more comprehensive insight into MM aetiology, a new GWAS followed by a meta-

analysis with existing GWAS and replication genotyping (totalling 9,974 cases and 247,556 

controls) was performed. Six new MM susceptibility loci were identified as well as refined risk 

estimates for the previously reported loci. In addition, the possible gene regulatory mechanisms 

underlying the associations seen at all 23 GWAS risk loci was investigated by analysing in situ 

promoter Capture Hi-C (CHi-C) in MM cells to characterise chromatin interactions between 

predisposition single-nucleotide polymorphism (SNPs) and target genes, integrating these data 

with chromatin immunoprecipitation-sequencing (ChIP-seq) data generated in house and a 

range of publicly available genomics data. Finally, the contribution of both new and previously 

discovered loci to the heritable risk of MM was quantified and a likelihood-based approach to 

estimate sample sizes required to explain 80% of the heritability was implemented. 

 

3.2 Study design 

A new GWAS was performed and meta-analysed with previous GWAS datasets. Replication 

genotyping of promising associations was performed and imputed genotypes were validated. 

SNPs achieving genome-wide significance after replication genotyping were then functionally 

annotated using CHi-C, gene expression, ChIP-seq and a range of publicly available genomics 

data (Figure 3.1). 
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Figure 3.1 Overview of study design.  GWAS study design. Details of the new and existing GWAS 
samples, including recruitment centres or trials and quality control, are provided in Table 3.1 
and Table 3.2. Trials or centres from which replication samples were recruited are detailed in 
Section 2.1. Ca.: cases, Co.: controls, eQTL: expression quantitative trait loci, SNP: single-
nucleotide polymorphism, LD: linkage disequilibrium. 
 
3.2.1 Genome-wide association studies 

Details of sample numbers, ascertainment and quality control (QC) for the new OncoArray study 

and previous UK, US, German, Icelandic, Swedish/Norwegian and Dutch MM studies are detailed 

in Table 3.1 and Table 3.2. 
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    Trial/ Recruitment Centre 
Pre-
QC 

Sex 
discrepancy  

Call rate 
fail 

Heterozygosity 
rate 

Related 
Individuals 

Non-European 
Ancestry Post-QC 

UK 
Cases UK RC My IX, UK MRC MyXI 2,329 10 1 NA 2 34 2,282 

Controls 
1958 Birth Cohort, National 

Blood Service 5,199 0 0 NA 2 0 5,197 

Sweden/Norway Cases 

Swedish National Myeloma 
Biobank, Norwegian Biobank 

for Myeloma       1,714 
Controls TWINGENE       10,391 

Germany Cases 
GMMG-HD3, GMMG-HD4, 

GMMG-HD5 1,512 1 0 NA 0 3 1,508 
Controls Heinz Nixdorf Recall 2,107 0 0 NA 0 0 2,107 

Netherlands Cases 

HOVON65/GMMG-HD4, 
HOVON95/EMN02, 
HOVON87/NMSG18 608 0 2 7 0 44 555 

Controls B-PROOF 2,669 0 0 0 0 0 2,669 

USA Cases 

Total Therapy II, Total 
Therapy III, Total Therapy 3B, 

Total Therapy 4 1,076 0 0 9 1 286 780 

Controls 
Cancer Genetic Markers of 

Susceptibility 2,234 0 4 2 0 369 1,857 

Iceland Cases Icelandic Cancer Registry       480 
Controls deCODE       212,164 

OncoArray 
Cases UK MRC MyXI 931 6 1 5 3 44 878 

Controls PRACTICAL, BCAC 7,519 8 1 7 68 364 7,083 

Table 3.1   Details of the quality control filters applied to each GWAS.  For the OncoArray dataset, highlighted in grey, samples were excluded due to call rate 
(<95% or failed genotyping), ancestry (principle components analysis or other samples reported to be not of white, European descent), relatedness (any 
individuals found to be duplicated or related within or between data sets through IBS) or sex discrepancy. Dutch, German, UK, USA, Sweden/Norway and 
Iceland studies have been previously reported in their entirety with comprehensive details on QC [112-114, 116]. MyIX, Myeloma IX; MyXI, Myeloma XI; B-
PROOF, B-vitamins for the prevention of osteoporotic fractures; UKGPCS, UK Genetic Prostate Cancer Study; BCAC, Breast Cancer Association Consortium. 
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 UK Sweden/Norway Germany Netherlands USA Iceland OncoArray 

         
Pre-QC 409,429  401,405 646,124 296,998  459,068 

Call rate fail  997  113 6,523 4  6,851 
HWE fail 7  0 18,104 171  12 

MAF < 0.01 3  1 0 9,151  73,239 
Post-QC 408,422  401,291 621,497 287,672  378,966 
Imputed 
(filtered) 8,517,071 7,182,761 8,282,831 8,628,799 8,085,846 10,291,845 3,874,958 

Table 3.2 Details of the quality control filters applied to each GWAS. For the OncoArray cohort, highlighted in grey, genotyped SNPs with a call rate <95% 
were excluded as were those with a MAF <0.01 or showing significant deviation from Hardy-Weinberg equilibrium (i.e. P < 10-5). Imputed SNPs with 
information score <0.8 and MAF <0.01 were excluded. Dutch, German, UK, USA, Sweden/Norway and Iceland studies have been previously reported in their 
entirety with comprehensive details on QC [112-114, 116].
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3.2.2 Replication genotyping 

Details of the series for replication of SNPs taken forward (German, Sweden/Norway and 

Denmark) are detailed in Table 3.3. Genotyping was performed using competitive allele-specific 

PCR KASPar chemistry as detailed in Section 2.2.3.2 for the nine promising risk loci. Call rates for 

SNP genotypes were > 95% in each of the replication series. To ensure the quality of genotyping 

in all assays, at least two negative controls and duplicate samples (showing a concordance of > 

99%) were genotyped at each centre. 

 

    Samples Trial/ Recruitment Centre 

Germany 
Cases 911 German Myeloma Study Group  

Controls 1,477 Institute of Transfusion Medicine and Immunology, 
University of Mannheim, Germany 

      

Swedish 
Cases 534 Swedish National Myeloma Biobank 

Controls 2,382 Swedish Blood Donors 
      

Denmark 
Cases  332 University Hospital of Copenhagen 

Controls 2,229 Individuals from Denmark and Skane County 

Table 3.3 Details of the replication sample recruitment. 
 

3.2.3 Imputation concordance assessment 

The fidelity of imputation at three imputed risk loci was assessed by directly sequencing a set of 

147 randomly selected samples from the UK OncoArray case series. Targeted sequencing of 

imputed SNPs was performed by Sanger sequencing with primer sequences detailed in 

Appendix 1. 

 

3.2.4 Statistical and bioinformatics analyses 

Imputation and association testing were carried out as detailed in Section 2.3.6 and Section 

2.3.7. Expression quantitative trait loci analyses on GWAS-identified SNPs were detailed in 

Section 2.4.5. Biological inferences were made based on the annotation of GWAS-identified 

SNPs as detailed in Section 2.4.11. 

  



3.3 Results 

3.3.1 Association analysis 

A new GWAS using the OncoArray platform [162] (878 MM cases and 7,083 controls from the 

UK) was conducted, followed by a meta-analysis with six published MM GWAS data sets [112-

114, 116, 305] (totalling 7,319 cases and 234,385 controls). Standard QC [306] measures, as 

described in Section 2.3.1, were applied to the OncoArray dataset; individuals with low call rate 

(< 95%) were excluded and those found to have non-European ancestry on the basis of HapMap 

version 2 CEU, JPT, CHB and YRI population reference data (Appendix 2). For first-degree relative 

pairs, the control or the individual with the lower call rate was excluded.  To increase genomic 

resolution, array SNP genotypes were imputed to > 10 million SNPs. Quantile–quantile (Q–Q) 

plots for SNPs with minor allele frequency (MAF) > 1% after imputation did not show evidence 

of substantive over-dispersion for the OncoArray GWAS (λ = 1.03, λ1000 = 1.02, Appendix 3). 

Meta-analysis was undertaken using an inverse-variance approach under a fixed-effects model 

to derive odds ratios (ORs) for each SNP with MAF > 1%. Finally, validation of nine SNPs 

associated at P < 1 × 10−6 in the meta-analysis, which did not map to known MM risk loci and 

displayed a consistent OR across all GWAS data sets was sought by genotyping an additional 

1,777 cases and 6,088 controls from three independent series (Germany, Denmark and 

Sweden). Targeted sequencing of imputed SNPs was performed and imputation was found to 

be robust; concordance was > 90% (Appendix 4). After meta-analysis of the new and pre-existing 

GWAS data sets and replication series, genome-wide significant associations (i.e. P < 5 × 10−8) 

[93] were identified for six new loci at 2q31.1, 5q23.2, 7q22.3, 7q31.33, 16p11.2 and 19p13.11 

(Appendix 5, Table 3.4 and Figure 3.2). Additionally, borderline associations were identified at 

two loci with P-values of 5.93 × 10−8 (6p25.3) and 9.90 × 10−8 (7q21.11). Bayesian false-discovery 

probabilities (BFDP) were calculated for these promising loci to assess the noteworthiness of the 

observed association [253] ; they had BFDP of 4% (6p25.3) and 6% (7q21.11). Conditional 

analysis of GWAS data showed no evidence for additional independent signals at the loci 

(Appendix 6). Finally, there was no evidence to support the existence of the putative risk locus 

at 2p12.3 (rs1214346), previously proposed by Erickson et al [307] (GWAS meta-analysis P-

value = 0.32).

90 
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     OncoArray Previous data Replication Combined meta 

SNP Chr. Pos. (b37) 
Risk 

Allele RAF OR Ptrend OR Ptrend OR  Ptrend OR Pmeta I2 

rs7577599 2 25613146 T 0.81 1.22 2.63×10-3 1.24 1.24×10-16 - - 1.23 1.29×10-18 0 
              

rs4325816 2 174808899 T 0.77 1.16 1.23×10-2 1.11 1.30×10-5 1.16 3.00×10-3 1.12 7.37×10-9 9 
              

rs6599192 3 41992408 G 0.16 1.24 1.35×10-3 1.26 8.75×10-18 - - 1.26 4.96×10-20 0 
              

rs10936600 3 169514585 A 0.75 1.18 5.12×10-3 1.20 5.94×10-15 - - 1.20 1.20×10-16 0 
              

rs1423269 5 95255724 A 0.75 1.09 0.125 1.17 1.57×10-11 - - 1.16 8.30×10-12 23 
              

rs6595443 5 122743325 T 0.43 1.14 9.87×10-3 1.10 4.69×10-6 1.10 0.022 1.11 1.20×10-8 0 
              

rs34229995 6 15244018 G 0.02 1.05 0.781 1.40 1.76×10-8 - - 1.36 5.60×10-8 0 
              

rs3132535 6 31116526 A 0.29 1.26 2.67×10-5 1.20 2.97×10-17 - - 1.21 6.00×10-21 0 
              

rs9372120 6 106667535 G 0.21 1.18 7.74×10-3 1.20 8.72×10-14 - - 1.19 2.40×10-15 0 
              

rs4487645 7 21938240 C 0.65 1.23 1.06×10-4 1.24 5.30×10-25 - - 1.24 2.80×10-28 0 
              

rs17507636 7 106291118 C 0.74 1.12 5.71×10-2 1.12 5.54×10-7 1.10 0.036 1.12 9.20×10-9 50 
              

rs58618031 7 124583896 T 0.72 1.17 7.61×10-3 1.11 4.70×10-6 1.10 0.061 1.12 2.73×10-8 0 
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     OncoArray Previous data Replication Combined meta 

SNP Chr. Pos. (b37) 
Risk 

Allele RAF OR Ptrend OR Ptrend OR  Ptrend OR Pmeta I2 

rs7781265 7 150950940 A 0.12 1.33 3.23×10-4 1.20 1.82×10-7 - - 1.22 4.82×10-10 49 
              

rs1948915 8 128222421 C 0.32 1.19 1.68×10-3 1.14 3.14×10-10 - - 1.15 2.53×10-12 26 
              

rs2811710 9 21991923 C 0.63 1.13 1.76×10-2 1.14 6.50×10-10 - - 1.14 3.64×10-11 0 
              

rs2790457 10 28856819 G 0.73 1.09 0.124 1.12 8.44×10-7 - - 1.11 2.66×10-6 0 
              

rs13338946 16 30700858 C 0.26 1.17 7.90×10-3 1.12 2.22×10-7 1.26 2.5×10-7 1.15 1.02×10-13 26 
              

rs7193541 16 74664743 T 0.58 1.14 9.01×10-3 1.12 1.14×10-8 - - 1.12 3.68×10-10 34 
              

rs34562254 17 16842991 A 0.10 1.32 7.63×10-4 1.30 3.63×10-17 - - 1.30 1.18×10-19 29 
              

rs11086029 19 16438661 T 0.24 1.26 1.02×10-4 1.12 1.69×10-6 1.15 5.00×10-3 1.14 6.79×10-11 42 
              

rs6066835 20 47355009 C 0.08 1.13 0.162 1.24 1.16×10-9 - - 1.23 6.58×10-10 38 
              

rs138747 22 35700488 A 0.66 - - 1.21 2.58×10-8 - - 1.21 2.58×10-8 0 
              

rs139402 22 39546145 C 0.44 1.11 4.15×10-2 1.23 4.98×10-26 - - 1.22 3.84×10-26 56 

Table 3.4  Summary of genotyping results for all genome-wide MM risk SNPs.  New loci discovered through this study are emboldened. RAF, risk allele 
frequency; Ptrend, P-value for trend, via logistic regression; Pmeta, P-value for fixed effects meta-analysis; I2, heterogeneity index (0–100). RAF are based on the 
UK cohort control series, with the exception of rs138747, which is sourced from the 1000 Genomes Project55 
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Figure 3.2 Manhattan plot of association signals.  Genomic location of MM risk alleles identified in genome-wide association studies.  Risk loci identified in 
the latest meta-analysis including the new OncoArray GWAS are emboldened. Dashed line represents threshold for genome-wide significance (P < 5×10-8). 
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3.3.2 Contribution of risk SNPs to heritability 

Linkage disequilibrium adjusted kinships (LDAK) calculates heritability of a trait considering 

factors such as allele frequency and linkage disequilibrium, which influence heritability 

estimates [308]. Using this method, the heritability of MM ascribable to all common variation 

was calculated to be 15.6% (±4.7); collectively the previously identified and new risk loci account 

for 15.7% of the heritability (13.6% and 2.1%, respectively). To assess the collective impact of all 

identified risk SNPs, polygenic risk scores (PRS) considering the combined effect of all risk SNPs 

modelled under a log-normal relative risk distribution were constructed [186]. Using this 

approach, an individual in the top 1% of genetic risk has a threefold increased risk of MM when 

compared to an individual with median genetic risk (Figure 3.3). An enrichment of risk variants 

among familial MM compared with both sporadic MM cases and population-based controls was 

observed, comparable to that expected in the absence of a strong monogenic predisposition 

(respective P-values 0.027 and 1.60 × 10−5; Appendix 10). Undoubtedly, the identification of 

further risk loci through the analysis of larger GWAS are likely to improve the performance of 

any PRS model. To estimate the sample size required to explain a greater proportion of the 

GWAS heritability, a likelihood-based approach using association statistics in combination with 

LD information was implemented to model the effect-size distribution [285, 309]. The effect-

size distributions for susceptibility SNPs were best modelled using the three-component model 

(mixture of two normal distributions). Under this model, to identify SNPs explaining 80% of the 

GWAS heritability is likely to require sample sizes in excess of 50,000 (Appendix 11). 

 

Figure 3.3 Population distribution of polygenic risk score (PRS).  Ordered by relative risk (RR) 
(compared with population median risk). PRS is based on the 23 risk SNPs. Vertical red lines (left 
to right) correspond to 1%, 10%, 50%, 90%, and 99% centile, respectively. 
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3.3.3 Functional annotation and biological inference of risk loci 

To the extent that they have been studied, many GWAS risk SNPs localise to non-coding regions 

and influence gene regulation [167]. To investigate the functional role of previously reported 

and new MM risk SNPs, a global analysis of SNP associations using ChIP-seq data generated on 

the MM cell line KMS11 and publicly accessible naïve B-cell Blueprint Epigenome Project data 

[179, 310] was performed. There was evidence of enrichment of MM SNPs in regions of active 

chromatin, as indicated by the presence of H3K27ac, H3K4Me3 and H3K4Me1 marks (Figure 

3.4). An enrichment of relevant B-cell transcription factor-(TF) binding sites was also observed 

using ENCODE GM12878 lymphoblastoid cell line (LCL) data (Figure 3.5). Collectively these data 

support the tenet that the MM predisposition loci influence risk through effects on cis-

regulatory networks involved in transcriptional initiation and enhancement. 

 

 
Figure 3.4 Enrichment of histone marks.  The overrepresentation of histone marks in (left) naïve 
B and (right) KMS11 cells at the location of new and known MM risk SNPs demonstrates that 
risk SNPs are enriched in regions of open chromatin. The red line denotes the Bonferroni 
corrected P-value threshold. Note axes are on different scales. 
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Figure 3.5 Enrichment of transcription factor binding sites.  The overrepresentation of 
transcription factor (TF) binding sites in GM12878 cells at the location of new and known MM 
risk SNPs demonstrates that risk SNPs are enriched in regions of B-cell relevant TF binding. The 
red line denotes the Bonferroni corrected P-value threshold. 
 
Since genomic spatial proximity and chromatin looping interactions are key to the regulation of 

gene expression, physical interactions at respective genomic regions in KMS11 and naïve B-cells 

were interrogated using CHi-C data [173]. To gain insight into the possible biological mechanisms 

for associations, an expression quantitative trait locus (eQTL) analysis was performed using 

mRNA expression data on CD138-purified MM plasma cells; specifically, Summary data-based 

Mendelian Randomization (SMR) analysis [181] was implemented to test for pleiotropy between 

GWAS signal and cis-eQTL for genes within 1 Mb of the sentinel SNP to identify a causal 

relationship (Appendix 12). Risk loci with variants mapping to binding motifs of B-cell-specific 

TFs were annotated. Finally, direct promoter variants and non-synonymous coding mutations 

were catalogued for genes within risk loci (Table 3.5). 

 

Although preliminary and requiring functional validation, this analysis delineates four potential 

candidate disease mechanisms across the 23 MM risk loci. Firstly, four of the risk loci contain 

candidate genes linked to regulation of cell cycle and genomic instability, as evidenced by CHi-C 

looping interactions in KMS11 cells to MTAP (at 9p21.3) and eQTL effects for CEP120 (at 5q23.2) 

(Figure 3.6 and Figure 3.7). CEP120 is required for microtubule assembly and elongation with 
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overexpression of CEP120 leading to uncontrolled centriole elongation [311]. rs58618031 

(7q31.33) maps 5′ of POT1, the protection of telomeres 1 gene. POT1 is part of the shelterin 

complex that functions to protect telomeres and maintain chromosomal stability [312, 313]. 

While mutated POT1 is not a feature of MM, it is commonly observed in B-cell chronic 

lymphocytic leukaemia [127, 314, 315]. The looping interaction from the rs58618031 annotated 

enhancer element implicates ASB15. Members of the ASB family feature, as protein components 

of the ubiquitin–proteasome system, are intriguingly being investigated as a potential 

therapeutic target in MM [316-318]. 

 

Second, candidate genes encoding proteins involved in chromatin remodelling were implicated 

at three of the MM risk loci, supported by promoter variants at 2q31.1, 7q36.1 and 22q13.1. The 

new locus at 2q31.1 implicates SP3, encoding a TF, which through promoter interaction, has a 

well-established role in B-cell development influencing the expression of germinal centre genes, 

including activation-induced cytidine deaminase (AID) [319, 320]. 

 

Third, the central role of IRF4-MYC-mediated apoptosis/autophagy in MM oncogenesis is 

supported by variation at five loci, including eQTL effects WAC (at 10p12.1) (Figure 3.6 and 

Figure 3.7) and Hi-C looping interactions (at 8q24.21 and 16q23.1). The 7p15.3 association 

ascribable to rs4487645 has been documented to influence expression of c-MYC-interacting 

CDCA7L through differential IRF4 binding [124]. Similarly, the long-range interaction between 

CCAT1 (colon cancer-associated transcript 1) and MYC provides an attractive biological basis for 

the 8q24.21 association, given the notable role of MYC in MM [321, 322]. It is noteworthy that 

the promising risk locus at 6p25.3 contains IRF4. At the new locus 19p13.11, the missense variant 

(NP_057354.1:p.Leu104Pro) and the correlated promoter SNP rs11086029 implicates KLF2 in 

MM biology. Demethylation by KDM3A histone demethylase sustains KLF2 expression and 

influences IRF4-dependent MM cell survival [323]. The new 16p11.2 risk locus contains a 

number of genes including Proline-Rich Protein 14 (PRR14), which is implicated in PI3-

kinase/Akt/mTOR signalling, a therapeutic target in myelomatous plasma cells [324]. 

 

Fourth, loci related to B-cell and plasma cell differentiation and function are supported by 

variation at three loci, including eQTL effects (ELL2 at 5q15) [124] and Hi-C looping interactions 

(at 6q21). As previously inferred from GM12878 cell line data, the region at 6q21 (rs9372120, 

ATG5) participates in intra-chromosome looping with the B-cell transcriptional repressor PRDM1 

(alias BLIMP1) [116]. Additionally, SNP rs34562254 at 17p11.2 is responsible for the amino acid 
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substitution (NP_036584.1:p.Pro251Leu) in TNFRSF13B, a key regulator of normal B-cell 

homeostasis, which has an established role in MM biology [325-330]. 

 
Figure 3.6 Summary data-based Mendelian Randomization (SMR) analysis locus plot.  a) 
5q23.2 and b) 10p12.1. Upper panel - brown dots represent P-values for SNPs from the GWAS 
meta-analysis, diamonds represent P-values for probes from the SMR test; lower panel – crosses 
represent eQTL P-values of SNPs from MM plasma cells from 183 MRC MyIX trial patients (GEO: 
GSE21349) and 658 Heidelberg GMMG patients (EMBL-EBI: E-MTAB-2299), with genes passing 
the SMR (i.e. PSMR < 0.001) and HEIDI (i.e. PHEIDI > 0.05) tests highlighted in red. Probeset ID refers 
to Affymetrix U133 2.0 Plus Array custom chip definition file (CDF v.17) mapping to Entrez genes. 
 
 
 
  

a) 

b) 
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Figure 3.7 Summary data-based Mendelian Randomization analysis effect plot.  (a) 5q23.2 and 
(b) 10p12.1. Blue dots represent effect sizes of SNPs from the GWAS meta-analysis against those 
from the eQTL study of MM plasma cells from 183 MRC MyIX trial patients (GEO: GSE21349) and 
658 Heidelberg GMMG patients (EMBL-EBI: E-MTAB-2299). The top cis-eQTL is highlighted by a
red diamond. Error bars are the standard errors of the SNP effects. An estimate of bxy at the top
cis-eQTL is represented by the orange dotted line.

a) 

b)
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SNP Locus bp(b37) Genes in LD block
Coding 
variant

Promoter 
variant

Promoter/ enhancer 
chromatin states TF binding1 Hi-C contact(s) 

in KMS11 cells
Hi-C contact(s) 
in naïve B cells

eQTL
Functional 
study

Candidate 
causal gene(s)

Candidate disease 
mechanism

rs7577599 2p23.3 25613146 DTNB

rs4325816 2q31.1 174808899 SP3 SP3

active promoter, 
transcribed 
enhancer weakly 
acetylated, 
intermediate 
enhancer

BATF, CTCF, 
MAZ, NFIC,  
RAD21, YY1

SP3 Chromatin remodelling

rs6599192 3p22.1 41992408 ULK4

rs10936600 3q26.2 169514585
ACTRT3 MYNN 
LRRC34

LRRC34
active promoter, 
distal promoter

ATF2, EBF1, 
MAZ, MXI1, 
POL2RA, 
SIN3A,  
STAT5A, TAF1, 
TBLR1XR1 +21

GPR160, SEC62-
AS1

GPR160, 
LRRC31, 
MYNN, 
PDCD10, 
SERPINI1, 
SEC62, 
SAMD7, SEC62-
AS1, SKIL, 
PHC3, PDCD10

LRRC34

rs1423269 5q15 95255724 ELL2 ELL2

intermediate 
enhancer, active 
enhancer, distal 
promoter

ATF2, BCLAF1, 
EBF1, IKZF1, 
MAZ, MEF2C, 
MXI1, SPI1, 
STAT5A, 
TBLR1XR1 +23

VPS13C ELL2 B-cell development

rs6595443 5q23.2 122743325 CEP120 CEP120

transcribed 
enhancer weakly 
acetylated

SPI1 SNX2,    SNX24 SNX2,    SNX24 CEP120 CEP120
cell cycle/ genomic 
stability

Functional evidence
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SNP Locus bp(b37) Genes in LD block
Coding 
variant

Promoter 
variant

Promoter/ enhancer 
chromatin states TF binding1 Hi-C contact(s) 

in KMS11 cells
Hi-C contact(s) 
in naïve B cells

eQTL Functional study
Candidate 
causal gene(s)

Candidate disease 
mechanism

rs34229995 6p22.3 15244018 JARID2

intermediate 
enhancer, active 
promoter, distal 
promoter

FOXM1, IKZF1, 
MEF2A, NFIC, 
RELA, RUNX3, 
SPI1, YY1, 
ZNF143

rs3132535 6p21.3 31116526
PSORS1C1 
CCHCR1

rs9372120 6q21 106667535 ATG5
intermediate 
enhancer, active 
enhancer

PREP PRDM1, PREP PRDM1 B-cell development

rs4487645 7p15.3 21938240 DNAH11 CDCA7L

IRF4,  MYC, 
POLR2A, 
POU2F2, 
RUNX3,  SPI1, 
TAF1, WRNIP1

CDCA7L CDCA7L apoptosis/ autophagy

rs17507636 7q22.3 106291118 CCDC71L

rs58618031 7q31.33 124583896 POT1

distal promoter, 
active enhancer, 
intermediate 
enhancer

NFIC
ASB15, IQUB, 
WASL

cell cycle/ genomic 
stability

rs7781265 7q36.1 150950940
ABCF2 CHPF2 
SMARCD3

ABCF2, CHPF2
active promoter, 
poised promoter

EBF1, EZH2, 
POLR2A, 
SIN3A, TAF1, 
YY1

ASIC3,  ABCF2, 
ATG9B

ABCF2 chromatin remodelling

Functional evidence
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SNP Locus bp(b37) Genes in LD block
Coding 
variant

Promoter 
variant

Promoter/ enhancer 
chromatin states TF binding1 Hi-C contact(s) 

in KMS11 cells
Hi-C contact(s) 
in naïve B cells

eQTL Functional study
Candidate 
causal gene(s)

Candidate disease 
mechanism

rs1948915 8q24.21 128222421

ATF2, BCLAF1, 
EBF1, MAZ, 
MXI1, POL2RA, 
SIN3A, SPI1, 
STAT5A +18

CASC11, MYC MYC apoptosis/ autophagy

rs2811710 9p21.3 21991923
CDKN2A, MTAP, 
CDKN2B-AS1

CDKN2A
CDKN2A, 
CDKN2B-AS1

active promoter MTAP MTAP
CDKN2A, 
MTAP

cell cycle/ genomic 
stability

rs2790457 10p12.1 28856819 WAC
intermediate 
enhancer

CTCF LYZL1
MASTL, 
YME1L1

WAC WAC apoptosis/ autophagy

rs13338946 16p11.2 30700858
PRR14      FBRS      
SRCAP

PRR14 FBRS
active promoter, 
distal promoter

EBF1, MAZ, 
MXI1, POL2RA, 
SIN3A, SPI1, 
TAF1 +11

DCTPP1, 
DOC2A, 
FBXL19, 
GDPD3, ITGAL, 
MYLPF, 
PPP4C, 
SEPHS2, 
SEPT1, 
TBC1D10B, 
ZNF48, ZNF771

FBRS, PRR14, 
DCTPP1, 
MYLPF, 
TBC1D10B, 
SEPHS2

PRR14 apoptosis/ autophagy

rs7193541 16q23.1 74664743 RFWD3   GLG1 RFWD3 RFWD3 active promoter PML, TBP GLG1, NPIPL2

GLG1, HSPE1P, 
CFDP1, 
PSMD7, 
RFWD3, 
GABARAPL2

RFWD3

Functional evidence
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SNP Locus bp(b37) Genes in LD block Coding variant
Promoter 
variant

Promoter/ enhancer 
chromatin states TF binding1 Hi-C contact(s) 

in KMS11 cells
Hi-C contact(s) 
in naïve B cells

eQTL Functional study
Candidate 
causal gene(s)

Candidate disease 
mechanism

rs34562254 17p11.2 16842991 TNFRSF13B TNFRSF13B

intermediate 
enhancer, distal 
promoter, active 
enhancer

CTCF, POL2RA, 
STAT5A

TNFRSF13B B-cell development

rs11086029 19p13.11 16438661 KLF2 KLF2 KLF2 poised promoter

CTCF, EGR1, 
IKZF1, NFYB, 
POLR2A, RFX5, 
SIN3A, SPI1

KLF2 apoptosis/ autophagy

rs6066835 20q13.13 47355009 PREX1 poised promoter

ATF2, EBF1, 
IKZF1, MEF2C, 
POL2RA, SPI1, 
TBLR1XR1 +9

ARFGEF2

rs138747 22q13.1 35700488 HMGXB4 TOM1 HMGXB4
TOM1, 
HMGXB4

active promoter, 
transcribed 
enhancer weakly 
acetylated, 
intermediate 
enhancer, distal 
promoter, active 
enhancer, 
transcribed weak 
enhancer weakly 
acetylated 

BCLAF1, EBF1, 
MAZ, POL2RA, 
STAT5A +46

CRYBB1, 
HMOX1, 
APOL3, TOM1, 
LARGE, 
HMGXB4

FBXO7, 
HMGXB4, 
RASD2, MB

rs139402 22q13.1 39546145 CBX7 CBX7

distal promoter, 
intermediate 
enhancer, active 
promoter, poised 
promoter

BCLAF1, CHD2, 
CTCF, EBF1, 
MAZ, NFYB, 
POLR2A, RELA, 
RFX5, TBP, 
TAF1, ZNF143

APOBEC3B-
AS1, RPL3

CBX7 chromatin remodelling

Functional evidence
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Table 3.5 Summary of functional annotation of the 23 risk loci.  Newly identified risk loci are 
emboldened. Chromatin states were determined using ChromHMM. Heat maps were used to 
assign states based on previously described rules and these are shown in Appendix 13). Where 
> 10 TF were implicated at a locus, only those that overlap with TF which demonstrated 
enrichment in GM12878 are shown here. A full list of TFs localising to loci are detailed in 
Appendix 14. 
 

3.4 Discussion 

The meta-analysis of a new GWAS series in conjunction with previously published MM data sets 

performed in this chapter has identified six novel risk loci. Together, the new and previously 

reported loci explain an estimated 16% of the SNP heritability for MM in European populations. 

Ancestral differences in the risk of developing MM are well recognised, with a greater 

prevalence of MM in African Americans as compared with those with European ancestry [331]. 

It is plausible that the effects of MM risk SNPs may differ between Europeans and non-

Europeans and hence contribute to differences in prevalence rates. Thus far, there has only been 

limited evaluation of this possibility with no evidence for significant differences [332]. 

 

Integration of CHi-C data with ChIP-seq chromatin profiling from MM and LCLs and naïve B-cells 

and eQTL analysis, from patient expression data, has allowed preliminary insight into the 

biological basis of MM susceptibility. The analysis within this chapter suggests a model of MM 

susceptibility based on transcriptional dysregulation consistent with altered B-cell 

differentiation, where dysregulation of autophagy/apoptosis and cell cycle signalling feature as 

recurrently modulated pathways. Specifically, the findings here implicate mTOR-related genes 

ULK4, ATG5 and WAC, and by virtue of the role of IRF4-MYC related autophagy, CDCA7L, 

DNMT3A, CBX7 and KLF2 in MM development (Table 3.5). Further investigations are necessary 

to decipher the functional basis of risk SNPs, nevertheless this analysis highlights mTOR 

signalling and the ubiquitin–proteasome pathway, targets of approved drugs in MM. As a 

corollary of this, genes elucidated via the functional annotation of GWAS that discovered MM 

risk loci may represent promising therapeutic targets for myeloma drug discovery. Finally, 

estimation of sample sizes required to identify a larger proportion of the heritable risk of MM 

attributable to common variation underscores the need for further international collaborative 

analyses. 
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Transcriptome-wide association study of 
multiple myeloma 

4.1 Overview and rationale 

Consistent with findings from many different cancer GWAS, bar a few notable exceptions, the 

functional variants and target susceptibility genes at the MM risk regions are yet to be identified. 

Knowledge of the causal genes responsible for defining disease predisposition is important in 

furthering understanding of MM tumourigenesis and has the potential to inform the 

development of novel therapeutic strategies [82]. While most GWAS risk variants map to non-

coding regions of the genome, they are enriched for variants correlated with gene expression 

levels [167, 333]. Exploiting this characteristic, the integration of GWAS signals with expression 

quantitative trait loci (eQTLs) has implicated ELL2 and CDCA7L as the risk genes likely to be 

responsible for the 5q15 and 7p15.3 MM associations, respectively [123, 124, 142, 143]. The 

high frequency of eQTLs coupled with linkage disequilibrium (LD) across regions can, however, 

make disentangling the risk genes from spurious co-localisation at the same region problematic. 

Transcriptome-wide association studies (TWAS) have been proposed as a strategy to identify 

risk genes underlying complex traits [286]. This approach imputes genetic data from GWAS using 

reference sets of weights generated from eQTL data, before correlating this genetic component 

of gene expression with the phenotype of interest. Since TWAS aggregates the effects of 

multiple variants into a single testing unit, and facilitates prioritisation of genes at known risk 

regions for functional validation, it potentially also affords increased study power to identify 

new risk regions. 

While MM is caused by the clonal expansion of malignant plasma cells, if a TWAS is to be based 

on expression data from a single cell, deciding on the most appropriate source is inherently 

problematic [334]. Utilising eQTL data from tumours is complicated by copy number alterations 

and tumours essentially represent terminal stage in disease progression. Moreover, the effect 

of any risk allele may be acting at the level of the tumour micro-environment [335]. Studies have 

shown that eQTLs strongly enriched in GWAS signals are not necessarily specific to the eQTL 

discovery tissue [333]. Taking advantage of this principle allows a multi-tissue TWAS to be 

conducted integrating expression across multiple tissues, thereby leveraging information on 

shared eQTLs for candidate gene discovery [336]. 
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Within this chapter a multi-tissue TWAS is performed to prioritise candidate causal genes at 

known risk regions for MM and search for new risk regions. Specifically, gene expression data 

from 48 tissue panels measured in 8,756 individuals is analysed in conjunction with summary 

association statistics on 7,319 MM cases and 234,385 controls of European descent. 108 genes 

at 13 loci associated with MM risk are identified and additional evidence of a potential role for 

a number of genes dysregulated in MM tumourigenesis is provided. 

 

4.2 Study design 

GWAS data was integrated with Genotype-Tissue Expression Project (GTEx) data assayed from 

lymphocyte cell lines and whole blood, to predict gene expression. At the 22q13.1 locus looping 

interactions and histone modifications in the lymphoblastoid cell line (LCL) GM12878, were 

interrogated for evidence of gene regulation. 

 

4.2.1 Genome-wide association study datasets 

MM genotyping data was derived from the meta-analysis of seven GWAS datasets totalling 

7,319 cases and 234,385 controls of European descent detailed in Chapter 3. 

 

4.2.2 Expression data 

SNP weights, used to impute expression levels for the whole transcriptome, and their respective 

covariance in 48 tissues from 80 to 491 individuals were obtained from predict.db [286], which 

is based on GTEx version 7 eQTL data [280]. A full list of the sample count by tissue can be found 

at the GTEx Portal [287]. 

 

4.2.3 Association analysis of predicted gene expression with myeloma risk 

Associations between predicted gene expression and MM risk were examined using MetaXcan 

[286], which combines GWAS and eQTL data, accounting for LD-confounded associations. 

Briefly, genes likely to be disease-causing were prioritised using S-PrediXcan [286] which uses 

GWAS summary statistics and pre-specified weights to predict gene expression, given co-

variances of SNPs. To combine S-PrediXcan data across the different tissues considering tissue-

tissue correlations, S-MultiXcan was used [336]. 

 

To determine if associations between genetically predicted gene expression and MM risk were 

influenced by variants previously identified by GWAS, conditional analyses were performed 
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adjusting for sentinel GWAS risk SNPs [337]. To account for multiple comparisons, a Bonferroni-

corrected P-value threshold of 1.96 × 10−6 (i.e. 0.05/25,520 genes) was considered as being 

statistically significant. 

 

4.2.4 Regulatory annotation 

To map risk SNPs to interactions involving promoter contacts and identify genes involved in MM 

susceptibility at the 22q13.1 locus, previously published promoter capture Hi-C data on the 

GM12878 cell line was analysed as a model B-cell [240]. This data was downloaded from the 

ArrayExpress database, accession code E-MTAB-2323. 

  

4.2.5 Statistical power for association tests 

The methodology of Wu et al [338] was used to estimate the power of the TWAS to identify 

associations using a simulation analysis. An estimate of the population prevalence of MM was 

obtained from Cancer Research UK [3]. The statistical power was calculated at P < 1.96 × 10−6, 

corresponding to the TWAS genome-wide significance level, according to various cis-heritability 

(h2) thresholds that are assumed to be equivalent to gene expression prediction models (R2). 

The results are based on 1,000 replicates. 

 

4.3 Results 

The association between predicted gene expression levels and MM risk was examined using 

MetaXcan with summary statistics for GWAS SNPs in 7,319 MM cases and 234,385 controls. 

MetaXcan is a statistical method which leverages substantial sharing of eQTLs across tissue and 

improves the ability to identify potential target genes [288]. In total, the expression levels of 

25,520 genes across 48 tissues were tested for an association with MM risk. Quantile-quantile 

plots of TWAS association statistics did not show evidence of systematic inflation (Figure 

4.1Error! Reference source not found.). Figure 4.2 shows Manhattan plots for respective GWAS 

and TWAS associations. 

 

Applying a Bonferroni threshold, 108 genes at 13 independent regions were identified as being 

associated with risk of MM (Appendix 15). All identified genes except those localising to the HLA 

region on chromosome 6p21 were within 1 Mb of previously reported MM risk SNPs. For all loci, 

except those in the HLA region, association signals were abrogated after adjusting for the top 

risk SNP, consistent with variation in expression of the identified gene being functionally related 

to the MM risk association. The complex LD patterns within the HLA region make deconvolution 
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of significant results within the region difficult [339, 340]; therefore, the principal focus was 

confined to 31 genes at 12 loci outside 6p21, which are shown in Table 4.1. 

 

 

Figure 4.1 Quantile-Quantile plots of GWAS and TWAS.  Shown are of –log10 (P-value) 
associations (top) TWAS for MM; (bottom) TWAS for MM (lower 90% of associations). 
 

  

λ=1.88 

λ=1.22 



 

 

 

109 

 

Figure 4.2 Manhattan plots of association signals.  Manhattan plots of gene genomic co-ordinates against –log10 (P-value) of GWAS and TWAS association 
statistics. a- GWAS association statistics. b- TWAS association statistics. 
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Locus Gene P-value N/Nindep Z-score min Z-score max Z -score 
mean Z-score s.d. 

SNP 
adjusting 

for 

P-value 
after SNP 

adjustment 

2p23.3 KIF3C 1.65×10-18 6/6 -9.4 4.35 -1.19 4.5 rs7577599 1.4×10-9 

2p23.3 EPT1 8.37×10-16 9/9 -1.76 6 1.3 2.72 rs7577599 2.1×10-5 

2p23.3 CENPO 1.48×10-13 12/8 -6.6 2.22 -0.05 2.57 rs7577599 6.1×10-8 

2p23.3 DNMT3A 2.44×10-13 8/8 -2.89 7.96 1.94 3.07 rs7577599 0.01 

2p23.3 AC010150.1 2.90×10-13 4/4 -0.88 7.89 1.61 4.2 rs7577599 8.9×10-10 

2p23.3 PTGES3P2 4.46×10-11 7/5 -4.23 2.03 -2.46 2.08 rs7577599 1.1×10-4 

2p23.3 DTNB 1.16×10-7 11/10 -3.88 5.78 0.36 2.38 rs7577599 3.1×10-3 

2p23.3 DNAJC27 1.74×10-7 8/8 -0.74 4.52 1.95 1.58 rs7577599 0.11 

3p22.1 ULK4 9.01×10-15 43/6 0.9 8.89 6.6 2.24 rs6599192 0.85 

3q26.2 MYNN 7.84×10-13 6/6 -7.91 1.58 -1.66 3.32 rs10936600 0.17 

3q26.2 LRRIQ4 9.63×10-9 3/2 -5.94 -0.88 -4.25 2.92 rs10936600 0.03 

3q26.2 LRRC34 3.35×10-8 21/2 3.97 6.47 5.12 0.66 rs10936600 0.82 

3q26.2 ACTRT3 4.28×10-7 4/4 -0.94 5.8 1.56 2.94 rs10936600 0.48 

6q21 ATG5 1.55×10-12 4/4 0.93 5.89 3.72 2.41 rs9372120 0.07 

7p15.3 CDCA7L 9.61×10-9 8/8 -3.11 4.61 1.12 2.42 rs75341503 0.23 

7q36.1 CHPF2 2.53×10-7 6/6 -2.01 2.13 0.4 1.49 rs7781265 0.06 
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Locus Gene P-value N/Nindep Z-score min Z-score max Z -score 
mean Z-score s.d. 

SNP 
adjusting 

for 

P-value 
after SNP 

adjustment 

16p11.2 QPRT 1.01×10-7 17/8 -2.73 3.04 -0.59 1.63 rs13338946 0.15 

16p11.2 RNF40 4.02×10-7 24/3 0.05 5.68 4.67 1.48 rs13338946 0.89 

16p11.2 PRR14 4.28×10-7 2/2 -5.38 -0.2 -2.79 3.66 rs13338946 0.34 

16p11.2 C16orf93 8.07×10-7 13/5 -5.74 -0.34 -4.59 1.73 rs13338946 0.24 

16p11.2 RP11-
2C24.5 1.54×10-6 5/5 -5.64 4.43 -0.58 3.8 rs13338946 0.73 

16p11.2 PRSS53 1.71×10-6 16/8 -5.19 3.68 -1.04 2.71 rs13338946 0.79 

16q23.1 RFWD3 7.71×10-7 34/7 -3.41 6.35 2.51 3.26 rs7193541 0.47 

17p11.2 TBC1D27 1.95×10-13 6/6 -1.91 4.19 0.51 2.16 rs34562254 0.89 

17p11.2 USP32P1 4.88×10-13 3/3 -7.29 2.8 -1.36 5.27 rs34562254 0.01 

17p11.2 PEMT 5.65×10-8 14/7 -1.74 5.43 1.36 1.93 rs34562254 0.01 

22q13.1 APOBEC3C 1.10×10-18 21/8 -8.93 0.24 -4.09 2.21 rs139402 0.13 

22q13.1 APOBEC3H 4.28×10-15 7/5 -5.45 7.92 -0.95 4.38 rs139402 0.76 

22q13.1 FAM83F 4.65×10-10 11/8 -4.25 2.56 -0.48 2.01 rs139402 1.1×10-4 

22q13.1 APOBEC3D 6.2×10-10 29/7 -8.38 -0.85 -4.15 1.56 rs139402 0.04 

22q13.1 APOBEC3F 5.15×10-9 5/4 -6.34 6.15 1.09 5.07 rs139402 0.13 

22q13.1 APOBEC3G 1.81×10-7 43/2 0.36 6.57 4.94 1.17 rs139402 0.17 

Table 4.1 Genes significantly associated with risk of multiple myeloma.  Excludes associations found in the HLA region. s.d., standard deviation. Detailed are 
the S-MultiXcan P-values for association between gene expression MM, and the corresponding Z-scores quantifying this relationship (e.g. a positive score 
indicates increased gene expression increases risk). N and Nindep indicate the total number of single-tissue results used for S-MultiXcan analysis and the number 
of independent components after singular value decomposition, respectively. 
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For many loci, this TWAS finds support for the involvement of a number of genes that have 

previously been implicated in defining MM [112-114, 116, 305]. Specifically, single-gene 

associations were identified at 3p22.1 (ULK4), 6q21 (ATG5), 7p15.3 (CDCA7L), 7q36.1 (CHPF2) 

and 16q23.1 (RFWD3). However, at a number of regions, this analysis identified multiple 

significant genes, notably, 2p23.3 (KIF3C, EPT1, CENPO, DTNB, DNM3TA, PTGES3P2, DNAJC27), 

3q26.2 (MYNN, LRRC34, LRRIQ4, ACTRT3), 16p11.2 (QPRT, RNF40, PRR14, C16orf93, RP11-

2C24.5, PRSS53) and 17p11.2 (TBC1D27, USP32P1, PEMT). A complete list of novel genes 

identified at known GWAS risk loci is provided in Table 4.2. 

 

Interestingly, several of the APOBEC genes were identified at 22q13.1. These genes localise 

within a distinct LD block adjacent to the one to which the sentinel GWAS risk SNPs maps (Figure 

4.3). To gain insight into the potential for genome-wide significant SNPs in 22q13.1 in to 

influence regulation via a cis-regulatory enhancer, looping interaction and histone modifications 

in GM12878 were mapped across this region. GM12878, a cell line with negligible genetic and 

phenotypic abnormalities, was chosen as a model for early B-cell differentiation [341]. There 

was evidence of enhancer marks and looping interactions from SNPs in 22q13.1 to APOBEC 

genes (Figure 4.3), highlighting active chromatin and spatial proximity present in this region, 

necessary to mediate gene expression [173]. No significant genes were identified at 12 reported 

MM risk regions (2q31.1, 5q15, 5q23.2, 6p22.3, 7q22.3, 7q31.33, 8q24.21, 9p21.3, 10p12.1, 

17p11.2, 19p13.1, 20q13.1). 

 

4.3.1 Biological inference 

These findings provide further support for a number of the genes previously implicated by GWAS 

whose expression influences the risk of developing MM, including CDCA7L at 7p15.3, which has 

been functionally validated. At 7p15.3, rs4487645 resides in an enhancer of c-Myc-interacting 

CDCA7L and increases IRF4 binding, affecting MM proliferation [124]. Furthermore, ULK4 at 

3p22.1, ATG5 at 6q21 and RFWD3 at 16q23 have been identified here and implicated previously. 

Additionally, this TWAS implicates new genes at known risk regions, notably APOBEC3C, 

APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H at 22q13.1 as playing a role in defining MM 

predisposition. Aberrant APOBEC cytidine deaminase activity has been shown to correlate with 

an increased mutational burden and is a recognised feature of MM, caused by triggering DNA 

mutation through dC deamination [342-344]. Furthermore, KIF3C, identified at 2p23.3, is a gene 

which regulates microtubule dynamics and has been previously implicated in breast cancer [345, 

346]. Also at 2p23.3, this analysis identified CENPO, a gene involved in cell cycle progression via 
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regulation of kinetochore assembly [347]. At 16p11.2, RNF40 is a promising candidate for MM 

susceptibility due to its role in double-strand break repair during homologous recombination 

(HR) and class switch recombination [348, 349]. This gene has also been implicated in colorectal 

cancer [350]. A further candidate at this locus, QPRT has been demonstrated to confer resistance 

to chemotherapy and radiotherapy when studied in glioma and leukaemia [351, 352]. As such, 

genes identified within this TWAS build upon previously suggested candidate disease 

mechanisms which may confer MM predisposition [305], including anti-apoptotic effects, roles 

in DNA double-strand break repair and cell cycle regulation. Furthermore, many of the genes 

identified have been previously investigated in vitro for their roles in cancer and this adds further 

support as plausible candidate genes for MM predisposition. 

 

6p21.33, which encodes much of the major histocompatibility complex, is an especially gene 

rich region. As well as the class I HLA-A and class II genes HLA-DQA1 and HLA-DRB1/5, multiple 

genes localise to the region including TCF19 which encodes the cell cycle progression and 

proliferation transcription factor 19 [353, 354]. Complex LD patterns within this region make 

deconvolution of significant results within the region inherently problematic [339]. Additional 

work is required to reveal the contribution of genes in this region to MM development. 

 

A number of previously reported MM risk regions were not implicated in this TWAS. At some 

regions such as 5q15, the high tissue specificity associated with the causal gene ELL2 [142] may 

not be best modelled herein. At other loci, it is less obvious why an association was not detected. 

Speculatively, models at earlier developmental stages may yield greater insights at these loci, 

especially if they are influencing differentiation along B-cell lineages. Additionally, other 

mechanistic effects may explain the functional basis of such loci, including methylation and 

splicing. 
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Figure 4.3 Regional plot of association at 22q13.  Regional plot of association results at 22q13 
in MM alongside recombination rates and histone marks in GM12878. Plot shows discovery 
association results of both genotyped and imputed SNPs in the GWAS samples and 
recombination rates. −log10 (P-values) (y axes) of the SNPs are shown according to their 
chromosomal positions (x axes). The colour of each symbol reflects the extent of LD with the top 
genotyped SNP. Genetic recombination rates, estimated using HapMap samples from Utah 
residents of western and northern European ancestry (CEU), are shown with a blue line. Physical 
positions are based on NCBI build 37 of the human genome. Also shown are the relative 
positions of GENCODE v19 genes mapping to the region of association. Below the association 
plot are the relative positions of GENCODE v19 genes mapping to the region of association and 
the histone marks and chromatin loops for LCL, GM12878.  



 

 

115 

 

 
 
  

SNP  Locus bp(b37)  Newly implicated genes Previously identified genes Study 

rs7577599 2p23.3 25,613,146 
KIF3C, EPT1, CENPO, DNMT3A, 
AC010150.1, PTGES3P2, 
DNAJC27 

DTNB Broderick et al 2011 

rs4325816 2q31.1 174,808,899   SP3 Went et al 2018 
rs6599192 3p22.1 41,992,408  ULK4  Broderick et al 2011 

rs10936600 3q26.2 169,514,585 LRRIQ4 

TERC, ACTRT3, MYNN, 
LRRC34, GPR160, LRRC31, 
MYNN, PDCD10, SERPINI1, 
SEC62, SAMD7, SEC62-AS1, 
SKIL, PHC3, PDCD10 

Chubb et al 2013, Went et al 2018 

rs1423269 5q15 95,255,724  ELL2, VPS13C Swaminathan et al, Li et al 2017 
rs6595443 5q23.2 122,743,325   CEP120, SNX2, SNX24 Went et al 2018 
rs34229995 6p22.3 15,244,018  JARID2 Mitchell et al 2016 

rs3132535 6p21.3 31,116,526   PSORS1C1, CCHCR1, CDSN, 
TCF19, POU5F1 Chubb et al 2013, Went et al 2018 

rs9372120 6q21 106,667,535  ATG5, PREP, PRDM1 Micthell et al 2016, Went et al 2018 
rs4487645 7p15.3 21,938,240   DNAH11 CDCA7L Broderick et al 2011, Li et al 2016 
rs17507636 7q22.3 106,291,118  CCDC71L Went et al 2018 



 

 

116 

 
 

 
 
 
  

SNP  Locus bp(b37)  Newly implicated genes Previously identified genes Study 
rs58618031 7q31.33 124,583,896   POT1, ASB15, IQUB, WASL Went et al 2018 

rs7781265 7q36.1 150,950,940  ABCF2 CHPF2 SMARCD3 ASIC3 
ATG98 Mitchell et al 2016 

rs1948915 8q24.21 128,222,421   CASC11, MYC Mitchell et al 2016, Went et al 2018 
rs2811710 9p21.3 21,991,923  CDKN2A, MTAP, CDKN2B-AS1 Mitchell et al 2016 
rs2790457 10p12.1 28,856,819   WAC, LYZL1, MASTL, YME1L1 Mitchell et al 2016, Went et al 2018 

rs13338946 16p11.2 30,700,858 QPRT, RNF40, RP11-2C24.5, 
C16orf93 

PRR14, FBRS, SRCAP, DCTPP1, 
DOC2A, FBXL19, GDPD3, ITGAL, 
MYLPF, PPP4C, SEPHS2, SEPT1, 
TBC1D10B, ZNF48, ZNF771 

Went et al 2018 

rs7193541 16q23.1 74,664,743   RFWD3, GLG1, HSPE1P, CFDP1, 
PSMD7, GABARAPL2, NPIPL2 Mitchell et al 2016 

rs34562254 17p11.2 16,842,991 PEMT, USP32P1, TBC1D27 TNFRSF13B Chubb et al 2013 
rs11086029 19p13.11 16,438,661 N/A KLF2 Went et al 2018 
rs6066835 20q13.13 47,355,009 N/A PREX1, ARFGEF2 Mitchell et al 2016, Went et al 2018 

rs138747 22q13.1 35,700,488 N/A 
CRYBB1, HMOX1, APOL3, 
TOM1, LARGE, FBXO7, 
HMGXB4, RASD2, MB 

Swaminathan et al 2015, Went et al 2018 

rs139402 22q13.1 39,546,145 
APOBEC3C, APOBEC3D, 
APOBEC3F, APOBEC3G, 
APOBEC3H, FAM83F 

CBX7, APOBEC3B-AS1, RPL3 Chubb et al 2013, Went et al 2018 

Table 4.2 New and previously implicated genes at each genome wide significant MM locus [112-114, 116, 355]. 



4.4 Discussion 

Within this chapter a large TWAS involving 7,319 MM cases of European ancestry has been 

performed, identifying genetically predicted expression levels in 108 genes associated with MM 

risk. Of these, there were 94 genes located in eight regions that, although mapping within 1 Mb 

of a MM risk locus, had not previously been considered as a candidate gene for that locus. 

The increasing appreciation that regulation of gene expression forms the mechanistic basis of 

many GWAS risk regions makes the TWAS an attractive approach to identify causal genes. 

Traditionally, studies have only tended to consider an eQTL and risk SNP to overlap if they are in 

linkage at a specified threshold. This is however, conservative as multiple local SNPs may 

independently contribute to risk. Furthermore, stipulating genome-wide significance thresholds 

for the GWAS signal (i.e. P < 5 × 10−8) and linkage strength (i.e. LD > 0.5) between pairs of SNPs 

for evidence of expression influencing risk, constrains study power. The TWAS approach is 

essentially agnostic as it jointly considers all SNPs in the region, regardless of reported GWAS 

association strength. There are, however, limitations to TWAS. Firstly, TWAS is based on fitting 

predictive linear models of gene expression based on local genotype data, followed by 

prediction into large cohorts and subsequent association testing; therefore, it does not capture 

total expression which includes environmental and technical components [356]. Secondly, 

TWAS will also lose power if gene expression is a nonlinear function of local SNPs, or when trans 

(or distal) regulation is a major determinant of expression levels. 

All conclusions from this TWAS come with several caveats. While TWAS associations are 

consistent with models of gene expression level influencing MM risk, there is the possibility of 

confounding factors. Imputed gene expression levels are generated from weighted linear 

combinations of SNPs, and many of which may tag non-regulatory mechanisms driving risk and 

result in inflated association statistics. Inevitably, despite addressing LD, since genes with eQTLs 

are common, associations may be the result of chance co-localization between eQTLs and MM 

risk. 

The ability to identify gene expression significantly associated with MM risk in this TWAS may 

be affected by tissue specificity. On the basis of the power calculation, this TWAS analysis had 

only 80% power to detect an odds ratio of ~ 1.1 for MM risk per one standard deviation increase 

(or decrease) in the expression level of a gene whose cis-heritability is 60% in EBV-

transformed lymphocytes (Figure 4.5), which has been chosen as a proxy for plasma cells. In 

light of abundant shared cis-regulation of expression across tissues, by combining data, 
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it would be expected that any model could yield greater power as the number of tissues 

increases in which a variant is functional. Hence, the aim was to robustly capture genetically 

regulated gene expression using a large sample size. 

 

In summary, work within this chapter highlights the value of integrating expression with GWAS 

to prioritise candidate causal genes. A number of identified genes have plausible roles in MM 

tumourigenesis (e.g. APOBEC, RNF40) or have been previously implicated in other malignancies 

(e.g. QPRT). The genes identified in this TWAS can be explored for follow-up and validation to 

further understand their role in MM biology. 

 

 

Figure 4.4 Power of TWAS based on 147 samples of EBV-transformed lymphocytes. Simulation 
analysis based on 7,319 cases and 234,385 controls. Gene expression was generated from the 
distribution of gene expression levels from EBV-transformed lymphocyte tissue (n=147). 
Statistical power was calculated at P < 1.96×10-6 (the significance threshold used in the main 
TWAS analysis) according to various cis-heritability (h2) thresholds which are assumed to be 
equivalent to gene expression prediction models (R2). Power calculations were per 1 s.d. change 
in gene expression based on 1,000 replicates. 
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 Co-heritability of multiple myeloma and 
chronic lymphocytic leukaemia. 

5.1 Overview and rationale 

Chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM) are both B-cell malignancies, 

which arise from the clonal expansion of progenitor cells at different stages of B-cell maturity 

[357-359]. Epidemiological observations on familial cancer risks across the different B-cell 

malignancies suggest an element of shared inherited susceptibility, especially between CLL and 

MM [75]. 

 

Genome-wide association studies (GWAS) have transformed understanding of genetic 

susceptibility to the B-cell malignancies, identifying 45 CLL [127, 150, 219, 220] and 17 MM risk 

loci [112-114, 116]. Furthermore, statistical modelling of GWAS data indicates that common 

genetic variation is likely to account for 34% of CLL and 15% of MM heritability [158, 219]. There 

is the possibility that part of the shared heritable basis to both MM and CLL is likely to be 

enshrined in the same common risk variants. 

 

Linkage disequilibrium (LD) score regression is a method which exploits the feature of a test 

statistic for a given single nucleotide polymorphism (SNP), whereby that test statistic will 

incorporate the effects of correlated SNPs [360]. Conventional LD score regression regresses 

trait χ2 statistics against the LD score for a given SNP, with the coefficient of the regression line 

providing an estimate of trait heritability. This method can be modified by instead regressing 

the product of SNP Z-scores from two traits against the SNP LD score, with the slope providing 

an estimate of genetic covariance between the two traits [290]. The method can be applied to 

summary statistics, is not biased by sample overlap, and does not require multiple traits to be 

measured for each individual. 

 

Within this chapter, application of LD score regression to MM and CLL GWAS data demonstrates 

a positive genetic correlation between CLL and MM. There is evidence of shared genetic 

susceptibility at 10 known risk loci and integration of promoter capture Hi-C (CHi-C) data, ChIP-

seq and gene expression data provide insight into the shared biological basis of CLL and MM. 
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5.2 Study design 

Cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic 

lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets was performed, 

totalling 11,734 cases and 29,468 controls (Figure 5.1Error! Reference source not found.). 

Integration of eQTL, CHi-C and ChIP-seq data was performed at pleiotropic risk loci. 

 
Figure 5.1 Overview of study design. Schematic outlining the processing of data sets used in the 
genetic correlation. Ca; cases, Co; controls 
 
 
5.2.1 Multiple myeloma and chronic lymphocytic leukaemia datasets 

Summary level data from the MM GWAS in Chapter 3 were used for LD score regression. Data 

from three previously reported CLL GWAS [127, 219, 220] were used to generate a meta-analysis 

of CLL datasets, following standard quality control measures [306]. The details of the MM 

datasets are in Table 3.1 and Table 3.2. Details of the CLL dataset are in Table 5.1 and Table 5.2. 

The summary level data from this meta-analysis was then used in the LD score regression 

analysis. 

 

5.2.2 LD score regression 

To investigate genetic correlation between MM and CLL, cross-trait LD score regression by Bulik-

Sullivan et al [290] was used. Using summary statistics from the GWAS meta-analyses, filters 

were implemented as recommended by the authors. Specifically, filtering SNPs to INFO >0.9, 

MAF >0.01, and harmonising to Hap Map3 SNPs with 1000 Genomes EUR MAF >0.05, removing 

indels and structural variants, removing strand-ambiguous SNPs and removing SNPs where 
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alleles did not match those in 1000 Genomes. Heritability estimates were reported on the 

observed scale. There is no distinction between observed and liability scale genetic correlation 

for case/control traits [290]. 

 

 UK 1 UK 2 US 
  Cases Controls Cases Controls Cases Controls 

Pre-QC 517 2,698 1,403 2,501 2,178 2,685 
Sex discrepancy      1 3 

Call rate fail     0 0 
Heterozygosity rate     0 0 
Related Individuals     3 0 

Non-European 
Ancestry     

0 0 

Post-QC 505 2,698 1,236 2,501 2,174 2,682 

Table 5.1 Details of the quality control filters applied to each CLL GWAS.  Samples were 
excluded due to call rate (< 95% or failed genotyping), ancestry (principle components analysis 
or other samples reported to be not of white, European descent), relatedness (any individuals 
found to be duplicated or related within or between data sets through IBS) or sex discrepancy.  
These studies have been previously reported in their entirety with comprehensive details on QC. 
 

CLL UK1 UK2 US 

Pre-QC   727,545 
Call rate fail    2,388 

HWE fail/MAF < 0.01   81,128 
Post-QC 301,786 630,366 644,029 

Imputed (filtered)     8,899,686 

Table 5.2 Details of the quality control filters applied to each CLL GWAS.  For the OncoArray 
genotyped SNPs with a call rate < 95% were excluded as were those with a MAF < 0.01 or 
showing significant deviation from Hardy-Weinberg equilibrium (i.e. P < 10-5). Imputed SNPs with 
information score < 0.8 and MAF < 0.01 were excluded. 
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5.2.3 Partitioned heritability 

Stratified LD score regression can be used to partition heritability according to different genomic 

categories [291]. The enrichment of functional categories- defined as proportion heritability 

divided by the total heritability- was plotted for MM and CLL as per the method described in 

Section 2.4.8.1. 

 

5.2.4 Shared risk loci 

To identify pleiotropic risk loci, that is genetic loci that influence two traits, SNPs previously 

reported to be associated with each disease at genome-wide significance (P < 5 × 10−8), as well 

as highly correlated variants (r2 > 0.8) were identified at the 45 and 23 known risk loci for CLL 

and MM, respectively. Within these correlated variant sets at each locus, many of the CLL 

susceptibility loci that were associated with MM at region-wide significance after Bonferroni 

correction for multiple testing (i.e. Padj < 0.05/45) were identified. The process was then 

repeated, examining MM susceptibility SNPs in CLL, applying a significance level of Padj < 0.05/23. 

 

5.2.5 Variant set enrichment 

The method of Cowper-Sal lari et al [289] was implemented to investigate enrichment of specific 

histone mark binding; this is described in detail in Section 2.4.7. For this publicly available ChIP-

seq data for six histone marks from naïve B-cells was downloaded from Blueprint Epigenome 

Project [179].  

 

5.2.6 Cell-type-specific analyses 

The chromatin mark overlap enrichment for genome-wide significant loci in different cell types 

was investigated using the methodology of Trynka et al [294]. Briefly, this approach scores 

GWAS SNPs based on proximity to chromatin mark and fold-enrichment of respective chromatin 

mark, assessing significance using a tissue-specific permutation method. ChIP-seq data for 

H3K4me3 from primary blood cells and CLL samples was downloaded from Blueprint Epigenome 

project [179]. In addition, four MM cell lines, KMS11, JJN3, MM1-S and L363, were included in 

the analysis. 

 

5.2.7 eQTL 

eQTL analyses were performed using publicly available whole-blood data downloaded from 

GTeX [280]. The relationship between SNP genotype and gene expression was carried out using 
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Summary-data-based Mendelian Randomization (SMR) analysis as per Zhu et al [181], which is 

described in Section 2.4.5. 

 

5.3 Results 

5.3.1 Genetic correlation and heritability  

Cross trait LD-score regression was performed using summary statistics from GWAS meta-

analyses based on 7,717 MM cases and 21,587 controls, and 4,017 CLL cases and 7,881 controls. 

Details of the MM GWAS QC are in Table 3.1 and Table 3.2. Detail of CLL QC are in Table 5.1 and 

Table 5.2. In addition to standard GWAS QC, additional filters as per Bulik-Sullivan et al [290, 

360] were implemented resulting in 1,055,728 harmonized SNPs between the two data sets. 

Heritability estimates from cross-trait LD score regression of 9.2 (±1.8%) and 22 (±5.9%) were 

comparable with previous estimates for MM and CLL. LD-score regression revealed a significant 

positive genetic correlation between MM and CLL with an Rg value of 0.44 (P = 4.6 × 10−3). 

 

5.3.2 Identification of pleiotropic risk loci 

Of the 45 CLL risk loci, four were associated with MM (Padj < 0.0011) while, of 23 MM risk loci, 

five were significantly associated in CLL (Padj < 0.0022) (Table 5.3, Figure 5.2). Correlated SNPs 

(r2 > 0.8) at 3q26.2 are associated with both CLL and MM at genome-wide significance, bringing 

the total number of pleiotropic loci to 10. 

 
Figure 5.2 Overlap of loci in multiple myeloma and chronic lymphocytic leukaemia. *correlated 
variants at 3q26.2 had been previously published as genome wide significant in each data set 
prior to this analysis. 



 

 

 

124 

 
Locus Discovery GWAS Sentinel variant Correlated variant Position (hg19) Risk allele Odds Ratio P-value 

CLL MM CLL MM CLL MM 

2q31.1 MM rs4325816  174,808,899 T T 1.11 1.12 2.0 × 10−3 6.4 × 10−7 
   rs72919402 174,750,200 T - 1.13 - 4.6 × 10−4 - 

3q26.2 MM & CLL rs1317082  169,497,585 A A 1.2 1.19 7.1 × 10−8 2.2 × 10−16 
   rs3821383 169,489,946 A A 1.2 1.18 4.2 × 10−8 4.5 × 10−15 

6p25.3 CLL rs872071  411,064 G G 1.37 1.1 2.8 × 10−27 7.5 × 10−7 
   rs1050976 408,079 T T 1.37 1.1 1.9 × 10−27 3.7 × 10−7 

6p22.3 MM rs34229995  15,244,018 G G 1.37 1.36 8.5 × 10−3 5.6 × 10−8 
   rs13197919 15,282,334 T T 1.35 1.32 1.3 × 10−3 3.42 × 10−7 

7q31.33 MM rs58618031  124,583,896 T T 1.15 1.11 3.2 × 10−5 1.7 × 10−7 
   rs59294613 124,554,267 C - 1.16 - 4.4 × 10−6 - 

8q24.21 MM rs1948915  128,222,421 C C 1.17 1.15 7.6 × 10−7 2.5 × 10−12 
   - - - - - - - - 

10q23.31 CLL rs6586163  90,752,018 A A 1.28 1.06 1.1 × 10−16 1.8 × 10−3 
   rs7082101 90,741,615 - C - 1.06 - 8.2 × 10−4 

11q23.2 CLL rs11601504  113,526,853 C C 1.2 1.09 2.3 × 10−5 8.5 × 10−4 
   - - - - - - - - 

16q23.1 MM rs7193541  74,664,743 T T 1.12 1.12 1.0 × 10−4 3.7 × 10−10 
 CLL  - - - - - - - - 

22q13.33  rs140522  50,971,266 T T 1.17 1.08 3.7 × 10−7 1.2 × 10−4 

      - - - - - - - - 

Table 5.3 Risk loci demonstrating association of alleles at respective loci in both CLL and MM. 
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5.3.3 Biological inference 

Trynka et al [294] have recently shown that chromatin marks highlighting active regulatory 

regions overlap with phenotype-associated variants in a cell-type-specific manner. As H3K4me3 

was shown to be the most phenotypically cell-type-specific chromatin mark, cell-type specificity 

of the 10 pleiotropic risk loci was examined by analysing H3K4me3 chromatin marks in normal 

haematopoietic cells and CLL patient samples from Blueprint. Additionally, de novo data on the 

KMS11, MM1S, JJN3 and L363 MM cell lines were included. Cell types showing the strongest 

enrichment of risk SNPs at H3K4me3 marks included naïve B-cells and CD38- B-cells. Notably, 

variants at 2q31.1, 6p25.3, 8q24.21, 16q23.1 and 22q13.33 were enriched for H3K4me3 in naïve 

B-cells (Figure 5.3). 

 

Most GWAS signals map to non-coding regions of the genome [167] and influence gene 

expression through chromatin looping interactions [240, 241]. Application of partitioned 

heritability analysis, stratifying across 28 genomic categories, demonstrated enrichment of CLL 

and MM heritability in functional elements of the genome, in particular FANTOM5 enhancers 

(CLL and MM) transcription start sites and 5′ untranslated region and coding regions (MM) 

(Appendix 16). Furthermore, there was significant enrichment of SNPs in the shared loci within 

regions of active chromatin, as indicated by the presence of H3K27ac and H3K4me3 marks in 

naïve B-cells, supporting the principle that SNPs in shared loci influence risk through regulatory 

effects (Figure 5.3Error! Reference source not found.). To identify target genes, CHi-C data on 

naïve B-cells from Blueprint [179] was used.  Finally, to gain insight into the possible biological 

mechanisms for associations, eQTL analysis was performed using mRNA expression data on 

blood from GTEx. This involved application of SMR [181] to test for pleiotropy between GWAS 

signal and cis-eQTL for genes to identify a causal relationship (Appendix 17 and Appendix 18). 

Broadly, this analysis of the shared loci groups them into those that act on B-cell regulation and 

differentiation, and those that underpin the distinctive biology of cancer; specifically, loci 

relating to genome instability, angiogenesis and dysregulated apoptosis. These are summarised 

in Table 5.4. 
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Figure 5.3 Tissue specific H3K4me3 mark enrichment for shared loci.  Bold denotes SNPs significantly enriched. 
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Figure 5.4 The overrepresentation of histone marks from naïve B-cells at the location of shared 
CLL and MM risk loci. The red line denotes the Bonferroni corrected P-value threshold. 
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Locus Chr rsID 

Position Functional Evidence 

(hg19) Proximal genes Naïve B HiC eQTL Naïve B Histone Marks present 
Candidate 

causal 
gene(s) 

2q31.1 2 rs4325816 174,808,899 SP3 
SP3 (promoter) 

  H3K27ac+ H3K4me3 SP3 
RP11-394I13.2 

3q26.2 3 rs1317082 169,497,585 

ACTRT3 PDCD10 

 

H3K27ac+ H3K4me3 SEC62 

MYNN LRRC34  SERPINI1 H3K27ac+ H3K4me1 TERC 

TERC  RP11-379K17.4   
  SEC62   
  SEC62-AS1   
  GPR160   
  RNU4-38P   
  PHC3   
  RNU6-315P   
  NA   
  SKIL   
  MYNN   
  SAMD7   

6p25.3 6 rs872071 411,064 SERPINB6 
DUSP22  H3K27ac (weak)+ H3K4me1  

RP3-416J7.5 
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Locus Chromosome rsID 
Position Functional Evidence 

(hg19) Proximal 
genes Naïve B HiC eQTL Naïve B Histone Marks 

present 
Candidate 

causal gene(s) 

6p22.3 6 rs34229995 15,244,018 JARID2   H3K27ac (weak)+ H3K4me1  

7q31.33 7 rs58618031 124,583,896 

POT1 IQUB 

   

IQUB  ASB15 

 ASB15  RP11-390E23.6 

 WASL  WASL 

  ACTRT3   ACTRT3 

 RNU6-11P  RP11-816J6.3 
 RNU6-11P 

8q24.21 8 rs1948915 128,222,421    H3K27ac + H3K4me1  

10q23.31 10 rs6586163 90,752,018 

ACTA ACTA2 (promoter) ACTA 

H3K27ac (weak)+ H3K4me3 

FAS 

FAS  FAS (promoter) FAS ACTA2 
  CH25H   

11q23.2 11 rs11601504 113,526,853      
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Locus Chromosome rsID 
Position Functional Evidence 

(hg19) Proximal 
genes Naïve B HiC eQTL Naïve B Histone Marks 

present 
Candidate 

causal gene(s) 

16q23.1 16 rs7193541 74,664,743 RFWD3 
GLG1 

GLG1 

RFWD3 H3K27ac+ H3K4me3 RFWD3 

 RNU6-237P 

 NPIPB15 

 AC009120.4 

 PSMD7 

 GABARAPL2 

 TERF2IP 

 KARS 

 CFDP1 
 RFWD3 

(promoter) 
 RP11-

144N1.1 
 HSPE1P7 

22q13.33 22 rs140522 50,971,266 TYMP 

CTA-
384D8.36 TYMP 

 TYMP 

 NCAPH2 ODF3B 

 ODF3B  

 SCO2  

 TYMP  

 LMF2  

 NCAPH2  

 SYCE3  

 ARSA   

Table 5.4 Functional evidence at each of the shared loci. 
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Of the shared loci, three were related to B-cell regulation. This included a composite of evidence 

at 10q23.31, from looping interaction in naïve B-cells and correlation in GWAS effect size and 

expression, which provide evidence for two candidate genes ACTA2 (Appendix 17 and Appendix 

18), encoding smooth muscle (α)-2 actin, a protein involved in cell movement and contraction 

of muscles [361] and FAS, a member of the TNF-receptor superfamily. FAS, has a central role in 

regulating the immune response through apoptosis of B-cells [362, 363]. At 2q31.1, looping 

interactions implicated transcription factor SP3, which has been shown to influence expression 

of germinal centre genes [319, 320]. Variants at 6p25.3 reside in the 3′-UTR of IRF4, which has 

an established role in B-cell regulation and MM oncogenesis [124, 323, 364]. 

 

Three of the 10 loci contain genes with roles in maintenance of genomic stability. Specifically, 

evidence from expression and CHi-C data implicated RFWD3 at 16q23.1 (Appendix 17 and 

Appendix 18). This gene encodes an E3 ubiquitin-protein ligase, which has been shown to 

promote progression to late stage homologous recombination through ubiquitination and 

timely removal of RAD51 and RPA at sites of DNA damage and is necessary for replication fork 

restart [365, 366]. Variants in this locus demonstrated enrichment of H3K4me3 marks in two 

samples of naïve B-cells, which represents a plausible cell of disease origin. rs58618031 

(7q31.33) maps 5′ of POT1, which is part of the shelterin complex and functions to maintain 

chromosomal stability [312, 313]. Variant rs1317082 at 3q26.2 is located proximal to TERC, a 

gene which has been shown to influence telomere length [367]. Additionally, we observed 

looping interactions to a number of genes at 3q26.2 including SEC62, which has been proposed 

as a cancer biomarker [367-370]. Intriguingly, variants at 3q26.2 this locus have been implicated 

in colorectal [131], thyroid [132] and bladder cancer [371]. 

 

Several genes were implicated at 22q13.33 by looping interactions for SCO2, LMF2, ODF3B, 

TYMP/ECGF1, NCAPH2, SYCE3 and ARSA, with TYMP/ECGF1 and SCO2 demonstrating evidence 

of correlation in GWAS and eQTL effect size, albeit not significant after multiple testing 

(PSMR = 2.38 × 10−4 and 3.19 × 10−4). Variants within this locus were enriched in H3K4me3 

chromatin marks in both CD38- B-cells and inflammatory macrophages. TYMP (alias ECGF1) 

encodes thymidine phosphorylase, which is often overexpressed in tumours and has been linked 

to angiogenesis [372, 373]. A detailed study on this gene has implicated TYMP in the 

development of lytic bone lesions in MM, via a mechanism involving activation of PI3K/Akt 

signalling and increased DNMT3A expression resulting in hypermethylation of RUNX2, osterix, 

and IRF8 [374]. Furthermore, SCO2 (synthesis of cytochrome c oxidase), also mapping to this 



 

132 

 

locus, has been implicated in the development of breast cancer [375, 376], gastric cancer [377] 

and leukaemia [378], through glucose metabolism reprogramming [379], a hallmark of cancer 

[380]. Tumour suppressor, p53, regulates metabolic pathways, p53-transactivated TP53-

induced glycolysis (TIGAR), and regulation of apoptosis in part through SCO2 [376-378]. Finally, 

whereas these data were indifferent to decipher 8q24.21, this locus has also been shown to 

harbour risk SNPs for other cancers, which localize within distinct LD blocks and likely reflect 

tissue specificity. 

 

5.4 Discussion 

Principally, work within this chapter has identified a significant genetic correlation between MM 

and CLL and has discovered 10 risk loci shared between them, supporting epidemiological data 

demonstrating elevated familial risks between these B-cell malignancies [75]. Applying a 

working hypothesis that the loci may act in pleiotropic fashion, relevant cells representing a 

common tissue of disease origin were selected; namely naïve B-cells. While requiring biological 

validation, integration of data from CHi-C, chromatin mark enrichment and eQTL at shared loci 

has provided insight into how these loci may confer susceptibility to both CLL and MM. The 

shared loci identified could be grouped into those containing genes related to B-cell regulation 

and differentiation and those containing genes involved in angiogenesis, genome stability and 

apoptosis, supporting the tenet that these alleles can influence aetiology of either disease. With 

the expansion of GWAS of the B-cell malignancies, more detailed characterisation of common 

underlying risk alleles and affected pathways can inform the biology of B-cell oncogenesis. 
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 Search for multiple myeloma risk factors using 
Mendelian randomisation 

6.1 Overview and rationale 

The global burden of MM has substantially increased in the last 30 years, but its incidence is 

highly variable between different countries. Although MM is more common in high 

sociodemographic index countries, the temporal increase in disease incidence has been higher 

in middle and low-middle sociodemographic index countries [8]. This data suggests, albeit 

indirectly, that lifestyle factors influence the risk of developing MM. 

 

Identifying aetiological risk factors for MM has the potential to inform prevention and 

intervention strategies to reduce disease burden. Numerous factors have been reported to 

affect the risk of either MM or its precursor monoclonal gammopathy of unknown significance 

(MGUS), including obesity [16-18, 20], diet [21-23], vitamin D [381] [24, 25], immune dysfunction 

[26] and radiation exposure [31, 32]. Aside from obesity, studies have either been inconsistent, 

found non-significant results or not been independently validated.  

 

These observational epidemiological studies are, however, prone to reverse causation, 

unmeasured confounding and recall bias, which can preclude causal inferences [382]. 

Furthermore, the studies that have been conducted to date have had a limited scope of enquiry. 

Specifically, examining factors with established associations for other cancers or for which 

information can be readily collected. 

 

Mendelian randomisation (MR) is an analytical method that exploits genetic variants as 

instrumental variables (IVs), to infer the causal relevance of an exposure to an outcome, such as 

a disease [191]. Because the genetic variants are randomly assigned at conception they are not 

influenced by reverse causation and in the absence of pleiotropy (i.e. genetic variants being 

associated with the disease through alternative pathways) they can provide unconfounded 

estimates of disease risk (Figure 6.1) [191]. So far, the application of MR to study MM aetiology 

has been confined to examining the relationship between obesity [383] and immunoglobulin 

[384] levels to MM risk. An agnostic strategy to identify causal relationships has recently been 

proposed, termed MR-PheWAS [295], which integrates a phenome-wide association study 

(PheWAS) and MR methodology. 
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To gain insight into the aetiological basis of MM, work within this chapter implements an MR-

PheWAS to test purported associations and to search for novel causal relationships. Specifically, 

249 phenotypes, proxied by 10,225 genetic variants, were analysed using summary genetic data 

from the genome-wide association study (GWAS) of MM in Chapter 3 comprising 7,717 case and 

29,304 control subjects. 

 

 

Figure 6.1 Principles of Mendelian randomisation.  The assumptions that need to be satisfied 
to derive unbiased causal effect estimates. Dashed lines represent direct causal and potential 
pleiotropic effects that would violate Mendelian randomisation assumptions. A: genetic variants 
used as instrumental variables are only associated with the modifiable risk factor; B: genetic 
variants only influence the risk of developing MM through the modifiable risk factor; C: genetic 
variants are not associated with any measured or unmeasured confounders. SNP: single 
nucleotide polymorphism. 
 

6.2 Study design 

6.2.1 Genetic instruments for phenotypes 

Two sample MR was conducted using the TwoSampleMR R package [296]. Full details of the 

quality control steps applied to select genetic instruments for analysis can be found in Section 

2.4.12. Briefly, genetic instruments for each of the traits investigated were single nucleotide 

polymorphisms (SNPs) identified from recent meta-analyses, the largest studies published to 

date, or those curated by MR-Base [296] (Appendix 19). For each SNP, the chromosome 

position, the effect estimate expressed in standard deviations (SDs) of the trait per-allele and 

the corresponding standard errors (SEs) were recovered (Appendix 20). Only continuous traits 

were considered, as analysis of binary traits (such as disease status) with binary outcomes in 

two-sample MR frameworks can result in inaccurate causal estimates [297]. 
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6.2.2 Multiple myeloma data 

The association of each genetic instrument with MM risk was examined using summary statistics 

from the MM GWAS in Chapter 3, excluding the Icelandic dataset.  This meta-analysis related > 

3 million genetic variants to 7,717 MM cases and 29,304 controls of European descent. As some 

potentially modifiable reproductive risk factors are female-specific, where sex data was 

available, MM association statistics were computed using 2,190 female cases and 9,060 female 

controls. 

 

6.2.3 Estimation of study power 

The power of MR to demonstrate a causal effect depends on the percentage of risk factor 

variance explained by the genetic variants used as instruments. Stipulating an alpha of 0.05, the 

study power was estimated for each risk factor a priori across a range of effect sizes [107]. 

 

6.2.4 Mendelian randomisation analysis 

MR methodology assumes that genetic variants, used as instruments for a risk factor, are 

associated with the risk factor and not with confounders or alternative causal relationships 

(Figure 6.1). Additionally, associations must be linear and unaffected by interactions [190]. For 

each SNP, causal effects were estimated for MM as an odds ratio per one SD unit increase in the 

putative risk factor (ORSD), with 95% confidence intervals (CIs), using the Wald ratio. For traits 

with multiple SNPs as IVs, causal effects were estimated under inverse variance weighted 

random-effects (IVW-RE) and inverse variance weighted fixed-effects (IVW-FE) models. To 

assess the robustness of our findings, we also obtained weighted median estimates (WME) [298] 

and mode-based estimates (MBE) [299] for results which were suggestively significant and had 

>2 SNPs included in the analysis. Pleiotropy exists when a single genetic variant influences 

multiple phenotypes [300]. Horizontal pleiotropy refers to a situation where the genetic 

instrument influences disease outcome via a different pathway which is not under investigation. 

Where pleiotropic effects are balanced and there exists no systematic bias across a set of genetic 

instruments, MR estimates remain valid. If horizontal pleiotropy is unbalanced (directional) it 

may result in a biased MR estimate [300, 301]. Directional pleiotropy was therefore assessed 

using MR-Egger regression [302].  A consistent effect across these four complementary methods 

(IVW, MBE, WME and MR-Egger), which make different assumptions about horizontal 

pleiotropy, is less likely to be a false positive [303]. The potential impact of outlying and 

pleiotropic SNPs on causal estimates was examined adopting a leave-one-out strategy, under 

the IVW-RE model [296]. This method performs the MR analysis, but leaves out each SNP in turn 
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to identify whether a single SNP is driving the association. Heterogeneity observed within each 

trait (I2) was calculated from Cochran’s Q-value.  

 

To account for multiple testing, a Bonferroni-corrected P-value of 2 × 10-4 (i.e. 0.05/249 putative 

risk factors) was considered as being statistically significant. A P > 2× 10-4 but < 0.05 was 

considered to be suggestive evidence of a causal association. Statistical analyses were 

performed using R version 3.4.0 and MR-Base [296]. 

6.3  Results 

The median PVE by variants used as IVs for each of the 249 phenotypes examined as potential 

risk factors for MM was 5.45% (0.61 - 60.43%). The power of this study to demonstrate a causal 

association for MM is tabulated for each exposure in Appendix 19. 

 

The strength of the association between each of the 249 phenotypes studied and risk of MM 

under IVW-RE models is shown in Figure 6.2; with corresponding tabulated data in Appendix 21 

and Appendix 22. None of the traits showed a statistically significant association with risk of 

MM, while 28 phenotypes showed suggestive evidence of association (P < 0.05) with risk of MM 

(Figure 6.3). 

 

6.3.1 Fatty acids and metabolism 

Genetically predicted increased levels of alpha-linolenic acid and decreased levels of 

docosapentaenoic acid, both omega-3 fatty acids (FAs), showed a suggestive association with 

MM risk (Wald ratio: ORSD= 1.20, 95% CI: 1.04-1.38, P= 0.011 and IVW-RE: ORSD=0.90, 95% CI: 

0.81-0.99, P= 0.037 respectively). Overall, genetically predicted higher levels of omega-3 FAs 

were associated with a decreased risk of MM (IVW-RE: ORSD= 0.74, 95% CI: 0.62-0.88, P=5.4 × 

10-4); causal effect estimates being similar under WME and MBE approaches (Appendix 23). In 

the omega-6 FA class, decreased levels of adrenic acid, arachidonic acid and gamma-linolenic 

and increased levels of dihomo-gamma-linoleic acid and linoleic acid were associated with 

increased risk of MM (Figure 6.3 ). While FAs within the class were individually significant, overall 

the omega-6 FAs as a class were not suggestively associated with increased risk of MM.  

Similarly, while higher levels of oleic acid were suggestively associated with increased MM risk, 

overall omega-7 and omega-9 FA classes were not significant. FA metabolism involves sequential 

enzymatic conversions and genes involved in FA processing form parts of numerous FA 

pathways. As a result, SNPs influencing the metabolism of one FA are often associated with 

circulating concentrations of multiple FAs [385].  Leave-one-out analysis showed rs174547 was 
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a major driver of association across multiple FAs, although omega-3 FAs as a class remained 

significant after excluding this SNP from the analysis (P= 0.020, Appendix 24). When applying 

WME and MBE approaches, causal effect estimates for omega-3 FAs remained significant. 

 

Increased levels of genetically predicted blood carnitine showed a suggestive association with 

increased risk of MM (ORSD = 1.13, 95% CI: 1.05-1.22, P = 1.1×10-3). MR Egger analysis did not 

show evidence of bias in causal estimates (Pintercept > 0.05, Appendix 25) and leave-one-out 

analysis demonstrated no single SNP was driving the association (Appendix 24). Although 

altered levels of a number of acyl carnitine esters were also suggestively significant for MM risk, 

including cis-4-decenoyl carnitine, decanoylcarnitine, hexanoylcarnitine, hydroxyisovaleroyl 

carnitine, isovalerylcarnitine, octanoylcarnitine, propionylcarnitine and stearoylcarnitine, these 

acyl cartnitines follow similar biosynthetic pathways and their levels may influenced by the same 

underlying SNPs [386]. 

 

6.3.2 Telomere length 

While genetically increased telomere length was associated with MM risk (IVW-RE: ORSD = 2.33, 

95% CI: 1.20-4.52, P = 0.013), there was marked heterogeneity between the seven SNPs used as 

IVs (I2 = 86%). The association was primarily driven by the 3q26 TERC SNP (rs10936599) and after 

exclusion of this SNP the association was non-significant (P = 0.161) (Appendix 24, Figure 

6.4Error! Reference source not found.). This SNP has previously been associated with MM [113]. 

 

6.3.3 Diet, lifestyle and other factors 

Among the dietary factors considered, an increased level of serum vitamin B6 was suggestively 

associated with increased risk of MM (ORSD = 1.26, 95% CI: 1.01-1.58 P = 0.041), while vitamin 

D, which has been suggested as a risk factor for MM [25], was not associated with MM risk in 

this study (P = 0.54).  

 

In keeping with previous findings from meta-analysis of prospective studies which have 

demonstrated an association between obesity and increased risk of MM (relative risk = 1.21 95% 

CI: 1.08-1.35) [20], increased BMI was associated with increased MM risk, albeit non-significant 

(OR: 1.10, 95% CI: 0.99-1.22, P=0.082). All other obesity-related traits including whole body 

water mass, basal metabolic rate, weight, impedance of whole body, body mass index, whole 

body fat mass, body fat percentage, trunk fat percentage, waist circumference, birth weight, hip 
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circumference, waist-to-hip ratio and birth weight of first child demonstrated non-significant 

associations (Appendix 21). 

 

Furthermore, this analysis showed non-significant relationships between IL-6 polymorphisms 

and IL-6 receptors with MM risk (Appendix 21). 
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Figure 6.2 Volcano plot of odds ratio of the association between 249 phenotypes with risk of 
MM.  Odds ratio per standard deviation from random-effects inverse variance weighted or Wald 
ratio Mendelian randomisation analysis of 256 phenotypes with risk of MM. Dashed grey line 
corresponds to P = 0.05. PVE, proportion of variance explained. 
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Figure 6.3 Forest plot of 28 phenotypes suggestively associated with risk of MM.  Confidence intervals indicated by line width. Vertical line denotes the null 
value (ORSD = 1). 
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Figure 6.4  Forest plot showing the effect of alleles associated with longer telomere length on MM risk.  Diamonds represents overall causal effects estimated 
using fixed- and random-effects inverse variance weighted models (IVW-FE and IVW-RE, respectively). Confidence intervals indicated by diamond width. 
Vertical line denotes the null value (ORSD = 1). 
 



 

142 

 

6.4 Discussion 

Despite its comparative rarity, MM is one of the cancers of unmet need given the significant 

morbidity and mortality associated with it. Incidence of MM limits the power of a conventional 

cohort study to demonstrate a causal association. As a consequence of this, little is known about 

the aetiological basis of MM, which is a barrier to developing strategies to reduce disease burden 

[387]. This contrasts markedly to the success of cohort and case control studies of the common 

cancers such as breast [388], lung [389] and colorectal [390-392] which have identified major 

determinants of risk. 

 

MR can circumvent many limitations of a conventional observational study and the methodology 

is therefore increasingly being used to examine the impact of interventions on disease risk. The 

value of MR has been greatly enhanced by the wealth of GWAS data now available on multiple 

traits, which provide SNPs that can be used as IVs. These data enable testing of the relationship 

between multiple traits and MM risk in a hypothesis-free manner by performing a MR-PheWAS. 

Notably, among the 249 exposures analysed using IVW-RE the majority of the suggestively 

significant results were related to fatty acid transport and fatty acid oxidation (FAO) pathways, 

including carnitine, acyl carnitines and omega-3 fatty acids. Briefly, fatty acids are transported 

into the mitochondria where they are oxidised with concomitant production of nicotinamide 

adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), flavin 

adenine dinucleotide (FADH2), and ATP for energy to sustain cellular metabolism. During this 

process, carnitine, fatty acids and acyl-CoA are utilised [393]. The metabolic requirement of 

plasma cells to perform antibody production and how this alters when the cells become 

malignant, as in MM, is relatively unknown, though studies have shown that B-cells are 

metabolically flexible to support the production and secretion of antibodies [394]. This 

metabolic reprogramming may be mediated by cells in the bone marrow microenvironment, 

such as bone marrow adipocytes, which store triglycerides and convert them to fatty acids. The 

constituents of the microenvironment may shift myeloma cells from aerobic glycolysis to utilise 

readily available fatty acids and produce more energy by FAO. As such, targeting FAO in MM is 

an area of interest for therapeutic investigation [393]. Such metabolic reprogramming, itself a 

hallmark of cancer [380], is still not fully understood, and thus this analysis provides support for 

aberrant fatty acid and blood carnitine levels influencing MM risk using genetic markers as IVs. 

Longer telomere length has been associated with risk of MM [126] and other cancers, including 

glioma [128]. The relationship between telomere length and cancer risk is a long-standing 

question in cancer epidemiology, though it has been proposed that a predisposition to longer 
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telomeres may permit cells to escape growth arrest and so undergo malignant transformation 

[129]. In this analysis, we found that longer telomere length was nominally associated with 

increased risk of MM. This was predominantly driven by a SNP in the TERC gene, with other 

variants showing only limited support for an association (Figure 6.4Error! Reference source not 

found., Appendix 24). 

 

Additionally, this analysis found no evidence for association between traits that have previously 

been considered as potential risk factors for MM, including vitamin D [25] and IL-6 

polymorphisms [395, 396]. However, albeit non-significant, this study provides some supporting 

evidence for the reported association between obesity and risk of MM [18-20, 397]. Intriguingly 

observational studies, have demonstrated an increased risk of transformation from MGUS to 

MM in overweight and obese individuals [398, 399], suggesting obesity-related pathways being 

determinants of tumour progression rather than affecting early phase of neoplasic 

development.  

 

This analysis has been able to leverage a greater number of SNPs as IVs, thereby increasing study 

power; for 202 of the exposures, we had at least 80% power to demonstrate an ORSD of 1.33 

stipulating a P-value of 0.05. However, there is a possibility that the null results we observed 

were simply a consequence of limited study power if the true effect of these phenotypes is 

marginal. Furthermore, the causal effects estimated by MR-Egger were non-significant for many 

phenotypes, although this may be the result of reduced power of this test to detect causal 

effects compared to other MR methodologies [302]. 

 

The strength of this MR study is the exploitation of large GWAS datasets to examine the 

relationship between multiple phenotypes and risk of MM thereby increasing study power and 

enabling demonstration of effects of small magnitude. A central assumption in MR is that the 

variants used as IVs are associated with the exposure being investigated. To ensure this was the 

case, only SNPs associated with exposure traits at genome-wide significance (P < 5 × 10-8) from 

GWAS were used. Furthermore, only the data from individuals of European descent were used 

to limit bias from population stratification. This analysis does however have limitations. Firstly, 

it is limited to studying phenotypes with genetic instruments available. Secondly, correcting for 

multiple testing inevitably means the potential for false-negatives is not unsubstantial. Thirdly, 

though only traits for which there was >80% study power at ORSD=1.50 were considered, for a 
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large number of traits there was still limited power to demonstrate causal associations of small 

effect. 

 

In conclusion, the work within this chapter has provided further insight into the landscape of 

MM aetiology and shed light on factors for which the evidence from conventional 

epidemiological studies has been mixed. The advent of larger meta-analyses of MM GWAS 

datasets and exposures offers the prospect of using MR-based strategies to search for possible 

causal associations with smaller effect sizes. 
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 Discussion 

7.1 Identification of novel susceptibility loci for myeloma 

To date genome-wide association studies (GWAS) have informed much of our understanding of 

inherited susceptibility to MM. While previous studies have identified 17 MM risk loci [112-114, 

116], the majority of the heritability remains unexplained [158].  

 

With an aim to gain further insight into inherited susceptibility to MM and identify new risk loci, 

a new GWAS was performed and meta-analysed with previous GWAS and a replication series, 

totalling 9,974 MM cases and 247,556 controls of European ancestry. Six new loci were 

identified; 2q31.1, 5q23.2, 7q22.3, 7q31.33, 16p11.2 and 19p13.11. Previously identified loci 

accounted for 13.6% of the GWAS heritability, while the additional loci discovered account for 

2.1%. Collectively the discovered loci account for 15.7% of the heritability of MM. Construction 

of polygenic risk scores (PRS) considering the combined effect of all risk single nucleotide 

polymorphisms (SNPs) found that an individual in the top 1% of genetic risk has a threefold 

increased risk of MM when compared to an individual with median genetic risk.  

7.2 Functional annotation and biological inference of myeloma risk loci 

The risk loci identified from MM GWAS were shown to map to genomic regions of cell-type-

specific active chromatin, as indicated by the presence of H3K27ac, H3K4me3 and H3K4me1 

histone marks. This supports the idea that risk loci likely influence risk via subtle regulatory 

effects on gene expression. To gain insight into the possible biological and functional 

mechanisms underlying all 23 MM risk loci, data from patient expression quantitative trait locus 

(eQTL) analysis, B-cell-specific transcription factors (TFs) and histone marks, and promoter 

capture Hi-C (CHi-C) data was integrated to prioritise candidate genes at each locus. This 

comprehensive analysis of all MM risk loci used novel CHi-C and ChIP-seq data from MM cell 

lines to inform the prioritisation of a candidate gene at each locus. While some of the identified 

genes at newly discovered loci may be plausible for candidate gene studies given the current 

knowledge of MM biology (e.g. KLF2 at 19p13.11), it is unlikely that others could have been 

anticipated. For example, CEP120 at 5q23.2 would have been unlikely a priori to be considered 

a candidate based on the existing knowledge of its function. Importantly, variation at 5q23.2 is 

now associated with CEP120 expression in MM patients, highlighting the significance of the 

agnostic approach of GWAS.  
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The genes identified could be broadly grouped into four potential candidate disease 

mechanisms; those related to B-cell development and function; those related to cell cycle and 

genomic instability; those related to apoptosis/autophagy; and those related involved in 

chromatin remodelling. Biological investigation of the functional mechanism behind all the risk 

loci is likely to generate profound insight into MM biology and pathogenesis. 

 

The transcriptome-wide association study (TWAS) performed in Chapter 4 provided evidence 

for further genes underlying GWAS associations, as well as support for genes discussed in 

Chapter 3. In contrast to the Summary-data-based Mendelian Randomization (SMR) analysis 

performed in chapter 3, this analysis leveraged data from multiple non-tumour tissues, making 

it complementary to the expression data analysis in Chapter 3, which used patient expression 

data.  While MM is a malignancy of plasma cells, there is increasing evidence of the role of the 

microenvironment in progression of MM precursor lesion monoclonal gammopathy of 

undetermined significance (MGUS) to MM and in sustaining MM. Furthermore, malignant 

transformation to form MM may occur at an early stage of B-cell development; a proposition 

potentially supported by the genetic correlation with related B-cell malignancy chronic 

lymphocytic leukaemia (CLL) and identification and annotation of pleiotropic risk loci between 

these diseases reported in Chapter 5.  As such a TWAS may not be best represented by patient 

plasma cell expression data. Notably, this TWAS found evidence for APOBEC3C, APOBEC3D, 

APOBEC3F, APOBEC3G and APOBEC3H at 22q13.1 as playing a role in defining MM 

predisposition. APOBEC cytidine deaminase activity is a recognised feature of MM, caused by 

triggering DNA mutation [343, 344].  

7.3 Genetic correlation between B-cell malignancies 

Studies prior to this thesis had provided evidence for shared susceptibility to MM and CLL [75]. 

Both these are malignancies of B-cell origin, however prior studies were based on observational 

familial relationships, so may not distinguish between environmental and genetic factors 

influencing disease risk. Application of linkage disequilibrium (LD) score regression to examine a 

correlation between MM and CLL found a positive genetic correlation between these 

malignancies, suggesting that this shared susceptibility does have an inherited genetic basis. 

Identification and annotation of pleiotropic risk loci within this chapter demonstrated 

enrichment of these loci in naïve B-cell and CD38- B-cells and may provide evidence that 

inherited predisposition to both malignancies may be happening at an early B-cell stage. 

Notably, genes identified by annotation of these risk loci were related to B-cell development 

providing further support. Exploration of genetic correlation with additional B-cell malignancies 



 

147 

 

(indicated in Figure 1.4) would provide further insight into the shared aetiological basis of 

lymphoid malignancies, however these analyses are currently limited by the small sample sizes. 

The methodology typically requires samples sizes in the thousands and the low incidence of 

these malignancies precludes studies into genetic correlation using LD score regression.  

7.4 Investigating aetiological risk factors for myeloma 

In addition to LD score regression, application of Mendelian randomisation (MR) using GWAS 

datasets can investigate the aetiological basis of disease [190, 191, 400]. Work in Chapter 6 

performed a phenome-wide association study using MR (MR-PheWAS), examining the 

relationship between 249 exposures and MM risk using instrumental variables (IVs) constructed 

from GWAS datasets. Although no significant associations with MM risk were observed among 

the 249 phenotypes, 28 phenotypes showed evidence suggestive of association, including 

decreased blood carnitine (P=1.1×10-3) and increased levels of omega-3 fatty acids (P=5.4×10-4) 

with reduced MM risk. Few previously suggested modifiable risk factors showed evidence of 

association with MM; for example obesity and vitamin D. It is also notable that the most 

significantly associated risk factors were related to metabolism. Plasma and B-cells of earlier 

lineage have a unique metabolic flexibility to support the production and secretion of 

antibodies. Such metabolic reprogramming is itself a hallmark of cancer [380] and, in 

combination with previous studies in the area of MM metabolic pathways, this work may 

provide support for targeting of the pathways around fatty acid oxidation and carnitine 

metabolism as areas of therapeutic interest in MM. This work also highlights the value in 

leveraging data from a wide range of GWAS datasets to inform cancer biology.   

7.5 Future studies in genetic predisposition to myeloma 

Collectively the previously identified and new risk loci account for 15.7% of the GWAS heritability 

(13.6% and 2.1%, respectively), so much of the heritability of MM remains unexplained. Future 

GWAS and meta-analysis with larger datasets may uncover more common risk loci of low effect 

size. It is possible that as MM GWAS sample sizes increase, further variants associated with MM 

karyotypes may be identified, as for MM risk locus 11q13.3 which has been associated with 

t(11;14) [115], and the association of 5q15 risk locus, driven by HRD MM [142]. Primary 

translocation and HRD occur at the initiating stages of MM development therefore discovery of 

subtype associated loci may provide insight into the aetiology of MM initiation and subtype 

determination. Furthermore, application of TWAS and genetic correlation to GWAS of MM 

subtypes may provide insight into biology underlying specific karyotypes. Currently, small 

sample sizes limit power and preclude application of such techniques for subtype associations. 
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It is possible that rare (MAF < 0.01) germline variants contribute to the ‘missing heritability’ for 

MM however GWAS are underpowered to identify these variants [93].  

 

Whole-genome sequencing of MM germline samples may reveal novel loci previously 

undiscovered through GWAS and imputation, as well as explore the possible existence of high-

penetrance non-coding susceptibility alleles. Indeed, there has been a shift in recent years to 

analyses of whole genome and whole exome sequencing, however analysis of large-scale whole-

genome sequencing data brings challenges [401]. Currently the rate of generation of high-

throughput sequencing data is exceeding the pace at which it can be analysed with care and 

accuracy. Whole-exome sequencing is more cost effective than whole-genome sequencing, 

however, the non-coding region of the genome harbours most of the genetic variants involved 

in disease predisposition [167]. Custom capture of regulatory regions is an attractive alternative, 

however this requires prior knowledge of potential regions of interest and negates the agnostic 

nature which is an asset of GWAS.   

 

Deconvolution of the functional mechanisms behind MM risk loci will be invaluable for the 

clinical utility of GWAS, especially in the case of MM where the aetiology of the disease is still 

largely unknown. Laboratory techniques employed in these studies, such as luciferase reporter 

assays, are low-throughput, timely and costly. Recently there have been advances in functional 

assays, including massively parallel reporter assays (MPRA) [402-406] and Self-Transcribing 

Active Regulatory Region sequencing (STARR-seq) [402, 407]. Both of these assays aim to 

identify regulatory regions using a high throughout sequencing-based methodology, however 

the methods have different library sources. In STARR-seq a source genome is fragmented and 

ligated before recombination into a vector, while in MPRA, a library is designed in silico and is 

synthesised as a pool of oligos which can be inserted in to a vector. As such, MPRA may be the 

desirable assay for prioritisation of genetic variants in LD at an identified locus. 

7.6 Overall conclusion  

In summary this thesis has studied inherited susceptibility to MM, providing quantitative and 

qualitative information about germline genetic contribution to disease risk and biology and 

highlighting the polygenic nature of the disease. In Chapter 3, a GWAS was performed, 

identifying six new loci. Variation in common SNPs was demonstrated to explain approximately 

15.6% of MM risk and polygenic risk scores were constructed to identify the increased risk of 

MM in those with the highest genetic risk. Furthermore, a global analysis of all the new and 

established MM risk loci was performed, which delineated four potential candidate disease 
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mechanisms across the 23 MM risk loci, by integrating regulatory data on histone marks, TFs, 

CHi-C and patient gene expression. A TWAS, performed in Chapter 4, provided further evidence 

which consolidated many of the previously implicated genes and provided new potential genes 

dysregulated in MM, including those from the APOBEC family of genes.  A genetic correlation 

between CLL and MM detailed in Chapter 5, and subsequent annotation of identified pleiotropic 

loci, highlighted that common pathways may be involved in malignant transformation of 

progenitor B-cells to either disease. Exploration of tissues outside of the myeloma and plasma 

cells, for example functional studies in germinal centre models, co-cultured plasma cells and the 

tumour microenvironment, may be essential to fully appreciate the role and context of GWAS 

loci in disease risk. A strength of GWAS is the reproducibility of risk loci; indeed, regions of the 

genome associated with MM risk are repeatedly validated with each subsequent GWAS and 

meta-analysis performed. This reflects the strength of the study design, which aims to reduce 

‘winners curse’, by considering factors such as replication cohort sample size and population 

stratification.  Risk loci identified via GWAS therefore provide a robust, reproducible origin from 

which a proposed mechanism of disease origin or progression can be functionally annotated, 

beginning from a genetic association at the level of DNA, working towards understanding of 

aberrant regulation of gene pathways and malignant cell transformation.  The collective findings 

from this thesis suggest future efforts in genetic predisposition to MM are likely to involve 

further GWAS, whole-exome sequencing and integration of MPRA with regulatory datasets to 

functionally annotate risk loci and validate mechanisms of disease biology. 
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Appendix 1 

 

RSID 
Sequencing Primer Sequence Sequencing 

Direction 
Sequencing 
Additives 

rs6595443 Forward AAGGAGTCAATTCTGCAAAAAG Reverse 1M Betaine 

 Reverse TGCTGTTGTTGTTTGAAGTGG   
     

rs58618031 Forward TGATAGTCATTTCTCACAAGAGCTG Forward 1M Betaine 
 Reverse TCTCTGTCAAAATGAAACTTACCTTC   
     

rs11629542 Forward CCAACCTCCTCATTGTAGGG Forward 1M Betaine 

  Reverse AGCAAGAAACAAAGCACAGG     
 

Details of sequencing primers. 
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Details of genotyping primers 

  

rsID KASP Primer Sequence Conditions 
rs4325816 KASP Primer A1 GAAGGTGACCAAGTTCATGCTAACCTAGGTTGCTGGGAGAATGAT Std42 

 KASP Primer A2 GAAGGTCGGAGTCAACGGATTCCTAGGTTGCTGGGAGAATGAC  
 KASP Common 

Primer CATGTGACGTTGTTTTCATAAATCTCATAA  
  

  
rs6595443 KASP Primer A1 GAAGGTGACCAAGTTCATGCTCCATTTCTGATAGTGTGTGTTAAAGTCT Std42plus5 

 KASP Primer A2 GAAGGTCGGAGTCAACGGATTCCATTTCTGATAGTGTGTGTTAAAGTCA  

 KASP Common 
Primer GTGAATGCACCTAACAGAGTATCAAAATA 

 

  
  

rs1050976 KASP Primer A1 GAAGGTGACCAAGTTCATGCTAAGTGATGTGTTTACATTTACTGAAATGC Std42plus5 
 KASP Primer A2 GAAGGTCGGAGTCAACGGATTCAAGTGATGTGTTTACATTTACTGAAATGT  

 KASP Common 
Primer TTTTCTCTGTCTTCCAGCAAGACCTAAT  

    
rs17507636 KASP Primer A1 GAAGGTGACCAAGTTCATGCTTTCACTGTAGCCATCTGTATCCC Std42plus5 

 KASP Primer A2 GAAGGTCGGAGTCAACGGATTCTTTCACTGTAGCCATCTGTATCCT  

 
KASP Common 

Primer CCTGCTTCTTTAATTATGTATAGGGTAGAA 
 

  
 

 
rs17501560 KASP Primer A1 GAAGGTGACCAAGTTCATGCTCAAGATACAACAGGTGAGACCCAA Std42plus5 

 KASP Primer A2 GAAGGTCGGAGTCAACGGATTAAGATACAACAGGTGAGACCCAG  

 KASP Common 
Primer TGTCCTTAATAGTTTAGTCTCCAAAATCAT 

 

    
rs58618031 KASP Primer A1 GAAGGTGACCAAGTTCATGCTAGGAGGCCTCAGGAAACTTACG Std42plus15 

 KASP Primer A2 GAAGGTCGGAGTCAACGGATTAAGGAGGCCTCAGGAAACTTACA  

 KASP Common 
Primer CTGACATTTTCCCCACTGGCATTCAT       

 

  
  

rs11629542 KASP Primer A1 GAAGGTGACCAAGTTCATGCTAAGTACGTGCCTAAAAGATGGACAC Std42plus10 
 KASP Primer A2 GAAGGTCGGAGTCAACGGATTAAGTACGTGCCTAAAAGATGGACAG  

 KASP Common 
Primer GCCATGTCTGGGGCACTATTTCTAA 

 

  
  

rs13338946 KASP Primer A1 GAAGGTGACCAAGTTCATGCTCGAGACTCTATCTCAATAAATGAATAAAATG Std42 
 KASP Primer A2 GAAGGTCGGAGTCAACGGATTGCGAGACTCTATCTCAATAAATGAATAAAATA  

 KASP Common 
Primer CACCCCACTTCATTTTTTCATAACACGTA 

 

    
rs11086029 KASP Primer A1 GAAGGTGACCAAGTTCATGCTGTGGCCTCCTCTACGTTGAAAAAAAA Std42plus5 

 KASP Primer A2 GAAGGTCGGAGTCAACGGATTGTGGCCTCCTCTACGTTGAAAAAAAT  

  KASP Common 
Primer GGCTTCCAGGAAGAGGTAAGTAGTT   
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KASPAR genotyping conditions 

Std42 

- Hot Start: 94ºC for 15 minutes 

- Stage 1: 20 cycles 

o 94ºC for 10 seconds 

o 57ºC for 5 seconds 

o 72ºC for 10 seconds 

- Stage 2: 22 cycles 

o 94ºC for 10 seconds 

o 57ºC for 20 seconds 

o 72ºC for 40 seconds 

Std42plus5 

- Hot Start: 94ºC for 15 minutes 

- Stage 1: 20 cycles 

o 94ºC for 10 seconds 

o 57ºC for 5 seconds 

o 72ºC for 10 seconds 

- Stage 2: 22 cycles 

o 94ºC for 10 seconds 

o 57ºC for 20 seconds 

o 72ºC for 40 seconds 

- Stage 3: 5 cycles 

o 94ºC for 10 seconds 

o 57ºC for 1 minute 

Std42plus10 

- Hot Start: 94ºC for 15 minutes 

- Stage 1: 20 cycles 

o 94ºC for 10 seconds 

o 57ºC for 5 seconds 

o 72ºC for 10 seconds 

- Stage 2: 22 cycles 

o 94ºC for 10 seconds 

o 57ºC for 20 seconds 

o 72ºC for 40 seconds 
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- Stage 3: 10 cycles 

o 94ºC for 10 seconds 

o 57ºC for 1 minute 

Std42plus15 

- Hot Start: 94ºC for 15 minutes 

- Stage 1: 20 cycles 

o 94ºC for 10 seconds 

o 57ºC for 5 seconds 

o 72ºC for 10 seconds 

- Stage 2: 22 cycles 

o 94ºC for 10 seconds 

o 57ºC for 20 seconds 

o 72ºC for 40 seconds 

- Stage 3: 15 cycles 

o 94ºC for 10 seconds 

o 57ºC for 1 minute 
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Appendix 2 

 

 
Principal components analysis plot for the OncoArray cohort.  Post removal of cases of non-
European ancestry. The first two principal components of the analysis are plotted. Cases and 
controls outside of the intervals 0.0155 ≤ x ≤0.019, and 0.0735 ≤ y ≤0.079 were excluded in order 
to remove individuals of non-European ancestry (grey dotted line shows the lower threshold of 
the second principal component). HapMap CEU individuals are plotted in red; CHB/JPT 
individuals are plotted in purple; YRI individuals are plotted in green. Cases are plotted in grey, 
controls plotted in black. 
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Appendix 3 

 
Quantile-Quantile (Q-Q) plot.  Observed and expected χ2 values of association between SNP 
genotype and risk of multiple myeloma after imputation for the OncoArray cohort. λ=1.0327, 
λ1000=1.0209. The red line represents the null hypothesis of no true association. Q-Q plots for 
the UK, Sweden/Norway, Germany, Iceland, USA and Netherlands sets have been previously 
reported. 



 

176 

 

Appendix 4 

  UK Cases 
rsID AA Aa aa r2 

rs58618031 7/7 58/59 83/83 0.99 
       

rs11629542 28/31 59/63 51/53 0.91 
       

rs6595443 53/54 74/78 41/41 0.97 

Concordance between directly sequenced and imputed genotype. Shown are SNPs which were 
genome-wide significant after replication. These comprised 147 randomly selected samples 
from the Oncoarray case series. AA, major homozygote; Aa, heterozygote; aa, minor 
homozygote. r2 indicates Pearson product-moment correlation coefficient between imputed 
and sequenced genotype. 
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Appendix 5 

 

Table containing details of the replication of top association signals (overleaf). 
 

 



 

 

 

178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Replication of top association signals. Shown are SNPs which were taken forward for replication genotyping. Cases RAF, risk allele frequency of replication 
cases; Control RAF, risk allele frequency of replication controls. P-values are shown for each replication series (logistic regression). rs17507636 had been 
previously replicated in the German cohort, with association values [116]; cases RAF: 0.760, controls RAF: 0.735, OR: 1.15, P-value: 0.06. A meta-analysis of 
this with discovery cohorts and replication series was performed using R version 3.3.1 (R Development Core Team, Vienna, Austria). 

        German Replication Swedish Replication Danish Replication 

SNP Chr. Pos. (b37) 
Risk 

Allele 
Cases 
RAF 

Controls 
RAF OR 

P-
value 

Cases 
RAF 

Controls 
RAF OR 

P-
value 

Cases 
RAF 

Controls 
RAF OR P-value 

rs4325816 2 174808899 T 0.79 0.76 1.19 0.014 0.78 0.77 1.06 0.461 0.83 0.79 1.25 0.037 

                  

rs6595443 5 122743325 T 0.47 0.45 1.08 0.202 0.45 0.42 1.15 0.038 0.44 0.43 1.04 0.639 

                  

rs17507636 7 106291118 C - - - - 0.79 0.76 1.19 0.036 0.74 0.75 0.93 0.485 

                  

rs58618031 7 124583896 T - - - - 0.75 0.72 1.18 0.032 0.72 0.71 1.03 0.761 

                  

rs13338946 16 30700858 C 0.32 0.28 1.24 0.001 0.29 0.27 1.13 0.112 0.37 0.28 1.51 9.0 ×10-6 

                  

rs11086029 19 16438661 T 0.23 0.21 1.18 0.022 0.24 0.22 1.12 0.149 0.26 0.24 1.11 0.293 

                  

rs1050976 6 408079 T 0.49 0.47 1.07 0.268 0.47 0.45 1.10 0.188 0.48 0.46 1.08 0.371 

                  

rs11629542 15 90098754 G 0.44 0.46 0.92 0.205 0.54 0.54 1.01 0.910 0.57 0.54 1.16 0.091 

                  

rs17501560 7 81415783 A 0.81 0.81 1.00 0.954 0.83 0.80 1.22 0.016 0.82 0.81 1.08 0.461 
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Appendix 6 

Plots of six newly discovered loci after conditioning on sentinel SNP at each locus.  

 
rs11086029 

 
rs58618031 
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Appendix 7 

 

Tables showing association between SNP genotype and age at diagnosis, and between SNP 
genotype and sex (overleaf). 
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  USA Germany OncoArray UK Meta 

RSID Beta  P-value Beta  P-value Beta  P-value Beta  P-value OR 95% CIs P-value I2 PHET 
rs34229995 -0.43 0.15 -0.08 0.69 -0.23 0.50 -0.05 0.79 0.87 0.69 - 1.10 0.23 0 0.73 
rs9372120 0.16 0.20 -0.11 0.22 0.02 0.87 -0.01 0.85 0.99 0.90 - 1.08 0.84 6 0.36 
rs7781265 -0.06 0.69 0.02 0.84 0.15 0.28 -0.11 0.22 0.98 0.87 - 1.10 0.72 0 0.44 
rs1948915 0.02 0.86 0.05 0.53 0.07 0.49 0.04 0.58 1.04 0.96 - 1.13 0.30 0 0.99 
rs2811710 0.13 0.24 0.03 0.74 -0.02 0.83 -0.03 0.67 1.01 0.93 - 1.10 0.80 0 0.65 
rs2790457 0.04 0.75 0.06 0.45 -0.02 0.83 0.12 0.08 1.07 0.98 - 1.17 0.12 0 0.73 
rs7193541 0.05 0.67 0.01 0.88 0.08 0.44 0.02 0.74 1.03 0.95 - 1.12 0.44 0 0.95 
rs6066835 -0.60 0.00 -0.24 0.06 0.30 0.07 0.07 0.49 0.94 0.83 - 1.07 0.36 82 0.00 
rs7577599 -0.04 0.79 -0.10 0.33 0.22 0.12 0.01 0.94 1.00 0.90 - 1.12 0.96 14 0.32 
rs6599192 0.12 0.37 0.01 0.93 -0.13 0.28 -0.03 0.67 0.98 0.89 - 1.08 0.73 0 0.56 
rs4487645 0.09 0.46 -0.03 0.79 0.04 0.73 0.07 0.29 1.05 0.96 - 1.16 0.27 0 0.89 

rs34562254 0.19 0.24 -0.07 0.51 -0.01 0.93 0.05 0.60 1.02 0.91 - 1.14 0.72 0 0.58 
Relationship between SNP genotype and sex (continued on next page). 
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  USA Germany OncoArray UK Meta 

RSID Beta  P-value Beta  P-value Beta  P-value Beta  P-value OR 95% CIs P-value I2 PHET 
rs3132535 0.03 0.82 0.11 0.17 -0.12 0.25 0.03 0.61 1.03 0.95 - 1.12 0.49 0 0.39 
rs1423269 0.25 0.04 0.00 0.99 0.02 0.87 0.10 0.15 1.09 0.99 - 1.19 0.07 5 0.37 
rs139402 -0.06 0.56 -0.09 0.24 -0.11 0.27 0.01 0.83 0.96 0.89 - 1.03 0.25 0 0.64 
rs138747 -0.34 0.21 0.22 0.17 -0.46 0.04 -0.04 0.80 0.94 0.79 - 1.13 0.51 59 0.06 

rs10936600 0.13 0.30 0.02 0.85 -0.10 0.40 -0.04 0.55 0.99 0.90 - 1.09 0.81 0 0.54 
rs11086029 -0.11 0.40 0.15 0.21 -0.06 0.16 -0.10 0.41 0.96 0.88 - 1.05 0.37 27 0.25 
rs13338946 0.08 0.51 0.07 0.31 0.07 0.49 -0.08 0.28 1.06 0.97 - 1.15 0.20 0 0.69 
rs17507636 0.06 0.14 -0.04 0.50 0.09 0.75 -0.20 0.22 1.03 0.94 - 1.12 0.59 25 0.26 
rs4325816 -0.02 0.91 0.01 0.80 -0.04 0.96 -0.01 0.56 0.97 0.89 - 1.07 0.60 0 0.99 

rs58618031 0.05 0.19 0.01 0.56 -0.06 0.96 -0.16 0.48 0.97 0.89 - 1.07 0.56 0 0.53 
rs6595443 0.13 0.36 0.07 0.09 0.09 0.47 -0.10 0.12 1.08 1.00 - 1.16 0.07 8 0.35 

Relationship between SNP genotype and sex.  Continued from previous page. Analysis based on beta values calculated from logistic regression on the 
discovery phase data sets from UK (2,282 cases), Oncoarray (878 cases), German (1,508 cases) and USA (780 cases) series. The meta-analysis was conducted 
using a fixed-effects model. This assumes that the underlying effect across all studies is the same. To test for potential heterogeneity, Cochran’s Q-statistic 
was calculated such that PHET > 0.05 implied the presence of non-significant heterogeneity. The heterogeneity index, I2 (0-100), was also measured; this 
quantifies the proportion of the total variation due to heterogeneity. 
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(Continued on next page) 
  

  USA Germany OncoArray UK Meta 
RSID Beta  P-value Beta  P-value Beta  P-value Beta  P-value OR 95% CIs P-value I2 PHET 

rs34229995 0.93 0.45 0.07 0.94 -1.34 0.43 0.44 0.67 1.23 0.40 - 3.79 0.71 0 0.74 
rs9372120 -1.18 0.03 0.15 0.74 0.31 0.60 0.64 0.08 1.15 0.74 - 1.80 0.53 61 0.05 
rs7781265 0.02 0.97 -0.41 0.43 0.45 0.53 -0.09 0.84 0.92 0.53 - 1.61 0.77 0 0.80 
rs1948915 0.28 0.56 0.36 0.35 -0.22 0.68 -0.43 0.19 0.95 0.64 - 1.43 0.82 0.5 0.39 
rs2811710 -0.02 0.97 -0.40 0.32 -0.01 0.98 -0.20 0.56 0.83 0.55 - 1.25 0.36 0 0.92 
rs2790457 0.51 0.36 -0.24 0.57 -0.14 0.80 -0.36 0.31 0.86 0.55 - 1.33 0.50 0 0.62 
rs7193541 -0.55 0.25 -0.22 0.56 -0.62 0.22 -0.02 0.94 0.77 0.53 - 1.14 0.19 0 0.69 
rs6066835 -0.71 0.35 0.14 0.82 -1.45 0.08 -0.07 0.88 0.71 0.38 - 1.34 0.29 0 0.40 
rs7577599 -0.50 0.46 0.22 0.63 0.87 0.21 0.13 0.75 1.19 0.71 - 1.97 0.51 0 0.56 
rs6599192 -0.68 0.26 -0.20 0.63 -0.52 0.40 0.04 0.92 0.79 0.50 - 1.26 0.33 0 0.73 
rs4487645 -0.68 0.19 0.33 0.56 -0.46 0.40 0.18 0.58 0.93 0.60 - 1.45 0.75 0 0.39 

rs34562254 -1.00 0.16 0.35 0.45 0.35 0.62 -0.14 0.76 0.98 0.57 - 1.66 0.93 0 0.40 
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  USA Germany OncoArray UK Meta 

RSID Beta  P-value Beta  P-value Beta  P-value Beta  P-value OR 95% CIs P-value I2 PHET 
rs3132535 0.03 0.95 -0.28 0.40 -0.65 0.22 0.02 0.94 0.84 0.57 - 1.24 0.38 0 0.70 
rs1423269 0.50 0.36 -0.54 0.16 -1.06 0.06 0.23 0.53 0.85 0.55 - 1.30 0.45 52 0.10 
rs139402 -0.32 0.50 0.68 0.03 0.89 0.07 -0.30 0.32 1.22 0.85 - 1.75 0.29 63 0.04 
rs138747 1.33 0.24 1.03 0.15 0.86 0.45 0.71 0.34 2.56 1.10 - 5.95 0.03 0 0.97 

rs10936600 0.49 0.40 -0.48 0.22 -1.55 0.01 -0.53 0.17 0.61 1.00 - 2.47 0.03 51 0.11 
rs11086029 -1.10 0.04 -0.27 0.48 -1.36 0.11 -0.17 0.61 0.64 0.41 - 0.99 0.04 15 0.32 
rs13338946 -1.07 0.04 -0.30 0.41 0.25 0.65 0.50 0.14 0.95 0.64 - 1.43 0.81 59 0.06 
rs17507636 0.60 0.30 0.59 0.17 0.54 0.36 0.12 0.73 1.48 0.95 - 2.31 0.09 0 0.80 
rs4325816 0.08 0.90 -0.36 0.37 -0.01 0.99 -0.15 0.69 0.85 0.54 - 1.33 0.48 0 0.93 

rs58618031 0.22 0.69 -0.76 0.07 -0.83 0.15 -0.16 0.67 0.68 0.44 - 1.07 0.10 0 0.39 
rs6595443 0.65 0.16 -0.22 0.51 -0.43 0.38 -0.26 0.39 0.89 0.62 - 1.27 0.51 15 0.32 

Relationship between SNP genotype and age at diagnosis.  (Continued from previous page). Analysis based on beta values calculated from linear regression 
on the discovery phase data sets from UK (2,282 cases), Oncoarray (878 cases), German (1,508 cases) and USA (780 cases) cohorts. The meta-analysis was 
conducted using a fixed-effects model. This assumes that the underlying effect across all studies is the same. To test for potential heterogeneity, Cochran’s Q-
statistic was calculated such that PHET > 0.05 implied the presence of non-significant heterogeneity. The heterogeneity index, I2 (0-100), was also measured; 
this quantifies the proportion of the total variation due to heterogeneity. 
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Appendix 8 

Relationship between SNP genotype and t(4;14) subtype. German cases: 142, UK cases: 170, 
Oncoarray cases: 33, Meta: 345. Case-only analysis; Beta values obtained from logistic 
regression. FISH and ploidy classification of UK and German samples were determined as 
previously described [270, 271].  
  

  German UK OncoArray Meta 

RSID Beta P-value Beta P-value Beta P-value Beta P-value 

rs2790457 0.12 0.41 -0.18 0.18 0.44 0.14 0.002 0.99 

rs13338946 -0.17 0.23 0.03 0.78 0.28 0.34 -0.03 0.76 

rs7193541 0.13 0.29 -0.07 0.53 -0.17 0.52 0.002 0.98 

rs34562254 -0.02 0.92 -0.26 0.12 -0.40 0.29 -0.17 0.14 

rs11086029 -0.14 0.33 -0.11 0.39 0.11 0.70 -0.10 0.28 

rs6066835 -0.13 0.54 -0.35 0.06 0.90 0.07 -0.16 0.22 

rs138747 0.42 0.13 -0.18 0.52 1.00 0.10 0.20 0.28 

rs139402 0.08 0.52 -0.07 0.56 -0.25 0.33 -0.02 0.78 

rs4325816 0.02 0.90 -0.08 0.58 0.15 0.62 -0.01 0.88 

rs6599192 0.26 0.11 -0.10 0.47 0.23 0.48 0.07 0.48 

rs10936600 -0.03 0.83 0.11 0.46 0.03 0.91 0.04 0.69 

rs1423269 0.12 0.44 0.05 0.70 -0.11 0.69 0.06 0.54 

rs6595443 -0.30 0.02 -0.13 0.24 -0.07 0.78 -0.19 0.02 

rs34229995 0.52 0.11 -0.39 0.29 -1.15 0.26 0.05 0.83 

rs3132535 0.02 0.87 0.01 0.91 -0.11 0.69 0.005 0.95 

rs9372120 -0.11 0.47 0.04 0.76 0.37 0.22 0.02 0.87 

rs4487645 0.28 0.05 0.05 0.67 0.76 0.01 0.21 0.02 

rs17507636 -0.003 0.98 0.02 0.86 -0.20 0.54 -0.01 0.95 

rs58618031 -0.03 0.84 0.16 0.20 0.02 0.95 0.07 0.41 

rs7781265 0.21 0.25 -0.02 0.90 0.01 0.99 0.08 0.49 

rs1948915 0.03 0.83 0.15 0.20 0.02 0.94 0.09 0.30 

rs2811710 0.17 0.22 -0.02 0.89 -0.16 0.56 0.04 0.63 

rs7577599 0.29 0.10 -0.03 0.86 0.04 0.91 0.10 0.34 
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Relationship between SNP genotype and t(11;14) subtype.  German cases: 277, UK cases: 231, 
Oncoarray cases: 47, Meta: 555. Case-only analysis; Beta values obtained from logistic 
regression. FISH and ploidy classification of UK and German samples were determined as 
previously described [270, 271]. 
  

  German UK OncoArray Meta 

RSID Beta P-value Beta P-value Beta P-value Beta P-value 

rs2790457 -0.09 0.43 0.32 0.004 -0.06 0.82 0.10 0.19 
rs13338946 -0.05 0.64 0.36 0.001 -0.24 0.34 0.11 0.12 
rs7193541 0.02 0.82 -0.02 0.85 0.48 0.03 0.04 0.50 

rs34562254 -0.05 0.68 -0.14 0.35 -0.46 0.15 -0.12 0.19 
rs11086029 -0.04 0.74 0.12 0.27 -0.11 0.66 0.03 0.70 
rs6066835 -0.13 0.41 0.17 0.30 -0.44 0.29 -0.02 0.88 
rs138747 0.14 0.52 -0.42 0.06 -0.36 0.50 -0.15 0.33 
rs139402 -0.17 0.07 -0.09 0.37 -0.27 0.23 -0.14 0.03 

rs4325816 0.004 0.97 0.04 0.75 -0.13 0.62 0.01 0.93 
rs6599192 0.13 0.27 -0.03 0.83 0.13 0.65 0.06 0.46 

rs10936600 -0.14 0.22 0.01 0.94 -0.26 0.32 -0.09 0.27 
rs1423269 -0.003 0.98 0.13 0.26 0.12 0.61 0.07 0.37 
rs6595443 -0.04 0.71 -0.09 0.34 0.21 0.36 -0.04 0.53 

rs34229995 -0.23 0.35 0.03 0.92 -0.44 0.62 -0.15 0.44 
rs3132535 -0.05 0.60 0.11 0.31 0.27 0.24 0.04 0.53 
rs9372120 0.09 0.43 0.19 0.10 0.10 0.68 0.14 0.08 
rs4487645 0.13 0.23 -0.14 0.18 -0.06 0.80 -0.01 0.87 

rs17507636 0.03 0.81 -0.13 0.25 -0.05 0.85 -0.05 0.52 
rs58618031 0.02 0.83 -0.05 0.66 -0.19 0.46 -0.03 0.71 
rs7781265 -0.08 0.54 -0.38 0.01 -0.30 0.34 -0.22 0.02 
rs1948915 -0.20 0.05 0.08 0.42 0.60 0.01 -0.003 0.96 
rs2811710 0.02 0.89 -0.12 0.26 -0.08 0.71 -0.05 0.44 
rs7577599 -0.11 0.42 -0.09 0.49 0.04 0.89 -0.09 0.33 
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Relationship between SNP genotype and t(14;16) subtype.  German cases: 29, UK cases: 24, 
Oncoarray cases: 8, Meta: 61 Case-only analysis; Beta values obtained from logistic regression. 
FISH and ploidy classification of UK and German samples were determined as previously 
described [271, 408]. 
  

  German UK OncoArray Meta 

RSID Beta P-value Beta P-value Beta P-value Beta P-value 

rs2790457 0.28 0.37 0.34 0.31 1.06 0.07 0.41 0.05 

rs13338946 0.20 0.49 -0.06 0.86 -0.24 0.68 0.05 0.82 

rs7193541 -0.03 0.92 -0.08 0.80 -0.05 0.93 -0.05 0.80 

rs34562254 -0.24 0.52 0.56 0.20 -0.07 0.92 0.08 0.76 

rs11086029 -0.18 0.57 -0.24 0.45 0.43 0.44 -0.12 0.56 

rs6066835 -0.49 0.28 -0.90 0.06 0.66 0.49 -0.54 0.09 

rs138747 -0.06 0.93 -0.63 0.33 0.00 1.00 -0.29 0.49 

rs139402 0.24 0.36 -0.62 0.04 -0.06 0.91 -0.13 0.48 

rs4325816 0.45 0.17 0.01 0.98 0.10 0.87 0.23 0.31 

rs6599192 -0.42 0.22 0.19 0.61 0.08 0.90 -0.11 0.64 

rs10936600 -0.12 0.71 0.04 0.91 -0.54 0.36 -0.12 0.59 

rs1423269 0.61 0.06 -0.12 0.72 1.12 0.04 0.41 0.06 

rs6595443 -0.45 0.10 0.08 0.78 0.14 0.79 -0.16 0.40 

rs34229995 0.38 0.59 1.67 0.08 -1.06 0.59 0.70 0.20 

rs3132535 -0.09 0.75 0.15 0.63 0.13 0.81 0.03 0.88 

rs9372120 -0.18 0.59 0.31 0.36 -0.95 0.10 -0.08 0.71 

rs4487645 0.52 0.08 0.08 0.80 -0.24 0.67 0.24 0.24 

rs17507636 0.29 0.35 0.05 0.87 -0.34 0.59 0.12 0.57 

rs58618031 0.10 0.75 -0.04 0.90 -0.68 0.23 -0.06 0.77 

rs7781265 0.20 0.59 -0.21 0.63 0.92 0.21 0.15 0.58 

rs1948915 0.05 0.86 -0.14 0.66 0.07 0.89 -0.02 0.91 

rs2811710 -0.24 0.42 0.19 0.54 0.43 0.40 0.03 0.87 

rs7577599 0.34 0.36 -0.39 0.33 0.70 0.36 0.07 0.77 
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Relationship between SNP genotype and hyperdiploid subtype.  German cases: 661, UK cases: 
702, Oncoarray cases: 257, Meta: 1,620.  Case-only analysis; Beta values obtained from logistic 
regression. FISH and ploidy classification of UK and German samples were determined as 
previously described [270, 271].  
 

  German UK OncoArray Meta 

RSID Beta P-value Beta P-value Beta P-value Beta P-value 

rs2790457 0.03 0.71 0.14 0.06 - - 0.10 0.09 

rs13338946 -0.04 0.59 -0.05 0.50 -0.02 0.91 -0.04 0.39 

rs7193541 0.08 0.28 0.04 0.57 - - 0.06 0.25 

rs34562254 0.01 0.92 0.15 0.12 0.51 0.04 0.12 0.09 

rs11086029 0.11 0.22 -0.01 0.92 -0.10 0.60 0.03 0.59 

rs6066835 0.06 0.60 0.37 0.001 -0.40 0.21 0.20 0.01 

rs138747 -0.32 0.04 -0.05 0.74 -0.28 0.49 -0.19 0.08 

rs139402 0.07 0.33 0.18 0.01 0.22 0.19 0.14 0.003 

rs4325816 -0.05 0.61 -0.06 0.43 - - -0.06 0.35 

rs6599192 -0.15 0.13 -0.05 0.55 - - -0.09 0.15 

rs10936600 0.04 0.63 0.01 0.86 - - 0.03 0.64 

rs1423269 -0.07 0.40 -0.13 0.08 - - -0.11 0.06 

rs6595443 -0.05 0.50 -0.002 0.98 -0.15 0.39 -0.03 0.49 

rs34229995 -0.15 0.43 0.03 0.89 - - -0.07 0.63 

rs3132535 0.09 0.23 0.04 0.54 - - 0.07 0.21 

rs9372120 -0.04 0.68 -0.11 0.14 -0.14 0.48 -0.09 0.12 

rs4487645 -0.08 0.33 -0.03 0.62 - - -0.05 0.32 

rs17507636 -0.01 0.91 -0.001 0.99 0.08 0.69 0.001 0.98 

rs58618031 -0.09 0.27 0.03 0.68 0.20 0.30 -0.01 0.92 

rs7781265 0.01 0.94 -0.01 0.95 - - 0.0001 1.00 

rs1948915 0.08 0.30 -0.04 0.52 -0.34 0.06 -0.02 0.74 

rs2811710 0.001 0.99 -0.02 0.78 - - -0.01 0.84 

rs7577599 -0.061 0.56 0.08 0.35     0.02 0.74 



 

191 

 

Appendix 9 

 
Relationship between genome-wide significant SNPs genotype and patient overall survival 
(overleaf).
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Relationship between genome-wide significant SNPs genotype and patient overall survival.  Data from: 1,165 cases from the UK MRC Myeloma-IX trial (UK-
MyIX); 877 MM cases from the UK MRC Myeloma-XI trial (UK-MyXI); 511 of the patients recruited to the German-GWAS (GER-GMMG); 703 MM cases in the 
UAMS Myeloma Institute for Research and Therapy GWAS (US-UAMS). P-values calculated from Cox regression analysis. Data for SNPs rs2811710, rs7577599 
and rs138747, or a correlated SNP (r2 > 0.6) to use as proxy, were not present in the survival analysis. 

    Germ-GMMG UK-MyIX UK-MyXI USA-UAMS Meta 
SNP Risk Allele HR P-value HR P-value HR P-value HR P-value HR P-value 

rs4325816 T 1.06 0.69 0.88 0.12 0.86 0.27 0.85 0.11 0.89 0.03 
rs6599192 G 1.27 0.14 1.01 0.95 1.08 0.54 0.98 0.86 1.04 0.50 

rs10936600 A 1.06 0.69 1.00 0.95 1.10 0.45 0.98 0.83 1.02 0.70 
rs1423269 A 1.07 0.61 1.05 0.49 0.97 0.80 0.97 0.78 1.02 0.69 
rs6595443 T 1.14 0.27 0.98 0.78 0.92 0.39 1.03 0.66 1.00 0.91 

rs34229995 G 1.12 0.71 0.68 0.03 1.24 0.56 0.99 0.96 0.88 0.30 
rs3132535 A 0.87 0.27 0.91 0.18 0.89 0.27 1.07 0.40 0.95 0.21 
rs9372120 G 0.99 0.92 1.22 0.01 0.84 0.12 1.05 0.63 1.06 0.21 
rs4487645 C 1.04 0.77 0.94 0.39 1.10 0.38 0.99 0.90 0.99 0.89 

rs17507636 C 1.06 0.70 1.03 0.73 1.10 0.42 1.04 0.67 1.05 0.36 
rs58618031 T 1.00 0.99 1.01 0.89 1.14 0.23 1.17 0.08 1.07 0.14 
rs7781265 A 0.82 0.20 1.20 0.07 0.90 0.46 - - 1.02 0.77 
rs1948915 C 0.96 0.73 1.02 0.83 0.96 0.68 1.04 0.59 1.01 0.89 
rs2790457 G 0.88 0.40 0.91 0.21 0.92 0.48 0.94 0.55 0.92 0.08 

rs13338946 C 0.76 0.03 1.02 0.75 1.07 0.54 0.91 0.25 0.96 0.32 
rs7193541 T 1.01 0.94 0.94 0.34 1.05 0.61 1.06 0.43 1.00 0.96 

rs34562254 A 0.91 0.51 1.07 0.46 1.40 0.05 1.13 0.33 1.09 0.16 
rs11086029 T 0.98 0.89 0.82 0.01 1.06 0.57 1.05 0.62 0.94 0.17 
rs6066835 C 0.92 0.63 1.03 0.77 1.13 0.48 0.90 0.41 0.99 0.87 
rs139402 C 0.92 0.49 1.05 0.49 1.06 0.60 1.03 0.68 1.03 0.51 
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Appendix 10 

 
 
Polygenic risk scores (PRS) for familial MM, sporadic MM and population-controls. A higher 
risk allele burden is seen in the familial MM compared with both sporadic MM and controls 
(difference in PRS score tested by one-sided Student’s t-test). (a) Based on number of risk alleles 
carried; (b) Calculated as the sum log-transformed odds ratios. The observed 1.08-fold 
enrichment of PRS in familial over sporadic cases is entirely compatible the expected familial risk 
attributable to the 23 risk SNPs of 1.10 given by: 
   

�
𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖2 + 𝑞𝑞𝑖𝑖
𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖 + 𝑞𝑞𝑖𝑖2

𝑛𝑛=23

𝑖𝑖

 

where pi is the frequency of the risk allele for locus i, qi = 1 − pi, and ri is the estimated per-allele 
OR.
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Appendix 11  

Q-Q plot comparing observed distributions of association statistics against those expected 
under a three-component model.  Grey shaded area represents the 80% confidence interval. 
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Projected percentage of GWAS heritability explained for a given sample size. Results were 
obtained using a three-component model to estimate distribution of effect sizes. Grey shaded 
area represents the 95% confidence interval of the heritability estimate. 
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Appendix 12 

rsID Locus Probe chromosome Gene PSMR PHEIDI 
rs6595443 5q23.2 5 CEP120 1.27×10-4 6.60×10-2 
rs2807754 10p21.1 10 WAC 4.53×10-5 6.28×10-1 
rs1423269 5q15 5 ELL2 7.08×10-7 5.58×10-3 
rs4487645 7p15.3 7 CDCA7L 8.37×10-15 1.08×10-2 
rs6090899 20q13.13 20 PREX1 4.01×10-4 5.46×10-3 

Summary of results from SMR analysis.  A threshold for the SMR test of PSMR < 1×10-3 
corresponding to a Bonferroni correction for 45 tests was set. For all genes passing this threshold 
plots of the eQTL and GWAS associations at the locus were generated, as well as plots of GWAS 
and eQTL effect sizes (i.e. corresponding to input for the HEIDI heterogeneity test). HEIDI test P-
values < 0.05 were considered as being reflective of heterogeneity.  This threshold is 
conservative for gene discovery because it retains fewer genes than when correcting for multiple 
testing. Probes which passed the HEIDI threshold are highlighted in grey. 
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Appendix 13 

 

 a 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b 
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 c 

 
Heat maps outputted by ChromHMM pipeline show a- emission parameters, b- transition 
parameters and c- state functional enrichments for the KMS11 MM cell line.  Columns in (c) 
are labelled as follows: Genome % indicates the relative percentage of the genome represented 
by each state  and relative fold enrichment for RefSeq transcription start sites (TSS); CpG Islands; 
2000 base pair intervals around the TSS; exons; genes; transcript end sites (TES); evolutionary 
conservation; and nuclear lamina associated regions, respectively. Heat maps shown were used 
to assign states based on previously described rules [176, 292, 293]. The ChromHMM model was 
learned across 3 MM cell lines; JJN3, KMS11 and MM1S. 
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Appendix 14 

Locus Lead SNP Transcription Factor 
3q26.2 rs10936600 ATF2 BATF CEBPB CHD1 

   POLR2A POLR3G POU2F2 RUNX3 
   CTCF EBF1 ELF1 ELK1 
   RXRA SIN3A STAT5A TAF1 
   MAZ MTA3 MXI1 NFIC 
   MAX PML WRNIP1 YY1 
   EP300 ETS1 FOXM1 IRF4 
    TBL1XR1 TBP     

5q15 rs1423269 ATF2 BATF BCL11A BCL3 
   MXI1 NFATC1 NFIC PML 
   BCLAF1 BHLHE40 CEBPB CHD2 
   POU2F2 RELA RUNX3 SP1 
   EBF1 EP300 FOXM1 IKZF1 
   SPI1 STAT3 STAT5A TBL1XR1 
   IRF4 JUND MAZ MEF2A 
   TBP TCF12 TCF3 MEF2C 
    MTA3       

8q24 rs1948915 ATF2 BCL3 BCLAF1 CEBPB 
   RELA RUNX3 SIN3A SPI1 
   CTCF EBF1 EP300 FOXM1 
   STAT3 STAT5A TBL1XR1 YY1 
   JUND MAZ MEF2A MEF2C 
   MTA3 MXI1 NFIC PML 
    POLR2A RAD21 SMC3   

16p11 rs13338946 BCL3 CHD1 CHD2 CTCF 
   EBF1 MAZ MXI1 NFIC 
   POLR2A RELA RUNX3 SIN3A 
   SP1 SPI1 TAF1 TCF12 
    WRNIP YY1     

20q13 rs6066835 ATF2 BCL11A EBF1 ELF1 
   EP300 FOXM1 IKZF1 MEF2A 
   MEF2C NFIC POLR2A RUNX3 
    SPI1 TBL1XR1 USF1 WRNIP1 

22q13 rs138747 ATF2 ATF3 BCL3 BHLHE40 
   MAZ MEF2C MTA3 MXI1 
   CEBPB CHD1 CHD2 EBF1 
   NFATC1 NFE2 NFIC NFYA 
   EGR1 ELF1 ELK1 EP300 
   NFYB NR2C2 PAX5 PBX3 
   FOS FOXM1 GABPA IKZF1 
   PML POLR2A POU2F2 RELA 
   IRF4 MAX TAF1 TBL1XR1 
   RUNX3 SIN3A TBP TCF12 
   TBP TCF12 TCF3 USF1 
   USF2 WRNIP1 YY1 ZEB1 
   SP1 SPI1 SRF STAT5A 
    ZNF143       

Full lists of TF binding at selected loci.  TF ChIP-seq (161 factors) with Factorbook Motifs for 
GM12878 were downloaded from ENCODE. 
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Appendix 15 

Genes significantly associated with risk of multiple myeloma (overleaf). Includes associations 
seen in the HLA region (6p21.32-33,6p22.1). s.d., standard deviation. Detailed are the S-
MultiXcan P-value for association between gene expression and the corresponding Z-scores 
quantifying this relationship (e.g. a positive score indicates increased gene expression increases 
risk). N and Nindep indicate the total number of single-tissue results used for S-MultiXcan analysis 
and the number of independent components after singular value decomposition, respectively. 
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  Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

16p11.2 QPRT 1.01×10-7 17/8 -2.73 3.04 -0.59 1.63 rs13338946 0.15 
16p11.2 RNF40 4.02×10-7 24/3 0.05 5.68 4.67 1.48 rs13338946 0.89 
16p11.2 PRR14 4.28×10-7 2/2 -5.38 -0.20 -2.79 3.66 rs13338946 0.34 
16p11.2 C16orf93 8.07×10-7 13/5 -5.74 -0.34 -4.59 1.73 rs13338946 0.24 
16p11.2 RP11-2C24.5 1.54×10-6 5/5 -5.64 4.43 -0.58 3.80 rs13338946 0.73 
16p11.2 PRSS53 1.71×10-6 16/8 -5.19 3.68 -1.04 2.71 rs13338946 0.79 
16q23.1 RFWD3 7.71×10-7 34/7 -3.41 6.35 2.51 3.26 rs7193541 0.47 

17p11.2 TBC1D27 1.95×10-

13 6/6 -1.91 4.19 0.51 2.16 rs34562254 0.89 

17p11.2 USP32P1 4.88×10-

13 3/3 -7.29 2.80 -1.36 5.27 rs34562254 0.01 

17p11.2 PEMT 5.65×10-8 14/7 -1.74 5.43 1.36 1.93 rs34562254 0.01 

22q13.1 APOBEC3C 1.10×10-

18 21/8 -8.93 0.24 -4.09 2.21 rs139402 0.13 

22q13.1 APOBEC3H 4.28×10-

15 7/5 -5.45 7.92 -0.95 4.38 rs139402 0.76 

22q13.1 FAM83F 4.65×10-

10 11/8 -4.25 2.56 -0.48 2.01 rs139402 1.1×10-4 

22q13.1 APOBEC3D 6.2×10-10 29/7 -8.38 -0.85 -4.15 1.56 rs139402 0.04 
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

22q13.1 APOBEC3F 5.15×10-9 5/4 -6.34 6.15 1.09 5.07 rs139402 0.13 
22q13.1 APOBEC3G 1.81×10-7 43/2 0.36 6.57 4.94 1.17 rs139402 0.17 
2p23.3 KIF3C 1.65×10-18 6/6 -9.40 4.35 -1.19 4.50 rs7577599 1.4×10-9 
2p23.3 EPT1 8.37×10-16 9/9 -1.76 6.00 1.30 2.72 rs7577599 2.1×10-5 
2p23.3 CENPO 1.48×10-13 12/8 -6.60 2.22 -0.05 2.57 rs7577599 6.1×10-8 
2p23.3 DNMT3A 2.44×10-13 8/8 -2.89 7.96 1.94 3.07 rs7577599 0.01 
2p23.3 AC010150.1 2.90×10-13 4/4 -0.88 7.89 1.61 4.20 rs7577599 8.9×10-10 
2p23.3 PTGES3P2 4.46×10-11 7/5 -4.23 2.03 -2.46 2.08 rs7577599 1.1×10-4 
2p23.3 DTNB 1.16×10-7 11/10 -3.88 5.78 0.36 2.38 rs7577599 3.1×10-3 
2p23.3 DNAJC27 1.74×10-7 8/8 -0.74 4.52 1.95 1.58 rs7577599 0.11 
3p22.1 ULK4 9.01×10-15 43/6 0.90 8.89 6.60 2.24 rs6599192 0.85 
3q26.2 MYNN 7.84×10-13 6/6 -7.91 1.58 -1.66 3.32 rs10936600 0.17 
3q26.2 LRRIQ4 9.63×10-9 3/2 -5.94 -0.88 -4.25 2.92 rs10936600 0.03 
3q26.2 LRRC34 3.35×10-8 21/2 3.97 6.47 5.12 0.66 rs10936600 0.82 
3q26.2 ACTRT3 4.28×10-7 4/4 -0.94 5.80 1.56 2.94 rs10936600 0.48 
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

6p21.32 HLA-DRB9 4.71×10-12 26/21 -6.00 0.30 -3.44 1.86    
6p21.32 PRRT1 3.97×10-11 13/8 -6.55 0.44 -3.82 1.94 rs3132535 7.1×10-4 
6p21.32 HLA-DRB6 5.21×10-10 47/6 -6.66 0.54 -5.01 1.43    
6p21.32 HLA-DQB1 6.88×10-9 47/3 2.08 5.91 4.68 0.96    
6p21.32 PPT2 2.03×10-8 4/3 -4.89 1.19 -2.52 2.83    
6p21.32 AGER 2.78×10-8 21/7 -6.14 1.37 -3.28 1.62    
6p21.32 HLA-DRB1 2.99×10-8 43/14 -3.93 6.42 3.31 2.15    
6p21.32 HLA-DRB5 5.29×10-8 47/2 2.86 6.55 5.29 0.95    
6p21.32 RPL32P1 1.17×10-7 25/25 -1.74 5.91 0.73 1.75    
6p21.32 EGFL8 1.34×10-7 4/4 -4.56 2.27 -1.39 2.86    
6p21.32 HLA-DQA1 4.02×10-7 37/10 -0.01 5.65 3.24 1.63    
6p21.33 TCF19 5.36×10-20 36/6 -7.00 4.61 -3.65 2.70 rs3132535 0.02 
6p21.33 HCG27 1.37×10-19 44/5 -8.39 -2.45 -5.97 1.41 rs3132535 0.03 
6p21.33 VARS2 7.77×10-19 45/24 -6.98 4.55 -0.13 2.74 rs3132535 0.66 
6p21.33 NRM 3.05×10-18 21/19 -4.59 6.59 1.28 3.09 rs3132535 0.28 
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

6p21.33 SFTA2 4.90×10-18 7/7 -7.61 2.81 -1.96 3.83 rs3132535 0.17 
6p21.33 ABCF1 2.40×10-17 18/17 -8.55 1.70 -2.07 3.14 rs3132535 0.60 

6p21.33 XXbac-
BPG248L24.12 7.79×10-16 34/11 -7.66 5.48 -3.17 3.30 rs3132535 7.5×10-5 

6p21.33 LY6G6C 1.20×10-15 4/4 -1.07 7.32 2.24 3.76 rs3132535 5.5×10-4 
6p21.33 ABHD16A 1.72×10-15 9/9 -6.83 4.82 -0.21 3.37 rs3132535 0.12 
6p21.33 PPP1R18 4.66×10-15 14/13 -2.51 4.86 1.92 2.24 rs3132535 0.40 
6p21.33 GTF2H4 5.89×10-15 12/12 -4.08 8.38 1.53 3.88 rs3132535 0.28 
6p21.33 GPANK1 1.49×10-14 14/11 -5.02 3.96 -0.53 2.59 rs3132535 0.03 
6p21.33 FLOT1 1.87×10-14 24/16 -9.23 4.66 -1.30 3.37 rs3132535 0.07 
6p21.33 C6orf25 2.20×10-14 5/5 -2.18 6.53 2.27 3.70 rs3132535 1.2×10-3 

6p21.33 XXbac-
BPG299F13.14 2.32×10-14 11/10 -7.81 0.75 -4.30 2.68 rs3132535 3.1×10-3 

6p21.33 DDX39B 4.83×10-14 8/6 -5.69 2.95 -1.01 3.09 rs3132535 0.03 
6p21.33 CCHCR1 8.99×10-14 40/5 -5.56 8.24 -2.01 3.41 rs3132535 0.15 
6p21.33 HLA-B 2.94×10-13 33/9 -8.18 3.60 -4.80 2.47 rs3132535 0.06 
6p21.33 DDAH2 3.09×10-13 13/6 -1.45 7.41 3.26 2.21 rs3132535 0.23 
6p21.33 HCG20 1.03×10-12 27/23 -3.24 6.23 1.35 2.70 rs3132535 0.10 
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

6p21.33 XXbac-BPG181B23.7 1.13×10-12 47/9 -1.51 7.36 3.32 2.19 rs3132535 0.37 
6p21.33 PSORS1C2 1.41×10-12 32/5 -3.72 5.60 -1.24 1.67 rs3132535 0.06 
6p21.33 CYP21A2 2.88×10-12 29/11 -8.41 -0.30 -3.90 1.58 rs3132535 0.10 
6p21.33 DDR1 3.51×10-12 12/11 -4.95 6.01 0.05 3.42 rs3132535 0.36 
6p21.33 IER3 3.65×10-12 10/10 -6.45 3.57 -0.31 3.11 rs3132535 0.15 
6p21.33 CLIC1 3.86×10-12 9/7 -0.59 6.46 3.72 1.98 rs3132535 0.15 
6p21.33 WASF5P 6.42×10-12 6/6 0.80 4.71 2.83 1.53 rs3132535 0.75 
6p21.33 POU5F1 7.81×10-12 41/6 -5.12 5.04 0.05 1.69 rs3132535 0.21 
6p21.33 AIF1 1.55×10-11 6/6 -6.65 -2.66 -4.06 1.48 rs3132535 0.01 
6p21.33 PSORS1C1 3.05×10-11 41/4 -2.32 6.28 0.82 1.95 rs3132535 0.01 
6p21.33 LST1 5.78×10-11 10/10 -7.04 2.06 -2.19 2.83 rs3132535 0.09 
6p21.33 MSH5 8.08×10-11 8/8 -4.41 4.20 -0.79 2.54 rs3132535 0.09 
6p21.33 DHX16 8.37×10-11 13/13 -7.67 4.73 -0.39 3.30 rs3132535 0.22 
6p21.33 HSPA1B 9.81×10-11 5/5 -0.36 6.24 2.53 2.79 rs3132535 5.3×10-4 
6p21.33 VARS 1.05×10-10 2/2 1.26 6.77 4.02 3.90 rs3132535 0.73 
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

6p21.33 TNXA 1.13×10-10 29/7 -3.14 3.85 0.18 2.04 rs3132535 1.3×10-3 
6p21.33 C2 4.60×10-10 7/7 -7.02 -0.65 -3.01 2.39 rs3132535 0.44 
6p21.33 MICB 6.50×10-10 41/4 -5.08 4.27 -1.30 1.78 rs3132535 0.23 
6p21.33 PRR3 6.54×10-10 4/4 -5.48 1.69 -2.18 3.15 rs3132535 0.30 
6p21.33 XXbac-BPG27H4.8 7.77×10-10 3/3 -4.29 2.96 -1.33 3.80 rs3132535 0.12 
6p21.33 MDC1 8.07×10-10 8/8 -3.05 5.09 1.38 3.18 rs3132535 0.17 
6p21.33 HLA-E 2.68×10-9 11/11 -6.59 2.04 -2.49 2.53 rs3132535 0.57 
6p21.33 EHMT2 4.69×10-9 5/5 -6.17 1.85 -1.45 3.91 rs3132535 0.29 
6p21.33 C4B 6.27×10-9 31/14 -5.44 3.77 -1.22 2.31 rs3132535 0.01 
6p21.33 VWA7 8.93×10-9 7/4 -2.58 4.65 2.67 2.50 rs3132535 0.04 
6p21.33 NELFE 1.40×10-8 16/6 -3.76 5.43 -0.60 2.29 rs3132535 1.1×10-3 
6p21.33 PRRC2A 4.44×10-8 8/7 -5.91 3.22 -1.22 2.54 rs3132535 0.05 
6p21.33 XXbac-BPG181B23.6 4.49×10-8 1/1 5.47 5.47 5.47 NA rs3132535 0.04 
6p21.33 BAG6 5.07×10-8 31/10 -4.29 3.78 -0.71 1.88 rs3132535 0.01 
6p21.33 C4A 5.73×10-8 44/3 0.68 5.46 3.95 1.06 rs3132535 0.12 
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. 

SNP adjusting 
for 

P-value after 
SNP adjustment 

6p21.33 HCG22 6.02×10-8 32/2 -5.47 7.75 2.48 4.68 rs3132535 0.01 
6p21.33 HSPA1L 8.13×10-8 4/4 -0.18 5.19 2.60 2.41 rs3132535 0.14 
6p21.33 SAPCD1 8.27×10-8 4/4 -5.91 0.75 -1.58 3.06 rs3132535 0.91 
6p21.33 LTA 1.50×10-7 6/6 -5.34 4.68 -0.01 3.35 rs3132535 0.37 
6p21.33 C6orf15 3.77×10-7 4/4 -5.59 0.09 -1.98 2.55 rs3132535 0.39 
6p21.33 CFB 4.66×10-7 4/4 -4.49 2.59 -1.02 2.89 rs3132535 0.01 
6p21.33 FKBPL 8.80×10-7 6/5 -4.37 3.40 0.82 3.16 rs3132535 1.4×10-4 
6p21.33 ATF6B 1.00×10-6 28/2 -4.48 1.22 -1.14 1.16 rs3132535 0.03 
6p22.1 HCG17 4.98×10-15 11/10 -4.32 8.63 1.82 3.46 rs34229995 0.50 
6p22.1 TRIM39 1.24×10-14 2/2 -7.88 -0.61 -4.25 5.14 rs34229995 0.39 
6p22.1 HLA-L 5.14×10-12 41/3 -6.62 0.34 -4.23 1.63 rs34229995 2.9×10-3 
6p22.1 RPP21 1.87×10-10 5/5 -6.58 1.52 -0.95 3.24 rs34229995 0.31 
6p22.1 PAIP1P1 1.63×10-8 7/7 -3.77 2.01 -0.75 2.13 rs34229995 0.05 
6p22.1 ZNRD1 5.76×10-8 22/14 -3.20 3.30 1.07 1.53    
6p22.1 ZSCAN9 2.53×10-7 19/9 -4.02 1.96 -1.13 1.73    
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Locus Gene P-value N/Nindep Z-score 
min 

Z-score 
max 

Z -score 
mean 

Z-score 
s.d. SNP adjusting for P-value after SNP 

adjustment 
6q21 ATG5 1.55×10-12 4/4 0.93 5.89 3.72 2.41 rs9372120 0.07 

7p15.3 CDCA7L 9.61×10-9 8/8 -3.11 4.61 1.12 2.42 rs75341503 0.23 
7q36.1 CHPF2 2.53×10-7 6/6 -2.01 2.13 0.40 1.49 rs7781265 0.06 
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Appendix 16 

Partitioned heritability analysis showing results for 28 functional categories (overleaf). 
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Partitioned heritability analysis showing results for 28 functional categories.   The full baseline model as per Finucane et al [291], was used in this analysis, 
excluding category flanking regions from the plot. 
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Appendix 17 

 

    CLL MM 
Locus Pos SNP Gene PSMR PHEIDI PSMR PHEIDI 

10q23.31 90,752,018 rs6586163 ACTA2 1×10-11 0.2 3×10-3 0.5 
    FAS 6×10-6 2×10-5 2×10-3 0.02 

16q23.1 74,664,743 rs7193541 RFWD3 9×10-3 0.4 1×10-6 0.005 
22q13.33 50,971,266 rs140522 SCO2 1×10-4 5×10-6 3×10-4 2×10-4 

    TYMP 7×10-5 0.03 2×10-4 0.2 
      ODF3B 5×10-5 0.1 0.01 0.3 

Summary of results from SMR analysis.  A threshold for the SMR test of PSMR < 2.5×10-5 was set 
corresponding to a Bonferroni correction for 2,000 probes. For all genes passing this threshold 
plots of the eQTL and GWAS associations at the locus were generated, as well as plots of GWAS 
and eQTL effect sizes (i.e. corresponding to input for the HEIDI heterogeneity test). HEIDI test P-
values < 0.05 were considered as being reflective of heterogeneity.  This threshold is 
conservative for gene discovery because it retains fewer genes than when correcting for multiple 
testing. 
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Appendix 18 

Summary data-based Mendelian Randomization (SMR) analysis plots (overleaf).
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Summary data-based Mendelian Randomization (SMR) analysis locus plot for CLL. Upper panel - brown dots represent P-values for SNPs from the GWAS 
meta-analysis, diamonds represent P-values for probes from the SMR test; lower panel – crosses represent eQTL P-values of SNPs from whole blood with 
genes passing the SMR (i.e. PSMR < 0.001) and HEIDI (i.e. PHEIDI > 0.05) tests highlighted in red.  
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Summary data-based Mendelian Randomization (SMR) analysis locus plot for MM. Upper panel - brown dots represent P-values for SNPs from the GWAS 
meta-analysis, diamonds represent P-values for probes from the SMR test; lower panel – crosses represent eQTL P-values of SNPs from whole blood with 
genes passing the SMR (i.e. PSMR < 0.001) and HEIDI (i.e. PHEIDI > 0.05) tests highlighted in red.  
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Summary data-based Mendelian Randomization analysis effect plot for CLL.  Blue dots 
represent effect sizes of SNPs from the GWAS meta-analysis against those from the eQTL study 
of whole blood. The top cis-eQTL is highlighted by a red diamond. Error bars are the standard 
errors of the SNP effects. An estimate of bxy at the top cis-eQTL is represented by the orange 
dotted line. 
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Summary data-based Mendelian Randomization analysis effect plot for MM. Blue dots 
represent effect sizes of SNPs from the GWAS meta-analysis against those from the eQTL study 
of whole blood. The top cis-eQTL is highlighted by a red diamond. Error bars are the standard 
errors of the SNP effects. An estimate of bxy at the top cis-eQTL is represented by the orange 
dotted line. 
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Summary data-based Mendelian Randomization (SMR) analysis locus plot for CLL. Upper panel - brown dots represent P-values for SNPs from the GWAS 
meta-analysis, diamonds represent P-values for probes from the SMR test; lower panel – crosses represent eQTL P-values of SNPs from whole blood with 
genes passing the SMR (i.e. PSMR < 0.001) and HEIDI (i.e. PHEIDI > 0.05) tests highlighted in red.  
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Summary data-based Mendelian Randomization (SMR) analysis locus plot for MM. Upper panel - brown dots represent P-values for SNPs from the GWAS 
meta-analysis, diamonds represent P-values for probes from the SMR test; lower panel – crosses represent eQTL P-values of SNPs from whole blood with 
genes passing the SMR (i.e. PSMR < 0.001) and HEIDI (i.e. PHEIDI > 0.05) tests highlighted in red. 
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Summary data-based Mendelian Randomization analysis effect plot for CLL. Blue dots 
represent effect sizes of SNPs from the GWAS meta-analysis against those from the eQTL study 
of whole blood. The top cis-eQTL is highlighted by a red diamond. Error bars are the standard 
errors of the SNP effects. An estimate of bxy at the top cis-eQTL is represented by the orange 
dotted line. 
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Summary data-based Mendelian Randomization analysis effect plot for MM. Blue dots 
represent effect sizes of SNPs from the GWAS meta-analysis against those from the eQTL study 
of whole blood. The top cis-eQTL is highlighted by a red diamond. Error bars are the standard 
errors of the SNP effects. An estimate of bxy at the top cis-eQTL is represented by the orange 
dotted line. 
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Appendix 19 

Modifiable risk factors considered in MR analysis (tables overleaf). 
*Indicates power estimated using MM summary statistics from females only. HDL, high density 
lipoprotein; LDL, low density lipoprotein; LOY, loss of Y chromosome 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Plasma IL-6 sRa 29875488 1 0.6043 1.00 1.00 1.00 1.00 5039 

Arachidonic acid (20:4n6) 24823311 2 0.4579 1.00 1.00 1.00 1.00 3643 

Height 30124842 2481 0.3798 1.00 1.00 1.00 1.00 174 

Interleukin-6 receptor 10.1038/srep18092 1 0.3700 1.00 1.00 1.00 1.00 479 

Angiotensin-converting enzyme 10.1038/srep18092 2 0.2282 0.96 1.00 1.00 1.00 120 

Apolipoprotein A-IV 10.1038/srep18092 1 0.2274 0.95 1.00 1.00 1.00 240 

E-selectin 10.1038/srep18092 1 0.2221 0.95 1.00 1.00 1.00 233 

Blood butyrylcarnitine 24816252 9 0.2128 0.94 1.00 1.00 1.00 220 

Fetuin-A 10.1038/srep18092 1 0.1923 0.92 1.00 1.00 1.00 194 

Tamm-Horsfall urinary glycoprotein 10.1038/srep18092 1 0.1850 0.91 1.00 1.00 1.00 185 

Blood N-acetylornithine 24816252 4 0.1837 0.91 1.00 1.00 1.00 402 

Blood glycoproteins 27005778 28 0.1790 0.90 1.00 1.00 1.00 146 

Apolipoprotein H 10.1038/srep18092 3 0.1656 0.88 1.00 1.00 1.00 54 
Heel bone mineral density (BMD) 10.1038/s41586-018-0579-z 409 0.1653 0.88 1.00 1.00 1.00 94 

Factor VII 10.1038/srep18092 2 0.1578 0.86 1.00 1.00 1.00 76 

Angiotensinogen 10.1038/srep18092 1 0.1533 0.85 1.00 1.00 1.00 148 

Interleukin-16 10.1038/srep18092 1 0.1447 0.83 1.00 1.00 1.00 138 

Circulating fetuin-A 28379451 1 0.1433 0.83 1.00 1.00 1.00 1332 

Blood carnitine 24816252 18 0.1391 0.82 1.00 1.00 1.00 66 
Dihomo-gamma-linoleic acid 

(20:3n6) 24823311 2 0.1381 0.81 1.00 1.00 1.00 691 

Linoleic acid (18:2n6) 24823311 2 0.1340 0.80 1.00 1.00 1.00 668 

Whole body water mass 10.1038/s41586-018-0579-z 735 0.1316 0.79 1.00 1.00 1.00 68 

Chemokine CC-4 10.1038/srep18092 1 0.1268 0.78 1.00 1.00 1.00 119 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Blood biliverdin 24816252 3 0.1228 0.77 1.00 1.00 1.00 291 

Basal metabolic rate 10.1038/s41586-018-0579-z 693 0.1215 0.76 1.00 1.00 1.00 66 

Apolipoprotein E 10.1038/srep18092 1 0.1209 0.76 1.00 1.00 1.00 112 

Carcinoembryonic antigen 10.1038/srep18092 2 0.1159 0.74 1.00 1.00 1.00 53 
Dihomo-gamma-linolenic acid 

(20:3n6) 24823311 2 0.1150 0.74 1.00 1.00 1.00 560 

Blood glycine 27005778 6 0.1110 0.72 1.00 1.00 1.00 390 

Blood estrone 3-sulfate 24816252 1 0.1089 0.72 1.00 1.00 1.00 31 

Cancer antigen 19-9 10.1038/srep18092 1 0.1083 0.71 1.00 1.00 1.00 99 

Blood succinylcarnitine 24816252 7 0.1059 0.70 1.00 1.00 1.00 111 

Blood glutaroyl carnitine 24816252 9 0.1049 0.70 1.00 1.00 1.00 94 

Blood bilirubin (Z,Z) 24816252 2 0.1037 0.69 1.00 1.00 1.00 370 

LDL 24097068 102 0.1031 0.69 1.00 1.00 1.00 177 

Blood 2-aminooctanoic acid 24816252 3 0.1029 0.69 1.00 1.00 1.00 272 
Myeloid progenitor inhibitory factor 

1 10.1038/srep18092 2 0.1023 0.69 1.00 1.00 1.00 46 

Docosapentaenoic acid (22:5n3) 21829377 3 0.0993 0.68 1.00 1.00 1.00 326 

Total cholesterol 24097068 123 0.0973 0.67 1.00 1.00 1.00 164 

CD 40 antigen 10.1038/srep18092 1 0.0963 0.66 1.00 1.00 1.00 87 

Blood apolipoprotein B 27005778 27 0.0932 0.65 1.00 1.00 1.00 79 

Weight 10.1038/s41586-018-0579-z 576 0.0914 0.64 1.00 1.00 1.00 59 

Blood tryptophan 24816252 19 0.0906 0.64 0.99 1.00 1.00 38 

Impedance of whole body 10.1038/s41586-018-0579-z 564 0.0902 0.63 0.99 1.00 1.00 58 

Blood bradykinin, des-arg(9) 24816252 3 0.0892 0.63 0.99 1.00 1.00 96 

Blood androsterone sulfate 24816252 4 0.0875 0.62 0.99 1.00 1.00 176 

HDL 24097068 124 0.0833 0.60 0.99 1.00 1.00 131 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Body mass index 30124842 964 0.0786 0.57 0.99 1.00 1.00 70 
Blood hexanoylcarnitine 24816252 4 0.0756 0.56 0.99 1.00 1.00 150 

Blood proline 24816252 4 0.0727 0.54 0.98 1.00 1.00 144 
Blood tetradecanedioate 24816252 3 0.0716 0.54 0.98 1.00 1.00 145 

Macrophage inflammatory protein-
1 alpha 10.1038/srep18092 1 0.0711 0.53 0.98 1.00 1.00 62 

Blood alpha-glutamyltyrosine 24816252 3 0.0705 0.53 0.98 1.00 1.00 38 
Adrenic acid (22:4n6) 24823311 1 0.0685 0.52 0.98 1.00 1.00 635 

Blood octanoylcarnitine 24816252 3 0.0685 0.52 0.98 1.00 1.00 180 
Serotransferrin 10.1038/srep18092 1 0.0679 0.51 0.98 1.00 1.00 59 

Blood HDL diameter 27005778 10 0.0675 0.51 0.97 1.00 1.00 116 
Haptoglobin 10.1038/srep18092 1 0.0635 0.49 0.97 1.00 1.00 55 

Whole body fat mass 10.1038/s41586-018-0579-z 415 0.0632 0.49 0.97 1.00 1.00 54 
Triglycerides 24097068 70 0.0619 0.48 0.96 1.00 1.00 166 

Blood 5-oxoproline 24816252 1 0.0616 0.48 0.96 1.00 1.00 482 
Fasting proinsulin 20081858 8 0.0613 0.48 0.96 1.00 1.00 87 
Total triglycerides 24097068 34 0.0612 0.47 0.96 1.00 1.00 180 

Monocyte chemotactic protein 2 10.1038/srep18092 1 0.0607 0.47 0.96 1.00 1.00 53 
Blood urate 24816252 2 0.0582 0.46 0.95 1.00 1.00 228 

Blood decanoylcarnitine 24816252 4 0.0569 0.45 0.95 1.00 1.00 110 
Blood 5-alpha-pregnan-
3beta,20alpha-disulfate 24816252 4 0.0567 0.45 0.95 1.00 1.00 38 

Blood leucine 24816252 11 0.0565 0.44 0.95 1.00 1.00 40 
Forced vital capacity (FVC) 10.1038/s41586-018-0579-z 284 0.0557 0.44 0.94 1.00 1.00 53 
Blood hexadecanedioate 24816252 3 0.0555 0.44 0.94 1.00 1.00 126 

Omega-6 fatty acids 27005778 13 0.0553 0.44 0.94 1.00 1.00 61 
 

  



 

 

225 

    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Alpha-1-antitrypsin 10.1038/srep18092 1 0.0552 0.44 0.94 1.00 1.00 48 
Blood N-(2-furoyl)glycine 24816252 1 0.0552 0.44 0.94 1.00 1.00 30 
Blood phenylalanylserine 24816252 2 0.0540 0.43 0.94 1.00 1.00 69 

Blood 10-undecenoate (11:1n1) 24816252 3 0.0539 0.43 0.94 1.00 1.00 140 
Blood isovalerylcarnitine 24816252 4 0.0530 0.42 0.93 1.00 1.00 103 

Body fat percentage 10.1038/s41586-018-0579-z 365 0.0528 0.42 0.93 1.00 1.00 50 
Blood epiandrosterone sulfate 24816252 2 0.0527 0.42 0.93 1.00 1.00 204 

Blood apolipoprotein A-I 27005778 12 0.0515 0.41 0.93 1.00 1.00 83 
Age at menopause* 10.1038/s41586-018-0579-z 48 0.0508 0.15 0.45 0.84 0.99 77 

Tenascin-C 10.1038/srep18092 1 0.0500 0.40 0.92 1.00 1.00 43 
Glutathione S-transferase alpha 10.1038/srep18092 1 0.0491 0.40 0.92 1.00 1.00 42 

Matrix metalloproteinase-7 10.1038/srep18092 1 0.0489 0.40 0.91 1.00 1.00 42 
Trunk fat percentage 10.1038/s41586-018-0579-z 334 0.0489 0.40 0.91 1.00 1.00 51 

Blood isobutyrylcarnitine 24816252 3 0.0483 0.39 0.91 1.00 1.00 125 
Gamma-linolenic acid (18:3n6) 24823311 2 0.0483 0.39 0.91 1.00 1.00 219 
Blood N-[3-(2-Oxopyrrolidin-1-

yl)propyl]acetamide 24816252 5 0.0482 0.39 0.91 1.00 1.00 75 

Serum vitamin B12 23754956 9 0.0474 0.39 0.91 1.00 1.00 252 
Age at menarche* 10.1038/s41586-018-0579-z 73 0.0322 0.11 0.31 0.65 0.94 83 

Blood leucylalanine 24816252 2 0.0472 0.38 0.90 1.00 1.00 67 
Blood phosphatidylcholine and 

other cholines 27005778 10 0.0471 0.38 0.90 1.00 1.00 67 

Blood kynurenine 24816252 4 0.0468 0.38 0.90 1.00 1.00 90 
Waist circumference 10.1038/s41586-018-0579-z 316 0.0464 0.38 0.90 1.00 1.00 52 

Neuronal cell adhesion molecule 10.1038/srep18092 1 0.0463 0.38 0.90 1.00 1.00 40 
Blood propionylcarnitine 24816252 5 0.0462 0.38 0.90 1.00 1.00 71 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Total fatty acids 27005778 12 0.0462 0.38 0.90 1.00 1.00 54 
Blood N-acetylglycine 24816252 3 0.0462 0.38 0.90 1.00 1.00 108 

Fibroblast growth factor 4 10.1038/srep18092 1 0.0462 0.38 0.90 1.00 1.00 40 
Blood copper 23720494 2 0.0460 0.38 0.90 1.00 1.00 63 

Total phosphoglycerides 27005778 10 0.0459 0.38 0.90 1.00 1.00 65 
Blood zinc 23720494 2 0.0459 0.38 0.90 1.00 1.00 63 

Blood cis-4-decenoyl carnitine 24816252 2 0.0449 0.37 0.89 1.00 1.00 170 
Eicosapentaenoic acid (20:5n3) 21829377 5 0.0448 0.37 0.89 1.00 1.00 83 

CD5 10.1038/srep18092 1 0.0436 0.36 0.88 1.00 1.00 37 
Blood mannose 24816252 1 0.0436 0.36 0.88 1.00 1.00 334 
VLDL diameter 27005778 11 0.0432 0.36 0.88 1.00 1.00 79 

Blood 4-acetamidobutanoate 24816252 2 0.0424 0.35 0.87 1.00 1.00 145 
Sortilin 10.1038/srep18092 1 0.0419 0.35 0.87 1.00 1.00 36 

Blood 5alpha-androstan-
3beta,17beta-diol disulfate 24816252 4 0.0415 0.35 0.87 1.00 1.00 75 

Blood betaine 24816252 5 0.0402 0.34 0.85 1.00 1.00 62 
B lymphocyte chemoattractant 10.1038/srep18092 1 0.0396 0.33 0.85 1.00 1.00 34 

Trefoil factor 3 10.1038/srep18092 1 0.0390 0.33 0.84 1.00 1.00 33 
Blood N-acetylcarnosine 24816252 3 0.0388 0.33 0.84 1.00 1.00 84 

Leptin 10.1038/srep18092 1 0.0385 0.32 0.84 1.00 1.00 33 
Epithelial-derived neutrophil-

activating 10.1038/srep18092 1 0.0384 0.32 0.84 1.00 1.00 33 

Macrophage inflammatory protein-
1 beta 10.1038/srep18092 1 0.0382 0.32 0.84 1.00 1.00 32 

Interleukin-13 10.1038/srep18092 1 0.0382 0.32 0.84 1.00 1.00 32 
Cystatin-C 10.1038/srep18092 1 0.0381 0.32 0.84 1.00 1.00 32 

Receptor for advanced 
glycosylation end 10.1038/srep18092 1 0.0375 0.32 0.83 1.00 1.00 32 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Growth-regulated alpha protein 10.1038/srep18092 1 0.0369 0.31 0.82 1.00 1.00 31 
Angiopoietin-2 10.1038/srep18092 1 0.0369 0.31 0.82 1.00 1.00 31 

Thymus-expressed chemokine 10.1038/srep18092 1 0.0368 0.31 0.82 1.00 1.00 31 
Blood sphingomyelins 27005778 9 0.0366 0.31 0.82 1.00 1.00 57 

Blood asparagine 24816252 2 0.0365 0.31 0.82 1.00 1.00 105 
Macrophage colony-stimulating 

factor 1 10.1038/srep18092 1 0.0364 0.31 0.82 1.00 1.00 31 

Interleukin-18 10.1038/srep18092 1 0.0361 0.31 0.82 1.00 1.00 31 
Circulating C-reactive protein 21300955 14 0.0359 0.31 0.81 1.00 1.00 220 

Fasting glucose 22581228 23 0.0358 0.31 0.81 1.00 1.00 94 
Thrombopoietin 10.1038/srep18092 1 0.0356 0.30 0.81 1.00 1.00 30 

Blood 12-hydroxyeicosatetraenoate 
(12-HETE) 24816252 1 0.0356 0.30 0.81 1.00 1.00 100 

Blood serine 24816252 3 0.0354 0.30 0.81 1.00 1.00 90 
Vascular cell adhesion molecule-1 10.1038/srep18092 1 0.0353 0.30 0.81 1.00 1.00 30 

Interleukin-8 10.1038/srep18092 1 0.0352 0.30 0.81 1.00 1.00 30 
Blood 1,5-anhydroglucitol (1,5-AG) 24816252 3 0.0352 0.30 0.81 1.00 1.00 89 

Plasma progesterone 26014426 2 0.0348 0.30 0.80 1.00 1.00 52 
Plasma progesterone* 26014426 2 0.0348 0.12 0.33 0.69 0.95 52 

Platelet count 22139419 39 0.0346 0.30 0.80 0.99 1.00 61 
Alpha-linolenic acid (18:3n3) 21829377 1 0.0340 0.29 0.79 0.99 1.00 312 
Gamma-linoleic acid (18:3n6) 24823311 2 0.0331 0.29 0.78 0.99 1.00 148 

Pulse rate 10.1038/s41586-018-0579-z 59 0.0327 0.28 0.78 0.99 1.00 63 
Blood citrate 24816252 6 0.0307 0.27 0.75 0.99 1.00 39 

Omega-9 and saturated fatty acids 27005778 7 0.0301 0.26 0.74 0.99 1.00 60 
Glycoprotein acetyls 27005778 10 0.0298 0.26 0.74 0.99 1.00 59 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Mono-unsaturated fatty acids 27005778 7 0.0286 0.25 0.72 0.98 1.00 57 
Blood alpha-hydroxyisovalerate 24816252 3 0.0285 0.25 0.72 0.98 1.00 71 

Circulating carotenoids 19185284 1 0.0277 0.25 0.71 0.98 1.00 106 
Omega-3 fatty acids 27005778 6 0.0273 0.24 0.70 0.98 1.00 63 

Circulating 25-hydroxyvitamin D 29343764 5 0.0265 0.24 0.69 0.98 1.00 431 
Blood alpha-ketoglutarate 24816252 1 0.0263 0.24 0.68 0.98 1.00 30 

Omega-7 and -9 and saturated fatty 
acids 27005778 6 0.0262 0.24 0.68 0.98 1.00 61 

Monounsaturated fatty acids 27005778 6 0.0257 0.23 0.67 0.97 1.00 59 
Serum calcium 24068962 7 0.0253 0.23 0.67 0.97 1.00 226 

Birth weight 10.1038/s41586-018-0579-z 93 0.0247 0.23 0.66 0.97 1.00 53 
Corrected insulin response 24699409 3 0.0246 0.22 0.65 0.97 1.00 45 

Blood cysteine-glutathione disulfide 24816252 1 0.0243 0.22 0.65 0.97 1.00 49 
Palmitoleic acid (16:1n7) 23362303 5 0.0236 0.22 0.64 0.96 1.00 43 

Hip circumference 25673412 89 0.0235 0.22 0.64 0.96 1.00 39 
LDL diameter 27005778 5 0.0234 0.22 0.63 0.96 1.00 92 

Blood gamma-glutamyltyrosine 24816252 5 0.0227 0.21 0.62 0.96 1.00 33 
Blood 2-hydroxyisobutyrate 24816252 3 0.0220 0.21 0.61 0.95 1.00 46 

Stearic acid (18:0) 23362303 3 0.0220 0.21 0.61 0.95 1.00 67 
Blood aspartylphenylalanine 24816252 1 0.0211 0.20 0.59 0.94 1.00 83 

Blood selenium 23720494 1 0.0205 0.19 0.58 0.94 1.00 114 
Blood acetylcarnitine 24816252 2 0.0200 0.19 0.57 0.93 1.00 75 

Blood glutamine 27005778 6 0.0199 0.19 0.57 0.93 1.00 75 
Blood hydroxyisovaleroyl carnitine 24816252 2 0.0197 0.19 0.56 0.93 1.00 53 

Blood methylcysteine 24816252 1 0.0195 0.19 0.56 0.92 1.00 55 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Blood gamma-glutamylglutamine 24816252 3 0.0194 0.19 0.55 0.92 1.00 48 
Blood 3-methyl-2-oxovalerate 24816252 3 0.0193 0.19 0.55 0.92 1.00 48 

Blood citrulline 24816252 4 0.0188 0.18 0.54 0.92 1.00 35 
Blood inosine 24816252 1 0.0186 0.18 0.54 0.91 1.00 50 
HbA1C levels 20858683 11 0.0183 0.18 0.53 0.91 1.00 79 

Circulating adiponectin 22479202 10 0.0178 0.18 0.52 0.90 1.00 65 
Blood dihomo-linolenate (20:3n3 or 

n6) 24816252 2 0.0178 0.18 0.52 0.90 1.00 67 

Waist-to-hip ratio 25673412 35 0.0176 0.17 0.51 0.90 1.00 58 
Blood tryptophan betaine 24816252 1 0.0175 0.17 0.51 0.90 1.00 125 

Blood tyrosine 24816252 3 0.0175 0.17 0.51 0.90 1.00 44 
Blood homocitrulline 24816252 1 0.0173 0.17 0.51 0.89 1.00 69 

Blood uridine 24816252 3 0.0172 0.17 0.51 0.89 1.00 43 
Blood octadecanedioate 24816252 2 0.0171 0.17 0.50 0.89 1.00 60 
Fluid intelligence score 10.1038/s41586-018-0579-z 50 0.0170 0.17 0.50 0.89 1.00 38 

Blood 1-
palmitoylglycerophosphoethanolamine 24816252 2 0.0168 0.17 0.50 0.88 1.00 63 

Putamen volume 25607358 4 0.0163 0.17 0.49 0.87 1.00 55 
Blood stearate (18:0) 24816252 2 0.0162 0.16 0.48 0.87 1.00 61 

Serum IgE 22075330 3 0.0161 0.16 0.48 0.87 1.00 80 
Blood 1-linoleoylglycerol (1-

monolinolein) 24816252 1 0.0159 0.16 0.48 0.87 1.00 45 

Oleic acid (18:1n9) 23362303 1 0.0154 0.16 0.46 0.86 0.99 141 
Blood phenyllactate (PLA) 24816252 1 0.0154 0.16 0.46 0.85 0.99 89 
Blood O-sulfo-L-tyrosine 24816252 2 0.0152 0.16 0.46 0.85 0.99 57 
Birth weight of first child 10.1038/s41586-018-0579-z 45 0.0150 0.16 0.45 0.85 0.99 49 
Blood tetradecadienoate 24816252 1 0.0149 0.15 0.45 0.84 0.99 111 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Blood 2-aminobutyrate 24816252 2 0.0148 0.15 0.45 0.84 0.99 55 
Blood albumin 27005778 4 0.0146 0.15 0.44 0.84 0.99 70 
Plasma IGF-I 29875488 1 0.0145 0.15 0.44 0.83 0.99 49 

Blood dehydroisoandrosterone 
sulfate (DHEA-S) 24816252 2 0.0144 0.15 0.44 0.83 0.99 54 

Blood alanine 27005778 6 0.0144 0.15 0.44 0.83 0.99 55 
Morning/evening person 

(chronotype) 10.1038/s41586-018-0579-z 99 0.0143 0.15 0.44 0.83 0.99 44 

Blood scyllo-inositol 24816252 1 0.0142 0.15 0.43 0.82 0.99 88 
Blood valine 27005778 5 0.0142 0.15 0.43 0.82 0.99 71 

Blood myo-inositol 24816252 2 0.0141 0.15 0.43 0.82 0.99 53 
Serum vitamin B6 19303062 1 0.0141 0.15 0.43 0.82 0.99 27 

Blood creatine 24816252 1 0.0140 0.15 0.43 0.82 0.99 105 
Blood N2,N2-dimethylguanosine 24816252 2 0.0140 0.15 0.43 0.82 0.99 35 

Blood histidine 27005778 5 0.0135 0.14 0.42 0.81 0.99 53 
Insulin disposition index 24699409 1 0.0127 0.14 0.40 0.78 0.98 68 

Telomere length 23535734 7 0.0126 0.14 0.39 0.78 0.98 69 
Blood indolepropionate 24816252 1 0.0117 0.13 0.37 0.75 0.97 87 

Iron status 25352340 3 0.0115 0.13 0.37 0.74 0.97 190 
Blood levulinate (4-oxovalerate) 24816252 2 0.0113 0.13 0.36 0.74 0.97 37 

Blood creatinine 27005778 6 0.0113 0.13 0.36 0.74 0.97 47 
Blood glucose 27005778 3 0.0110 0.13 0.35 0.72 0.97 92 

Neuroticism score 10.1038/s41586-018-0579-z 78 0.0108 0.13 0.35 0.71 0.96 38 
Plasma estradiol 26014426 1 0.0107 0.12 0.34 0.71 0.96 31 

Blood palmitoyl sphingomyelin 24816252 2 0.0106 0.12 0.34 0.71 0.96 39 
Phenylalanine 27005778 4 0.0100 0.12 0.32 0.68 0.95 54 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

Indoleacetate 24816252 2 0.0098 0.12 0.32 0.67 0.95 36 
Years of schooling 27225129 74 0.0098 0.12 0.32 0.67 0.95 39 

4-methyl-2-oxopentanoate 24816252 2 0.0097 0.12 0.32 0.67 0.94 36 
Lysine 24816252 1 0.0095 0.12 0.31 0.66 0.94 71 

Hypoxanthine 24816252 1 0.0093 0.11 0.31 0.65 0.94 65 
1,6-anhydroglucose 24816252 1 0.0090 0.11 0.30 0.63 0.93 31 

Gamma-glutamylphenylalanine 24816252 2 0.0088 0.11 0.29 0.63 0.92 33 
Acetylphosphate 24816252 2 0.0087 0.11 0.29 0.62 0.92 32 
Heptanoate (7:0) 24816252 2 0.0087 0.11 0.29 0.62 0.92 32 

Stearidonate (18:4n3) 24816252 1 0.0087 0.11 0.29 0.62 0.92 64 
Myristoleate (14:1n5) 24816252 1 0.0086 0.11 0.29 0.62 0.92 64 

Caprylate (8:0) 24816252 2 0.0084 0.11 0.28 0.60 0.91 31 
Laurate (12:0) 24816252 2 0.0083 0.11 0.28 0.60 0.91 31 

HOMA-B 20081858 4 0.0081 0.11 0.27 0.59 0.90 74 
Margarate (17:0) 24816252 1 0.0080 0.11 0.27 0.58 0.90 59 
Nap during day 10.1038/s41586-018-0579-z 58 0.0079 0.10 0.27 0.58 0.89 47 

Palmitoleate (16:1n7) 24816252 1 0.0079 0.10 0.27 0.58 0.89 58 
3-phenylpropionate 
(hydrocinnamate) 24816252 1 0.0077 0.10 0.26 0.57 0.89 45 

Time spent watching television (TV) 10.1038/s41586-018-0579-z 65 0.0077 0.10 0.26 0.57 0.88 38 
Laurylcarnitine 24816252 1 0.0076 0.10 0.26 0.56 0.88 38 

3,4-dihydroxybutyrate 24816252 1 0.0072 0.10 0.25 0.54 0.86 48 
Indolelactate 24816252 1 0.0072 0.10 0.25 0.54 0.86 50 
2hr glucose 22885924 7 0.0071 0.10 0.24 0.54 0.86 44 

Docosahexaenoic acid (22:6n3) 21829377 1 0.0071 0.10 0.24 0.53 0.86 63 
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    Power to identify ORSD of   
Trait PubMed ID/ DOI No. SNPs PVE by SNPs 0.91 or 1.10  0.83 or 1.20 0.75 or 1.33 0.67 or 1.50 F-statistic 

3-(4-hydroxyphenyl)lactate 24816252 1 0.0070 0.10 0.24 0.53 0.85 52 
Serum vitamin A1 21878437 2 0.0070 0.10 0.24 0.53 0.85 35 

1-oleoylglycerol (1-monoolein) 24816252 1 0.0067 0.10 0.23 0.51 0.84 37 
1-

stearoylglycerophosphoethanolamine 24816252 1 0.0067 0.10 0.23 0.51 0.84 46 

LOY 10.1038/s41586-019-1765-3 92 0.0066 0.10 0.23 0.51 0.83 15 
N1-methyl-3-pyridone-4-

carboxamide 24816252 1 0.0066 0.10 0.23 0.51 0.83 48 

Serum vitamin E 21729881 3 0.0065 0.09 0.23 0.50 0.83 11 
Fasting insulin 22885924 14 0.0065 0.09 0.23 0.50 0.83 51 

Hippocampus volume 25607358 2 0.0062 0.09 0.22 0.48 0.81 41 
Stearoylcarnitine 24816252 1 0.0062 0.09 0.22 0.48 0.81 42 
Dodecanedioate 24816252 1 0.0061 0.09 0.22 0.48 0.80 32 
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Appendix 21 

 

Causal estimates from each Mendelian randomization approach for each trait and MM risk 
(tables overleaf). 
* Indicates P < 0.05, ** Causal effects estimated using MM summary statistics from females only, 
† indicates significant heterogeneity. HDL, high density lipoprotein; LDL, low density lipoprotein; 
LOY, loss of Y chromosome. 



 

 

234 

 

   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Developmental and growth factors Height 2481 0.617   1.01 0.96 - 1.07 NA NA - NA 21.71   
Developmental and growth factors Putamen volume 4 0.928  0.99 0.74 - 1.31 NA NA - NA 46.08   
Developmental and growth factors Plasma IGF-I 1 0.687  NA NA - NA 0.94 0.71 - 1.25 NA   
Developmental and growth factors Hippocampus volume 2 0.540  1.35 0.52 - 3.48 NA NA - NA 84.22 † 

Diet and lifestyle Heel bone mineral density (BMD) T-score 409 0.578  0.98 0.91 - 1.06 NA NA - NA 18.06   
Diet and lifestyle Serum vitamin B12 9 0.701  1.04 0.85 - 1.27 NA NA - NA 57.33   
Diet and lifestyle Blood copper 2 0.935  0.99 0.80 - 1.22 NA NA - NA 48.42   
Diet and lifestyle Blood zinc 2 0.984  1.00 0.87 - 1.15 NA NA - NA 0.00   
Diet and lifestyle Fasting glucose 23 0.287  1.10 0.92 - 1.30 NA NA - NA 31.25   
Diet and lifestyle Pulse rate 59 0.920  0.99 0.82 - 1.20 NA NA - NA 34.08   
Diet and lifestyle Circulating 25-hydroxyvitamin D 5 0.541  1.08 0.84 - 1.40 NA NA - NA 65.39   
Diet and lifestyle Serum calcium 7 0.130  0.88 0.74 - 1.04 NA NA - NA 0.00   
Diet and lifestyle Blood selenium 1 0.373  NA NA - NA 0.91 0.75 - 1.12 NA   
Diet and lifestyle Serum vitamin B6 1 0.04130 * NA NA - NA 1.26 1.01 - 1.58 NA   
Diet and lifestyle Iron status 3 0.232  1.24 0.87 - 1.78 NA NA - NA 47.90   
Diet and lifestyle Blood creatinine 6 0.977  1.01 0.70 - 1.44 NA NA - NA 47.92   
Diet and lifestyle Serum vitamin A1 2 0.306  1.18 0.86 - 1.61 NA NA - NA 2.90   
Diet and lifestyle Serum vitamin E 3 0.536  0.89 0.62 - 1.28 NA NA - NA 0.00   
Diet and lifestyle Fasting insulin 14 0.231   1.35 0.83 - 2.19 NA NA - NA 52.12   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Fatty acid profile and metabolism 3-phenylpropionate (hydrocinnamate) 1 0.01895 * NA NA - NA 1.54 1.07 - 2.20 NA   
Fatty acid profile and metabolism Blood butyrylcarnitine 9 0.887  1.01 0.93 - 1.08 NA NA - NA 22.86   
Fatty acid profile and metabolism Blood N-acetylornithine 4 0.096  0.95 0.89 - 1.01 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood glycoproteins 28 0.517  0.98 0.91 - 1.05 NA NA - NA 0.00   
Fatty acid profile and metabolism Adrenic acid (22:4n6) 1 0.00922 * NA NA - NA 0.88 0.79 - 0.97 NA   
Fatty acid profile and metabolism Alpha-linolenic acid (18:3n3) 1 0.01123 * NA NA - NA 1.20 1.04 - 1.38 NA   
Fatty acid profile and metabolism Blood biliverdin 3 0.531  0.98 0.90 - 1.05 NA NA - NA 0.00   
Fatty acid profile and metabolism Dihomo-gamma-linolenic acid (20:3n6) 2 0.223  1.06 0.97 - 1.16 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood glycine 6 0.142  0.93 0.85 - 1.02 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood estrone 3-sulfate 1 0.359  NA NA - NA 0.95 0.86 - 1.06 NA   
Fatty acid profile and metabolism Arachidonic acid (20:4n6) 2 0.01174 * 0.95 0.92 - 0.99 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood succinylcarnitine 7 0.412  0.96 0.87 - 1.06 NA NA - NA 28.78   
Fatty acid profile and metabolism Blood glutaroyl carnitine 9 0.163  1.06 0.98 - 1.16 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood bilirubin (Z,Z) 2 0.641  0.98 0.90 - 1.07 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood 2-aminooctanoic acid 3 0.760  0.99 0.91 - 1.07 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood carnitine 18 0.00114 * 1.13 1.05 - 1.22 NA NA - NA 1.32   
Fatty acid profile and metabolism Blood cis-4-decenoyl carnitine 2 0.03211 * 1.17 1.01 - 1.34 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood apolipoprotein B 27 0.095  0.93 0.84 - 1.01 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood tryptophan 19 0.111  0.93 0.85 - 1.02 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood bradykinin, des-arg(9) 3 0.265  0.93 0.82 - 1.06 NA NA - NA 44.46   
Fatty acid profile and metabolism Blood androsterone sulfate 4 0.828  1.01 0.92 - 1.11 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood decanoylcarnitine 4 0.01291 * 1.16 1.03 - 1.31 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood proline 4 0.508   0.97 0.87 - 1.07 NA NA - NA 0.00   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Fatty acid profile and metabolism Blood tetradecanedioate 3 0.195   0.93 0.84 - 1.04 NA NA - NA 6.61   
Fatty acid profile and metabolism Blood alpha-glutamyltyrosine 3 0.472  1.04 0.94 - 1.16 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood hexanoylcarnitine 4 0.00695 * 1.16 1.04 - 1.29 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood HDL diameter 10 0.302  0.92 0.79 - 1.08 NA NA - NA 54.57   
Fatty acid profile and metabolism Blood 5-oxoproline 1 0.749  NA NA - NA 0.98 0.89 - 1.09 NA   
Fatty acid profile and metabolism Blood hydroxyisovaleroyl carnitine 2 0.04608 * 1.21 1.00 - 1.46 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood urate 2 0.835  0.98 0.82 - 1.17 NA NA - NA 59.83   
Fatty acid profile and metabolism Blood indolepropionate 1 0.01514 * NA NA - NA 1.44 1.07 - 1.92 NA   
Fatty acid profile and metabolism Blood 5-alpha-pregnan-3beta,20alpha-disulfate 4 0.760  0.98 0.86 - 1.12 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood leucine 11 0.314  1.06 0.95 - 1.19 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood isovalerylcarnitine 4 0.00252 * 1.21 1.07 - 1.37 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood hexadecanedioate 3 0.162  0.92 0.82 - 1.03 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood N-(2-furoyl)glycine 1 0.065  NA NA - NA 1.12 0.99 - 1.25 NA   
Fatty acid profile and metabolism Blood phenylalanylserine 2 0.860  0.99 0.88 - 1.11 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood 10-undecenoate (11:1n1) 3 0.607  0.97 0.85 - 1.10 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood octanoylcarnitine 3 0.01384 * 1.16 1.03 - 1.30 NA NA - NA 5.70   
Fatty acid profile and metabolism Blood epiandrosterone sulfate 2 0.613  1.03 0.92 - 1.16 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood palmitoyl sphingomyelin 2 0.02229 * 0.76 0.61 - 0.96 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood isobutyrylcarnitine 3 0.899  1.01 0.89 - 1.14 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood propionylcarnitine 5 0.01273 * 1.18 1.04 - 1.35 NA NA - NA 11.55   
Fatty acid profile and metabolism Blood N-[3-(2-Oxopyrrolidin-1-yl)propyl]acetamide 5 0.542  0.96 0.86 - 1.09 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood leucylalanine 2 0.511  0.96 0.85 - 1.08 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood phosphatidylcholine and other cholines 10 0.506   0.96 0.84 - 1.09 NA NA - NA 0.00   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Fatty acid profile and metabolism Blood kynurenine 4 0.688   1.03 0.91 - 1.16 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood scyllo-inositol 1 0.02421 * NA NA - NA 1.35 1.04 - 1.76 NA   
Fatty acid profile and metabolism Blood N-acetylglycine 3 0.625  0.95 0.79 - 1.15 NA NA - NA 46.75   
Fatty acid profile and metabolism Total phosphoglycerides 10 0.183  0.91 0.80 - 1.04 NA NA - NA 0.00   
Fatty acid profile and metabolism Eicosapentaenoic acid (20:5n3) 5 0.076  0.89 0.78 - 1.01 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood mannose 1 0.055  NA NA - NA 1.13 1.00 - 1.29 NA   
Fatty acid profile and metabolism VLDL diameter 11 0.533  1.06 0.88 - 1.28 NA NA - NA 50.80   
Fatty acid profile and metabolism Blood 4-acetamidobutanoate 2 0.621  1.05 0.86 - 1.29 NA NA - NA 60.30   
Fatty acid profile and metabolism Blood 5alpha-androstan-3beta,17beta-diol disulfate 4 0.650  0.97 0.85 - 1.11 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood betaine 5 0.382  1.10 0.89 - 1.34 NA NA - NA 50.22   
Fatty acid profile and metabolism Blood N-acetylcarnosine 3 0.709  1.05 0.83 - 1.32 NA NA - NA 63.64   
Fatty acid profile and metabolism Blood sphingomyelins 9 0.129  0.89 0.76 - 1.04 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood asparagine 2 0.610  0.95 0.78 - 1.15 NA NA - NA 47.10   
Fatty acid profile and metabolism Blood 12-hydroxyeicosatetraenoate (12-HETE) 1 0.152  NA NA - NA 0.90 0.78 - 1.04 NA   
Fatty acid profile and metabolism Blood serine 3 0.335  0.93 0.79 - 1.08 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood 1,5-anhydroglucitol (1,5-AG) 3 0.484  1.09 0.85 - 1.41 NA NA - NA 59.71   
Fatty acid profile and metabolism Dihomo-gamma-linoleic acid (20:3n6) 2 0.01561 * 1.09 1.02 - 1.17 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood citrate 6 0.328  1.08 0.92 - 1.27 NA NA - NA 0.00   
Fatty acid profile and metabolism Omega-9 and saturated fatty acids 7 0.186  0.90 0.77 - 1.05 NA NA - NA 0.00   
Fatty acid profile and metabolism Glycoprotein acetyls 10 0.108  0.86 0.72 - 1.03 NA NA - NA 0.00   
Fatty acid profile and metabolism Mono-unsaturated fatty acids 7 0.092  0.87 0.74 - 1.02 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood alpha-hydroxyisovalerate 3 0.978  1.00 0.72 - 1.38 NA NA - NA 75.83 † 
Fatty acid profile and metabolism Docosapentaenoic acid (22:5n3) 3 0.03732 * 0.90 0.81 - 0.99 NA NA - NA 32.62   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Fatty acid profile and metabolism Blood alpha-ketoglutarate 1 0.154   NA NA - NA 0.88 0.74 - 1.05 NA   
Fatty acid profile and metabolism Omega-7 and -9 and saturated fatty acids 6 0.148  0.88 0.75 - 1.05 NA NA - NA 0.00   
Fatty acid profile and metabolism Monounsaturated fatty acids 6 0.071  0.85 0.72 - 1.01 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood cysteine-glutathione disulfide 1 0.226  NA NA - NA 1.11 0.94 - 1.32 NA   
Fatty acid profile and metabolism Palmitoleic acid (16:1n7) 5 0.673  1.07 0.77 - 1.50 NA NA - NA 71.56   
Fatty acid profile and metabolism LDL diameter 5 0.473  0.91 0.70 - 1.18 NA NA - NA 53.00   
Fatty acid profile and metabolism Blood gamma-glutamyltyrosine 5 0.999  1.00 0.75 - 1.33 NA NA - NA 54.46   
Fatty acid profile and metabolism Blood 2-hydroxyisobutyrate 3 0.747  0.95 0.72 - 1.27 NA NA - NA 55.02   
Fatty acid profile and metabolism Stearic acid (18:0) 3 0.567  0.90 0.63 - 1.28 NA NA - NA 74.02   
Fatty acid profile and metabolism Blood aspartylphenylalanine 1 0.899  NA NA - NA 0.99 0.82 - 1.19 NA   
Fatty acid profile and metabolism Blood acetylcarnitine 2 0.071  1.20 0.98 - 1.46 NA NA - NA 4.95   
Fatty acid profile and metabolism Blood glutamine 6 0.555  0.91 0.67 - 1.24 NA NA - NA 62.51   
Fatty acid profile and metabolism Blood methylcysteine 1 0.182  NA NA - NA 1.16 0.93 - 1.45 NA   
Fatty acid profile and metabolism Blood gamma-glutamylglutamine 3 0.895  0.98 0.70 - 1.36 NA NA - NA 66.82   
Fatty acid profile and metabolism Blood 3-methyl-2-oxovalerate 3 0.798  0.97 0.74 - 1.27 NA NA - NA 50.68   
Fatty acid profile and metabolism Blood citrulline 4 0.602  0.94 0.74 - 1.19 NA NA - NA 29.10   
Fatty acid profile and metabolism Blood inosine 1 0.599  NA NA - NA 0.95 0.78 - 1.16 NA   
Fatty acid profile and metabolism Blood dihomo-linolenate (20:3n3 or n6) 2 0.100  1.21 0.96 - 1.53 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood tryptophan betaine 1 0.584  NA NA - NA 0.94 0.74 - 1.18 NA   
Fatty acid profile and metabolism Blood tyrosine 3 0.690  1.06 0.80 - 1.41 NA NA - NA 46.31   
Fatty acid profile and metabolism Blood homocitrulline 1 0.834  NA NA - NA 1.02 0.83 - 1.25 NA   
Fatty acid profile and metabolism Blood uridine 3 0.065  1.36 0.98 - 1.89 NA NA - NA 62.15   
Fatty acid profile and metabolism Blood octadecanedioate 2 0.378   0.91 0.74 - 1.12 NA NA - NA 0.00   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Fatty acid profile and metabolism Blood 1-palmitoylglycerophosphoethanolamine 2 0.314   0.90 0.73 - 1.10 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood stearate (18:0) 2 0.932  1.02 0.67 - 1.54 NA NA - NA 73.80   
Fatty acid profile and metabolism Blood 1-linoleoylglycerol (1-monolinolein) 1 0.685  NA NA - NA 0.95 0.73 - 1.22 NA   
Fatty acid profile and metabolism Gamma-linoleic acid (18:3n6) 2 0.01798 * 0.84 0.73 - 0.97 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood phenyllactate (PLA) 1 0.220  NA NA - NA 0.85 0.66 - 1.10 NA   
Fatty acid profile and metabolism Blood O-sulfo-L-tyrosine 2 0.300  0.90 0.73 - 1.10 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood tetradecadienoate 1 0.985  NA NA - NA 1.00 0.81 - 1.25 NA   
Fatty acid profile and metabolism Blood 2-aminobutyrate 2 0.138  0.85 0.68 - 1.06 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood albumin 4 0.816  1.05 0.69 - 1.61 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood dehydroisoandrosterone sulfate (DHEA-S) 2 0.832  0.98 0.77 - 1.23 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood alanine 6 0.837  0.97 0.72 - 1.30 NA NA - NA 37.26   
Fatty acid profile and metabolism Gamma-linolenic acid (18:3n6) 2 0.01520 * 0.86 0.76 - 0.97 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood valine 5 0.583  1.08 0.81 - 1.45 NA NA - NA 35.14   
Fatty acid profile and metabolism Blood myo-inositol 2 0.716  1.08 0.71 - 1.64 NA NA - NA 70.38   
Fatty acid profile and metabolism Linoleic acid (18:2n6) 2 0.01128 * 1.10 1.02 - 1.18 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood creatine 1 0.189  NA NA - NA 0.84 0.65 - 1.09 NA   
Fatty acid profile and metabolism Oleic acid (18:1n9) 1 0.00564 * NA NA - NA 1.34 1.09 - 1.66 NA   
Fatty acid profile and metabolism Blood N2,N2-dimethylguanosine 2 0.481  1.09 0.86 - 1.39 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood histidine 5 0.751  0.94 0.65 - 1.36 NA NA - NA 47.24   
Fatty acid profile and metabolism Omega-3 fatty acids 6 0.00054 * 0.74 0.62 - 0.88 NA NA - NA 0.00   
Fatty acid profile and metabolism Blood levulinate (4-oxovalerate) 2 0.993  1.00 0.55 - 1.80 NA NA - NA 81.76 † 
Fatty acid profile and metabolism Blood glucose 3 0.670  0.94 0.73 - 1.23 NA NA - NA 0.00   
Fatty acid profile and metabolism Stearoylcarnitine 1 0.04456 * NA NA - NA 1.41 1.01 - 1.98 NA   

 

  



 

 

240 

 
 

   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Fatty acid profile and metabolism Phenylalanine 4 0.419  0.87 0.61 - 1.23 NA NA - NA 25.72   
Fatty acid profile and metabolism Indoleacetate 2 0.611  1.08 0.80 - 1.46 NA NA - NA 0.00   
Fatty acid profile and metabolism 4-methyl-2-oxopentanoate 2 0.707  1.05 0.80 - 1.38 NA NA - NA 0.00   
Fatty acid profile and metabolism Lysine 1 0.849  NA NA - NA 0.97 0.74 - 1.28 NA   
Fatty acid profile and metabolism Hypoxanthine 1 0.495  NA NA - NA 1.10 0.84 - 1.44 NA   
Fatty acid profile and metabolism 1,6-anhydroglucose 1 0.900  NA NA - NA 1.02 0.76 - 1.36 NA   
Fatty acid profile and metabolism Gamma-glutamylphenylalanine 2 0.516  1.10 0.82 - 1.49 NA NA - NA 0.00   
Fatty acid profile and metabolism Acetylphosphate 2 0.496  1.11 0.82 - 1.50 NA NA - NA 12.05   
Fatty acid profile and metabolism Heptanoate (7:0) 2 0.669  0.91 0.61 - 1.38 NA NA - NA 52.15   
Fatty acid profile and metabolism Stearidonate (18:4n3) 1 0.119  NA NA - NA 0.77 0.56 - 1.07 NA   
Fatty acid profile and metabolism Myristoleate (14:1n5) 1 0.243  NA NA - NA 0.84 0.63 - 1.13 NA   
Fatty acid profile and metabolism Caprylate (8:0) 2 0.513  1.12 0.80 - 1.57 NA NA - NA 0.00   
Fatty acid profile and metabolism Laurate (12:0) 2 0.680  1.07 0.78 - 1.46 NA NA - NA 0.00   
Fatty acid profile and metabolism Margarate (17:0) 1 0.243  NA NA - NA 1.20 0.88 - 1.63 NA   
Fatty acid profile and metabolism Palmitoleate (16:1n7) 1 0.243  NA NA - NA 0.83 0.61 - 1.13 NA   
Fatty acid profile and metabolism Laurylcarnitine 1 0.349  NA NA - NA 1.18 0.83 - 1.68 NA   
Fatty acid profile and metabolism 3,4-dihydroxybutyrate 1 0.638  NA NA - NA 0.93 0.68 - 1.27 NA   
Fatty acid profile and metabolism Indolelactate 1 0.496  NA NA - NA 0.90 0.65 - 1.23 NA   
Fatty acid profile and metabolism Docosahexaenoic acid (22:6n3) 1 0.984  NA NA - NA 1.00 0.73 - 1.38 NA   
Fatty acid profile and metabolism 3-(4-hydroxyphenyl)lactate 1 0.876  NA NA - NA 1.03 0.71 - 1.48 NA   
Fatty acid profile and metabolism 1-oleoylglycerol (1-monoolein) 1 0.886  NA NA - NA 1.03 0.70 - 1.50 NA   
Fatty acid profile and metabolism 1-stearoylglycerophosphoethanolamine 1 0.984  NA NA - NA 1.00 0.73 - 1.39 NA   
Fatty acid profile and metabolism N1-methyl-3-pyridone-4-carboxamide 1 0.908  NA NA - NA 1.02 0.70 - 1.49 NA   
Fatty acid profile and metabolism Dodecanedioate 1 0.423   NA NA - NA 1.15 0.81 - 1.64 NA   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Genome Stability Telomere length 7 0.01263 * 2.33 1.20 - 4.52 NA NA - NA 85.78 † 
Genome Stability LOY 92 0.101  1.45 0.93 - 2.25 NA NA - NA 38.27   

Inflammatory factors Plasma IL-6 sRa 1 0.282  NA NA - NA 1.02 0.98 - 1.05 NA   
Inflammatory factors Circulating C-reactive protein 14 0.599  1.05 0.89 - 1.23 NA NA - NA 17.36   

Lipids and lipid transport Circulating fetuin-A 1 0.868  NA NA - NA 1.01 0.94 - 1.08 NA   
Lipids and lipid transport LDL 102 0.289  0.95 0.86 - 1.04 NA NA - NA 27.15   
Lipids and lipid transport Total cholesterol 123 0.359  0.95 0.85 - 1.06 NA NA - NA 42.55   
Lipids and lipid transport HDL 124 0.992  1.00 0.89 - 1.12 NA NA - NA 25.63   
Lipids and lipid transport Triglycerides 70 0.762  0.98 0.86 - 1.12 NA NA - NA 22.74   
lipids and lipid transport Total triglycerides 34 0.419  0.95 0.85 - 1.07 NA NA - NA 0.00   
Lipids and lipid transport Omega-6 fatty acids 13 0.060  0.89 0.79 - 1.00 NA NA - NA 0.00   
Lipids and lipid transport Blood apolipoprotein A-I 12 0.424  0.95 0.84 - 1.08 NA NA - NA 0.00   
Lipids and lipid transport Total fatty acids 12 0.151  0.91 0.80 - 1.04 NA NA - NA 0.00   
Lipids and lipid transport Circulating adiponectin 10 0.853   1.02 0.83 - 1.26 NA NA - NA 4.52   

 
  



 

 

242 

   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Miscellaneous Fasting proinsulin 8 0.924  0.99 0.89 - 1.11 NA NA - NA 0.00   
Miscellaneous Platelet count 39 0.302  1.13 0.90 - 1.41 NA NA - NA 48.68   
Miscellaneous Corrected insulin response 3 0.823  1.02 0.86 - 1.21 NA NA - NA 0.00   
Miscellaneous Forced vital capacity (FVC) 284 0.00791 * 1.21 1.05 - 1.39 NA NA - NA 29.48   
Miscellaneous HbA1C levels 11 0.106  0.85 0.70 - 1.03 NA NA - NA 0.00   
Miscellaneous Fluid intelligence score 50 0.059  0.79 0.61 - 1.01 NA NA - NA 23.21   
Miscellaneous Serum IgE 3 0.936  0.99 0.81 - 1.21 NA NA - NA 0.00   
Miscellaneous Morning/evening person (chronotype) 99 0.725  1.05 0.82 - 1.34 NA NA - NA 6.59   
Miscellaneous Insulin disposition index 1 0.664  NA NA - NA 0.95 0.74 - 1.21 NA   
Miscellaneous Neuroticism score 78 0.358  1.15 0.85 - 1.56 NA NA - NA 21.49   
Miscellaneous Years of schooling 74 0.055  0.72 0.52 - 1.01 NA NA - NA 24.95   
Miscellaneous HOMA-B 4 0.533  0.91 0.67 - 1.23 NA NA - NA 0.00   
Miscellaneous Nap during day 58 0.190  1.23 0.90 - 1.68 NA NA - NA 0.00   
Miscellaneous Time spent watching television (TV) 65 0.242  1.23 0.87 - 1.75 NA NA - NA 17.56   
Miscellaneous 2hr glucose 7 0.463   0.89 0.65 - 1.21 NA NA - NA 18.82   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   

Plasma analytes  Interleukin-6 receptor 1 0.067  NA NA - NA 0.95 0.91 - 1.00 NA   
Plasma analytes  Angiotensin-converting enzyme 2 0.138  1.04 0.99 - 1.10 NA NA - NA 0.00   
Plasma analytes  Apolipoprotein A-IV 1 0.671  NA NA - NA 0.99 0.92 - 1.05 NA   
Plasma analytes  E-selectin 1 0.118  NA NA - NA 1.04 0.99 - 1.10 NA   
Plasma analytes  Fetuin-A 1 0.475  NA NA - NA 0.98 0.93 - 1.04 NA   
Plasma analytes  Apolipoprotein H 3 0.678  1.02 0.94 - 1.09 NA NA - NA 60.85   
Plasma analytes  Factor VII 2 0.451  0.96 0.86 - 1.07 NA NA - NA 63.29   
Plasma analytes  Angiotensinogen 1 0.973  NA NA - NA 1.00 0.92 - 1.08 NA   
Plasma analytes  Interleukin-16 1 0.972  NA NA - NA 1.00 0.93 - 1.07 NA   
Plasma analytes  Chemokine CC-4 1 0.537  NA NA - NA 0.98 0.90 - 1.05 NA   
Plasma analytes  Apolipoprotein E 1 0.653  NA NA - NA 0.98 0.89 - 1.08 NA   
Plasma analytes  Carcinoembryonic antigen 2 0.804  0.97 0.79 - 1.20 NA NA - NA 87.58 † 
Plasma analytes  Myeloid progenitor inhibitory factor 1 2 0.212  0.94 0.85 - 1.04 NA NA - NA 0.00   
Plasma analytes  CD 40 antigen 1 0.781  NA NA - NA 1.01 0.93 - 1.10 NA   
Plasma analytes  Macrophage inflammatory protein-1 alpha 1 0.968  NA NA - NA 1.00 0.90 - 1.12 NA   
Plasma analytes  Serotransferrin 1 0.832  NA NA - NA 0.99 0.88 - 1.11 NA   
Plasma analytes  Haptoglobin 1 0.157  NA NA - NA 0.91 0.81 - 1.04 NA   
Plasma analytes  Monocyte chemotactic protein 2 1 0.877  NA NA - NA 1.01 0.91 - 1.12 NA   
Plasma analytes  Alpha-1-antitrypsin 1 0.594  NA NA - NA 1.03 0.92 - 1.15 NA   
Plasma analytes  Tenascin-C 1 0.300  NA NA - NA 0.94 0.84 - 1.06 NA   
Plasma analytes  Glutathione S-transferase alpha 1 0.796  NA NA - NA 1.02 0.90 - 1.15 NA   
Plasma analytes  Matrix metalloproteinase-7 1 0.441  NA NA - NA 1.05 0.93 - 1.20 NA   
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   IVW-RE Wald Ratio    

Category Exposure  No. of 
SNPs P-value   Odds ratio (95% 

CIs) Odds ratio (95% CIs) I2   

Plasma analytes  Neuronal cell adhesion molecule 1 0.121   NA NA - NA 0.91 0.80 - 1.03 NA   
Plasma analytes  Fibroblast growth factor 4 1 0.693  NA NA - NA 1.03 0.89 - 1.20 NA   
Plasma analytes  Cancer antigen 19-9 1 0.01560 * NA NA - NA 0.91 0.84 - 0.98 NA   
Plasma analytes  CD5 1 0.478  NA NA - NA 1.05 0.92 - 1.19 NA   
Plasma analytes  Sortilin 1 0.778  NA NA - NA 1.02 0.89 - 1.16 NA   
Plasma analytes  B lymphocyte chemoattractant 1 0.129  NA NA - NA 1.16 0.96 - 1.42 NA   
Plasma analytes  Trefoil factor 3 1 0.061  NA NA - NA 0.88 0.77 - 1.01 NA   
Plasma analytes  Leptin 1 0.242  NA NA - NA 0.91 0.78 - 1.07 NA   
Plasma analytes  Epithelial-derived neutrophil-activating 1 0.565  NA NA - NA 1.04 0.90 - 1.21 NA   
Plasma analytes  Macrophage inflammatory protein-1 beta 1 0.953  NA NA - NA 1.00 0.86 - 1.16 NA   
Plasma analytes  Interleukin-13 1 0.722  NA NA - NA 0.98 0.86 - 1.11 NA   
Plasma analytes  Cystatin-C 1 0.931  NA NA - NA 0.99 0.87 - 1.13 NA   
Plasma analytes  Receptor for advanced glycosylation end 1 0.211  NA NA - NA 0.91 0.80 - 1.05 NA   
Plasma analytes  Growth-regulated alpha protein 1 0.278  NA NA - NA 1.09 0.93 - 1.26 NA   
Plasma analytes  Angiopoietin-2 1 0.095  NA NA - NA 0.89 0.78 - 1.02 NA   
Plasma analytes  Thymus-expressed chemokine 1 0.777  NA NA - NA 0.98 0.87 - 1.11 NA   
Plasma analytes  Macrophage colony-stimulating factor 1 1 0.503  NA NA - NA 1.04 0.92 - 1.19 NA   
Plasma analytes  Interleukin-18 1 0.308  NA NA - NA 0.92 0.79 - 1.08 NA   
Plasma analytes  Thrombopoietin 1 0.568  NA NA - NA 1.04 0.91 - 1.20 NA   
Plasma analytes  Vascular cell adhesion molecule-1 1 0.501  NA NA - NA 1.06 0.90 - 1.24 NA   
Plasma analytes  Interleukin-8 1 0.755  NA NA - NA 1.02 0.89 - 1.18 NA   
Plasma analytes  Tamm-Horsfall urinary glycoprotein 1 0.03723 * NA NA - NA 0.94 0.88 - 1.00 NA   
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   IVW-RE Wald Ratio    

Category Exposure  No. of SNPs P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) I2   
Obesity Whole body water mass 735 0.176  1.06 0.97 - 1.16 NA NA - NA 22.59   
Obesity Basal metabolic rate 693 0.142  1.07 0.98 - 1.17 NA NA - NA 21.49   
Obesity Weight 576 0.930  1.00 0.90 - 1.12 NA NA - NA 22.19   
Obesity Impedance of whole body 564 0.685  0.98 0.88 - 1.09 NA NA - NA 26.21   
Obesity Body mass index 964 0.082  1.10 0.99 - 1.22 NA NA - NA 9.96   
Obesity Whole body fat mass 415 0.940  1.00 0.87 - 1.13 NA NA - NA 26.97   
Obesity Body fat percentage 365 0.330  1.07 0.93 - 1.23 NA NA - NA 23.84   
Obesity Trunk fat percentage 334 0.149  1.11 0.96 - 1.29 NA NA - NA 25.76   
Obesity Waist circumference 316 0.848  1.02 0.87 - 1.18 NA NA - NA 27.55   
Obesity Birth weight 93 0.052  1.23 1.00 - 1.51 NA NA - NA 28.60   
Obesity Hip circumference 89 0.813  1.03 0.82 - 1.28 NA NA - NA 36.65   
Obesity Waist-to-hip ratio 35 0.779  0.96 0.73 - 1.27 NA NA - NA 45.58   
Obesity Birth weight of first child 45 0.322  1.13 0.89 - 1.44 NA NA - NA 13.05   

Sex hormones and reproduction Age at menopause** 48 0.419  0.78 0.43 - 1.42 NA NA - NA 28.44   
Sex hormones and reproduction Age at menarche** 73 0.561  1.25 0.59 - 2.65 NA NA - NA 30.61   
Sex hormones and reproduction Plasma progesterone 2 0.301  0.89 0.72 - 1.11 NA NA - NA 39.80   
Sex hormones and reproduction Plasma progesterone** 2 0.754  0.91 0.49 - 1.68 NA NA - NA 0.00   
Sex hormones and reproduction Circulating carotenoids 1 0.925  NA NA - NA 1.01 0.86 - 1.18 NA   
Sex hormones and resproduction Plasma estradiol 1 0.562   NA NA - NA 0.90 0.63 - 1.29 NA   
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Appendix 22 

 

Causal estimates from each Mendelian randomization approach for each trait and MM risk 
(tables overleaf). 
* Indicates P < 0.05. ** Causal effects estimated using MM summary statistics from females 
only.  HDL, high density lipoprotein; LDL, low density lipoprotein; LOY, loss of Y chromosome
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Plasma IL-6 sRa 0.282   NA NA - NA NA NA - NA 1.02 0.98 - 1.05 NA NA - NA 

3-phenylpropionate (hydrocinnamate) 0.01895 * NA NA - NA NA NA - NA 1.54 1.07 - 2.20 NA NA - NA 
Height 0.617  1.01 0.96 - 1.07 1.01 0.97 - 1.06 NA NA - NA 1.06 0.96 - 1.18 

Interleukin-6 receptor 0.067  NA NA - NA NA NA - NA 0.95 0.91 - 1.00 NA NA - NA 
Angiotensin-converting enzyme 0.138  1.04 0.99 - 1.10 1.04 0.99 - 1.10 NA NA - NA NA NA - NA 

Apolipoprotein A-IV 0.671  NA NA - NA NA NA - NA 0.99 0.92 - 1.05 NA NA - NA 
E-selectin 0.118  NA NA - NA NA NA - NA 1.04 0.99 - 1.10 NA NA - NA 

Blood butyrylcarnitine 0.887  1.01 0.93 - 1.08 1.01 0.94 - 1.07 NA NA - NA 0.95 0.82 - 1.09 
Fetuin-A 0.475  NA NA - NA NA NA - NA 0.98 0.93 - 1.04 NA NA - NA 

Blood N-acetylornithine 0.096  0.95 0.89 - 1.01 0.95 0.89 - 1.01 NA NA - NA 0.98 0.86 - 1.11 
Blood glycoproteins 0.517  0.98 0.91 - 1.05 0.98 0.91 - 1.05 NA NA - NA 0.93 0.83 - 1.05 

Apolipoprotein H 0.678  1.02 0.94 - 1.09 1.02 0.97 - 1.06 NA NA - NA 2.22 0.54 - 9.06 
Heel bone mineral density (BMD) T-score 0.578  0.98 0.91 - 1.06 0.98 0.91 - 1.05 NA NA - NA NA NA - NA 

Factor VII 0.451  0.96 0.86 - 1.07 0.96 0.90 - 1.02 NA NA - NA NA NA - NA 
Angiotensinogen 0.973   NA NA - NA NA NA - NA 1.00 0.92 - 1.08 NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Interleukin-16 0.972   NA NA - NA NA NA - NA 1.00 0.93 - 1.07 NA NA - NA 

Circulating fetuin-A 0.868  NA NA - NA NA NA - NA 1.01 0.94 - 1.08 NA NA - NA 
Adrenic acid (22:4n6) 0.00922 * NA NA - NA NA NA - NA 0.88 0.79 - 0.97 NA NA - NA 

Alpha-linolenic acid (18:3n3) 0.01123 * NA NA - NA NA NA - NA 1.20 1.04 - 1.38 NA NA - NA 
Whole body water mass 0.176  1.06 0.97 - 1.16 1.06 0.98 - 1.15 NA NA - NA NA NA - NA 

Chemokine CC-4 0.537  NA NA - NA NA NA - NA 0.98 0.90 - 1.05 NA NA - NA 
Blood biliverdin 0.531  0.98 0.90 - 1.05 0.98 0.90 - 1.05 NA NA - NA 0.98 0.86 - 1.12 

Basal metabolic rate 0.142  1.07 0.98 - 1.17 1.07 0.99 - 1.16 NA NA - NA 0.94 0.73 - 1.20 
Apolipoprotein E 0.653  NA NA - NA NA NA - NA 0.98 0.89 - 1.08 NA NA - NA 

Carcinoembryonic antigen 0.804  0.97 0.79 - 1.20 0.97 0.90 - 1.05 NA NA - NA NA NA - NA 
Dihomo-gamma-linolenic acid (20:3n6) 0.223  1.06 0.97 - 1.16 1.06 0.97 - 1.16 NA NA - NA NA NA - NA 

Blood glycine 0.142  0.93 0.85 - 1.02 0.93 0.85 - 1.02 NA NA - NA 0.96 0.83 - 1.11 
Blood estrone 3-sulfate 0.359  NA NA - NA NA NA - NA 0.95 0.86 - 1.06 NA NA - NA 

Arachidonic acid (20:4n6) 0.01174 * 0.95 0.92 - 0.99 0.95 0.92 - 0.99 NA NA - NA NA NA - NA 
Blood succinylcarnitine 0.412   0.96 0.87 - 1.06 0.96 0.88 - 1.04 NA NA - NA 0.99 0.78 - 1.25 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Blood glutaroyl carnitine 0.163   1.06 0.98 - 1.16 1.06 0.98 - 1.16 NA NA - NA 0.78 0.53 - 1.15 

Blood bilirubin (Z,Z) 0.641  0.98 0.90 - 1.07 0.98 0.90 - 1.07 NA NA - NA NA NA - NA 
LDL 0.289  0.95 0.86 - 1.04 0.95 0.88 - 1.03 NA NA - NA 0.90 0.78 - 1.04 

Blood 2-aminooctanoic acid 0.760  0.99 0.91 - 1.07 0.99 0.91 - 1.07 NA NA - NA 0.94 0.82 - 1.08 
Myeloid progenitor inhibitory factor 1 0.212  0.94 0.85 - 1.04 0.94 0.85 - 1.04 NA NA - NA NA NA - NA 

Blood carnitine 0.00114 * 1.13 1.05 - 1.22 1.13 1.05 - 1.22 NA NA - NA 1.06 0.88 - 1.27 
Total cholesterol 0.359  0.95 0.85 - 1.06 0.95 0.87 - 1.03 NA NA - NA 0.85 0.71 - 1.01 

CD 40 antigen 0.781  NA NA - NA NA NA - NA 1.01 0.93 - 1.10 NA NA - NA 
Blood cis-4-decenoyl carnitine 0.03211 * 1.17 1.01 - 1.34 1.17 1.01 - 1.34 NA NA - NA NA NA - NA 

Blood apolipoprotein B 0.095  0.93 0.84 - 1.01 0.93 0.84 - 1.01 NA NA - NA 0.86 0.73 - 1.02 
Weight 0.930  1.00 0.90 - 1.12 1.00 0.92 - 1.10 NA NA - NA 1.28 0.31 - 5.37 

Blood tryptophan 0.111  0.93 0.85 - 1.02 0.93 0.85 - 1.02 NA NA - NA 1.79 0.56 - 5.73 
Impedance of whole body 0.685  0.98 0.88 - 1.09 0.98 0.89 - 1.07 NA NA - NA 1.10 0.79 - 1.53 

Blood bradykinin, des-arg(9) 0.265  0.93 0.82 - 1.06 0.93 0.85 - 1.02 NA NA - NA 0.71 0.50 - 1.00 
Blood androsterone sulfate 0.828   1.01 0.92 - 1.11 1.01 0.92 - 1.11 NA NA - NA 1.02 0.90 - 1.16 

 

  



 

 

250 

 

 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
HDL 0.992   1.00 0.89 - 1.12 1.00 0.91 - 1.10 NA NA - NA 0.94 0.76 - 1.15 

Body mass index 0.082  1.10 0.99 - 1.22 1.10 0.99 - 1.21 NA NA - NA 1.16 0.85 - 1.58 
Blood decanoylcarnitine 0.01291 * 1.16 1.03 - 1.31 1.16 1.03 - 1.31 NA NA - NA NA NA - NA 

Blood proline 0.508  0.97 0.87 - 1.07 0.97 0.87 - 1.07 NA NA - NA 0.93 0.79 - 1.11 
Blood tetradecanedioate 0.195  0.93 0.84 - 1.04 0.93 0.85 - 1.03 NA NA - NA 1.05 0.73 - 1.52 

Macrophage inflammatory protein-1 alpha 0.968  NA NA - NA NA NA - NA 1.00 0.90 - 1.12 NA NA - NA 
Blood alpha-glutamyltyrosine 0.472  1.04 0.94 - 1.16 1.04 0.94 - 1.16 NA NA - NA 1.05 0.78 - 1.42 

Blood hexanoylcarnitine 0.00695 * 1.16 1.04 - 1.29 1.16 1.04 - 1.29 NA NA - NA 1.03 0.83 - 1.27 
Serotransferrin 0.832  NA NA - NA NA NA - NA 0.99 0.88 - 1.11 NA NA - NA 

Blood HDL diameter 0.302  0.92 0.79 - 1.08 0.92 0.83 - 1.02 NA NA - NA 1.06 0.66 - 1.71 
Haptoglobin 0.157  NA NA - NA NA NA - NA 0.91 0.81 - 1.04 NA NA - NA 

Whole body fat mass 0.940  1.00 0.87 - 1.13 1.00 0.89 - 1.11 NA NA - NA NA NA - NA 
Triglycerides 0.762  0.98 0.86 - 1.12 0.98 0.87 - 1.10 NA NA - NA 0.85 0.69 - 1.05 

Blood 5-oxoproline 0.749  NA NA - NA NA NA - NA 0.98 0.89 - 1.09 NA NA - NA 
Fasting proinsulin 0.924   0.99 0.89 - 1.11 0.99 0.89 - 1.11 NA NA - NA 1.05 0.79 - 1.39 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Total triglycerides 0.419   0.95 0.85 - 1.07 0.95 0.85 - 1.07 NA NA - NA 0.92 0.76 - 1.11 

Monocyte chemotactic protein 2 0.877  NA NA - NA NA NA - NA 1.01 0.91 - 1.12 NA NA - NA 
Blood hydroxyisovaleroyl carnitine 0.04608 * 1.21 1.00 - 1.46 1.21 1.00 - 1.46 NA NA - NA NA NA - NA 

Blood urate 0.835  0.98 0.82 - 1.17 0.98 0.88 - 1.10 NA NA - NA NA NA - NA 
Blood indolepropionate 0.01514 * NA NA - NA NA NA - NA 1.44 1.07 - 1.92 NA NA - NA 

Blood 5-alpha-pregnan-3beta,20alpha-disulfate 0.760  0.98 0.86 - 1.12 0.98 0.86 - 1.12 NA NA - NA 1.46 0.59 - 3.60 
Blood leucine 0.314  1.06 0.95 - 1.19 1.06 0.95 - 1.19 NA NA - NA 1.04 0.51 - 2.12 

Blood isovalerylcarnitine 0.00252 * 1.21 1.07 - 1.37 1.21 1.07 - 1.37 NA NA - NA 1.87 0.55 - 6.35 
Blood hexadecanedioate 0.162  0.92 0.82 - 1.03 0.92 0.82 - 1.03 NA NA - NA 1.02 0.65 - 1.60 

Omega-6 fatty acids 0.060  0.89 0.79 - 1.00 0.89 0.79 - 1.00 NA NA - NA 0.78 0.57 - 1.07 
Alpha-1-antitrypsin 0.594  NA NA - NA NA NA - NA 1.03 0.92 - 1.15 NA NA - NA 

Blood N-(2-furoyl)glycine 0.065  NA NA - NA NA NA - NA 1.12 0.99 - 1.25 NA NA - NA 
Blood phenylalanylserine 0.860  0.99 0.88 - 1.11 0.99 0.88 - 1.11 NA NA - NA NA NA - NA 

Blood 10-undecenoate (11:1n1) 0.607  0.97 0.85 - 1.10 0.97 0.85 - 1.10 NA NA - NA 1.03 0.73 - 1.44 
Blood octanoylcarnitine 0.01384 * 1.16 1.03 - 1.30 1.16 1.03 - 1.29 NA NA - NA 0.96 0.72 - 1.28 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Body fat percentage 0.330   1.07 0.93 - 1.23 1.07 0.95 - 1.21 NA NA - NA 0.98 0.59 - 1.62 

Blood epiandrosterone sulfate 0.613  1.03 0.92 - 1.16 1.03 0.92 - 1.16 NA NA - NA NA NA - NA 
Blood apolipoprotein A-I 0.424  0.95 0.84 - 1.08 0.95 0.84 - 1.08 NA NA - NA 1.21 0.83 - 1.77 

Age at menopause** 0.419  0.78 0.43 - 1.42 0.78 0.47 - 1.30 NA NA - NA 0.53 0.12 - 2.44 
Tenascin-C 0.300  NA NA - NA NA NA - NA 0.94 0.84 - 1.06 NA NA - NA 

Blood palmitoyl sphingomyelin 0.02229 * 0.76 0.61 - 0.96 0.76 0.61 - 0.96 NA NA - NA NA NA - NA 
Glutathione S-transferase alpha 0.796  NA NA - NA NA NA - NA 1.02 0.90 - 1.15 NA NA - NA 

Matrix metalloproteinase-7 0.441  NA NA - NA NA NA - NA 1.05 0.93 - 1.20 NA NA - NA 
Trunk fat percentage 0.149  1.11 0.96 - 1.29 1.11 0.98 - 1.26 NA NA - NA NA NA - NA 

Blood isobutyrylcarnitine 0.899  1.01 0.89 - 1.14 1.01 0.89 - 1.14 NA NA - NA 1.06 0.78 - 1.44 
Blood propionylcarnitine 0.01273 * 1.18 1.04 - 1.35 1.18 1.04 - 1.34 NA NA - NA 0.95 0.68 - 1.33 

Blood N-[3-(2-Oxopyrrolidin-1-yl)propyl]acetamide 0.542  0.96 0.86 - 1.09 0.96 0.86 - 1.09 NA NA - NA 1.06 0.69 - 1.62 
Serum vitamin B12 0.701  1.04 0.85 - 1.27 1.04 0.91 - 1.19 NA NA - NA 0.88 0.56 - 1.38 
Age at menarche** 0.561  1.25 0.59 - 2.65 1.25 0.67 - 2.34 NA NA - NA 3.22 0.87 - 11.90 
Blood leucylalanine 0.511   0.96 0.85 - 1.08 0.96 0.85 - 1.08 NA NA - NA NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Blood phosphatidylcholine and other cholines 0.506   0.96 0.84 - 1.09 0.96 0.84 - 1.09 NA NA - NA 0.96 0.64 - 1.44 

Blood kynurenine 0.688  1.03 0.91 - 1.16 1.03 0.91 - 1.16 NA NA - NA 1.04 0.82 - 1.33 
Waist circumference 0.848  1.02 0.87 - 1.18 1.02 0.89 - 1.16 NA NA - NA 1.01 0.62 - 1.65 

Neuronal cell adhesion molecule 0.121  NA NA - NA NA NA - NA 0.91 0.80 - 1.03 NA NA - NA 
Blood scyllo-inositol 0.02421 * NA NA - NA NA NA - NA 1.35 1.04 - 1.76 NA NA - NA 

Total fatty acids 0.151  0.91 0.80 - 1.04 0.91 0.80 - 1.04 NA NA - NA 0.82 0.45 - 1.46 
Blood N-acetylglycine 0.625  0.95 0.79 - 1.15 0.95 0.83 - 1.10 NA NA - NA 0.79 0.56 - 1.12 

Fibroblast growth factor 4 0.693  NA NA - NA NA NA - NA 1.03 0.89 - 1.20 NA NA - NA 
Blood copper 0.935  0.99 0.80 - 1.22 0.99 0.85 - 1.15 NA NA - NA NA NA - NA 

Total phosphoglycerides 0.183  0.91 0.80 - 1.04 0.91 0.80 - 1.04 NA NA - NA 1.02 0.64 - 1.63 
Blood zinc 0.984  1.00 0.87 - 1.15 1.00 0.87 - 1.15 NA NA - NA NA NA - NA 

Cancer antigen 19-9 0.01560 * NA NA - NA NA NA - NA 0.91 0.84 - 0.98 NA NA - NA 
Eicosapentaenoic acid (20:5n3) 0.076  0.89 0.78 - 1.01 0.89 0.78 - 1.01 NA NA - NA 0.82 0.59 - 1.13 

CD5 0.478  NA NA - NA NA NA - NA 1.05 0.92 - 1.19 NA NA - NA 
Blood mannose 0.055   NA NA - NA NA NA - NA 1.13 1.00 - 1.29 NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
VLDL diameter 0.533   1.06 0.88 - 1.28 1.06 0.93 - 1.21 NA NA - NA 1.05 0.48 - 2.30 

Blood 4-acetamidobutanoate 0.621  1.05 0.86 - 1.29 1.05 0.93 - 1.20 NA NA - NA NA NA - NA 
Sortilin 0.778  NA NA - NA NA NA - NA 1.02 0.89 - 1.16 NA NA - NA 

Blood 5alpha-androstan-3beta,17beta-diol disulfate 0.650  0.97 0.85 - 1.11 0.97 0.85 - 1.11 NA NA - NA 1.01 0.77 - 1.33 
Blood betaine 0.382  1.10 0.89 - 1.34 1.10 0.95 - 1.26 NA NA - NA 1.76 0.90 - 3.45 

B lymphocyte chemoattractant 0.129  NA NA - NA NA NA - NA 1.16 0.96 - 1.42 NA NA - NA 
Trefoil factor 3 0.061  NA NA - NA NA NA - NA 0.88 0.77 - 1.01 NA NA - NA 

Blood N-acetylcarnosine 0.709  1.05 0.83 - 1.32 1.05 0.91 - 1.20 NA NA - NA 1.20 0.12 - 12.40 
Leptin 0.242  NA NA - NA NA NA - NA 0.91 0.78 - 1.07 NA NA - NA 

Epithelial-derived neutrophil-activating 0.565  NA NA - NA NA NA - NA 1.04 0.90 - 1.21 NA NA - NA 
Macrophage inflammatory protein-1 beta 0.953  NA NA - NA NA NA - NA 1.00 0.86 - 1.16 NA NA - NA 

Interleukin-13 0.722  NA NA - NA NA NA - NA 0.98 0.86 - 1.11 NA NA - NA 
Cystatin-C 0.931  NA NA - NA NA NA - NA 0.99 0.87 - 1.13 NA NA - NA 

Receptor for advanced glycosylation end 0.211  NA NA - NA NA NA - NA 0.91 0.80 - 1.05 NA NA - NA 
Growth-regulated alpha protein 0.278   NA NA - NA NA NA - NA 1.09 0.93 - 1.26 NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Angiopoietin-2 0.095   NA NA - NA NA NA - NA 0.89 0.78 - 1.02 NA NA - NA 

Thymus-expressed chemokine 0.777  NA NA - NA NA NA - NA 0.98 0.87 - 1.11 NA NA - NA 
Blood sphingomyelins 0.129  0.89 0.76 - 1.04 0.89 0.76 - 1.04 NA NA - NA 0.67 0.48 - 0.94 

Blood asparagine 0.610  0.95 0.78 - 1.15 0.95 0.83 - 1.09 NA NA - NA NA NA - NA 
Macrophage colony-stimulating factor 1 0.503  NA NA - NA NA NA - NA 1.04 0.92 - 1.19 NA NA - NA 

Interleukin-18 0.308  NA NA - NA NA NA - NA 0.92 0.79 - 1.08 NA NA - NA 
Circulating C-reactive protein 0.599  1.05 0.89 - 1.23 1.05 0.90 - 1.21 NA NA - NA 1.20 0.88 - 1.66 

Fasting glucose 0.287  1.10 0.92 - 1.30 1.10 0.95 - 1.27 NA NA - NA 1.21 0.82 - 1.80 
Thrombopoietin 0.568  NA NA - NA NA NA - NA 1.04 0.91 - 1.20 NA NA - NA 

Blood 12-hydroxyeicosatetraenoate (12-HETE) 0.152  NA NA - NA NA NA - NA 0.90 0.78 - 1.04 NA NA - NA 
Blood serine 0.335  0.93 0.79 - 1.08 0.93 0.79 - 1.08 NA NA - NA 0.53 0.12 - 2.29 

Vascular cell adhesion molecule-1 0.501  NA NA - NA NA NA - NA 1.06 0.90 - 1.24 NA NA - NA 
Interleukin-8 0.755  NA NA - NA NA NA - NA 1.02 0.89 - 1.18 NA NA - NA 

Blood 1,5-anhydroglucitol (1,5-AG) 0.484  1.09 0.85 - 1.41 1.09 0.93 - 1.28 NA NA - NA 1.58 0.83 - 3.00 
Plasma progesterone 0.301   0.89 0.72 - 1.11 0.89 0.76 - 1.05 NA NA - NA NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Plasma progesterone** 0.754   0.91 0.49 - 1.68 0.91 0.49 - 1.68 NA NA - NA NA NA - NA 

Platelet count 0.302  1.13 0.90 - 1.41 1.13 0.96 - 1.32 NA NA - NA 1.04 0.50 - 2.17 
Dihomo-gamma-linoleic acid (20:3n6) 0.01561 * 1.09 1.02 - 1.17 1.09 1.02 - 1.17 NA NA - NA NA NA - NA 

Pulse rate 0.920  0.99 0.82 - 1.20 0.99 0.85 - 1.15 NA NA - NA 0.95 0.58 - 1.57 
Blood citrate 0.328  1.08 0.92 - 1.27 1.08 0.92 - 1.27 NA NA - NA 1.18 0.74 - 1.88 

Omega-9 and saturated fatty acids 0.186  0.90 0.77 - 1.05 0.90 0.77 - 1.05 NA NA - NA 0.81 0.43 - 1.51 
Glycoprotein acetyls 0.108  0.86 0.72 - 1.03 0.86 0.72 - 1.03 NA NA - NA 0.91 0.50 - 1.64 

Mono-unsaturated fatty acids 0.092  0.87 0.74 - 1.02 0.87 0.74 - 1.02 NA NA - NA 0.75 0.39 - 1.44 
Blood alpha-hydroxyisovalerate 0.978  1.00 0.72 - 1.38 1.00 0.85 - 1.17 NA NA - NA 0.54 0.22 - 1.32 

Circulating carotenoids 0.925  NA NA - NA NA NA - NA 1.01 0.86 - 1.18 NA NA - NA 
Docosapentaenoic acid (22:5n3) 0.03732 * 0.90 0.81 - 0.99 0.90 0.83 - 0.98 NA NA - NA NA NA - NA 
Circulating 25-hydroxyvitamin D 0.541  1.08 0.84 - 1.40 1.08 0.93 - 1.26 NA NA - NA 0.89 0.57 - 1.38 

Blood alpha-ketoglutarate 0.154  NA NA - NA NA NA - NA 0.88 0.74 - 1.05 NA NA - NA 
Omega-7 and -9 and saturated fatty acids 0.148  0.88 0.75 - 1.05 0.88 0.75 - 1.05 NA NA - NA 0.86 0.44 - 1.68 

Monounsaturated fatty acids 0.071   0.85 0.72 - 1.01 0.85 0.72 - 1.01 NA NA - NA 0.92 0.32 - 2.65 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Serum calcium 0.130   0.88 0.74 - 1.04 0.88 0.74 - 1.04 NA NA - NA 0.75 0.57 - 1.00 

Birth weight 0.052  1.23 1.00 - 1.51 1.23 1.03 - 1.46 NA NA - NA 1.50 0.75 - 3.00 
Corrected insulin response 0.823  1.02 0.86 - 1.21 1.02 0.86 - 1.21 NA NA - NA NA NA - NA 

Blood cysteine-glutathione disulfide 0.226  NA NA - NA NA NA - NA 1.11 0.94 - 1.32 NA NA - NA 
Palmitoleic acid (16:1n7) 0.673  1.07 0.77 - 1.50 1.07 0.90 - 1.28 NA NA - NA 1.53 0.35 - 6.66 

Hip circumference 0.813  1.03 0.82 - 1.28 1.03 0.86 - 1.22 NA NA - NA 1.31 0.88 - 1.96 
LDL diameter 0.473  0.91 0.70 - 1.18 0.91 0.76 - 1.09 NA NA - NA 0.86 0.41 - 1.82 

Blood gamma-glutamyltyrosine 0.999  1.00 0.75 - 1.33 1.00 0.83 - 1.21 NA NA - NA 4.94 0.89 - 27.44 
Blood 2-hydroxyisobutyrate 0.747  0.95 0.72 - 1.27 0.95 0.79 - 1.15 NA NA - NA 0.75 0.28 - 1.98 

Stearic acid (18:0) 0.567  0.90 0.63 - 1.28 0.90 0.75 - 1.08 NA NA - NA 0.01 0.00 - 0.27 
Blood aspartylphenylalanine 0.899  NA NA - NA NA NA - NA 0.99 0.82 - 1.19 NA NA - NA 

Blood selenium 0.373  NA NA - NA NA NA - NA 0.91 0.75 - 1.12 NA NA - NA 
Blood acetylcarnitine 0.071  1.20 0.98 - 1.46 1.20 0.99 - 1.46 NA NA - NA NA NA - NA 

Blood glutamine 0.555  0.91 0.67 - 1.24 0.91 0.75 - 1.10 NA NA - NA 0.79 0.42 - 1.49 
Forced vital capacity (FVC) 0.00791 * 1.21 1.05 - 1.39 1.21 1.08 - 1.36 NA NA - NA NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Blood methylcysteine 0.182   NA NA - NA NA NA - NA 1.16 0.93 - 1.45 NA NA - NA 

Blood gamma-glutamylglutamine 0.895  0.98 0.70 - 1.36 0.98 0.81 - 1.18 NA NA - NA 0.45 0.23 - 0.86 
Blood 3-methyl-2-oxovalerate 0.798  0.97 0.74 - 1.27 0.97 0.80 - 1.17 NA NA - NA 2.07 0.23 - 19.00 

Blood citrulline 0.602  0.94 0.74 - 1.19 0.94 0.77 - 1.15 NA NA - NA 2.38 0.05 - 110.92 
Blood inosine 0.599  NA NA - NA NA NA - NA 0.95 0.78 - 1.16 NA NA - NA 
HbA1C levels 0.106  0.85 0.70 - 1.03 0.85 0.70 - 1.03 NA NA - NA NA NA - NA 

Circulating adiponectin 0.853  1.02 0.83 - 1.26 1.02 0.83 - 1.25 NA NA - NA 1.25 0.69 - 2.29 
Blood dihomo-linolenate (20:3n3 or n6) 0.100  1.21 0.96 - 1.53 1.21 0.96 - 1.53 NA NA - NA NA NA - NA 

Waist-to-hip ratio 0.779  0.96 0.73 - 1.27 0.96 0.78 - 1.18 NA NA - NA 1.50 0.53 - 4.27 
Blood tryptophan betaine 0.584  NA NA - NA NA NA - NA 0.94 0.74 - 1.18 NA NA - NA 

Blood tyrosine 0.690  1.06 0.80 - 1.41 1.06 0.86 - 1.30 NA NA - NA 7.26 0.79 - 66.68 
Blood homocitrulline 0.834  NA NA - NA NA NA - NA 1.02 0.83 - 1.25 NA NA - NA 

Blood uridine 0.065  1.36 0.98 - 1.89 1.36 1.11 - 1.66 NA NA - NA 3.25 1.50 - 7.06 
Blood octadecanedioate 0.378  0.91 0.74 - 1.12 0.91 0.74 - 1.12 NA NA - NA NA NA - NA 
Fluid intelligence score 0.059   0.79 0.61 - 1.01 0.79 0.63 - 0.98 NA NA - NA NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Blood 1-palmitoylglycerophosphoethanolamine 0.314   0.90 0.73 - 1.10 0.90 0.73 - 1.10 NA NA - NA NA NA - NA 

Putamen volume 0.928  0.99 0.74 - 1.31 0.99 0.80 - 1.22 NA NA - NA NA NA - NA 
Blood stearate (18:0) 0.932  1.02 0.67 - 1.54 1.02 0.82 - 1.26 NA NA - NA NA NA - NA 

Serum IgE 0.936  0.99 0.81 - 1.21 0.99 0.81 - 1.21 NA NA - NA 0.50 0.16 - 1.50 
Blood 1-linoleoylglycerol (1-monolinolein) 0.685  NA NA - NA NA NA - NA 0.95 0.73 - 1.22 NA NA - NA 

Gamma-linoleic acid (18:3n6) 0.01798 * 0.84 0.73 - 0.97 0.84 0.73 - 0.97 NA NA - NA NA NA - NA 
Blood phenyllactate (PLA) 0.220  NA NA - NA NA NA - NA 0.85 0.66 - 1.10 NA NA - NA 
Blood O-sulfo-L-tyrosine 0.300  0.90 0.73 - 1.10 0.90 0.73 - 1.10 NA NA - NA NA NA - NA 
Birth weight of first child 0.322  1.13 0.89 - 1.44 1.13 0.90 - 1.42 NA NA - NA 0.96 0.39 - 2.38 
Blood tetradecadienoate 0.985  NA NA - NA NA NA - NA 1.00 0.81 - 1.25 NA NA - NA 
Blood 2-aminobutyrate 0.138  0.85 0.68 - 1.06 0.85 0.68 - 1.06 NA NA - NA NA NA - NA 

Blood albumin 0.816  1.05 0.69 - 1.61 1.05 0.69 - 1.61 NA NA - NA 0.61 0.09 - 4.24 
Plasma IGF-I 0.687  NA NA - NA NA NA - NA 0.94 0.71 - 1.25 NA NA - NA 

Blood dehydroisoandrosterone sulfate (DHEA-S) 0.832  0.98 0.77 - 1.23 0.98 0.77 - 1.23 NA NA - NA NA NA - NA 
Blood alanine 0.837   0.97 0.72 - 1.30 0.97 0.77 - 1.23 NA NA - NA 0.45 0.13 - 1.62 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Morning/evening person (chronotype) 0.725   1.05 0.82 - 1.34 1.05 0.82 - 1.33 NA NA - NA NA NA - NA 

Gamma-linolenic acid (18:3n6) 0.01520 * 0.86 0.76 - 0.97 0.86 0.76 - 0.97 NA NA - NA NA NA - NA 
Blood valine 0.583  1.08 0.81 - 1.45 1.08 0.86 - 1.37 NA NA - NA 3.24 1.05 - 10.04 

Blood myo-inositol 0.716  1.08 0.71 - 1.64 1.08 0.86 - 1.35 NA NA - NA NA NA - NA 
Linoleic acid (18:2n6) 0.01128 * 1.10 1.02 - 1.18 1.10 1.02 - 1.18 NA NA - NA NA NA - NA 

Blood creatine 0.189  NA NA - NA NA NA - NA 0.84 0.65 - 1.09 NA NA - NA 
Oleic acid (18:1n9) 0.00564 * NA NA - NA NA NA - NA 1.34 1.09 - 1.66 NA NA - NA 

Blood N2,N2-dimethylguanosine 0.481  1.09 0.86 - 1.39 1.09 0.86 - 1.39 NA NA - NA NA NA - NA 
Blood histidine 0.751  0.94 0.65 - 1.36 0.94 0.72 - 1.23 NA NA - NA 3.35 0.54 - 20.71 

Insulin disposition index 0.664  NA NA - NA NA NA - NA 0.95 0.74 - 1.21 NA NA - NA 
Omega-3 fatty acids 0.00054 * 0.74 0.62 - 0.88 0.74 0.62 - 0.88 NA NA - NA 0.59 0.31 - 1.11 

Serum vitamin B6 0.04130 * NA NA - NA NA NA - NA 1.26 1.01 - 1.58 NA NA - NA 
Iron status 0.232  1.24 0.87 - 1.78 1.24 0.96 - 1.61 NA NA - NA 1.57 0.99 - 2.50 

Blood levulinate (4-oxovalerate) 0.993  1.00 0.55 - 1.80 1.00 0.78 - 1.28 NA NA - NA NA NA - NA 
Blood creatinine 0.977   1.01 0.70 - 1.44 1.01 0.78 - 1.30 NA NA - NA 0.56 0.06 - 4.80 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Blood glucose 0.670   0.94 0.73 - 1.23 0.94 0.73 - 1.23 NA NA - NA 0.97 0.30 - 3.08 

Neuroticism score 0.358  1.15 0.85 - 1.56 1.15 0.88 - 1.50 NA NA - NA NA NA - NA 
Plasma estradiol 0.562  NA NA - NA NA NA - NA 0.90 0.63 - 1.29 NA NA - NA 
Stearoylcarnitine 0.04456 * NA NA - NA NA NA - NA 1.41 1.01 - 1.98 NA NA - NA 

Phenylalanine 0.419  0.87 0.61 - 1.23 0.87 0.64 - 1.17 NA NA - NA 0.33 0.03 - 3.48 
Indoleacetate 0.611  1.08 0.80 - 1.46 1.08 0.80 - 1.46 NA NA - NA NA NA - NA 

Years of schooling 0.055  0.72 0.52 - 1.01 0.72 0.54 - 0.96 NA NA - NA NA NA - NA 
4-methyl-2-oxopentanoate 0.707  1.05 0.80 - 1.38 1.05 0.80 - 1.38 NA NA - NA NA NA - NA 

Lysine 0.849  NA NA - NA NA NA - NA 0.97 0.74 - 1.28 NA NA - NA 
Hypoxanthine 0.495  NA NA - NA NA NA - NA 1.10 0.84 - 1.44 NA NA - NA 

1,6-anhydroglucose 0.900  NA NA - NA NA NA - NA 1.02 0.76 - 1.36 NA NA - NA 
Gamma-glutamylphenylalanine 0.516  1.10 0.82 - 1.49 1.10 0.82 - 1.49 NA NA - NA NA NA - NA 

Acetylphosphate 0.496  1.11 0.82 - 1.50 1.11 0.84 - 1.47 NA NA - NA NA NA - NA 
Heptanoate (7:0) 0.669  0.91 0.61 - 1.38 0.91 0.69 - 1.21 NA NA - NA NA NA - NA 

Stearidonate (18:4n3) 0.119   NA NA - NA NA NA - NA 0.77 0.56 - 1.07 NA NA - NA 
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 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
Myristoleate (14:1n5) 0.243   NA NA - NA NA NA - NA 0.84 0.63 - 1.13 NA NA - NA 

Caprylate (8:0) 0.513  1.12 0.80 - 1.57 1.12 0.80 - 1.57 NA NA - NA NA NA - NA 
Laurate (12:0) 0.680  1.07 0.78 - 1.46 1.07 0.78 - 1.46 NA NA - NA NA NA - NA 

HOMA-B 0.533  0.91 0.67 - 1.23 0.91 0.67 - 1.23 NA NA - NA 1.67 0.49 - 5.63 
Margarate (17:0) 0.243  NA NA - NA NA NA - NA 1.20 0.88 - 1.63 NA NA - NA 
Nap during day 0.190  1.23 0.90 - 1.68 1.23 0.90 - 1.68 NA NA - NA NA NA - NA 

Palmitoleate (16:1n7) 0.243  NA NA - NA NA NA - NA 0.83 0.61 - 1.13 NA NA - NA 
Tamm-Horsfall urinary glycoprotein 0.03723 * NA NA - NA NA NA - NA 0.94 0.88 - 1.00 NA NA - NA 
Time spent watching television (TV) 0.242  1.23 0.87 - 1.75 1.23 0.90 - 1.70 NA NA - NA NA NA - NA 

Telomere length 0.01263 * 2.33 1.20 - 4.52 2.33 1.81 - 2.99 NA NA - NA NA NA - NA 
Laurylcarnitine 0.349  NA NA - NA NA NA - NA 1.18 0.83 - 1.68 NA NA - NA 

3,4-dihydroxybutyrate 0.638  NA NA - NA NA NA - NA 0.93 0.68 - 1.27 NA NA - NA 
Indolelactate 0.496  NA NA - NA NA NA - NA 0.90 0.65 - 1.23 NA NA - NA 
2hr glucose 0.463  0.89 0.65 - 1.21 0.89 0.67 - 1.18 NA NA - NA NA NA - NA 

Docosahexaenoic acid (22:6n3) 0.984   NA NA - NA NA NA - NA 1.00 0.73 - 1.38 NA NA - NA 
 

  



 

 

263 

 

 IVW-RE IVW-FE Wald Ratio Causal estimate from 
MR-Egger slope 

Exposure  P-value   Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) Odds ratio (95% CIs) 
3-(4-hydroxyphenyl)lactate 0.876  NA NA - NA NA NA - NA 1.03 0.71 - 1.48 NA NA - NA 

Serum vitamin A1 0.306  1.18 0.86 - 1.61 1.18 0.87 - 1.60 NA NA - NA NA NA - NA 
1-oleoylglycerol (1-monoolein) 0.886  NA NA - NA NA NA - NA 1.03 0.70 - 1.50 NA NA - NA 

1-stearoylglycerophosphoethanolamine 0.984  NA NA - NA NA NA - NA 1.00 0.73 - 1.39 NA NA - NA 
LOY 0.101  1.45 0.93 - 2.25 1.45 1.02 - 2.05 NA NA - NA NA NA - NA 

N1-methyl-3-pyridone-4-carboxamide 0.908  NA NA - NA NA NA - NA 1.02 0.70 - 1.49 NA NA - NA 
Serum vitamin E 0.536  0.89 0.62 - 1.28 0.89 0.62 - 1.28 NA NA - NA 1.23 0.10 - 14.93 
Fasting insulin 0.231  1.35 0.83 - 2.19 1.35 0.96 - 1.89 NA NA - NA 1.30 0.13 - 13.06 

Hippocampus volume 0.540  1.35 0.52 - 3.48 1.35 0.92 - 1.96 NA NA - NA NA NA - NA 
Dodecanedioate 0.423   NA NA - NA NA NA - NA 1.15 0.81 - 1.64 NA NA - NA 
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Appendix 23 

Causal estimates from weighted median estimates and mode-based estimates for suggestively 
significant traits and MM risk (tables overleaf). * Indicates P < 0.05. HDL, high density 
lipoprotein; LDL, low density lipoprotein; LOY, loss of Y chromosome 
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  Weighted Median Weighted Mode 
Exposure  P-value Odds ratio (95% CIs) P-value   Odds ratio (95% CIs) P-value   

Blood carnitine 0.00114 1.10 1.00 - 1.22 0.0567  1.09 0.95 - 1.25 0.2276   
Blood decanoylcarnitine 0.01291 1.15 1.01 - 1.31 0.0412 * 1.14 1.00 - 1.31 0.1496   
Blood hexanoylcarnitine 0.00695 1.13 1.01 - 1.27 0.0371 * 1.12 0.99 - 1.27 0.1736   
Blood isovalerylcarnitine 0.00252 1.14 0.98 - 1.32 0.0928  1.15 0.98 - 1.37 0.1941   
Blood octanoylcarnitine 0.01384 1.13 1.01 - 1.27 0.0345 * 1.13 0.99 - 1.28 0.2062   
Blood propionylcarnitine 0.01273 1.10 0.94 - 1.29 0.2424  1.09 0.92 - 1.29 0.3729   
Docosapentaenoic acid 

(22:5n3) 0.03732 0.90 0.83 - 0.99 0.0270 * 0.90 0.82 - 0.99 0.1577   

Forced vital capacity (FVC) 0.00791 1.23 1.03 - 1.47 0.0214 * 1.28 0.83 - 1.97 0.2667   
Omega-3 fatty acids 0.00054 0.71 0.58 - 0.88 0.0013 * 0.71 0.57 - 0.88 0.0270 * 

Telomere length 0.01263 1.55 0.95 - 2.52 0.0771   1.06 0.69 - 1.64 0.7959   
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Appendix 25 

 

Results of MR-Egger analysis of potential bias in causal estimates (tables overleaf). * Effects 
estimated using MM summary statistics from females only. HDL, high density lipoprotein; LDL, 
low density lipoprotein; LOY, loss of Y chromosome  
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   MR-Egger intercept 

Category Exposure No. of SNPs SE P-value Intercept 

Developmental and growth factors Height 2481 0.001 0.303 -0.001 
Developmental and growth factors Putamen volume 4 0.046 0.205 0.086 

Diet and lifestyle Heel bone mineral density (BMD) T-score 409 0.003 0.646 -0.001 
Diet and lifestyle Serum vitamin B12 9 0.031 0.445 0.025 
Diet and lifestyle Fasting glucose 23 0.014 0.589 -0.008 
Diet and lifestyle Pulse rate 59 0.010 0.869 0.002 
Diet and lifestyle Circulating 25-hydroxyvitamin D 5 0.029 0.364 0.030 
Diet and lifestyle Serum calcium 7 0.016 0.239 0.021 
Diet and lifestyle Iron status 3 0.029 0.411 -0.039 
Diet and lifestyle Blood creatinine 6 0.080 0.615 0.043 
Diet and lifestyle Serum vitamin E 3 0.108 0.841 -0.027 
Diet and lifestyle Fasting insulin 14 0.041 0.977 0.001 
Genome Stability Telomere length 7 0.092 0.384 -0.088 
Genome Stability LOY 92 0.008 0.655 -0.004 

Inflammatory factors Circulating C-reactive protein 14 0.014 0.330 -0.014 
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   MR-Egger intercept 

Category Exposure No. of SNPs SE P-value Intercept 
Fatty acid profile and metabolism Blood butyrylcarnitine 9 0.018 0.380 0.017 
Fatty acid profile and metabolism Blood N-acetylornithine 4 0.028 0.687 -0.013 
Fatty acid profile and metabolism Blood glycoproteins 28 0.009 0.326 0.009 
Fatty acid profile and metabolism Blood carnitine 18 0.012 0.449 0.009 
Fatty acid profile and metabolism Blood biliverdin 3 0.022 0.954 -0.002 
Fatty acid profile and metabolism Blood glycine 6 0.018 0.598 -0.011 
Fatty acid profile and metabolism Blood succinylcarnitine 7 0.023 0.795 -0.006 
Fatty acid profile and metabolism Blood glutaroyl carnitine 9 0.036 0.153 0.058 
Fatty acid profile and metabolism Blood 2-aminooctanoic acid 3 0.024 0.569 0.019 
Fatty acid profile and metabolism Docosapentaenoic acid (22:5n3) 3 0.038 0.820 -0.011 
Fatty acid profile and metabolism Blood apolipoprotein B 27 0.010 0.319 0.010 
Fatty acid profile and metabolism Blood tryptophan 19 0.059 0.283 -0.065 
Fatty acid profile and metabolism Blood bradykinin, des-arg(9) 3 0.045 0.353 0.072 
Fatty acid profile and metabolism Blood androsterone sulfate 4 0.017 0.824 -0.004 
Fatty acid profile and metabolism Blood hexanoylcarnitine 4 0.022 0.324 0.029 
Fatty acid profile and metabolism Blood proline 4 0.023 0.665 0.012 
Fatty acid profile and metabolism Blood tetradecanedioate 3 0.052 0.629 -0.034 
Fatty acid profile and metabolism Blood alpha-glutamyltyrosine 3 0.038 0.942 -0.004 
Fatty acid profile and metabolism Blood octanoylcarnitine 3 0.033 0.399 0.046 
Fatty acid profile and metabolism Blood HDL diameter 10 0.037 0.560 -0.022 
Fatty acid profile and metabolism Blood decanoylcarnitine 4 0.029 0.613 0.017 
Fatty acid profile and metabolism Blood 5-alpha-pregnan-3beta,20alpha-disulfate 4 0.102 0.474 -0.089 
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   MR-Egger intercept 

Category Exposure No. of SNPs SE P-value Intercept 
Fatty acid profile and metabolism Blood leucine 11 0.038 0.946 0.003 
Fatty acid profile and metabolism Blood hexadecanedioate 3 0.055 0.714 -0.027 
Fatty acid profile and metabolism Blood 10-undecenoate (11:1n1) 3 0.052 0.758 -0.021 
Fatty acid profile and metabolism Blood isovalerylcarnitine 4 0.129 0.553 -0.091 
Fatty acid profile and metabolism Blood isobutyrylcarnitine 3 0.031 0.775 -0.011 
Fatty acid profile and metabolism Blood N-[3-(2-Oxopyrrolidin-1-yl)propyl]acetamide 5 0.040 0.673 -0.019 
Fatty acid profile and metabolism Blood phosphatidylcholine and other cholines 10 0.026 0.985 -0.001 
Fatty acid profile and metabolism Blood kynurenine 4 0.023 0.893 -0.004 
Fatty acid profile and metabolism Blood propionylcarnitine 5 0.026 0.266 0.036 
Fatty acid profile and metabolism Blood N-acetylglycine 3 0.032 0.443 0.038 
Fatty acid profile and metabolism Total phosphoglycerides 10 0.027 0.639 -0.013 
Fatty acid profile and metabolism Eicosapentaenoic acid (20:5n3) 5 0.031 0.607 0.018 
Fatty acid profile and metabolism VLDL diameter 11 0.052 0.987 0.001 
Fatty acid profile and metabolism Blood 5alpha-androstan-3beta,17beta-diol disulfate 4 0.029 0.759 -0.010 
Fatty acid profile and metabolism Blood betaine 5 0.047 0.244 -0.068 
Fatty acid profile and metabolism Blood N-acetylcarnosine 3 0.199 0.924 -0.024 
Fatty acid profile and metabolism Blood sphingomyelins 9 0.021 0.110 0.039 
Fatty acid profile and metabolism Blood serine 3 0.123 0.593 0.092 
Fatty acid profile and metabolism Blood 1,5-anhydroglucitol (1,5-AG) 3 0.056 0.443 -0.067 
Fatty acid profile and metabolism Blood citrate 6 0.030 0.732 -0.011 
Fatty acid profile and metabolism Omega-9 and saturated fatty acids 7 0.036 0.738 0.013 
Fatty acid profile and metabolism Glycoprotein acetyls 10 0.037 0.873 -0.006 
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   MR-Egger intercept 

Category Exposure No. of SNPs SE P-value Intercept 
Fatty acid profile and metabolism Mono-unsaturated fatty acids 7 0.040 0.661 0.019 
Fatty acid profile and metabolism Blood alpha-hydroxyisovalerate 3 0.065 0.393 0.091 
Fatty acid profile and metabolism Omega-3 fatty acids 6 0.039 0.503 0.029 
Fatty acid profile and metabolism Omega-7 and -9 and saturated fatty acids 6 0.040 0.930 0.004 
Fatty acid profile and metabolism Monounsaturated fatty acids 6 0.072 0.901 -0.010 
Fatty acid profile and metabolism Palmitoleic acid (16:1n7) 5 0.089 0.658 -0.044 
Fatty acid profile and metabolism LDL diameter 5 0.041 0.893 0.006 
Fatty acid profile and metabolism Blood gamma-glutamyltyrosine 5 0.092 0.163 -0.169 
Fatty acid profile and metabolism Blood 2-hydroxyisobutyrate 3 0.067 0.689 0.035 
Fatty acid profile and metabolism Stearic acid (18:0) 3 0.208 0.221 0.575 
Fatty acid profile and metabolism Blood glutamine 6 0.032 0.631 0.016 
Fatty acid profile and metabolism Blood gamma-glutamylglutamine 3 0.046 0.247 0.114 
Fatty acid profile and metabolism Blood 3-methyl-2-oxovalerate 3 0.129 0.619 -0.088 
Fatty acid profile and metabolism Blood citrulline 4 0.201 0.681 -0.096 
Fatty acid profile and metabolism Blood tyrosine 3 0.139 0.337 -0.237 
Fatty acid profile and metabolism Blood uridine 3 0.046 0.263 -0.106 
Fatty acid profile and metabolism Blood albumin 4 0.161 0.627 0.091 
Fatty acid profile and metabolism Blood alanine 6 0.055 0.294 0.066 
Fatty acid profile and metabolism Blood valine 5 0.051 0.148 -0.100 
Fatty acid profile and metabolism Blood histidine 5 0.080 0.259 -0.111 
Fatty acid profile and metabolism Blood glucose 3 0.058 0.977 -0.002 
Fatty acid profile and metabolism Phenylalanine 4 0.095 0.500 0.077 
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   MR-Egger intercept 

Category Exposure No. of SNPs SE P-value Intercept 
Lipids and lipid transport LDL 102 0.004 0.343 0.004 
Lipids and lipid transport Total cholesterol 123 0.005 0.093 0.008 
Lipids and lipid transport HDL 124 0.005 0.465 0.003 
Lipids and lipid transport Triglycerides 70 0.005 0.096 0.009 
lipids and lipid transport Total triglycerides 34 0.006 0.613 0.003 
Lipids and lipid transport Omega-6 fatty acids 13 0.020 0.394 0.018 
Lipids and lipid transport Blood apolipoprotein A-I 12 0.026 0.215 -0.034 
Lipids and lipid transport Total fatty acids 12 0.033 0.719 0.012 
Lipids and lipid transport Circulating adiponectin 10 0.020 0.496 -0.014 

Miscellaneous Fasting proinsulin 8 0.021 0.708 -0.008 
Miscellaneous Forced vital capacity (FVC) 284 0.005 0.077 -0.009 
Miscellaneous Platelet count 39 0.016 0.832 0.003 
Miscellaneous Corrected insulin response 3 0.074 0.608 0.052 
Miscellaneous HbA1C levels 11 0.017 0.379 0.016 
Miscellaneous Fluid intelligence score 50 0.018 0.687 -0.007 
Miscellaneous Serum IgE 3 0.084 0.431 0.104 
Miscellaneous Morning/evening person (chronotype) 99 0.008 0.337 0.008 
Miscellaneous Neuroticism score 78 0.016 0.630 0.008 
Miscellaneous Years of schooling 74 0.013 0.474 -0.009 
Miscellaneous HOMA-B 4 0.043 0.418 -0.043 
Miscellaneous Nap during day 58 0.011 0.923 -0.001 
Miscellaneous Time spent watching television (TV) 65 0.015 0.831 -0.003 
Miscellaneous 2hr glucose 7 0.034 0.862 0.006 
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   MR-Egger intercept 

Category Exposure No. of SNPs SE P-value Intercept 
Obesity Whole body water mass 735 0.003 0.379 0.002 
Obesity Basal metabolic rate 693 0.003 0.248 0.003 
Obesity Weight 576 0.003 0.583 0.002 
Obesity Impedance of whole body 564 0.003 0.458 -0.003 
Obesity Body mass index 964 0.002 0.701 -0.001 
Obesity Whole body fat mass 415 0.004 0.746 -0.001 
Obesity Body fat percentage 365 0.005 0.707 0.002 
Obesity Trunk fat percentage 334 0.005 0.203 0.007 
Obesity Waist circumference 316 0.005 0.984 0.000 
Obesity Birth weight 93 0.009 0.548 -0.006 
Obesity Hip circumference 89 0.011 0.252 0.013 
Obesity Waist-to-hip ratio 35 0.019 0.392 -0.016 
Obesity Birth weight of first child 45 0.014 0.711 0.005 

Plasma analytes Apolipoprotein H 3 0.534 0.472 -0.583 
Sex hormones and reproduction Age at menopause* 48 0.040 0.590 0.022 
Sex hormones and reproduction Age at menarche* 73 0.022 0.090 -0.038 
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