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Aim: We explore HER3 expression in lung adenocarcinoma (adeno-NSCLC) and identify potential mech-
anisms of HER3 expression. Materials & methods: Tumor samples from 45 patients with adeno-NSCLC
were analyzed. HER3 and HER2 expression were identified using immunohistochemistry and bioinfor-
matic interrogation of The Cancer Genome Atlas (TCGA). Results: HER3 was highly expressed in 42.2%
of cases. ERBB3 copy number did not account for HER3 overexpression. Bioinformatic analysis of TCGA
demonstrated that MEK activity score (a surrogate of functional signaling) did not correlate with HER3
ligands. ERBB3 RNA expression levels were significantly correlated with MEK activity after adjusting for
EGFR expression. Conclusion: HER3 expression is common and is a potential therapeutic target by virtue
of frequent overexpression and functional downstream signaling.

Tweetable abstract: HER3 expression is common in adeno-NSCLC and is a potential therapeutic target by
virtue of frequent overexpression and functional downstream signaling.
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Background
Non-small-cell lung carcinoma
Lung cancer is the leading cause of cancer mortality worldwide. There is a poor 5-year survival rate in patients with
regional and distant disease in non-small-cell lung carcinoma (NSCLC), of 33 and 6%, respectively [1]. Systemic
treatment with chemotherapy and immunotherapy is standard of care, while a small subset of cancers demonstrates
oncogene-addiction with effective targeted treatments. These include EGFR mutated, ALK rearranged and newer
targets such as ROS, RET and NTRK.

HER3
HER3 is a member of the EGFR family of receptors. Investigation of HER3 as a therapeutic target has not
been previously prioritized due to its impaired kinase activity [2]. HER3 acts as a heterodimeric partner for other
members of the EGFR family, namely EGFR/HER-1 and ERB2/HER2/Neu [3–6]. HER3 possesses weak tyrosine
kinase activity and so preferentially forms heterodimers with kinase-proficient receptor tyrosine kinases in the
presence of its ligands neuregulin (NRG 1 and NRG 2) [2]. It has also been demonstrated that HER3 can form
heterodimers with MET, AXL and IGF1R [7–9]. EGFR has a number of ligands, including amphiregulin, epidermal
growth factor and transforming growth factor, while HER2 has no known ligand and remains in an ‘open’, active
conformation [10–12]. However, HER2/HER3 dimerization can occur independently of ligand binding [13]. More
recently it has been appreciated that HER3 can also homodimerize on binding to the heregulin ligands, NRG1

Lung Cancer Manag. (2021) LMT48 eISSN 1758-197410.2217/lmt-2020-0031 C© 2021 Anna Minchom

https://orcid.org/0000-0002-9339-7101


Research Article Manickavasagar, Yuan, Carreira et al.

and NRG2, so having intrinsic, non-EGFR or HER2 mediated activity [14,15]. Downstream signaling of HER3 is
mainly via the PI3K/AKT pathway, with MAPK/ERK and JAK/STAT pathways also activated [16,17].

ERBB3, the HER3 gene, is under the regulation of several miRNAs including miR125a, miR125b and
miR205 [18–20]. Studies have shown that the ubiquitin-proteasome pathway plays a significant role in cancer
initiation and progression by regulating protein levels [9,21–25]. E3 ubiquitin ligases regulate EGFR family receptors.
NRDP1 mediates HER3 degradation [9,22]. NRG1 stabilizes USP8 which in turn stabilizes NRDP1 [21] NEDD4
is a novel interaction partner and ubiquitin E3 ligase of HER3 [23].

Evidence for the role of HER3 in lung cancer pathogenesis is largely drawn from retrospective data sets correlating
HER3 expression with poor prognosis and metastatic development [26–29]. Accumulating evidence supports the role
of HER3 in the development of resistance to EGFR targeted therapies [30–35]. From preclinical data, dual targeting
of EGFR and HER3 is capable of overcoming acquired resistance to EGFR inhibition [32,35]. MET amplification
or overexpression is a mechanism of resistance to EGFR-TKI occurring in 5% of cases [36]. HER3 phosphorylation
is observed in EGFR mutant tumors with MET amplification, indicating that MET activates PI3K/AKT pathway
via HER3 phosphorylation [37]. MEK inhibition causes a transcriptional upregulation of both HER2 and HER3
and the formation of heterodimeric complexes in KRAS mutant NSCLC and colon cancer and combined MEK
and dual EGFR-HER2 inhibition has a synergistic effect [34]. Mutations of HER3 have been described in the
extra-cellular domain or tyrosine kinase domain as a rare event in lung cancer and can influence the activity of
HER3 receptor as well as the dimerization affinity with HER2 and EGFR [38–40].

Here, we explore HER3 expression levels in adenocarcinoma of the lung (adeno-NSCLC) patients and correlate
it with clinical parameters. We also interrogate large genomic datasets to identify the potential mechanism of HER3
expression and propose that HER3 could be an alternate pathway for MEK pathway activation.

Materials & methods
Patients & tissue samples
The Drug Development Unit at the Royal Marsden recruits patients with advanced solid malignancies to early
phase clinical trials. Patients with adeno-NSCLC attending consultations in our Phase I clinic provided informed
written consent. The archival or fresh tissue from biopsies were used in the study. Approval was gained from the
local research and ethics committee for the use of the clinical data. Archival formalin fixed paraffin embedded tumor
blocks were analyzed for HER2 and HER3 protein expression and genomic analysis for HER3 copy number was
performed. Patient clinical data were retrospectively collected from the Royal Marsden hospital electronic patient
record system.

Immunohistochemistry & scoring system
Tissue blocks were freshly sectioned and only considered for immunohistochemistry (IHC) analyses of HER2
and HER3 if adequate material was present. Protein expression on 3 μm thick formalin-fixed paraffin-
embedded (FFPE) sections was assessed by a pathologist blinded to the clinical data.

HER3 and HER2 antibody validation by siRNA and immunohistochemical assays were performed as previously
described. Briefly, HER3 immunoreactivity was investigated using the rabbit monoclonal anti-HER3 antibody clone
D22C5 (#12708, Cell Signaling Technology, London, UK). HER2 immunoreactivity was investigated using the
mouse monoclonal anti-HER2 antibody clone CB11 (#NCL-L-CB11, Leica Biosystems, Newcastle, UK). Rabbit
and Mouse IgGs (#I-1000 and I-2000, Vector, CA, USA) were used as negative controls. For HER3 IHC, antigen
retrieval was conducted by heating slides in high pH buffer using a microwave, staining was subsequently performed
using BioGenex i6000 autostainer (Launch Diagnostics, Kent, UK). HER3 immunoreactivity was detected using
Dako EnVision Flex high pH kit (#K800021-2, Agilent, Glostrup, Denmark). For HER2 IHC automated antigen
retrieval and detection were performed using Leica Bond RX (Leica Biosystems). HER2 immunoreactivity was
detected using the Bond Polymer Refine Detection system (#DS9800, Leica Biosystems).

For HER2, membranous expression was scored according to College of American Pathologists HER2 scoring
guidelines [41]. No staining or membrane staining that is incomplete and is faint/barely perceptible and in ≤10%
of tumor cells (score 0); incomplete membrane staining that is faint/barely perceptible and in >10% of tumor
cells (score 1+); weak-to-moderate complete membrane staining observed in >10% of tumor cells (score 2+)
and circumferential membrane staining that is complete, intense and in >10% of tumor cells (score 3+). For
HER3 staining, the same guidelines were used to generate an ad hoc HER2-like score for membranous staining.
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Additionally, HER2 and HER3 cytoplasmic staining was visually assessed, percentage of cells staining weakly,
moderately or strongly were noted and H score calculated.

Digital PCR
Digital PCR was performed on a Q×100 droplet digital PCR system (Bio-Rad, CA, USA). Copy number assays
were performed with a FAM-ERBB3 validated Bio-Rad assay, reference ID: dHsaCP2500395 (67 bp amplicon)
and a recommended reference copy number Hex-assay for AP3B1, assay ID: dHsaCP2500348 (60 bp amplicon).
Digital PCR analysis was performed using QuantaSoft v1.3.2.0 software from Bio-Rad to assess the number of
positive droplets. At least two negative control wells with no DNA were included in every run and each assay was
run at least in duplicate (see Supplementary methods).

Statistical methods
Statistical analysis of IHC and clinical data was performed on Graphpad Prism v7.0d. The association between
HER3 expression and other binary data was analyzed using two sided Fisher’s exact test. For survival Kaplan–
Meier curves were constructed and Gehan–Breslow–Wilcoxon test compared populations. Survival was taken from
diagnosis to death and those alive at follow-up were censored.

Bioinformatic methods
Genomic data and gene expression (RNA-Seq by expectation maximization) for 507 adeno-NSCLC was down-
loaded from cBioportal for analysis [42]. The RNA-Seq by expectation maximization value represents the normalized
expression level of each gene in each tumor. It was calculated by: estimated number of reads that aligned to a gene
and; the scaled version of the raw counts using a standard 75th-percentile normalization approach [43]. This approach
followed the The Cancer Genome Atlas (TCGA) Research Network recommendations and TCGA lung adenocar-
cinoma publication [43]. We interrogated the TCGA to determine the relationship between ERBB3 expression and
particular oncogenes of interest, namely EGFR and KRAS mutations.

The MEK activity score is an accumulation measurement of MEK pathway activity based on a previously
validated 18-gene transcript signature of MEK signaling [44]. Linear regression was used to assess the associations
between gene expression levels (and with MEK signaling). All statistical test was performed using R (v1.1.43).

Results
Clinical characteristics
From December 2010 to December 2018, 45 patients with adeno-NSCLC were referred to the Drug Development
Unit, consented to tissue analysis and had available archival tumor specimens. The majority of samples were from
biopsies (41), the rest being from surgical resection (4). There were relatively fewer males (19) than females (26)
in the cohort. The median age at diagnosis was 58 (range: 38–72) and the median overall survival (OS) was
38 months. The median number of lines of treatment for advanced disease was 3 (range: 0–7): 43 patients received
chemotherapy (median 2: range 1–4), 22 patients received EGFR tyrosine kinase inhibitor (TKI) (median 1: range
1–3) and nine patients received immunotherapy. All patients who had an EGFR mutation received an EGFR TKI
and 25 patients were enrolled in a Phase I trial and received at least one Phase I trial drug.

HER2 & HER3 protein expression
HER3 protein expression showed a membranous distribution with no nuclear expression (Figure 1A). High
expression of HER3 (2+ or 3+) was seen in 42.2% of cases (Table 1). HER2 expression was positive in 31.1% of
cases, while HER2 and HER3 co-expression was seen in 11.1% (5/45). No correlation between HER2 and HER3
expression was demonstrated (Fisher’s exact test; p > 0.9999). Patient characteristics according to HER3 status are
described (Table 2).

Correlation of HER3 protein expression by IHC with clinical characteristics
The median OS from diagnosis for HER3 positive patients was 40.5 months, and for HER3 negative patients
30.8 months. There was no statistical difference in survival between HER3 positive and HER3 negative cases
(Gehan–Breslow–Wilcoxon; p = 0.4596) (Figure 1B). There was no difference in median survival between HER3
positive and negative cases in those patients with EGFR mutations (median OS: 42.6 months HER3 positive,
median OS: 43.9 months HER3 negative; Gehan–Breslow–Wilcoxon; p = 0.4927).
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Figure 1. Adeno-non-small-cell lung carcinoma patient samples. (A) Panel of HER3 negative cases (0–1+) and HER3
positive cases (2–3+). For HER3 staining, the guidelines from CAP HER2 scoring guidelines were used to generate an
ad-hoc HER2 like score. (B) Kaplan–Meier curve of HER3 positive versus HER3 negative cases. (C) ERBB3 gene copy
number and HER3 immunohistochemistry.

Table 1. Membranous HER3 and HER2 protein expression by immunohistochemistry.
HER3 staining % (n)

0 35.5% (16) 57.8% (26)

1 22.2% (10)

2 15.5% (7) 42.2% (19)

3 26.7% (12)

HER2 staining % (n)

0 33.3% (15) 68.9% (31)

1 35.5% (16)

2 22.2% (10) 31.1% (14)

3 8.8% (4)
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Table 2. Clinical characteristics for HER3 positive and HER3 negative patients.
Clinical characteristics HER3 positive, % (n) HER3 negative, % (n)

Male 26% (5) 74% (14)

Female 54% (14) 46% (12)

Median age (years) 58 57.5

Smoking status

Non smoker 16% (3) 12% (3)

Current smoker 5% (1) 12% (3)

Ex-smoker 47% (9) 35% (9)

Unknown 32% (6) 42% (11)

Prior therapy

No prior treatment 2% (1) 2% (1)

Prior chemotherapy 35% (17) 43% (25)

Prior immunotherapy 10% (5) 7% (4)

Prior TKI 23% (11) 22% (13)

Phase I clinical trial 17% (10) 26% (15)

TKI: Tyrosine kinase inhibitor.

22.2%

11%

4.4%

4.4%

8.9%

15.5%

HER2 overexpression

HER3 overexpression

EGFR mutation

Figure 2. Adeno-non-small-cell lung carcinoma patient samples. Frequency of aberrations in adeno-non-small-cell
lung carcinoma as percentage of total population.

HER3 gene amplification
Digital PCR of ERBB3 was performed in 27 cases. There was low frequency of small copy number gain in HER3
with 11% (3/27) having copy number variant of 3–4 (Figure 1C). Six out of the seven samples with this highest
copy number variant scored 3+ on HER3 IHC.

EGFR & KRAS mutations & correlation with HER3
As standard of care, EGFR mutational analysis had been performed in all 45 patients and KRAS mutational analysis
in 28 patients. EGFR mutation was present in 17.8% (eight cases). HER3 protein overexpression was present
in 8.9% (four cases) of EGFR mutation and in 14.2% (four cases) of KRAS mutation. There was no correlation
between HER3 overexpression and EGFR positivity (Fisher’s exact test; p = 0.7043) or HER3 and KRAS positivity
(Fisher’s exact test; p = 0.6908) (Figure 2).
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Figure 3. The Cancer Genome Atlas adeno-non-small-cell lung carcinoma. (A) Frequency of HER family genetic
alterations. (B) ERBB3 RNA expression with ERBB3 CNA. (C) Gene expression of EGFR, ERBB2, ERBB3 and ERBB4. (D)
Correlation of ERBB3 expression level with MEK activity.
RSEM: RNA-Seq by expectation maximization.

Baseline genomic data in TCGA
Interrogation of the PanCancer TCGA of 507 patients with adeno-NSCLC showed a genetic alteration rate of
31% in the ERBB family with the most common genetic alteration seen in EGFR and ERBB4, which was evident
in 16% (79 cases) and 10% (50 cases). In ERBB2 and ERBB3, genetic alterations were less frequent, seen in 4% (19
cases) and 5% (25 cases), respectively (Figure 3A). Among the different types of genetic alteration, amplification
was the most common alteration in ERBB3, observed in 48% out of all alterations (12 cases). ERBB3 copy number
change demonstrated a positive association with ERBB3 RNA expression (r = 0.26; p = 8 × 10-6) (Figure 3B);
amplification cases had 1.7-times higher expression of ERBB3 RNA than diploid cases (p = 0.004).

In the TCGA dataset ERBB3 amplification co-occurred with EGFR amplification; the amplification of ERBB3
was four-times more likely to co-exist with EGFR amplification than not, though this did not reach statistical
significance (p = 0.1). There was no co-amplification between ERBB3 and ERBB2, but the expression of ERBB3
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Figure 4. Correlation of gene expression with MEK activity in The Cancer Genome Atlas adeno-non-small-cell lung
carcinoma. (A) Correlation of ERBB3 expression level with MEK activity in ERBB3 expression high cancers. (B)
Correlation of EGFR expression with MEK activity in ERBB3 expression high cancers. (C) Correlation of ERBB3
expression level with MEK activity in ERBB3 expression low cancers. (D) Correlation of EGFR expression with MEK
activity in ERBB3 expression low cancers.
RSEM: RNA-Seq by expectation maximization.

was highly correlated with ERBB2 expression levels (r = 0.09; p = 2.5 × 10-23) (Supplementary Figure 1A). ERBB3
expression also positively correlated with ERBB4 expression (r = 0.1; p = 0.001) but there was no correlation with
the expression levels of EGFR (r = -0.12; p = 0.5). EGFR and ERBB2 gene copy number also increased with gene
expression (EGFR: r = 0.4; p < 2 × 10-16; and ERBB3: r = 0.35; p = 4 × 10-16) (Supplementary Figure 1B). ERBB3
gene copy number decreased with ERBB2 gene expression (r = -0.1; p = 0.09) (Supplementary Figure 1C).

MEK activity score correlation with key nodes in ERBB pathway in TCGA data
We performed further analyses of RNA sequencing data from TCGA. We observed ERBB2 and ERBB3 RNA
expression levels were higher than EGFR and ERBB4 in adeno-NSCLC (Figure 3C). We measured absolute
gene expression level of ERBB family genes and derived MEK pathway activity using a validated 18-gene MEK
signature [44]. EGFR RNA expression levels correlated with MEK activity (r = 0.16; p = 3.0 × 10-5), ERBB3 RNA
expression did not correlate with MEK activity (r = 0.09; p = 0.78) (Figure 3D). We further characterized MEK
activation score with gene expression levels of ERBB ligand and proteins of ubiquitination (Supplementary Table
1). AREG (EGFR ligand) and RNF41 (an ubiquitin ligase) expression had a significant positive correlation with
MEK activity score.

In order to stratify ERBB3 RNA expression effects on MEK activity, we grouped patients into ERBB3 ’expression
high’ (higher 50% of ERBB3 RNA expression cases) and ERBB3 ’expression low’ (lower 50% of ERBB3 RNA
expression cases). In the ERBB3 expression high group, ERBB3 RNA expression levels were significant and positively
correlated with MEK activity score (r = 0.19; p = 0.006), whereas no correlation was observed in the ERBB3
expression low group (p = 0.12) (Figure 4). The expression of EGFR did not correlate with MEK activity score
in the ERBB3 expression high group (p = 0.11), though did correlate with MEK activity score in the ERBB3
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expression low group (r = 0.2; p = 4 × 10-5). In the ERBB3 expression high group, ERBB3 expression levels still
highly positively correlated with MEK activity even after adjusting for EGFR expression effects (p = 0.007).

Discussion
HER3 protein levels in adeno-NSCLC & mechanism of overexpression
Reports of the incidence of HER3 protein overexpression in NSCLC vary greatly according to the cohort. Previous
groups have reported rates ranging from 6.5 to 86.1% [28,45–49]. IHC methods and scoring have not been previously
standardized. Our data use a validated and robust scoring system based on optical density and H-score. Although
our patient cohort is small, we demonstrate that overexpression of HER3 protein is common in advanced adeno-
NSCLC, occurring in over 40% of patients.

The rate of ERBB3 gene amplification in NSCLC is low. The Cancer Genome Atlas Research Group sequenced
230 cases of lung adenocarcinoma and did not identify any ERBB3 amplification [43]. The cBioportal and GENIE
data sets report amplification in just over 1% frequency [42]. It was not possible to perform ERBB3 PCR on all
cases in our cohort as tumor tissue was limited, but a sample of 27 cases had sufficient tumor sample to pass quality
control. There appeared to be clustering of HER3 overexpressing cases in those with ERBB3 copy number gain
but this does not account for the majority of HER3 overexpression. We interrogated the PanCancer TCGA dataset
of adeno-NSCLC samples. This dataset includes transcriptome (RNA) and genomic (DNA) data. The genomic
data support our finding of low levels of ERBB3 amplification. It also provided the confirmation that ERBB3 copy
number alteration highly associates with its gene and HER3 protein expression.

HER3 expression as a prognostic marker
Yi et al. demonstrated that HER3 overexpression is associated with a poor prognosis in a cohort of 443 patients
with advanced NSCLC [28]. The median overall survival in our study was not significantly different between the
HER3 negative and positive patient group. This Phase I patient cohort may not be truly reflective of the broader
population of NSCLC patients, as these patients tend to be fitter with fewer or no comorbidities.

HER3 in relation to oncogenic drivers in adeno-NSCLC
HER2 protein overexpression is reported in 6–30% of patients with lung cancer, which in keeping with our
results [50–52]. HER2 expression is less frequently observed in NSCLC than HER3 expression. There was some
overlap, though no statistically significant association between, HER3 expression with HER2 expression or KRAS
and EGFR mutations though this is somewhat limited by small sample size. TCGA data demonstrated correlation
of ERBB3 and ERBB2 expression. Previous data have demonstrated that HER3 plays a role in EGFR TKI resistance.
Half of the cases in this cohort with EGFR mutation also co-expressed HER3. No difference in overall survival was
seen between HER3 expressing and nonexpressing groups in the EGFR-mutant cases in this cohort though patient
numbers were small.

HER3 & functional activity in adeno-NSCLC
The MEK activity score is an 18 gene signature derived from an experiment to test a mixed-tumor response to
the MEK inhibitor, selumetinib [44]. The MEK activity score is a surrogate marker of MEK pathway activation
though not specific for activation through the HER3 channel as the MEK pathway is also initiated upon other
receptor activation. As HER3 activity is predominantly via HER2/HER3 and EGFR/HER3 hetero-dimerization,
we inferred that the MEK activity score could be used as a surrogate of, but not specific to, HER3 protein expression.
If a key node in the HER3 pathway is found to correlate with MEK activity score, it can be concluded that, in
that cohort, the node may play a key part in pathway. The lack of correlation with ERBB3 ligands (NRG 1 and 2)
expression is an important negative finding (i.e., HER3 protein expression does not appear to be ligand dependent).

In the TCGA dataset MEK activity score was associated with EGFR and AREG (EGFR ligand) gene expression.
This suggests that signaling via EGFR is key to the oncogenic behavior in lung cancer. EGFR has been previously
reported as a key driver of oncogenesis in lung (and other) cancers [53]. Although our initial analysis did not show
correlation of ERBB3 with MEK signature, we stratified ERBB3 expression into two groups; ’expression low’, where
ERRB3 expression was less than 50% of the median expression and ’expression high’, where ERBB3 expression was
50% or more than the median expression levels; and analyzed this along with EGFR gene expression. In the ERBB3
expression high group, ERBB3 RNA expression levels positively correlated with MEK activity score but not in the
expression low group. The expression of EGFR correlated with MEK activity score in the ERBB3 expression low
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group. HER3 may be an alternative pathway for MEK activation in the HER3 expression high group. This analysis
implies a degree of functional downstream pathway signaling via HER3. In effect, this suggests that when EGFR
drives the cancer, the effect of HER3 is minimal as EGFR drives the downstream signaling. However, as HER3
expression increases this becomes the main driver of pathway activation.

Conclusion
We conclude that HER3 is commonly over-expressed in NSCLC and co-expresses with other HER family receptors.
HER3 over-expression was not fully attributable to gene copy-number change. In the search for nongenomic causes
of HER3 protein overexpression, the MEK activity score was used as a surrogate of HER3 overexpression; however
no correlation with ligands of HER3 were seen. Further investigation, therefore, is needed to continue to elucidate
the mechanism of HER3 overexpression in adeno-NSCLC. We have a simple tool in the form of IHC that can be
used to ’prescreen’ and stratify patients to receive HER3 targeting compounds. HER3 targeting compounds are in
development such as the HER3 antibody drug conjugate patritumab deruxtecan [54], and the monoclonal antibodies
lumretuzumab [55] and seribantumab [56]. There are some patients where HER3 expression occurs concurrently
with driver mutations (EGFR). The role of HER3 in these groups, including in drug resistance, is the subject of
ongoing investigation. Additionally, we propose that HER3 may signal via the MEK pathway (oncogenic role, for
further functional validation). The ’clinical reality’ of targeting HER3 may be more complex with heterogeneity of
response depending on other genomic and as yet, undefined, features.

Future perspective
We foresee remarkable change in lung cancer care, with increasingly more targeted therapies, stratifying patients
according to novel targetable aberrations, and to overcome resistance. Antibody drug conjugates as well as bispecific
antibodies use will be routine practice and enable precise targeting and delivery of cytotoxics.

Summary points

• In a cohort of 45 patients with adeno-non-small-cell lung carcinoma (NSCLC), HER3 protein overexpression
occurred in 42.2% of cases and was more frequently seen than HER2 overexpression. There was no statistically
significant association between HER3 expression and HER2 expression, EGFR or KRAS mutations.

• The medial overall survival in our study was not significantly different between the HER3 negative and positive
patient groups.

• On The Cancer Genome Atlas analysis, the mechanism of HER3 overexpression was not fully attributable to ERBB3
copy number nor was ERBB3 ligand dependent. Further investigation is required to elucidate the mechanism of
HER3 overexpression.

• MEK activity score was used as a functional surrogate marker for HER3 overexpression. In the ERBB3 expression
high group, ERBB3 RNA expression levels positively correlated with MEK activity score but not in the expression
low group. The expression of EGFR correlated with MEK activity score in the ERBB3 expression low group. This
supports the hypothesis that HER3 is an alternative pathway for MEK activation in the HER3 expression high
group.

• HER3 overexpression is common, and has functional downstream signaling, particularly in non-EGFR driven
adeno-NSCLC.
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