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Landscape of transcriptomic interactions between
breast cancer and its microenvironment
Natalie S. Fox1,2, Syed Haider 1,3,4, Adrian L. Harris 3 & Paul C. Boutros 1,2,5,6,7,8,9,10

Solid tumours comprise mixtures of tumour cells (TCs) and tumour-adjacent cells (TACs),

and the intricate interconnections between these diverse populations shape the tumour’s

microenvironment. Despite this complexity, clinical genomic profiling is typically performed

from bulk samples, without distinguishing TCs from TACs. To better understand TC–TAC

interactions, we computationally distinguish their transcriptomes in 1780 primary breast

tumours. We show that TC and TAC mRNA abundances are divergently associated with

clinical phenotypes, including tumour subtypes and patient survival. These differences reflect

distinct responses of TCs and TACs to specific somatic driver mutations, particularly TP53.

These data further elucidate how the molecular interplay between breast tumours and their

microenvironment drives aggressive tumour phenotypes.
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Solid tumours are not homogeneous masses of cancer cells.
Rather, tumour cells (TCs) are intermingled with adjacent
ones, including fibroblasts, immune and inflammatory cells,

fat cells and endothelial cells. These cells are not cancerous
themselves, but the complex interplay between TCs and tumour-
adjacent cells (TACs) can create a microenvironment favourable
for tumour progression1. Indeed the failure to recapitulate this
microenvironment and its interplay is one reason cancer cell
lines, organoids and xenografts can be difficult to generate and
are imperfect avatars for in vivo tumours2–4.

In breast cancer, mRNA abundance has clear clinical utility,
both to define subtypes with predictive value for treatment
response, and to model the aggressiveness of a tumour by pre-
dicting patient survival5,6. These profiles appear to have been
driven largely by TC information, although we continue to gain
insights into the roles TACs play in cancer initiation, progression
and response to treatment. As a result, it remains unclear how
TAC and TC transcriptomes inter-relate. Some groups have used
micro-dissection to obtain TAC or stromal mRNA abundance
profiles, and developed candidate biomarkers from these7–10. It is
attractive to imagine transcriptomic biomarkers that integrate TC
and TAC information to better understand tumour behaviour in
the context of its cellular microenvironment.

Although most large-scale genomic studies aim to investigate
pure TC populations, the practicalities of tumour sampling results
in bulk mixtures of TCs and TACs10,11. Sample purity can be
improved using techniques like laser capture micro-dissection12,
but these can be costly, involve handling that increases the
potential for errors and are infeasible with some samples because
of unintentional drying and other artefacts13. Single-cell
sequencing may eventually resolve these issues, but is currently
neither accurate enough for clinical usage nor technically feasible
on routine clinical samples, and remains relatively slow and
costly14.

As an alternative approach, in silico techniques for purifying
cancer mRNA abundance profiles, called deconvolution algo-
rithms, have been developed11,15–18. Deconvolution algorithms
purify TC mRNA abundance from confounding TAC mRNA
abundance, thereby reducing inter-sample heterogeneity and
increasing statistical power. Further, their negligible cost and
speed makes them attractive for clinical studies. As a result, these
have been adopted in some recent large-scale discovery
studies19,20. Indeed there is evidence that they improve the
accuracy of clinical prediction tools17,21. But overall the clinical
utility of TAC mRNA profiles, and their relationship with the key
somatic driver mutational events occurring in tumour genomes,
remains largely uncharacterised.

To fill this gap, we evaluate the landscape of TC and TAC
transcriptomes in a cohort of 1780 primary breast tumours. We
comprehensively evaluate the synergy between TC and TAC
mRNA abundance in clinical decision-making, and quantify the
value of prognostic TAC-derived biomarkers. These data quantify
how specific somatic driver mutations dysregulate their tumour
microenvironments, and how TCs and TACs respond differently
to a specific somatic driver event. Taken together, these results
paint a landscape of genome–TC–TAC interactions that
demonstrate an important approach for improving our under-
standing of the evolution and aggression of primary tumours.

Results
Deconvolving TC and TAC mRNA abundance. To obtain TC-
and TAC- specific mRNA abundance from bulk cancer samples,
we augmented the deconvolution algorithm called ISOpure,
which applies a non-cancerous reference panel to deconvolve
different cell populations17. Previously published ISOpure

deconvolves TC mRNA abundance profiles and estimates the
sample tumour purity. We extended ISOpure to extract and
quantify TAC mRNA abundance profiles as well as TC mRNA
abundance profiles, where TAC mRNA abundance profiles
comprise the mixture of non-cancerous cell populations located
proximally to the tumour. TAC deconvolution capability is
available in the latest version of ISOpureR on CRAN. We applied
this updated algorithm to 1780 primary breast tumours, one per
patient22, creating a landscape of paired TC and TAC tran-
scriptomes. These data were then used to evaluate both single
gene and multi-gene prognostic associations, TC–TAC biomarker
synergy, microenvironmental hallmarks of breast cancer subtypes
and the microenvironmental consequences of specific driver
mutations (Fig. 1a). We used the TCGA cohort of 1014 primary
breast tumours with RNA-Seq mRNA abundance profiles for
validation of these analyses. The median mRNA abundance per
gene was correlated between data sets for bulk, TC and TAC
mRNA abundance profiles (Supplementary Fig. 1).

ISOpure is a two-step process. In the first step, ISOpure uses
the average mRNA abundance profile of the cohort to estimate
the proportions of TCs in each bulk sample. In the second step,
individual TC mRNA abundance profiles are created using the
estimated purities from step one. To this we added a third step,
which creates TAC mRNA abundance profiles from the purity
estimates and bulk and TC mRNA abundance profiles. As breast
cancer is a heterogeneous disease with subtypes that have unique
molecular profiles, clinical outcomes and treatment responses,
there may be subtype-associated bias for ISOpure deconvolution.
To avoid this, we performed TC–TAC devolution separately for
each intrinsic breast cancer subtype (PAM50), thereby using a
unique average mRNA abundance profile per subtype of the
disease23 (Supplementary Fig. 2A). We benchmarked the
variation between global analysis and subgroup-based analysis
(Supplementary Fig. 2B). The average mRNA abundance for each
gene was highly concordant between the two approaches (ρbulk=
0.99, ρTC= 0.97; Fig. 1b, c). The PAM50 classifications from these
TC mRNA abundance profiles agree with the original Curtis
et al.22 classifications for ~ 75% of patients, within variation
reported between PAM50 and immunohistochemical classifica-
tion24 (Supplementary Table 1). Thus, the mRNA abundance
profiles only vary slightly dependent on the cohort used for
running ISOpure and, for all analysis, we used the mRNA
abundance profiles deconvolved per subtype.

To assess the effectiveness of our deconvolution, we first
examined the three receptor genes associated with molecular
subtypes of breast cancer: the oestrogen receptor (ESR1),
progesterone receptor (PGR), and human epidermal growth
factor receptor 2 (ERBB2). Patients with basal-like breast cancer,
including most triple receptor-negative tumours, are well-known
to have lower tumour mRNA abundances of all three receptors.
By contrast, patients with HER2-enriched breast cancer have
elevated ERBB2 and those with luminal breast cancers have
elevated ESR1 and PGR. As expected, these trends were all
confirmed in bulk transcriptomes, clarified in TC transcriptomes
and absent in TAC transcriptomes (Fig. 1d). As a further control
we evaluated stromal caveolin-1 (CAV1), which is a prognostic
biomarker in breast cancer25,26. We confirmed this association
using TAC mRNA abundance (Fig. 1e). We further verified the
TAC-specific of CAV1 expression: only 1/1780 patients exhibited
any TC expression of CAV1, as expected.

The landscape of breast cancer purity. Across our cohort, we
identified a strikingly broad range of tumour purity, ranging from
6 to 88%. The median tumour had 59% of the bulk sample
estimated to be TCs, and there was good concordance between
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ISOpure and pathology estimates of tumour cellularity (Supple-
mentary Fig. 3A). Some individual tumours showed large diver-
gence between pathology and molecular estimates: these may in
part reflect the challenges faced by visual area-based assessment
in reflecting the differing volumes and RNA concentrations in

TCs and TACs17,27. ISOpure tended to estimate higher purity
than pathologists in tumours with higher grades and in basal-like
tumours. By contrast, pathologists tended to estimate higher
purity in older patients, in normal-like breast tumours and in
ER+ tumours (Supplementary Fig. 3C, Supplementary Table 2).
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ISOpure purity estimates varied modestly between subtypes, with
basal-like and luminal B samples having higher purity (p <2.2 ×
10−16, one-way analysis of variance (ANOVA); Supplementary
Fig. 3B; Supplementary Table 3; Supplementary Data 1). We
tested purified non-malignant adjacent normals as a negative
control and 73/75 (97%) had an estimated purity below 0.1. By
contrast, only two (0.1%) of the breast cancer samples had esti-
mated purity below 0.1 (Supplementary Fig. 3B).

TAC phenotypes of intrinsic subtypes. Breast cancer subtypes
are an integral part of breast cancer research and clinical man-
agement. To ascertain the TAC phenotypes of the intrinsic
breast cancer subtypes, we started with the widely-used
PAM50 subtyping scheme23. We grouped patients based on
similar mRNA abundance for the PAM50 genes to evaluate
whether these genes which reflect subtype differences in TCs also
distinguish the subtypes in TACs. The breast cancer subtypes
were well-segregated by bulk mRNA abundances of PAM50 genes
and the TAC mRNA abundance of PAM50 genes separated the
luminal subtypes from the others (Supplementary Fig. 4A–C),
verifying that the transcriptome of the tumour microenvironment
varies with clinical subtype.

To assess whether the individual PAM50 genes had increased
or decreased relative mRNA, we compared their mean mRNA
abundances between subtypes (Fig. 2a). We confirmed that the
PAM50 genes cluster similarly to canonical gene-groupings23.
Mean bulk and TC mRNA abundances were similar for each
subtype and generally the TC mRNA abundance was an
intensified version of the bulk mRNA abundance, in particular
for patients with basal-like, HER2-enriched and luminal A
breast cancers. However for the PAM50 genes, TAC mRNA
abundance did not show similar relative mRNA abundance
patterns between subtypes compared to TC and bulk mRNA
abundance. BCL2, a well-established prognostic biomarker in
early breast cancer28, showed reduced mRNA abundance in
HER2-enriched TCs relative to other subtypes, but slightly
elevated mRNA abundance in HER2-enriched TACs (p < 2.2 ×
10−16, one-way ANOVA; Supplementary Fig. 4D). For each
individual PAM50 gene, TC mRNA abundances tended to
recapitulate bulk mRNA abundance but TAC mRNA abun-
dance differed per subtype. These mRNA differences between
bulk and TC profiles lead to 88% agreement for classifications
based on PAM50 methodology. PAM50 subtypes based on TAC
mRNA abundance agreed with the other classifications for only
19% of patients. Overall, the PAM50 genes manifest differently
in TC and TAC mRNA abundance with TC mRNA abundance
for PAM50 genes an excellent surrogate for the intrinsic
subtypes of breast cancer and PAM50 TAC mRNA less
associated with subtypes.

The intrinsic subtypes of breast cancer should be reflected
across genes other than the PAM50 genes and there could be a
better surrogate for the subtypes using TAC mRNA. There are
hundreds of gene whose TAC mRNA abundance were associated
with the intrinsic breast cancer subtypes (Supplementary Table 4).
For example, KRT13 had higher TAC mRNA abundance in
HER2-enriched breast tumours (Supplementary Fig. 5A).

Correlation of TC and TAC mRNA abundances for the same
gene varied by subtype illustrating that the relationships between
TCs and TACs can be subtype specific (Supplementary Fig. 5B–F).
To further assess how TAC profiles correspond with the intrinsic
TC subtypes of breast cancer, we clustered the mRNA abundance
from the most variable genes into four subtypes. The percentage of
patients correctly classified ranged from 51% (bulk) to 48% (TAC)
to 100% (TC). TAC mRNA abundance is clearly defining different
subtypes than TC mRNA abundance (Fig. 2b–e). Again, TC
mRNA abundance clusters had complete overlap with the intrinsic
subtypes indicating that our computational separation procedure
kept mRNA profiles distinct (Supplementary Fig. 5G). Of the four
TAC clusters, aggressive tumours (HER2-enriched and basal-like)
were a single cluster while the other three clusters were comprised
of mixtures of luminal A and B tumours (Supplementary Fig. 5G).
Genes that had differential mRNA abundance between the
cluster of patients with aggressive tumours and the other
three clusters were enriched for genes involved in the immune
system (q= 2.46 × 10−5, hypergeometric test), MicroRNAs in
cancer (q= 3.29 × 10−5, hypergeometric test) and cell–cell signal-
ling (q= 2.36 × 10−5, hypergeometric test; Supplementary Data 2).
Altogether PAM50 subtypes are associated with specific TAC
mRNA profiles, many other genes outside the PAM50 scheme are
important to explain TAC mRNA abundance breast cancer
subtypes.

Univariate gene associations with prognosis. After showing
TAC mRNA associates with the clinical phenotypes of breast
cancer subtypes, we next assessed whether TC and TAC mRNA
abundances were differentially associated with overall patient
survival (OS). Using univariate Cox proportional hazards mod-
elling, we evaluated the association of each gene’s TC and TAC
mRNA abundances with OS. Relative to bulk (unpurified) sam-
ples, TCs consistently showed a large increase in number of genes
associated with OS, in addition to a smaller of number of genes
whose TAC mRNA abundances were associated with OS (Sup-
plementary Fig. 6A). At a threshold of q < 0.05 (Wald test),
purification more than quadrupled the number of genes asso-
ciated with OS from 135 in bulk samples to 617 from TAC and
TC mRNA profiles. Unexpectedly, there were drastically more
genes with TC mRNA abundances associated with OS than TAC
mRNA abundance. Low numbers of prognostic TAC mRNA
abundances was likely a consequence of TAC mRNA abundance
being a mixed population of cells and not that the micro-
environment does not have important prognostic mRNAs. Most
genes (94%) were prognostic in a single profile type (Fig. 3a),
independent of the statistical threshold used (Supplementary
Fig. 6B). Genes showing TC-survival associations were enriched
for methylation, cell cycle and DNA repair pathways (Supple-
mentary Data 2), whereas TAC-survival associations were not.
Thus TCs and TACs transcriptomes represent distinct biological
processes that have distinct associations with patient outcome.

We assessed whether bulk mRNA abundance prognostic
associations were retained in TC and TAC mRNA. As expected,
gene-wise hazard ratios were well-correlated between bulk and
TC mRNA abundances (ρ= 0.55, p < 2.2 × 10−16, Spearman’s

Fig. 1 Overview of profile comparison analyses. a Three different mRNA profile types (left: bulk, TC and TAC) were used in analysis (middle) and reported
in the results (section specified on right). For the boxes and arrows, red represents bulk mRNA abundance, blue represents TC mRNA abundance and
yellow represents TAC mRNA abundance. Green represents both TC and TAC together. b The change in median TC mRNA abundance per gene when
deconvolution was performed with subtypes together or with subtypes separated. c The change in median TAC mRNA abundance per gene when
deconvolution was performed with subtypes together or with subtypes separated. d The mRNA abundance scaled over all patients for each subtype and
each of bulk, TC and TAC mRNA abundances for the receptor genes: ESR1, PGR and ERBB2. e CAV1 TAC mRNA abundance was median dichotomised and
tested for prognosis using univariate Cox proportional hazards modelling
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correlation; Supplementary Fig. 6C), as were those between bulk
and TAC mRNA abundances (ρ= 0.62, p < 2.2 × 10−16, Spear-
man’s correlation; Supplementary Fig. 6D). Association with poor
or good outcome was also consistent between profiles. Bulk and
TC mRNA abundance shared 19 genes associated with good OS
(i.e., HR > 1) and eight associated with poor OS (i.e., HR < 1;
Fig. 3b). Bulk and TAC mRNA abundance shared 8 and 12 genes
whose high mRNA abundance associated with good and poor OS
respectively (Fig. 3c). There were 93 genes showing bulk-survival

associations but no association with TC or TAC mRNA
abundance. These were enriched for six biological processes
including negative regulation of gene expression and translation
(Supplementary Data 2). To complete the characterisation of the
three profile types, we assessed whether TC and TAC were
recapitulating the same biological signal (Supplementary Fig. 6E).
We found that seven genes had both TAC and TC mRNA
abundance associated with OS (Fig. 3d; Supplementary Data 3).
These included LARP1 (HRbulk= 1.4, HRTC= 1.5, HRTAC= 1.4)
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and AK3 (HRbulk= 0.74, HRTC= 0.67, HRTAC= 0.65). Therefore
TC and TAC mRNA capture gene-survival associations not seen
in bulk mRNA-profiling studies.

Some of the genes significant in the entire cohort showed
specificity to the intrinsic subtypes of breast cancer (Supplemen-
tary Data 3, Supplementary Fig. 7). LARP1 and AK3 are
associated with OS in luminal A and luminal B breast cancers
(Supplementary Data 3). Taken together, TC and TAC mRNA
abundance retained most gene associations with OS identified
using bulk mRNA abundance and also uncovered gene associa-
tions with OS, which can be subtype-specific or subtype-
independent.

TC–TAC transcriptome synergy and antagonism. After asses-
sing TC and TAC mRNA abundance separately, we investigated
how TC and TAC mRNA abundance profiles relate to one
another. For each gene, patients were classified into four mutually
exclusive groups: mRNA abundance below the median for both

profiles, mRNA abundance above the median for both profiles,
and the two cases where mRNA abundance was above the median
in one but below the median in the other profile. Genes associated
with a difference in OS between these four groups (q < 0.05, log-
rank test) were assessed for statistical TC–TAC interactions in
predicting OS. This analysis identified 1408 genes that had at least
one of TC mRNA, TAC mRNA or the interaction between the
two significantly associating with OS (|log2HR| > 0.4, q < 0.1,
Wald test; Fig. 4a–d), including both additive, saturation and
synergistic relationships (Fig. 4e–h).

CRIPAK was an example of a saturation relationship between
TC and TAC mRNA abundance. CRIPAK has been reported as a
negative regulator of PAK129. Patients with low CRIPAK TC
mRNA abundance and low TAC mRNA abundance for CRIPAK
had the worst OS and having either high TC or TAC FGD3
mRNA abundance was associated with better OS (HRTC= 0.48 &
q= 4.3 × 10−7, HRTAC= 0.76 & q= 0.019, HRinteraction= 1.4 &
q= 1.9 × 10−4, Wald test; Supplementary Fig. 8). Patients with
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high CRIPAK in both TC and TAC mRNA abundance had
prognosis equivalent to patients with high CRIPAK in TC but low
TAC mRNA abundance; therefore, high TC mRNA abundance
was saturating the relationship and no improvement to prognosis
was gained by high TAC mRNA abundance. These associations
were also identified in HER2-enriched and luminal B breast
cancer patients (Supplementary Fig. 9).

SDAD1 was one of the genes where separating bulk mRNA into
TC and TAC mRNA improved risk stratification. The bulk
mRNA abundance of SDAD1 was not associated with OS

(HRbulk= 1.0 & q= 0.85, Wald test). However, both TC and
TAC mRNA abundance were individually prognostic, but in
opposite directions (HRTC= 1.6 & q= 1.4 × 10−4, HRTAC= 0.73
& q= 0.040, HRinteraction= 1 & q= 0.97, Wald test; Supplemen-
tary Fig. 8). SDAD1 was an additive relationship. There was no
interaction between the survival relationship of TC and TAC
mRNA abundance. SDAD1 mRNA abundance was not identified
as prognostic in any of the individual subtype (Supplementary
Fig. 9). SDAD1 TC mRNA and TAC mRNA abundance appear to
affecting outcome through different pathways.
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Fig. 4 TC–TAC gene interactions. Genes that have significant differences between their TC and TAC mRNA abundance (terms with Wald q-value < 0.1 &
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An example of a gene that shows cooperation between TC and
TAC mRNA is FHL3. The four-and-a-half LIM (FHL) protein
family regulate cell proliferation, differentiation and apoptosis
through interacting with Smad proteins30. FHL3 had a statistically-
significant antagonistic interaction between TC and TAC mRNA
abundance levels when predicting OS (HRinteraction= 0.60 & q=
2.5 × 10−3, Wald test). High levels of FHL3 TAC mRNA abundance
was associated with poor OS (HRTC= 1.6 & q= 2.3 × 10−5, Wald
test) but TC mRNA (HRTAC= 0.93 & q= 0.60, Wald test). Patients
with low mRNA abundance for TC and high mRNA abundance
TAC for FHL3 had the worst OS. Interestingly, patients with high
TC and TAC FHL3 had and low TAC SHCBP1 had equivalent OS
to patients with low TC FHL3 suggesting high TC FHL3 and low
TAC FHL3 mRNA levels might be required for bad prognosis
(Supplementary Fig. 8). In luminal B patients, high TAC mRNA
and low TC mRNA abundance was associated with worse OS for
patients with high TC (Supplementary Fig. 9). FHL3 could be a case
of high TC mRNA abundance rescuing the effect of high TAC
mRNA abundance.

By grouping genes based on whether TC and TAC mRNA
abundance associated with OS, we could assess the overall
relationships that exist between the tumour and the microenvir-
onment and overall survival (Fig. 4a–d). Of the genes whose TC
or TAC mRNA abundance were associated with OS (either in
combination or independently), 43% (600/1408 genes) showed
effects only in their TC mRNA abundance. Only 11% (149/1408)
of the genes associated with OS showed effects in only their TAC
mRNA abundance. There was interplay for 45% (568/1408) of the
genes, where TC and TAC mRNA abundances showed a
statistical interaction in predicting OS (Supplementary Data 3).
Altogether, these data demonstrate that TC and TAC mRNA
abundance have intertwined associations for predicting OS and
bulk mRNA abundance can hide TC and TAC prognostic
associations.

Multi-gene prognostic biomarkers. We demonstrated associa-
tion with PAM50 subtypes, which themselves are prognostic, as
well as gene-wise association of TC and TAC mRNA abundance
with overall survival. Both results suggest that other prognostic
biomarkers may also be generated from purified data. To test this
hypothesis, we generated multi-gene biomarkers from bulk, TC-
only, TAC-only and TC+ TAC mRNA abundance profiles using
machine-learning approaches. We split the data set into a training
set of 1430 patients, which were used to create the biomarkers
using three-fold cross validation, and a withheld test set of 350
patients for evaluating model performance. The mRNA abun-
dance profiles for each fold and the test sets were independently
deconvolved. We sampled the distribution of possible multi-gene
biomarkers using three fold cross validation to train random forest
models based on random selections of 50 genes per model. The
TC mRNA biomarkers were better predictors of OS than bulk
mRNA biomarkers and TAC mRNA biomarkers were generally
the worse predictors. This held both for overall predictions
accuracy (Fig. 5a, b) and for the effect-size of a biomarker (Fig. 5c,
d). Genes did not have consistent performance in different profile
types. The top biomarkers are composed of different genes in each
profile type and we see no association in gene performance
between bulk mRNA abundance profiles and either TC or TAC
mRNA abundance profiles (Supplementary Fig. 10). Therefore,
TAC mRNA abundance have prognostic utility but it is not
additive with TC mRNA abundance (Supplementary Table 5).

DNA–RNA interactions in TACs and TCs. Given we showed
prognostic benefit to separating TC and TAC mRNA from bulk
mRNA, we sought to investigate whether we could find mutations

associated with mRNA abundance changes. We focused on genes
with DNA mutations known to be implicated in cancer31. For
each gene, we tested for differential mRNA abundance associated
with non-silent SNV in the cancer gene. Among the 27 cases of >
50 patients with the same mutated gene within a subtype, seven
cases had cis mRNA abundance effects where the mutations
affected mRNA abundance of that same gene. In luminal B breast
cancers, PIK3CA, GATA3 mutations associated with higher cis
mRNA abundance and TP53 mutations with decreased TP53
mRNA abundance. In luminal A breast cancers, GATA3 muta-
tions associated with higher GATA3 mRNA abundance and
CDH1, TP53, CBFB mutations associated with decreased cis
mRNA abundance. (Supplementary Data 4). In addition, there
were 2433 TC mRNA abundance associations and 5502 TAC
mRNA abundance associations that would have been missed if
analysis was performed on bulk profiles alone. Subtype associa-
tions varied: MUC16 and AHNAK2 only associated with mRNA
abundance differences in luminal B breast cancers, PIK3CA only
affected mRNA in luminal A and luminal B breast cancer patients
but not HER2-enriched breast cancer patients and TP53 con-
sistently associated with mRNA abundance differences (Fig. 6a).
We used a TCGA breast cancer data set of 902 patients with SNV
and mRNA abundance data for validation of the associations. Of
the 27 cases we originally tested, TP53 for basal-like and HER2-
enriched breast cancer, CDH1 for luminal A breast cancer and
PIK2CA for luminal A and luminal B were each mutated in > 50
patients in the TCGA cohort. The majority of mRNA abundance
fold changes correlated between the two data sets (Supplementary
Fig. 11).

TP53 mutations associated with differential mRNA abundance
in all four of the subtypes. However, the number of genes with
differential mRNA abundance associated with TP53 mutations
varied by subtype. Of the 230 patients with HER2-enriched breast
cancer, 163 had TP53 mutations. When we tested differential
mRNA abundance associated with TP53 mutation in patients
with HER2-enriched disease, there were 326 TC mRNA
abundance changes and 2483 TAC mRNA abundance changes
associated with TP53 mutations. There were 267 genes with both
differential TAC mRNA abundance and TC mRNA abundance
associations. For example, mutated TP53 associated with lower
PHB mRNA abundance in TACs and TCs (log2FCTAC= 4.0, q=
2.1 × 10−4; log2FCTC= 0.19, q= 0.026, linear model; Fig. 6b) and
with decreased TAC mRNA abundance for ESR1 (log2FCTAC=
0.88, q= 0.012; log2FCTC=−0.050, q= 0.93, linear model).
Genes with TAC mRNA abundance differences in patients with
TP53 mutations were associated with various biological processes
including negative regulation of blood vessel diameter (q= 0.034,
hypergeometric test), morphogenesis of a branching epithelium
(q= 5.3 × 10−3, hypergeometric test) and extracellular structure
organisation (q= 0.032, hypergeometric test; Supplementary
Data 4). Finally, there were no cis effects of TP53 in the TAC
mRNA abundance in HER2-enriched breast cancers (Supple-
mentary Fig. 12A–C). TP53 mutations associated with TC and
TAC mRNA abundance changes with different effects depending
on the breast cancer subtype (Supplementary Fig. 12D, Supple-
mentary Data 4).

We investigated associations with CDH1 since cadherin is a
known cell–cell adhesion protein and its loss results in a change
in its invasion pattern. Out of 687 patients with luminal A
disease, 85 had CDH1 mutations. There were 495 TAC mRNA
abundance changes associated with CDH1 mutations in patients
with luminal A breast cancer. Of those, 141 genes had both
differential TC mRNA abundance and differential TAC mRNA
abundances. CDH1 had strong similar cis effects in both TC and
TAC mRNA abundance (log2FCTAC= 7.3, q= 6.1 × 10−38;
log2FCTC= 0.24, q= 1.4 × 10−13, linear model). Effects on other
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genes included PTP4A2 which had differential TAC mRNA
abundance (log2FCTAC= 0.22, q= 0.037; log2FCTC=−0.0037,
q= 0.89, linear model; Supplementary Fig. 12E–F). These genes
with differential TAC mRNA abundance associated with mutated
CDH1 were associated with various biological processes including
cell surface receptor signalling (q= 1.3 × 10−7, hypergeometric
test), inflammatory response (q= 1.1 × 10−4, hypergeometric
test), innate immune response (q= 0.010, hypergeometric test)
and positive regulation of T-cell proliferation (q= 4.7 × 10−6,
hypergeometric test; Fig. 6c, Supplementary Data 4). These TAC
mRNA changes suggest interplay between non-silent CDH1
mutations and immune cell dysregulation in the tumour
microenvironment. Together, CDH1 in luminal A breast cancer
and TP53 mutations in HER2-enriched breast cancers demon-
strate that different somatic drivers aberrations lead to distinct
microenvironmental architectures.

Discussion
Tumours are complex mixtures of benign and malignant cells,
which together form an interconnected tumour environment. The
combination of multiple cell populations will need to be con-
sidered to truly understand tumour progression and the origins of
clinical phenotypes. Here, we show significant differences
between bulk, TC and TAC mRNA abundance associations.
Using TC mRNA instead of bulk mRNA increased the robustness
of biomarker generation. It increased both prognostic power of
random multi-gene biomarkers and the number of univariately

prognostic genes, demonstrating that there was a better chance of
any selected biomarker associating with prognosis and therefore
challenging the sensitivity of new biomarkers. Furthermore, we
developed biomarkers with roughly equal prognostic associations
in both TC and TAC profiles, yet different genes associated with
prognosis (Fig. 3d, Supplementary Fig. 10). Although multi-gene
biomarkers misclassified a number of patients, our approach
produced sufficiently accurate biomarkers to compare the dif-
ferent types of mRNA profiles. METABRIC is sufficiently large to
minimise the over-fitting and over-estimation effect common in
smaller datasets. Secondly, cases that were incorrectly predicted
are possibly enriched in patients for which most biomarkers
fail32. Overall, computational deconvolution of TC and TAC
mRNA creates options for enhanced biomarker discovery.

Although TCs and TACs were more-uniform cell populations
than bulk samples, it is important to note that each profile was
still a heterogeneous population of cells with distinct micro-
environmental pressures33. Breast tumours are often multi-
clonal34, therefore TC mRNA abundances are a mixture of dif-
ferent subclonal populations weighted by their individual pre-
valences. TAC mRNA abundance is similarly a mixture of
different cell types, for instance immune cells and fibroblasts,
under distinct microenvironmental stresses35,36. This mixture of
distinct TAC profiles may explain in part the large per gene
variation of TAC mRNA abundances. Single-cell sequencing may
one day provide an ideal way to understand the heterogeneity of
both TCs and TACs, and their interactions. To date however,
there are no single-cell technologies capable of profiling

AUC

D
en

si
ty

0

5

10

15

20

25

30

0.5 0.7

Bulk
TC
TAC
TC–TAC

AUC

D
en

si
ty

0

1

2

3

4

0.66 0.70

log2 HR log2 HR

D
en

si
ty

0.0

0.5

1.0

1.5

2.0

2.5

3.0

–0.5

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

1.0 2.5

0.
65

–0
.6

6

0.
66

–0
.6

7

0.
67

–0
.6

8

0.
68

–0
.6

9

Bulk

TC

TAC

TC–TAC

90 31 8 2

266 79 5 2

13 8 0 0

335 64 13 1

1.
0–

1.
5

1.
5–

2.
0

2.
0–

2.
5

Bulk

TC

TAC

TC–TAC

107 3 1

238 1 0

152 14 5

263 1 0

0.6 0.68

0.0 0.5 1.0 1.5 2.0 2.5 1.5 2.0

a b

c d

Fig. 5 Biomarker generation. Test set results from biomarkers independently generated on each set of profiles. Performance measured using AUC
performance (a) and log2HR (c) for 5000 randomly generated biomarkers. Zoom in of the best performing signatures by each metric are shown in b and d

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10929-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3116 | https://doi.org/10.1038/s41467-019-10929-z | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Mutated gene used to separate profiles for differential mRNA abundance analysis
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thousands of clinical samples with tractable costs, making com-
putational strategies on bulk data attractive strategies to uncover
TC–TAC associations.

There are many computational methods for deconvolving bulk
transcriptomic profiles. Some, like Cibersort37, quantify specific
known cell populations. The method used here, by contrast,
evaluates the contribution of the full tumour microenvironment,
including cell populations with unknown transcriptomes, such
tumour-adjacent stroma cells. The TAC profiles generated here
provide significant information not found in either bulk profiles
nor cell type proportions, including different subtype associa-
tions, survival associations and relationships with somatic
mutations. Thus, it appears that there are benefits to both general
category of deconvolution approaches to help expand our char-
acterisation of tumours and their microenvironments. Indeed
these data highlight the need for improved methods that combine
cell type agnostic and cell type-specific strategies, and the devel-
opment of benchmarking strategies to quantitatively assess the
accuracy of different methods in different biological contexts.

As TAC mRNA abundance is not statistically additive with TC
mRNA abundance in multi-gene biomarkers, it could mean that the
mRNA abundance associations originate from the same source,
possibly somatic mutations. Along with prognostic associations,
computationally separating TC and TAC mRNA revealed mRNA
abundance differences linked to genomic drivers. We showed TC
and TAC mRNA abundance can help to better understand the
effect of driver mutations in different subtypes and which subtypes
non-silent mutations may or may not have an effect. For example,
mutated PIK3CA showed many associations with differential
mRNA abundance in the luminal breast cancers but no associations
were detected in HER2-enriched breast cancers. Within specific
subtypes, we looked for functional associations. For example,
mutated CDH1 was associated with differential TAC mRNA
abundance for genes involved in immune activation and pro-
liferation suggesting non-silent CDH1 mutations may dysregulate
immune cells in the tumour microenvironment. These examples
hint that we can use these relatively low-cost computational
approaches to better understand the tumour microenvironment.

Although we find evidence of microenvironment dysregulation
through tumour mutations, further experimental work is still nee-
ded to understand the mechanisms and to validate these findings.
This could involve evaluating the microenvironment in in vitro and
in vivo model systems with loss of E-cadherin38 or, similarly, other
cancer genes where we have identified associations. Or even sim-
pler, if we compare predicted results to primary tumours and cell
lines, we expect TC mRNA abundance results to be closer to cell
lines than to primary tumours. Computational analysis of TC and
TAC mRNA associations can help guide experimental exploration
of tumour microenvironment associations.

These results that motivate further studies into TC–TAC
interactions and the contribution of TAC transcriptome changes
to cancer development and progression. There are many existing
datasets in which the approach demonstrated here could be used
to explore TAC biology, particularly in a pathway context39.
Overall our results suggest that in silico derived TC and TAC
mRNA abundance are an advantageous framework to explore the
complex transcriptional network between tumours, their micro-
environments and cancer aggression.

Methods
Data sets. Analysis was performed on the METABRIC cohort which contains
1991 patients each with a primary fresh frozen breast cancer specimen that had
mRNA abundance profiled using Illumina HT-12 v3 microarrays22. These profiles
are referred to as the bulk profiles. METABRIC annotation includes overall sur-
vival, pathologist determined purity estimates and PAM50 subtype classifications.
Six patients with NC (not classified) for their subtype classification were excluded.
Also excluding normal-like breast cancers, 1780 patients were used for the main

analysis. The cohort also has mRNA profiles from Illumina HT-12 v3 microarrays
for 144 adjacent normal breast tissue samples from a subset of the patients with
breast cancer samples. Age and ethnicity distributions of the samples in the full set
and the subset were similar. The METABRIC data set includes the relative mRNA
abundances of 19,877 genes. The METABRIC cohort also includes targeted
sequencing data covering 173 genes frequently mutated in breast cancer (i.e.,
candidate driver genes) with somatic SNVs predictions31.

For validation, we used the breast cancer samples from the Cancer Genome
Atlas (TCGA), downloaded from the Broad GDAC Firehose (https://gdac.
broadinstitute.org/), release 28 January 2016. There were 1014 patients with mRNA
abundance profiles, which were from Illumina HiSeq rnaseqv2 level 3 RSEM
normalised profiles. Genes with >75% of samples with zero reads were filtered out.
SNV profiles were based on TCGA-reported MutSig v2.0 calls. There were 20,531
genes with mRNA abundance from the RNA-Seq and 18,825 overlapped with
METABRIC mRNA abundance profiles. There were 978 patients with mutated
gene information for the 173 genes METABRIC had SNV data for.

TC profiles. The TC mRNA abundance profiles were deconvolved from the bulk
cancer mRNA abundance profiles in METABRIC and a panel of 144 non-
cancerous breast tissue mRNA abundance profiles using ISOpure17 run on
MATLAB release 2010b. Patients were grouped using METABRIC PAM50 clas-
sifications and each subtype was independently run through ISOpure using the
same panel of non-cancerous profiles. ISOpure deconvolution was performed with
mRNA abundance in normal-space but all analysis was performed with mRNA
abundance in log2-space.

To create TC mRNA abundance profiles, the ISOpure algorithm from Quon
et al.17 was used as described without any adjustments. The algorithm is a two-step
process. In the first step the tumour purity for each sample is estimated and in the
second step the mRNA abundance profiles are estimated using the purities from
step one. In order to estimate the samples’ tumour purities, the average sample for
the cohort is used. As breast cancer subtypes are considered separate diseases, one
average per subtype was more appropriate than treating all patients as having the
same disease. We used a different average for each subtype by running each
subtype as a separate run.

For a negative control, we randomly split the 144 normal samples from the
METABRIC data set into 75 samples that were run through ISOpure for
purification as the negative control and the remaining 69 samples continued as the
normal panel for the negative control ISOpure run. This was performed as one
ISOpure run.

Purity and TAC profile estimation. Purity estimates are concurrently estimated
when estimating the TC mRNA abundance using ISOpure. The TAC mRNA
abundance profiles associated with the tumour were estimated in normal-space
using:

b ¼ p x tþ 1� pð Þ x s ð1Þ

where b is the bulk METABRIC mRNA abundance, t is ISOpure estimated TC
mRNA abundance, p is ISOpure’s estimate of the proportion of the sample that is
tumour and s is the TAC mRNA abundance we want to estimate. In order to
transform the TAC mRNA abundance profiles into log2-space, any value below 0
was set to the minimum mRNA abundance from the bulk and TC mRNA abun-
dance profiles prior to log2 transformation. R version 3.2.1 was used. The code has
also been integrated in to ISOpureR (≥ v1.1.0) as the function ISOpure.calculate.tac
() and is available through CRAN.

Comparing ISOpure and pathologist purity estimates. As pathologist purity
estimates are categorical, we conservatively selected patients with higher ISOpure
and those with higher pathologist estimates. Low-moderate cellularity is described
as <40% of cells being TCs. Moderate cellularity is described as 40–70% TCs. High
cellularity is >70% TCs. We defined patients as having higher ISOpure estimates if
they were moderate cellularity and had ISOpure estimates >95%, or low cellularity
and had ISOpure estimates >65%. We defined patients as having higher pathologist
estimates if they were moderate cellularity and had ISOpure <15% or high cellu-
larity with ISOpure estimates <45%. There were 89 patients with higher pathologist
purity estimates and 23 patients with higher ISOpure purity estimates. Each group
was statistically compared to the remaining 1,668 patients (Supplementary
Table 1).

PAM50 analysis. The mRNA abundance were scaled by subtracting the mean and
dividing by the standard deviation per profile type for each gene. Clustering in
heatmaps was performed using the DIANA algorithm with 1—Pearson correlation
distances for hierarchical clustering on only PAM50 genes. PAM50 classification
was performed in the R statistical environment (v3.4.3) using the genefu (v2.8.0)
package.

The R package limma40 (v. 3.32.10) was used to find genes with differential
mRNA abundance between each subtype and the other three subtypes. The ten
genes with the highest rankings minimum ranking from the adjusted p values and
the absolute log2 fold change were selected for each subtype.
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Subtype clustering. Consensus clustering was performed using R package Con-
sensusClusterPlus (v1.8.1) on genes that had a standard deviation greater than one
for any of bulk, TC or TAC mRNA abundance. Clustering parameters included
ward linkage, Jaccard distance metric, 0.8 feature and item sub-sampling and a
seed of 17.

Identifying unexpressed genes. As the METABRIC data set is all female patients,
genes on chromosome Y can be used to identify a threshold for genes that were not
expressed. For the METABRIC data set, chromosome Y genes had maximum
values of ~ 6.5, which was consistent between bulk, tumour and TAC mRNA
abundance (Supplementary Fig. 6F). Unexpressed genes were thus defined as those
with intensity <6.5 in all patients.

Univariate survival analysis. For each gene, patients were dichotomised by the
gene’s mRNA abundance. Median mRNA abundance level was used for dichot-
omisation unless the median was below the unexpressed threshold and there were
at least 79 patients above the unexpressed threshold (80% power for HR 2), in
which case the unexpressed threshold was instead used to dichotomise the gene.
High and low abundance groups were compared by univariate Cox proportional
hazards modelling for survival to 5 years. This was repeated for each type of profile
independently and the resulting Ward p values were false discovery rate (FDR)
adjusted. Only genes that passed the Cox assumptions (coxzph p > 0.1) and were
above the unexpressed threshold for at least one patient were considered significant
if they met the HR and Ward q value thresholds. If the median mRNA abundance
was below the unexpressed threshold and there were less than 79 patients above the
unexpressed threshold then the gene was removed from the significant gene results.
Cox modelling was performed in the R statistical environment (v3.2.1) using the
survival package (v2.38–3).

Functional profiling/ pathway analysis. To determine associated biological
processes, entrez gene ids were converted to gene symbols. Unique gene symbols
were then input into the web version (http://biit.cs.ut.ee/gprofiler/) of g:Profiler41

(v r1732_e89_eg36) using the default options for Homo sapiens except outputting
results to “Textual (download)”. Hypergeometric test with g:SCS adjustment are
used to calculate q values within g:Profiler41.

Intersecting proportion of significant genes for p value sensitivity. Out of the
smaller gene list, the proportion that was also found in the larger gene list.

Intersecting proportion ¼ jA \ Bj=min jAj; jBj ð2Þ

Gene-wise TC–TAC interactions. For each gene, patients were classified into one
of four groups: high mRNA abundance in both TC and TAC profiles, high mRNA
abundance using TC profiles but low mRNA abundance using TAC profiles, low
mRNA abundance using TC profiles but high mRNA abundance using TAC
profiles or low mRNA abundance in both profiles. High and low mRNA abundance
groups were defined using the same dichotomisation criteria as the univariate
survival analysis. Using a log-rank test, groups were assessed for a difference in
survival up to 5 years. All log-rank p values were FDR adjusted and, if q value was
below 0.05, Cox proportional hazards modelling was performed with the formula:

survival � TAC þ TC þ TC xTAC ð3Þ
The Ward p values for each of the three term from the Cox model were FDR

adjusted. Only terms that passed the Cox assumptions (coxzph p > 0.1) and were
not unexpressed across all patients were considered significant if they met the HR
and q value thresholds. Cox modelling was performed in the R statistical
environment (v3.2.3) using the survival package (v2.38–3).

Random biomarker distributions generation. The same random 5,000 bio-
markers were compared on bulk mRNA abundance, TC mRNA abundance, TAC
mRNA abundance and TC+ TAC mRNA abundance. For each biomarker, we
selected 50 random genes and used a random forest classifier to predicted survival
at 5 years on each of the profile types. For TC+ TAC, the 50 mRNA abundance
profiles from both TC and TAC were used in the model. The mtry parameter and
the random forest classification threshold were optimised using three-fold cross
validation on 1430 patients to maximise AUC. Biomarkers were tested on a
withheld 350 patients. Random forests were run with 10,000 trees. Other than gene
selection, everything was independent on each profile type. Biomarker generation
was performed in the R statistical environment (v3.2.) using the randomForest
(v4.6–12) and pROC (v1.8) packages.

TC and TAC mRNA abundance profiles for biomarker generation were
deconvolved for each fold separately for cross-validation, all folds together for
training the model and on the withheld test set. As before subtypes were run
independently per subtype, however the open-source ISOpureR (v1.0.19) was used,
which generates numerically indistinguishable results and allows greater
parallelisation42. ISOpure step 1 was run using the seed 374 and step 2 was run
with the seed 719.

Differential mRNA abundance associated with mutated genes. For each of the
genes with non-silent mutations in the METABRIC Dataset31, genes with non-
silent SNVs in >50 patients were individually used to separate patients into those
with and without the mutated gene. The R package limma40 (v3.32.10), linear
models with FDR adjustment, was used to determine genes with differential mRNA
abundance associated with the mutated gene for each mRNA abundance profile.

For TCGA, only the cases of subtype and mutated gene that had been analysed
in METABRIC were considered. Of those, five had >50 patients with the gene
mutated in that subtype.

Visualisation. All plotting was performed in the R statistical environment (v3.4.3)
using the lattice (v0.20–38), latticeExtra (v0.6–28), RColorBrewer (v1.1–2) and
cluster (v2.0.7–1) packages via the BPG plotting framework43 (v5.9.8).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The METABRIC data22,31 referenced during the study are available from https://www.
ebi.ac.uk/ega/datasets/EGAD00010000162 and https://github.com/cclab-brca websites.
The TCGA BRCA data sets are available from the https://gdac.broadinstitute.org/
website, release 28 January 2016. The TAC and TC mRNA abundance profiles are
provided in Supplementary data sets 5–8. All the other data supporting the findings of
this study are available within the article and its supplementary information files and
from the corresponding author upon reasonable request.

Code availability
Knitr documentation for analysis and all figures is available in the supplementary code.
The function to create TAC profiles is available in ISOpureR (≥ v1.1.0) [https://cran.r-
project.org/web/packages/ISOpureR/index.html]. For analysis, version numbers are
specified within each part of the methods. Generally, R statistical environement v3.2.1—
v3.4.3 was used with the R packages: genefu (v2.8.0), limma (v. 3.32.10),
ConsensusClusterPlus (v1.8.1), survival (v2.38–3), randomForest (v4.6–12), pROC (v1.8)
and lattice (v0.20–38), latticeExtra (v0.6–28), RColorBrewer (v1.1–2) and cluster
(v2.0.7–1) packages via the BPG package (v5.9.8).
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