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A B S T R A C T   

Soft tissue sarcomas (STS) are a group of rare and heterogeneous cancers. While large-scale genomic and epi-
genomic profiling of STS have been undertaken, proteomic analysis has thus far been limited. Here we utilise 
sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for pro-
teomic profiling of formalin fixed paraffin embedded (FFPE) specimens from a cohort of STS patients (n = 36) 
across four histological subtypes (leiomyosarcoma, synovial sarcoma, undifferentiated pleomorphic sarcoma and 
dedifferentiated liposarcoma). We quantified 2951 proteins across all cases and show that there is a significant 
enrichment of gene sets associated with smooth muscle contraction in leiomyosarcoma, RNA splicing regulation 
in synovial sarcoma and leukocyte activation in undifferentiated pleomorphic sarcoma. We further identified a 
subgroup of STS cases that have a distinct expression profile in a panel of proteins, with worse survival outcomes 
when compared to the rest of the cohort. Our study highlights the value of comprehensive proteomic charac-
terisation as a means to identify histotype-specific STS profiles that describe key biological pathways of clinical 
and therapeutic relevance; as well as for discovering new prognostic biomarkers in this group of rare and 
difficult-to-treat diseases.   

Significance 

Soft tissue sarcomas (STS) are rare tumours that account for 1% of 
adult cancers and comprise of >100 histological subtypes. While 
genomic and transcriptomic analyses of multiple subtypes have been 
reported, few comprehensive proteomic analyses by mass spectrometry 
have been undertaken. Herein we used sequential window acquisition of 
all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to 
characterise a cohort of 36 formalin fixed paraffin embedded (FFPE) 
specimens from STS patients across four major histological subtypes. 
Proteomic profiling data defines underlying biological pathways 
enriched in each histological subtype including both well-established 
and new signalling networks of functional importance. A subset of 
proteins were subjected to orthogonal validation using immunohisto-
chemistry. Further analysis of the proteomic dataset identifies a panel of 

133 proteins associated with patient outcome in the STS cohort under 
study. We anticipate the future application of SWATH-MS to additional 
STS subtypes and larger cohorts has the potential to facilitate diagnosis, 
deliver new therapeutic targets and define prognostic signatures in these 
rare and difficult-to-treat diseases. 

1. Introduction 

STS are a group of rare and heterogeneous malignancies of mesen-
chymal origin, comprising more than 100 distinct diagnostic subtypes 
that are primarily defined by histological characteristics [1]. Multiple 
gene expression-based studies across different histological subtypes 
have led to a deeper understanding of the oncogenic processes driving 
STS development and progression as well as the identification of new 
prognostic signatures for these cancers [2–5]. Whilst current diagnostic 
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evaluation of STS is reliant on histological assessment by specialist 
sarcoma histopathologists, supplemented by specific molecular tests in 
selected subtypes, recent large-scale genomic and epigenetic analyses 
have demonstrated the feasibility of refining the classification system of 
STS based on intrinsic underlying biology [3,4]. Collectively, these 
studies highlight the promise of molecular profiling strategies in 
improving our knowledge of drivers of sarcoma pathogenesis, providing 
complementary information to aid in the molecular classification of 
these heterogeneous tumours, identify new therapeutic targets and 
develop clinically relevant prognostic biomarkers. 

While the advent of next generation sequencing (NGS) has acceler-
ated the use of genomic and epigenetic profiling in STS, proteomic 
analysis in this disease has been limited [6]. Comprehensive analysis of 
the tumour proteome is highly informative as proteins represent the 
largest class of druggable targets and directly reflect the functional state 
of biological pathways [7]. Proteomic analysis of STS has been per-
formed by The Cancer Genome Atlas (TCGA) consortium in a cohort of 
173 flash-frozen sarcoma specimens across six histological subtypes [3]. 
However, this study utilised the reverse phase protein array (RPPA) 
platform which is limited to the analysis of 192 proteins/phosphopro-
teins. Other studies that utilise mass spectrometry (MS) have largely 
been limited to 1–2 subtypes including recent proteomic analyses of 
gastrointestinal stromal tumours (GIST) and undifferentiated pleomor-
phic sarcomas (UPS) which identified distinct clinical and molecular 
subgroups [6,8,9]. To date few MS-based analysis has been conducted 
across multiple histological subtypes in STS. 

In this study, we utilise sequential window acquisition of all theo-
retical fragment ion spectra (SWATH)-MS to undertake proteomic 
profiling of FFPE tissue specimens in a cohort of STS patients across four 
histological subtypes (n = 36). SWATH-MS is a next-generation prote-
omics method that offers high reproducibility in protein identification 
across multiple samples [10]. Due to the stochastic nature of precursor 
ion selection for fragmentation in conventional proteomic approaches 
such as data-dependent acquisition (DDA) mass spectrometry, there are 
routinely many missing values in large-scale proteomic studies, resulting 
in a reduction in the reproducibility of protein identification and 
quantification. In contrast, SWATH-MS selects and fragments all detec-
ted precursor ions in a sample generating a highly reproducible digital 
proteome map for each specimen in the cohort. Herein we characterise 
the intrinsic biological pathways associated with specific histotypes and 
explore the association of proteomic data with patient outcome. This 
study represents, to our knowledge, the most comprehensive analysis of 
the proteome in multiple STS subtypes to date and highlights the po-
tential of proteomic profiles as predictors for patient outcome in these 
rare cancers. 

2. Material and methods 

2.1. Patients and tumour specimens 

Use of archival FFPE tumour samples and linked anonymised patient 
data was approved by Institutional Review Board as part of the PRO-
SPECTUS study, a Royal Marsden-sponsored non-interventional trans-
lational protocol (CCR 4371, REC 16/EE/0213). FFPE tissue from 
surgically resected primary tumours from four STS subtypes (LMS, SS, 
UPS and DDLPS) and accompanying annotation of baseline clinico-
pathological variables were identified and retrieved through retrospec-
tive review of departmental database and medical notes at a single 
specialist cancer centre. In line with standard management approaches, 
primary LMS, UPS and DDLPS tumours were naïve to any pre-operative 
therapy, while pre-operative exposure to chemotherapy and/or radio-
therapy was varied in SS. The histological diagnosis was confirmed in all 
cases by experienced soft tissue pathologists (KT, CF). For each tumour, 
a single FFPE tissue block containing representative viable tumour was 
selected through review of haematoxylin and eosin (H&E)-stained sec-
tions. 20 μm sections were cut from each selected tumour block and, 

where indicated, macrodissected to enrich to >75% viable tumour 
content. In liposarcoma tumours that contained both well-differentiated 
and de-differentiated components, slide review and macrodissection 
ensured the dedifferentiated areas were sampled. 

2.2. Protein extraction and sample preparation 

20 μm tissue sections from each sample were deparaffinised by three 
washing steps in xylene, rehydrated by washes with decreasing ethanol 
gradient (100%, 96%, 70%) and then dried in a SpeedVac concentrator 
(Thermo Scientific). The lysis buffer (0.1 M Tris-HCl pH 8.8, 0.50% (w/ 
v) sodium deoxycholate, 0.35% (w/v) sodium lauryl sulphate) was 
added at a ratio of 200ul/mg of dry tissue. The sample was homogenised 
using a LabGen700 blender (ColeParmer) with 3× 30s pulses and son-
icated on ice for 10 min, then heated at 95 ◦C for 1 h to reverse formalin 
crosslinks. Lysis was carried out by shaking at 750 rpm at 80 ◦C for 2 h. 
The sample was then centrifuged for 15 min at 4 ◦C at 14,000 rpm and 
the supernatant collected. Protein concentration in the homogenate was 
measured by bicinchoninic acid (BCA) assay (Pierce) The extracted 
protein sample was digested using the Filter-Aided Sample Preparation 
(FASP) protocol as previously described in [11]. Briefly, each sample 
was placed into an Amicon-Ultra 4 (Merck) centrifugal filter unit and 
detergents were removed by several washes with 8 M urea. The 
concentrated sample was then transferred to Amicon-Ultra 0.5 (Merck) 
filters to be reduced with 10 mM dithiothreitol (DTT) and alkylated with 
55 mM iodoacetamide (IAA). The sample was washed with 100 mM 
ammonium bicarbonate (ABC) and digested with trypsin overnight 
(Promega, trypsin to starting protein ratio 1:100 μg). Peptides were 
collected by two successive centrifugations with 100 mM ABC and 
desalted on C18 SepPak columns (Waters). The desalted peptide samples 
were then dried in a SpeedVac concentrator and stored at − 80 ◦C. 

2.3. SWATH-MS data acquisition and processing 

Samples were resuspended in a buffer of 2% ACN/ 0.1% formic acid, 
spiked with iRT calibration mix (Biognosys AG) and analysed on an 
Agilent 1260 HPLC system (Agilent Technologies) coupled to a Triple-
TOF 5600+ mass spectrometer with NanoSource III (AB SCIEX). 1 μg of 
peptides for each sample was loaded onto a ZORBAX C18 (Agilent 
Technologies) trap column and separated on a 75 μm × 15 cm long 
analytical column with an integrated manually pulled tip packed with 
Reprosil Pur C18AQ beads (3 μm, 120 Å particles, Dr. Maisch). A linear 
gradient of 2–40% of Buffer B (98% ACN, 0.1% FA) in 120 min and a 
flow rate of 250 nl/min was used. Each sample was analysed in 2 
technical replicates. Full profile MS scans were acquired in the mass 
range of m/z 340–1400 in positive ion mode. 8 data points per elution 
peak were set up for calculation of 60 precursor isolation windows with 
a fixed size of 13 Da across the mass range of m/z 380–1100 with 1 Da 
overlap. MS/MS scans were acquired in the mass range of m/z 
100–1500. Maximum filling time for MS scans was 250 ms and for MS/ 
MS scans 100 ms, resulting in a cycle time of 3.1 s. SWATH spectra were 
analysed using Spectronaut 11 (Biognosys AG) against a published 
human library [12]. FDR was restricted to 1% and only the top 6 pep-
tides were used for quantification of a protein. Peak area of 2 to 6 
fragment ions was used for peptide quantification, and the mean value of 
the peptides was used to quantify proteins. 2 peptides were set as min-
imum requirement for inclusion of a protein in the analysis. 

2.4. Data processing and statistical methods 

Data were log2 transformed, quantile normalised at sample level, 
followed by feature level (protein) centering across the samples to 
remove technical bias such as batch effect. Hierarchical clustering and 
Principle Component Analyses were used as visualisation tools to assess 
presence of batch effects. In brief, quantile normalisation was applied to 
transform the statistical distributions across samples to be the same, 
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based on the assumption that the statistical distribution of each sample 
should be the same (or have the same distributional shape) within bio-
logical groups or conditions, but allowing that they may differ between 
groups. This procedure was performed using proBatch package in R 
[13]. Feature level (median centering) was performed in order to 
remove further technical bias. The proteomics data was visualised using 
3D- t-Distributed Stochastic Neighbour Embedding. To assess similarity 
of protein expression profiles, pairwise Pearson correlations between all 
samples were visualised using the ‘ComplexHeatmap’ R package [14]. 
Dendrograms were created using complete linkage clustering and the 
Euclidean distances between the resulting correlations. Differential 
expression analysis was performed using Significant Analysis of Micro-
array upon a false discovery rate (FDR) less than 0.1% [15]. Gene Set 
Enrichment Analysis (GSEA) version 4.0.1 was used to identify gene sets 
from the Hallmark database (v7.0, ‘c5.bp.v7.0.symbols.gmt’) that were 
significantly enriched between each subtype and rest of the groups 
respectively. Protein-Protein Interaction (PPI) network analysis and 
visualisation was performed using NetworkAnalyst 3.0 pipeline against 
the STRING interactome database, with settings to confidence score >
900 and experimental evidence required [16–18]. The level 4 (log2 
transformed with loading and batch corrected) RPPA dataset from the 
TCGA-SARC study was downloaded from The Cancer Proteome Atlas 
portal and clinical data downloaded from the TCGA Pan-cancer Clinical 
Data Resource (TCGA-CDR) within the NCI Genomic Data Commons 
[19,20]. The RPPA dataset was feature level (protein) median centred 
across samples and plotted along with the SWATH data using box-and- 
whisker plot. Univariable survival analysis of overall survival was esti-
mated by Kaplan-Meier curve and Log-rank test for significance. Event 
was defined as death. Time was defined as surgery to death or last 
follow-up. Association between molecular groups and prognostic factors 
(grade, tumour size and sex) were tested by Fisher’s exact test while 
association between molecular groups with age was tested by Kruskal- 
Wallis test. Univariable and multivariable Cox proportional hazards 
analyses were used to assess the prognostic significance of the different 
variables. Assessments of the proportional hazard were performed to 
check that the proportional hazard assumption is valid. Over- 
representation analysis was performed on the 133 identified proteins 
using PANTHER v14 [21]. 

2.5. Immunohistochemical staining and scoring 

For validation of SWATH-MS results, the same cohort of specimens 
was stained for vinculin (ab219649, Abcam, 1:1000 dilution) and 
decorin (ab151988, Abcam, 1:500) in tissue microarray (TMA) format. 
To generate the TMAs, two to four 1mm diameter cores were sampled 
from areas of viable tumour within FFPE donor blocks, re-embedded in 
an arrayed recipient paraffin block and sectioned at 4.0 μm thickness. 
Sections were deparaffinised in xylene and rehydrated using decreasing 
concentrations of ethanol in water (once in 100%, 96% and 80%). An-
tigen retrieval was performed in Tris-EDTA buffer (pH 6.0) for 8 min in a 
microwave oven and cooled for 45mins at room temperature. Sections 
were than washed once in Tris-buffered saline buffer (TBS), twice in 
Tris-buffered saline-Tween buffer (TBST) and incubated with blocking 
buffer for 90 min in a humidity chamber at room temperature. The 
blocking buffer is 3% (m/v) Bovine Serum Albumin (Sigma-Aldrich) in 
TBST. After blocking, sections were incubated with the primary anti-
body in a humidity chamber at 4 ◦C overnight. 

The next day, slides were washed once in TBS and twice in TBST. 
Endogenous peroxidase activity was blocked with DAKO Peroxidase 
blocking solution (DAKO, Agilent Technologies) for 60 min at room 
temperature and sections were then washed once in TBS and twice in 
TBST. The sections were incubated with the goat anti-rabbit secondary 
antibody (7074S, Cell Signalling, 1:100) in the humidity chamber for 60 
min at room temperature. The slides were washed again once in TBS and 
twice in TBST and then incubated with diaminobenzidine (DAKO, Agi-
lent Technologies) for 25 s and 40s for vinculin and decorin staining, 

respectively. The sections were rinsed in water, counterstained with 
Modified Mayer’s haematoxylin (Abcam) and dehydrated by taking 
them through washes in graded ethanol (once in 80%, 96% and 100%) 
and xylene. Finally, the slides were mounted in Pertex mounting me-
dium (Pioneer) and scanned on Hamamatsu Nanozoomer slide scanner. 

Scanned TMA cores were independently evaluated on a semi- 
quantitative basis by three investigators. Staining intensity was scored 
on the scale from 0 to 3 where 0: no staining; 1: weak staining; 2: 
moderate staining; 3: strong staining. Staining representation in the 
tumour area was scored on the scale from 0 to 3 where 0: <1% of tumour 
cells stained; 1: 1–10% of tumour cells stained; 2: 10–50% tumour cells 
stained; 3: >50% of tumour cells stained. Total score for each core was 
calculated as a sum of intensity and representation scores. For each case, 
median value of total scores was calculated across all cores scored by all 
three investigators and cases were further classified by a three tier sys-
tem where “no or low staining”: total score median of 0–1; “weak 
staining”: total score median of 2–4; “strong staining”: total score me-
dian of 5–6. Borderline median scores (e.g. 1.5) were resolved by 
reviewing the IHC stained TMA cores and reaching a consensus classi-
fication between the three investigators. 

2.6. Availability of data and materials 

The MS proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE [22] partner repository with the 
dataset identifier PXD019719. 

3. Results 

3.1. Patient characteristics 

The cohort is comprised of FFPE tumour material from 36 patients 
treated at The Royal Marsden Hospital. These specimens were obtained 
from surgical resections of primary tumours from four of the more 
common STS subtypes: leiomyosarcoma (LMS) (n = 12), synovial sar-
coma (SS) (n = 7), UPS (n = 10) and dedifferentiated liposarcoma 
(DDLPS) (n = 7). Baseline clinico-pathological characteristics of these 
patients are summarised in Table 1. 

3.2. Quantitative analysis of the STS proteome 

STS specimens were subjected to protein extraction and SWATH-MS 
analysis in technical duplicates as outlined in Fig. 1. This analysis led to 
the identification and quantification of 2951 proteins across all samples 
(Fig. 2A and Table S1). Comparisons of quantitative data between 
technical duplicates in each sample resulted in a median Pearson’s 
correlation coefficient of 0.994 (range 0.968–0.998), demonstrating 
exceptional reproducibility of the SWATH-MS methodology. Applying t- 
Distributed Stochastic Neighbour Embedding (t-SNE) on the full dataset, 
four major groups can be visualised on the 3D-tSNE plot (Fig. 2B), which 
correspond to the four distinct histological subtypes. These results 
demonstrate that SWATH-MS profiling can reveal intrinsic biology 
associated with distinct histological subtypes which are characterised by 
unique proteomic signatures. 

3.3. Defining biological processes that are enriched in STS histological 
subtypes 

To gain an understanding of the underlying gene set annotations in 
each histological subtype, we undertook gene set enrichment analysis 
(GSEA) of the full proteomic dataset [23]. The top 20 ranked enriched 
gene sets are shown in Fig. 3. Gene sets significantly enriched in LMS 
versus the rest of the cohort comprise of those involved in muscle 
development and contraction. This finding is consistent with the smooth 
muscle lineage of this histological subtype which has also been reported 
in published gene expression studies of LMS [2,24]. The utility of 
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SWATH-MS data to rediscover known molecular processes highlights 
the validity of this approach for pathway discovery. In the case of SS, 
GSEA identifies RNA splicing and processing to be key gene sets 
significantly enriched in this histological subtype. This result is in line 
with a previous study which showed that the SS18-SSX fusion in SS binds 
to the ribonucleoprotein SYT-interacting protein/co-activator activator 
(SIP/CoAA) which is a key modulator of RNA splicing [25]. Meanwhile, 
gene sets significantly enriched in UPS finds a number of biological 
processes linked to leukocyte activation and metal ion transport. 
Notably, Phase II STS clinical trials of immune checkpoint inhibitors 
have reported evidence of clinical activity in UPS [26,27], underscoring 
the value of SWATH-MS in identifying biologically meaningful gene sets 
with potential clinical utility. No ontologies were found to be signifi-
cantly enriched in DDLPS. 

3.4. Identification of key protein complexes and signalling networks 
operating in STS histotypes 

Using the multiclass Significance Analysis of Microarray (SAM) 
method, 277 proteins (FDR <0.1%) were found to be significantly 
differentially expressed across these four histotypes (Fig. S1, Table S2 
and S3). Of these proteins, 95 were found to be significantly upregulated 
only in LMS, and 23 seed proteins were significantly mapped to directly 
interact with each other to form a zero-order network according to the 
STRING interactome database (Fig. 4A). These 23 seed proteins formed a 
subnetwork including the core machinery required for the regulation of 
smooth muscle contractile activity such as the myosin light chains 
(MYL1, MYL6, MYL9, MYL12B), myosin heavy chains (MYH10, 
MYH11), tropomyosin alpha chains (TPM1, TPM4), Myosin Light Chain 
Kinase (MYLK) and Protein Phosphatase 1 Regulatory Subunit 12A or 
Myosin Phosphatase Target Subunit 1 (PPP1R112A) (Fig. 4A). Evalua-
tion of the protein expression levels of the myosin heavy chain MYH11 

Table 1 
Clinico-pathological characteristics of STS cohort.    

Overall LMS SS UPS DDLPS 

Number of cases 36 12 7 10 7 
Age 62 67 49 76 61 

(28–84) (35–75) (43–77) (28–84) (37–78) 
Gender Female 25 12 4 5 4 

Male 11 0 3 5 3 
Anatomical site Intracavity 14 5 2 2 5 

Limbs 12 3 4 4 1 
Trunk/head 6 0 1 4 1 
Uterus 4 4 0 0 0 

Disease stage Localised 36 12 7 10 7 
Local recurrent 0 0 0 0 0 

Histological grade 1 0 0 0 0 0 
2 16 6 4 4 2 
3 20 6 3 6 5 

Pre-op treatment No treatment 32 12 3 10 7 
Chemotherapy 1 0 1 0 0 
Chemo & Radiotherapy 3 0 3 0 0  

Fig. 1. Schematic of the experimental workflow highlighting the key steps that were undertaken for sample selection and preparation as well as SWATH-MS data 
acquisition and analysis. 
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in the RPPA dataset from the independent TCGA sarcoma cohort (DDLPS 
n = 54, LMS n = 81, SS n = 6, UPS n = 49) confirms that this protein is 
significantly upregulated in LMS, providing independent validation of 
our SWATH-MS results (Fig. S2, Table S4) [3]. A second protein sub-
network comprising extracellular matrix components (matrisome) and 
their cognate adhesion receptors and downstream regulatory proteins 
(adhesome) was also found to be upregulated in LMS. This network 
includes the integrin receptors (ITGA5, ITGB1, ITGB5), intracellular 
adhesion signalling proteins (VCL, FLNB, ILK, TNS1) and extracellular 
matrisome components (HSPB1, HSPG1, NID1, LAMB2, TNC, TGFB1I1) 
[28,29] (Fig. 4A). 

In SS, 103 proteins were found to be uniquely significantly upregu-
lated; 28 of which were identified as seed proteins that significantly 
mapped to directly interact with each other to form a zero-order 
network. Twenty-four of these proteins are key components of mRNA 
splicing regulation. Cross-referencing these proteins to the Spliceoso-
meDB of spliceosome components [30] showed that the proteins 
enriched in SS comprise of the SR protein class (SRSF1, SRSF3, SRSF7, 
SRSF9, SRSF11) involved in constitutive and alternative pre-mRNA 
splicing, the heterogeneous ribonucleoprotein particle (hnRNPs) class 
and proteins involved in the formation of the spliceosome A Complex 
(HNRNPA1, U2AF2, SNRNP70) (Fig. 4B). Twenty-nine proteins were 
found to be upregulated only in UPS, and 3 seed proteins directly 
interact with each other, all components of the MHC class 1 complex 
(HLA-A, HLA-B and B2M). In DDLPS, 13 proteins were uniquely upre-
gulated with no zero-order network identified. Notably, CDK4 is one of 
these 13 upregulated proteins which is in agreement with the molecular 
pathology of this disease where CDK4 is amplified in ~90% of DDLPS; 
and CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) are 
currently being evaluated in the treatment of this histological subtype 
[31–33]. 

3.5. Identification of proteomic profiles that are associated with STS 
patient outcome 

In order to evaluate if there are proteins within our dataset that are 
associated with overall survival (OS) in our cohort of patients, uni-
variable Cox regression analysis was performed for each of the 2951 

proteins as exploratory analyses, and we selected a total of 133 proteins 
with p < 0.05 (Fig. 5A and Table S5). Subsequently, by hierarchical 
clustering of the 36 cases based on these 133 protein expression values, 
three subgroups of mixed histological subtypes were identified (Fig. 5B). 
These three groups were associated with significantly differential OS, 
with Group 2 comprising cases demonstrating the worst survival esti-
mate (Fig. 5C, Log-rank p < 0.00001). There were no statistically sig-
nificant associations between the molecular subgroups with prognostic 
factors grade, tumour size, sex and age (Table S6). However, there was a 
significant association between the molecular subgroup and sarcoma 
histological subtype (Table S6). Adjusting for other clinicopathological 
factors including age, tumour size, grade, sex and histological subtypes, 
the molecular subgroups remained an independent prognostic factor 
(Table S7) in the multivariable Cox regression analysis. After adjustment 
for other prognostic factors, patients in Group 2 were 72.6 times more 
likely to die (Hazard ratio 72.6; 95% Confidence Interval 3.71–1432; p 
= 0.005) compared to patients in Group 1 and 20.6 times more likely to 
die (Hazard ratio 20.6; 95% Confidence Interval 3.08–137; p = 0.002) 
compared to patients in Group 3. It should be noted that Group 2 is not a 
single cluster but is comprised of multiple smaller clusters. No statisti-
cally significant biological processes were identified to be enriched in 
the 133 proteins based on over-representation analysis [21]. 

3.6. Validation of vinculin and decorin protein expression by 
immunohistochemistry 

To validate the SWATH-MS data using an orthogonal approach, we 
performed immunohistochemical (IHC) analysis of tumour cell expres-
sion levels of two proteins, vinculin (VCL) and decorin (DCN), in our 
cohort (Fig. 6). VCL is an intracellular adhesome signalling protein 
which was shown by SWATH-MS to be significantly upregulated in LMS 
compared to the other subtypes (Fig. 6A). Consistent with the SWATH- 
MS data, IHC analysis showed that half of all LMS cases (6/12) displayed 
strong tumour cell staining of this protein with the remaining cases 
either having weak (3/12) or no/low staining (3/12). This is in contrast 
to the other three subtypes where only weak or no/low staining was 
observed with no cases showing strong tumour cell expression of this 
protein. Decorin (DCN) is a proteoglycan that was found to be 

Fig. 2. (A) Hierarchical clustering of 2951 proteins across 36 STS cases. The full list of proteins is listed in Table S1. (B) 3D-tSNE plot depicts four distinct groups of 
STS cases corresponding to the distinct histological subtypes. LMS is leiomyosarcoma, SS is synovial sarcoma, UPS is undifferentiated pleomorphic sarcoma and 
DDLPS is dedifferentiated liposarcoma. 

M. Milighetti et al.                                                                                                                                                                                                                              



Journal of Proteomics 241 (2021) 104236

6

Fig. 3. Plot of Gene Set Enrichment Analysis 
results showing the top ranked 20 positively 
enriched gene sets for (A) leiomyosarcoma 
(LMS), (B) synovial sarcoma (SS) and (C) 
undifferentiated pleomorphic sarcoma 
(UPS). The dashed line indicates a False 
Discovery Rate (FDR) = 0.05 threshold. The 
colour of the circles represents the FDR q- 
value while the size of the circle indicates 
the number of proteins within the dataset 
that is in each gene set. NES is the normal-
ised enrichment score from the GSEA 
analysis.   
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Fig. 4. Network diagrams in Force Atlas layouts depicting protein-protein interaction maps for proteins which are significantly upregulated in (A) leiomyosarcoma 
and (B) synovial sarcoma. In (A), proteins in blue are components involved in the regulation of smooth muscle contraction while those in purple are components of 
the matrisome and adhesome. In (B), the majority of significantly upregulated proteins in synovial sarcoma are involved in RNA splicing regulation and the different 
colours indicate the number of interactions between identified proteins. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 5. (A) Volcano plot of the beta coefficients from univariable Cox regression analysis for each of the 2951 proteins in the proteomic dataset and their associated 
–log p-value. Red circles indicate 133 proteins with p < 0.05. The full list of proteins is listed in Table S3. (B) Hierarchical clustering of 133 proteins across 36 STS 
cases identifies 3 subgroups of mixed histological subtypes. (C) The Kaplan Meier curves for overall survival (OS) of the 3 subgroups identified in (B). LMS is 
leiomyosarcoma, SS is synovial sarcoma, UPS is undifferentiated pleomorphic sarcoma and DDLPS is dedifferentiated liposarcoma. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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significantly upregulated in DDLPS compared to the other three histo-
logical subtypes (Fig. 6B). IHC analysis showed that 85% (6/7) of the 
DDLPS cases had strong protein expression levels of DCN with the 
remaining case having weak staining. In contrast, only a small propor-
tion of cases in LMS (1/12, 8%), UPS (4/10, 40%) and SS (1/7, 14%) had 
strong tumour cell staining of this protein. Taken together, the IHC re-
sults of these two proteins are consistent with the SWATH-MS data 
which provides independent validation of the proteomic profiling 
dataset. 

4. Discussion 

In this study we have undertaken a comprehensive proteomic anal-
ysis of multiple STS subtypes and have demonstrated the utility of 
SWATH-MS in the following applications: 1. Defining unique proteomics 
signatures associated with distinct histological subtypes, 2. Identifying, 
within histological subtypes, biological processes and key protein net-
works and 3. Defining candidate proteins which are associated with 
predicting patient outcomes. Previous studies have shown that tran-
scriptomic profiling can aid in the molecular classification of distinct 
sarcoma subtypes [34,35]. More recently, DNA methylation profiling 
has similarly revealed subtype-specific signatures that have utility in 
molecular classification, particularly in diagnostically challenging his-
tological subtypes [36–38]. Our study shows for the first time that 
different histological subtypes harbour distinct proteomic signatures 

indicative of inherent subtype-specific biology driven by specific protein 
networks. We anticipate that expanded proteomic analysis incorpo-
rating larger STS cohorts with an increased number of histological 
subtypes will enable further refinement of this approach and the 
development of robust proteomic classifiers to aid in accurate molecular 
diagnosis of sarcomas. 

In our study, we have identified a number of histotype-specific gene 
sets that are consistent with prior transcriptomic analyses. In LMS, 
ontology analysis of our proteomic data identifies biological processes 
associated with muscle development and contraction. Furthermore, 
analysis of protein-protein interactions identified a subnetwork 
comprising the core machinery involved in the regulation of smooth 
muscle contractile activity. This finding is in line with previous gene 
expression-based studies which have consistently demonstrated that 
smooth muscle functional gene ontologies are enriched in LMS cohorts 
from multiple independent transcriptomic datasets [4,24,39]. Interest-
ingly, it has previously been shown that LMS can be classified into three 
distinct molecular subtypes based on transcriptomic data [24,39]. We 
anticipate that future studies integrating proteomics with transcriptomic 
analysis may shed light on the specific oncogenic pathways and candi-
date drug targets that are enriched in these LMS molecular subtypes 
which could be exploited for therapy. In UPS, our data finds that this 
subgroup is enriched in gene sets associated with leukocyte activation. 
This result is consistent with a very recent transcriptomic study which 
showed that UPS can been classified into two distinct molecular 

Fig. 6. Comparison of expression profile of (A) vinculin and (B) decorin analysed by SWATH-MS (SWATH) with immunohistochemical (IHC) staining of TMA cores 
generated from the same tissue specimens in the cohort. Boxplots for SWATH-MS data shows 1st quartile, 3rd quartile and median value for each subtype, whiskers 
indicate interquartile range. Stacked bar charts indicate immunoreactivity of cases in each of the sarcoma subtypes. Photomicrographs of representative TMA cores 
with strong, weak and no staining for both proteins are shown. 
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subgroups, one of which is characterised by genes involved in inflam-
matory response and immune cell signatures [9]. The enrichment of an 
immune cell proteomic signature in UPS, where immune checkpoint 
inhibitors have showed some clinical activity [26,27], suggests that 
future inclusion of proteomic profiling in cancer immunotherapy trials 
may lead to new predictive biomarkers that complement currently 
available approaches [40]. 

Several transcriptomic studies have led to the development of 
prognostic signatures in sarcoma. These include gene expression panels 
based on chromosome instability, hypoxia and stromal signatures 
[5,41–43]. Here we have performed an exploratory analysis which has 
for the first time identified a panel of proteins that is capable of strati-
fying a subgroup of patients (Group 2) with worse outcomes when 
compared with the rest of the cohort. Notably, Group 2 is composed of 
patients with mixed histological subtypes (3 DDLPS, 3 LMS and 1 UPS), 
and has a distinct expression profile of 133 proteins. Interestingly, 
Group 2 shared a subgroup of proteins that were also overexpressed 
within Group 3 (comprising mainly of DDLPS and LMS), while having 
low expression in a subset of proteins compared to both Group 1 and 3. 
These data suggest that these patients may share molecular character-
istics that transcend histotypes. Over-representation analysis did not 
identify any enriched biological processes in the 133 proteins. It is 
important to note that this analysis was performed on a small patient 
cohort treated within a single institution and our findings should be 
considered hypothesis generating. 

Together with a recently published SWATH-MS analysis in prostate 
cancer and diffuse large B-cell lymphoma [44], our study demonstrates 
the versatility of this label-free MS strategy in the analysis of FFPE 
specimens, a tissue preservation technique which has historically posed 
technical challenges for conventional proteomic workflows and analyses 
[45]. By utilising archival material from a tissue bank which is typically 
an abundant tissue resource, our study describing the proteomic 
profiling of STS from FFPE specimens opens new opportunities for 
gaining new insights into the biology and molecular drivers in rare 
cancers without the need for logistically challenging prospective 
collection of fresh tissue. 

5. Conclusions 

We have employed SWATH MS to profile FFPE tissue specimens 
across four sarcoma subtypes and have identified histotype-specific 
proteomic profiles that describe key biological pathways as well as 
discovered a panel of candidate proteins associated with patient 
outcome in STS. We anticipate the future application of this strategy to 
additional STS subtypes and clinical trial cohorts has the potential to 
deliver new therapeutic targets and define predictive and prognostic 
signatures in these rare and difficult-to-treat diseases. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jprot.2021.104236. 
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