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Clinical likelihood ratios and balanced accuracy for 44 in silico
tools against multiple large-scale functional assays of cancer
susceptibility genes
C. Cubuk 1,15, A. Garrett1,15, S. Choi1,15, L. King1, C. Loveday1, B. Torr1, G. J. Burghel2, M. Durkie3, A. Callaway4,5, R. Robinson6,
J. Drummond7, I. Berry6, A. Wallace2, D. Eccles5,8, M. Tischkowitz7,9, N. Whiffin10, J. S. Ware11,12, H. Hanson1,13, C. Turnbull1,14✉ and
CanVIG-UK

PURPOSE: Where multiple in silico tools are concordant, the American College of Medical Genetics and Genomics/Association for
Molecular Pathology (ACMG/AMP) framework affords supporting evidence toward pathogenicity or benignity, equivalent to a
likelihood ratio of ~2. However, limited availability of “clinical truth sets” and prior use in tool training limits their utility for
evaluation of tool performance.
METHODS: We created a truth set of 9,436 missense variants classified as deleterious or tolerated in clinically validated high-
throughput functional assays for BRCA1, BRCA2, MSH2, PTEN, and TP53 to evaluate predictive performance for 44 recommended/
commonly used in silico tools.
RESULTS: Over two-thirds of the tool–threshold combinations examined had specificity of <50%, thus substantially overcalling
deleteriousness. REVEL scores of 0.8–1.0 had a Positive Likelihood Ratio (PLR) of 6.74 (5.24–8.82) compared to scores <0.7 and scores
of 0–0.4 had a Negative Likelihood Ratio (NLR) of 34.3 (31.5–37.3) compared to scores of >0.7. For Meta-SNP, the equivalent PLR=
42.9 (14.4–406) and NLR= 19.4 (15.6–24.9).
CONCLUSION: Against these clinically validated “functional truth sets," there was wide variation in the predictive performance of
commonly used in silico tools. Overall, REVEL and Meta-SNP had best balanced accuracy and might potentially be used at stronger
evidence weighting than current ACMG/AMP prescription, in particular for predictions of benignity.

Genetics in Medicine; https://doi.org/10.1038/s41436-021-01265-z

INTRODUCTION
Variant interpretation
For more than three decades, sequence analysis of constitutional
DNA has informed diagnosis and prediction of human Mendelian
diseases. Robust identification of the causative pathogenic variant
enables accurate prediction of the clinical course of disease and
implementation of measures for prevention and early detection.
Through technological advances, clinical genome sequencing is
now routine, typically revealing in comparison to a reference
genome in excess of 4 million variants in the average human [1].
Through concerted efforts within the clinical community to reduce
erroneous assignation of variants as pathogenic, common frame-
works for variant interpretation have been evolved, such as that of
the American College of Medical Genetics and Genomics/
Association for Molecular Pathology (ACMG/AMP). Within this
system, points are tallied up from quasi-orthogonal lines of
evidence, such as clinical case series, segregation data, phenotypic
specificity, and laboratory assays [2].

Emergence of in silico tools
However, rare missense variants are frequently identified on
clinical genetic testing that have not previously been reported or
for which existing clinical and laboratory data are sparse. In these
scenarios, evaluation of variant pathogenicity/benignity is largely
reliant on predicted alteration of protein function using features
such as the following:

Homology in sequence alignment between divergent species.
Orthologs are gene sequences derived from the same ancestral
gene present in two species’ last common ancestor. Where an
amino acid is highly conserved across multiple orthologs, this
indicates that a change in that amino acid will be of deleterious
consequence for protein function.

Physiochemical differences between amino acids. Amino acids are
characterized by their composition, polarity, and molecular
volume. A large physiochemical distance for a substitution would
be predicted to have a greater impact on protein function [3].
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Disruption to 3D protein structure. Amino acid substitutions are
more likely to be deleterious if they alter tertiary protein structure,
including folding, bonds, and binding site shapes [4]. While
protein structure can be visualized directly using X-ray crystal-
lography and nuclear magnetic resonance (NMR), most predic-
tions are largely based on modeling.
Over the last 20 years, computational biologists have developed

a number of in silico prediction algorithms or tools variously
leveraging these features. In addition to knowledge of biological
principles, in silico tools may be trained against a truth set in
which impact of variants on protein function is already quantified
[5]. The performance of the tool may then be validated or tested
against other independent truth sets. Early training truth sets
typically included prokaryote assays of broad cell function: given
the divergence between humans and yeast and the complex
cellular functions of many human disease-associated genes, such
predictions are likely to relate only loosely to clinical pathogenicity
of human disease genes [6]. However, more recently, large-scale
databases of clinical and neutral population variation have been
made publicly available, such as ClinVar, Human Gene Mutation
Database (HGMD), SwissProt, and ExAC/gnomAD [7–10].
There has been a surge in release of new tools and

metapredictors (tool combinations) largely trained on these same
data sets. With multiple elements incorporated into sophisticated
machine learning algorithms, training on restricted data sets has
potential to result in overfitting, that is, recognition of features
present within the training data set due to random variation,
rather than those that are useful for prediction in new data sets
[11–13]. In the case of metapredictors, this may result in the
constituent tools appearing to perform better and therefore being
allocated excess weight within the overall algorithm [14]. The field
has been further confused by intertool comparisons using the
same data sets upon which they were trained [11].
In addition, some clinical databases may offer less reliable

variant classifications: earlier instances of HGMD, for example,
largely assigned as pathogenic any variant detected in an
individual with the relevant phenotype, while only more recently
has ClinVar curation tackled erroneous community submissions
[15, 16]. Such databases may also be biased toward variants with
features that are more easily detectable by prediction software, as
conclusive clinical classifications are less frequently established for
more “challenging” variants [11]. Furthermore, differences in tools
performance have been observed across different populations
and between different variant types (gain of function vs. loss of
function and pathogenic vs. benign) [17–19].
We summarize the data inputs, methodologies, and testing/

training data underpinning 45 in silico tools widely used in clinical
practice and/or available from amalgamation sites [20, 21] (Table 1,
Supplementary Table 1).

Clinical application of in silico predictions
While primarily developed to support genomic research, in silico
predictions have also been widely used by clinical diagnostic
laboratories to supplement clinical data for variant classification.
However, as the substantial discordancy between tools and high
rates of false positive predictions has become more evident,
greater caution has been applied. Indeed, in the 2015 ACMG/AMP
framework for variant interpretation, it is recommended that
evidence from in silico tools should only be used when multiple
tools are concordant and only to provide supporting-level
evidence toward assessment of pathogenicity or benignity [2].
Using a quantitative Bayesian translation of the ACMG/AMP
framework, supplementary evidence equates to a likelihood ratio
of only twofold [22]. Tools most widely used clinically include
PolyPhen-2, SIFT, and MutationTaster, due in large part to their
inclusion within commercially developed interfaces [2, 4, 6, 23].

Large-scale assays of cancer susceptibility gene function
Reliable assays of cellular function that correlate well with clinical
pathogenicity have long been awaited by those working in
genetic variation interpretation. The majority of early published
experimental assays feature only a handful of variants, have been
conducted in a post hoc and/or piecemeal fashion and often fail
on reproducibility. Leveraging improved capability in gene editing
technology, data from robust, systematic, high-throughput
saturation genome editing experiments have recently become
available for key cancer susceptibility genes, which have been
shown to correlate strongly with well-curated orthogonally
generated clinical classifications (Supplementary Tables 2, 3, 4).
These new-generation, clinically validated functional assays

provide large “fresh” truth sets for unbiased evaluation of in silico
tools. We thus sought to evaluate against functional assays of
BRCA1, BRCA2, MSH2, PTEN, and TP53 individually and in
combination, predictive performance for 45 widely used in silico
tools (72 tool–threshold combinations).

MATERIALS AND METHODS
Generation of functional truth sets of BRCA1, BRCA2, MSH2, PTEN,
and TP53 variants
For BRCA1, we used data on 2,321 nonsynonymous variants generated by
Findlay et al. in which BRCA1 function was assessed via assay of cellular
fitness of HAP1 for the 13 exons comprising the RING and BRCT functional
domains generated via saturation genome editing [24]. For BRCA2
function, we used data generated by Couch et al., who performed a
homology-directed DNA break repair (HDR) assay in BRCA2-deficient cells,
assessing 237 variants in the BRCA2 DNA-binding domain introduced via
site-directed mutagenesis [25–28]. For MSH2, we used data for 5,212 single
base substitution variants introduced by saturation mutagenesis from
HAP1 survival following treatment with 6-TG, which induces lesions
unrepairable by the MMR machinery [29]. For PTEN we integrated data for
7,244 variants generated on phosphatase activity in an artificial humanized
yeast model with data from Variant Abundance by Massively Parallel
Sequencing (VAMP-seq) in which PTEN protein expression in a human cell
line was quantified for 4,112 PTEN variants, from which 2,380 nonsynon-
ymous variants overlapped with the phosphatase activity data [30, 31]. As
per specification of the ClinGenTP53 expert group for clinical variant
classification, we integrated data from (1) yeast-based transactivation
assays performed eightfold for variants introduced by site-directed
mutagenesis and (2) survival of isogenic TP53-wild-type and TP53-null cell
populations treated with Nutlin-3 and/or etoposide for variants generated
using Mutagenesis by Integrated TilEs (MITE), from which there were 2,314
overlapping variants [32–35].
Each gene-specific functional truth set was curated to include only

missense variants, described in accordance to HGVS nomenclature for
GRCh37 transcripts ENST00000357654 (BRCA1), ENST00000380152 (BRCA2),
ENST00000233146 (MSH2), ENST00000371953 (PTEN), and
ENST00000269305 (TP53). The potentially spliceogenic exonic variants at
the two bases flanking the intron–exon boundary were also excluded.
Missense variants were classified as nonfunctional (deleterious, DEL) or
functional (tolerated, TOL) in accordance with functional assay specifica-
tions (Supplementary Table 2). Variants with results discordant between
constituent assays (PTEN and TP53) were excluded from the functional
truth sets, as were variants with intermediate assay activity for BRCA1,
BRCA2, and MSH2. Of 12,624 nonsynonymous variants for which assay data
were available, 11,212 were missense in suitable regions, of which 9,436
gave results of deleterious/tolerated (1,641 in BRCA1, 188 in BRCA2, 4,783 in
MSH2, 957 in PTEN, and 1,867 in TP53). 1,413 variants were nonfunctional
(deleterious) and 8,023 were functional (tolerated) (Supplementary
Table 3).

Generation of ClinVar truth-sets of BRCA1, BRCA2, MSH2, PTEN, and
TP53 variants
We also assembled available ClinVar classifications for these 9,436
missense variants, retaining those with ClinVar classifications of patho-
genic/likely pathogenic (267 variants) or benign/likely benign (≥1 star
rating) (66 variants). These were assigned in the ClinVar truth set as
deleterious (DEL) and tolerated (TOL) respectively (Supplementary Table 4).
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Tool evaluations were primarily focused on the functional truth sets, as
many of the tools had been trained/evaluated using ClinVar data and/or
tool predictions constituting part of the ClinVar classification.

In silico tools
Forty-five in silico tools were selected on the basis of inclusion in publicly
available/commercial variant interpretation resources and/or reported use
in clinical diagnostics (Table 1, Supplementary Table 1) [2, 20, 21]. The
parameters/thresholds for tool predictions as deleterious (DEL) or tolerated
(TOL) were based on default author recommendations (Supplementary
Table 5). Where there was variation from default author recommended
settings reported in the literature or commonly used in practice, additional
tool–threshold combinations were included, resulting in 72 in total. For
example, for REVEL we specified three tool–threshold combinations:
Revel_a: <0.4 predicted-TOL; > 0.7 predicted-DEL, Revel_b: ≤0.7 predicted-
TOL; >0.7 Predicted-DEL, Revel_c: ≤0.5 predicted-TOL; > 0.5 predicted-DEL.
57/72 tool–threshold combinations involved binary categorization above
or below a cutoff; 15/72 were nonbinary, involving exclusion of an
indeterminate scoring set of variants. We excluded from subsequent
analysis tool–threshold combinations for which predictions (1) produced
no discrimination (one exclusion: Integrated_fitCons_b: all calls deleter-
ious), (2) were generated for <25% of variants examined (one exclusion:
SNPs3D [calls for <3% of variants]). Following exclusions, we examined 70
tool–threshold combinations in total representing 44 tools. We also
examined under a full concordancy model (i.e., discordant calls were
excluded) for (1) pairwise combination 12 of the tools with best balanced
accuracy and (2) three-way combination of (a) SIFT, PolyPhen-2 (HumVAR),
and MutationTaster and (b) Revel b, PMut, and rfPred (Supplementary
Table 5).

Statistical analysis
Tool predictions were generated as per resources/versions specified in
Supplementary Table 5. These predictions were compared to five gene-
specific functional truth sets, the combined functional truth set of 9,436
variants (ALL) and the ClinVar truth set of 333 variants. For each of the 70
tool–threshold combinations, predictions of DEL, TOL, or missing were
generated for each of the 9,436 missense variants. Missing predictions
resulted in diminution of the total number of predictions where (1) the tool
failed to make a prediction for the variant (indeterminate) and (2) the
prediction lay in the range between the defined thresholds for TOL or DEL
(indeterminate, e.g., score range 0.4–0.7 for Revel_a). Each prediction was
assigned true positive (TP) where predicted-DEL and classified DEL in the
truth set, true negative (TN) where predicted-TOL and classified TOL in the
truth set, false positive (FP) where predicted-DEL and classified TOL in truth
set, or false negative (FN) where predicted-TOL and classified DEL in truth
set recall (Supplementary Table 6). For each functional truth set, the overall
prevalence, detection prevalence, sensitivity (recall), specificity, positive
predictive value (PPV, precision), and negative predictive value (NPV) were
calculated. Balanced accuracy (BA), which combines sensitivity and
specificity, was presented as the primary pan-performance metric [36].
We also calculated the Matthews correlation coefficient (MCC), which
combines TP, TN, FP, and FN, the area under the curve (AUC), and the F1,
which combines precision and recall (Supplementary Tables 7, 8) [37]. To
adjust for differing contribution of the five gene-specific functional truth
sets, the mean of the five outputs was also generated.
Positive likelihood ratios (PLRs) were generated comparing values above

the threshold to those below; negative likelihood ratios (NLRs) were gen-
erated by comparing values below the threshold to those above
(Supplementary Table 9). For REVEL and Meta-SNP, we undertook a
banded analysis, examining the PLRs for pathogenicity for various scoring
bands above 0.7 against tool prediction <0.7; for PLRs for benignity (NLRs
for pathogenicity), we examined various scoring bands below 0.7 and
compared each to tool prediction >0.7 [38]. Where zero fields precluded
generation of a PLR/NLR, we performed a Haldane correction (addition of
0.5 to each cell) (Supplementary Tables 10, 11).
To determine the optimal cutoff value for each tool, we used as the

reference metric balanced accuracy (BA) calculated using the dichoto-
mized scores, and iterated in 2% intervals from the lowest value.
The optimization process was terminated when the tested cutoff value
became higher than the maximum variant effect score of the tool
evaluated. We then took the mean of the optimized thresholds for the five
functional truth sets. We evaluated BA against this mean threshold for the
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six truth sets (five gene-specific and the combined functional truth set
[ALL]).
Analyses were performed using R v.3.6.2 and STATAv15 (Timberlake

Analytics).

RESULTS
Variant inclusion
We used 9,436 variants in the combined functional truth set which
overall had a sensitivity of 0.91 and specificity of 0.95 for ClinVar
calls (Supplementary Table 4). We included 70 tool–thresholds
representing 44 tools. Of these, 9/70 tool–threshold combinations
generated predictions for <80% of the variants (variant inclusion,
Supplementary Table 8). For example, for Revel_a, the threshold
setting recommended for clinical application in the UK Association
for Clinical Genomic Science (UK-ACGS) guidance, scores of <0.4
are predicted as tolerated and scores of >0.7 are predicted as
deleterious. For Revel_a, 42.4% of the 9,436 variants score
0.4–0.7 such that they are indeterminate and not classified
[39, 40]. Notably, within this indeterminate REVEL range, while the
true positives cluster toward the higher end, the distribution for
the true negatives is relatively even (Supplementary Fig. 1).

Overall performance
The true prevalence of deleterious variants in the combined
functional truth set was 15% (1,413/9,436). However, the detection
prevalence (i.e., the total proportion called by the in silico tool as
deleterious) was >50% for 56/70, >75% for 28/70, and >90% for
11/70 of the tool–threshold combinations. Thus, while sensitivity
was generally high (>80% for 56/70 tool–threshold combinations)
this tended to be at a cost of poor specificity and PPV.
Based on mean BA across the five gene-specific truth sets, the

best performing tool–threshold combinations were metatools
Revel_b and Meta-SNP. Revel_b (tolerated ≤ 0.7, deleterious >0.7)
exhibited BA= 79%, reflecting sensitivity of 89% and specificity of
68% and Meta-SNP (tolerated ≤ 0.5, deleterious >0.5) exhibited BA
= 79%, reflecting sensitivity of 92% and specificity of 66% (Fig. 1
and Supplementary Table 5). Also strongly performing were PMut,
MutPred_b, and metatools rfPred and VEST3_c (tolerated ≤ 0.5;
deleterious >0.5). Strong performances for some tool–threshold
combinations, such as PANTHER and Eigen-PC_b (tolerated < 0;
deleterious >0.5) must be caveated by their levels of variant
exclusion (54 and 31% respectively). The tools most widely used
clinically, SIFT, PolyPhen2 (HumVar), and MutationTaster ranked in
positions 17th, 23rd, and 45th for BA: their high sensitivities
(96–98%) came at the cost of poorer specificities (20–38%)
(Supplementary Table 8).
Tool performance for variants excluded due to being in the

intermediate range of the assays for BRCA1, BRCA2, and MSH2 is
shown in Supplementary Fig. 2 and Supplementary Table 12.
Median scores for the functionally intermediate variants largely lay
between medians for the deleterious and tolerated group, but
with little evidence of graded correlation.

Consistency between gene-specific truth sets
The five individual-gene functional truth sets varied in data set
size, gene-representativeness, and proportion of deleterious
variants. The 4,783 MSH2, 957 PTEN, and 1,867 TP53 variants
included spanned the full gene, while the 1,641 BRCA1 were
restricted to the RING/BRCT domains and the 188 BRCA2 variants
likewise all lay within the DNA-binding domain. Interestingly,
examination for all missense variants across the BRCA1 gene
showed a higher median REVEL score for variants outside of any
domain (0.57) than for variants within the BRCT domain (0.48)
(Supplementary Fig. 3). The proportion of deleterious variants in
the MSH2 data set (8%) was much lower than for BRCA1 (23%),

PTEN (20%), and TP53 (22%) and in particular BRCA2 (34%); this
metric influences PPV and NPV. Based on ordinal rankings for
mean BA, there was broad consistency across the five individual-
gene functional truth sets for tool–threshold combinations with
binary cutoffs (Supplementary Table 8). There was greater
heterogeneity across the five individual-gene functional data sets
for tools with nonbinary thresholds, on account of the proportion
of TP/TN excluded in the indeterminate range.

Predictions for loss-of-function versus dominant-negative effects
Pathogenic missense variants in BRCA1, BRCA2, and MSH2 are
understood largely to act via a two-hit (loss-of-function) mechan-
ism. For variants in PTEN and TP53, pathogenic effect can be
conferred by either loss-of-function or dominant-negative (gain-
of-function) effect. For TP53, performance on the Nutlin-tp53WT
assay would be predicted to select for variants acting by
dominant-negative effect (DNE).
The BA for TP53 was above the mean BA for the five gene-

specific truth sets for all 20/20 of the top performing tools. For
BRCA1, BRCA2, MSH2, and PTEN this proportion was 11/20, 8/20, 6/
20, and 9/20 respectively. Additionally, for each of TP53 and PTEN,
REVEL scores for variants at the known dominant-negative
hotspots exceeded the median scores across all other deleterious
variants (Supplementary Fig. 4). Moreover, across the TP53 variant
set, there was strong correlation (p < 2.2 × 10–16) between the
REVEL score and the p53WT Nutlin-3 z-score (Supplementary
Fig. 5).

Combinations of tools
Despite Revel_b being a metapredictor encompassing twelve
component tools, its mean BA across the five genes could be
improved from 79% to up to 84% by concordance combination
with other high-performing tools such as Meta-SNP, VEST3, rfPred,
and MutPred, although this led to dropout of discordant variants
ranging from 6% to 26% (Supplementary Table 8).

Performance against ClinVar
The prediction parameters for the 70 tool–threshold combinations
against the ClinVar truth set generally exceed performance against
the mean of the functional truth sets, likely reflecting the direct or
indirect relationship between ClinVar classifications and tool
training [11]. Overall, there was consistency in the ordinal
performance of most tools between the mean of the functional
truth sets and the ClinVar truth set, with Revel_b ranking second
for BA against the ClinVar truth set. Performance against the
ClinVar truth set appeared disproportionately better for tools
trained exclusively on ClinVar, such as ClinPred, compared to tools
trained on different, mixed data sets.

Positive and negative likelihood ratios
Particularly relevant metrics for clinical classification are the
positive likelihood ratio for calling deleterious (true positive rate/
false positive rate) and NLR for calling deleterious (or PLR for
calling benignity, the true negative rate/false negative rate).
Tool–threshold combinations performing well on BA tended to
exhibit strong but balanced PLRs/NLRs, for example Revel_b had
mean PLR= 3.13 (2.75–3.58) and NLR= 7.20 (6.27–8.33) while
Meta-SNP exhibited PLR= 2.79 (2.49–3.14) and NLR= 9.98
(8.81–11.3) (Supplementary Table 9).
Tool–threshold combinations with high sensitivity and low

specificity typically exhibited poor PLR but strong NLR, driven by
low rates of false negatives. Tool–threshold combinations with
high specificity but weaker sensitivity exhibited poor NLR but
much stronger PLR, driven by lower rates of false positives. Using
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the mean of the five functional truth sets, PLRs and NLRs at
different thresholds of REVEL and Meta-SNP were calculated
(Table 2, Supplementary Tables 10, 11).

DISCUSSION
We present predictive parameters and positive/negative likelihood
ratios for 44 in silico tools and 70 tool–threshold combinations,
examining 9,436 missense variants generated from systematic
functional assays for five genes, which have been validated
against clinical pathogenicity.
We demonstrated that most widely used in silico tools have

high sensitivity, that is they are unlikely to miscall a truly
deleterious variants. However, many of the tools maintain high
sensitivity at the expense of very high false positive call rates, as
reflected by the 56/70 tools which called more than 50% of the
variants as deleterious (true frequency 15%). For the tools widely
used in clinic at their specified thresholds, across the five
functional truth sets mean PPV was 30% for SIFT, 28% for
Polyphen2 (HumVar) and 26% for MutationTaster [11].
Because tools are generally calibrated to overcall as pathogenic,

their negative predictive value is typically good: 44/70
tool–threshold combinations had NPV > 95%. Furthermore, NPV
is dependent on the prevalence of true pathogenic variants; the
NPV would further improve in the context of a clinical laboratory
in which prevalence of true pathogenic variants is typically lower
than the 15% in the combined functional truth set. These data
argue against current equivalence within the ACMG/AMP frame-
work for in silico tool prediction of pathogenicity and benignity.

These data replicate similar observations reported in previous
analyses using ClinVar truth sets [17]. For example, 2,361 variants
have REVEL score <0.5: of these, 2,328 are true negatives and only
33 are false negatives.
As tool thresholds are typically set for high sensitivity, it is the

corresponding specificity which drives our rankings for BA. At
specified thresholds, Revel_b, Meta-SNP, PMut, MutPred_b, rfPred
and VEST3_c all perform well, with BA ≥ 73%, AUC ≥ 83%, and
MCC ≥ 41%. Notably REVEL, Meta-SNP and rfPred are all metapre-
dictors, that is they have been developed using machine learning
optimized amalgamation of component algorithms (Supplemen-
tary Table 1).
Although included as it is a widely used tool, we would caveat

generalizability of performance of Align-GVGD, as not only have
sequence alignments been especially well curated for the genes
analyzed, but the tool was trained on BRCA1/2 classifications and
TP53 functional data sets [32, 41].
Against the five functional truth sets, for concordant calls of

deleterious for SIFT, PolyPhen2_HumVar, and MutationTaster, the
mean positive likelihood ratio is only 1.21 (1.16–1.27), with 39% of
variants dropping out due to discordant calls (Supplementary
Table 9) [11]. More broadly, for any nonbinary tool–threshold
combinations or combining of tools using a concordance model,
any apparent boost in calculated BA must be caveated by the
inevitable exclusion of a substantial proportion of the “difficult'
indeterminate/discordant variants. As the 2015 ACMG/AMP
framework does not specify which in silico tools are allowable, it
is duly conservative in offering only supplementary evidence
weighting (likelihood ratio ~2) and only where multiple tools are
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concordant. Using REVEL at the dichotomous threshold of 0.7
offers PLR of 3.13 (2.75–3.58) and NLR of 7.20 (6.27–8.33), but
higher evidence weighting may be warranted for scores at the
extreme tails. For example the LR of 6.74 (5.24–8.82) for REVEL or
42.9 (14.4–406) for Meta-SNP for scores of 0.8–1.0 would
comfortably constitute stronger evidence toward pathogenicity,
as would the LR of 34.3 (31.5–37.3) for REVEL or 19.4 (15.6–24.9)
for Meta-SNP for scores of <0–0.4 toward benignity (Table 2)
[22, 42]. Our data would thus overall support calibrated use of
high-performing metatools for clinical variant interpretation,
rather than ad hoc combinations of multiple tools. Provided the
tool has not been trained on the functional data, as in silico
predictions are derived from orthogonal data to functional assays,
we would support the two evidence types being separately
counted toward a variant classification.
The relationship between functional assay results, clinical

classifications, and true underlying pathogenicity remains elusive.
Imperfect correlation of the assay data to clinical classification may
in part reflect erroneous clinical classifications resident on public
databases. Clinical classifications are indeed not sacrosanct and
are only as good as the comprehensiveness and accuracy of
available clinical information, as well as the validity of classification
schema employed [43, 44]. The functional assays assessed are
relatively recent; their incorporation into clinical classification,
ClinVar, and other resources will further confound data
benchmarking.
Inflation of tool performance against publicly available data sets

(in particular ClinVar), overfitting and the shortcomings of clinically
derived classifications have been well described previously [11].
Indeed, many truth sets previously used for tool evaluations (1)
have overlapped with the data sets upon which tools were trained
or (2) correlated poorly with true clinical pathogenicity, compris-
ing population data and/or prokaryotic cell models and/or clinical
classifications of poor quality [11, 45]. Thus, while the functional
assays we have used are unlikely to perfectly recapitulate true
human pathogenesis, given their powerful correlation against
clinical classifications, size of data and systematic generation,
arguably they represent leading truth sets for unbiased evaluation
of tool performance.
Although we excluded the two intron-flanking exonic variants

on account of potential spliceogenic effect, other spliceogenic
exonic variants resulting in a null protein will have been called as
deleterious by most assays: we have assumed this group to be
small in number and roughly consistent between genes. Although
our analysis has focused predominantly on missense variants for
which pathogenesis is via loss of function, our data for TP53/PTEN
support the tools discriminating comparably for DNE. This
observation is consistent with previous reports in which prediction
for DNE compared to loss-of-function variants was poorer for older
tools (SIFT, Polyphen) but equivalent using newer algorithms such
as REVEL [17, 18].
The observed variation in tool performance between the five

individual-gene truth sets likely reflects heterogeneity in composi-
tion of pathogenic variants types (loss of function versus DNE),
varying accuracy of assay in recapitulation of true pathogenicity,
and sampling variation (chance). It has been argued that there will
be systematic differences gene by gene in how tools perform, on
account of innate gene-specific differences in the genomic
context of pathogenic and benign variants. Data from a broader
range of multiplex assays of variant effect (MAVEs) examining the
full spectrum of coding variants would enable further exploration
of such hypotheses. However, while there are rapid advances in
technology for high-throughput gene editing and assay readout,
expansion of MAVEs to additional genes has been limited on
account of lack of availability of clinical truth sets by which to
validate assays and limited understanding of mutational mechan-
ism of clinical pathogenicity [46].
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A perennial issue in the arena of variant interpretation is that of
intermediate penetrance/effect. The clinical model of dichoto-
mous classification as pathogenic or benign imperfectly accom-
modates underlying continuity of clinical penetrance and a
corresponding more continuous distribution of in vivo and
in vitro cellular function. To simplify the tool assessment, we
removed from our functional truth sets all variants scored as
intermediate for assay performance. However, better quantitation
of variants of intermediate effect will require study of these
intermediate assay scores and will necessitate use of continuous
measurement rather than binary categories for both in silico
predictions and functional assays.
Performance of combinations for high-performing tools indi-

cates room for improvement in algorithms. Furthermore, while we
focused predominantly on established/author-provided tool
thresholds, generation of new thresholds optimized for BA against
these functional data sets indicated potential for substantially
improved tool performance, in particular for Meta-SNP and
MutPred (Supplementary Table 13). Tools could be further evolved
using more advanced machine learning approaches with weight-
ing of contribution of these functional truth sets to optimize tool
combination, performance, and variant inclusion.
There is a growing preponderance of in silico tools. As many

previous authors have found, many of these tools used at their
recommended thresholds have very poor specificity and PPV.
Where ClinVar was also used to train the tools, tool evaluation
against ClinVar may misrepresent performance due to overfitting.
The cautious ACMG/AMP evidence weights may still be overly
generous for many in silico tools. However, evaluation against a
large systematically generated clinical grade truth set of functional
assay data allows unbiased identification of the more predictive
tools and discriminatory thresholds. Our data suggest that greater
weights of evidence toward pathogenicity/benignity might be
afforded for specific tools such as REVEL and Meta-SNP, with
potential for evidence calibration by absolute score. Using a
Bayesian conversion, the respective relevant positive and negative
likelihood ratios can be incorporated into the ACMG/AMP
framework [22, 42].
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