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Abstract

Clinical assessment of a patient’s suitability for magnetic resonance-guided high

intensity focused ultrasound (MRgHIFU) therapy currently involves subjective

judgements based on available diagnostic images and prior clinical experience.

The presence of organs at risk and acoustic obstructions, such as bone and air,

and target depth are taken into account. A quantitative method of assessing

suitability from images available at referral may minimise the number of patients

incorrectly offered, or denied, treatment. A workflow for this assessment is devel-

oped herein for pelvic tumour patients.

Novel workflow components include identification of each patient’s ideal treat-

ment angle, assessment of the percentage tumour volume that can be covered

using standard ’treatment cells’ defined in the MRgHIFU control software, and

assessment of the percentage tumour volume that can be treated (i.e. receive a

cytotoxic thermal dose). Volunteer and patient image datasets, with the subjects

lying both supine (‘referral imaging’) and in an oblique supine decubitus (treat-

ment) position, were used for methodology development and testing. A method

of identifying a subject’s ideal treatment angle using predicted tumour coverage

was developed. These angles were compared with clinically-used treatment an-

gles. Practical methods for assessment of tumour coverage from referral imaging

have been developed and their predictive capability quantified. Tumour treatabil-

ity in treatment image datasets was analysed using the k-Wave acousto-thermal

simulation package.

Calculated ideal treatment angles were within 5±2° of clinical treatment an-

gles. Predictions of tumour coverage derived from referral images agreed with

those from treatment images within 12±7% (range: 4-21%). Refinements to the
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tumour coverage method improved computational speed by a factor of 7 on av-

erage (from 19.7±8.8 to 2.8±2.0 hours). Tumour treatability was 32±14% (range:

15-50%) less than tumour coverage with ablated tissue volumes lying 9.3±1.6mm

shallower than the geometric focus, suggesting tumour coverage overestimation.

Despite limitations, the developed methods show significant promise.
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of treatment cell centres found within a 1 mm3 cube centred at the

point. The maximum cell packing density was 4 cells per mm3. The

tumour is overlaid as a mesh segment (red), and an 8 mm diameter

treatment cell (orange) is overlaid for comparison. . . . . . . . . . 116
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7.1 Workflow for the target-first methodology, demonstrated using a

representative patient treatment dataset. Step 1: Input Dixon

images are segmented to give acoustic obstructions (green), or-

gans at risk (blue, OARs), the tumour (red) and the body outline

(grey). The segments are then transformed into triangular sur-

face meshes. In step 2, candidate cell positions (black crosses)

are generated within and around the tumour mesh. In step 3, the

tumour coverage is calculated by back-projecting plausible trans-

ducer positions (only one shown, for ease of visual interpretation)

from each candidate cell position. Each transducer position is then

tested for whether the beam would intersect OARs and acoustic

obstructions, and whether placing the transducer in that position

would breach the specified limits of translation for the MRgHIFU

system. In step 4, if the current iteration is not the final iteration,

then the reachable and unreachable cell positions are identified.

Exclusion meshes were derived such that the next iteration of cell

points would be generated only outside of the exclusion meshes,

and within and around the remaining uncovered tumour volume. If

the current iteration was the final iteration, then the percentage of

the tumour volume covered is output. . . . . . . . . . . . . . . . . . 128

7.2 An illustrative example of a segment, where the ’1’ boxes are the

segment voxels and the ’0’ boxes are the background voxels. DFM

is device-first method. If the allowed path length of intersection

was set to 0 mm, the red line demonstrates the effective surface

of the segment that rays may not pass without being marked as

intersecting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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7.3 Workflow for Step 3 in the target-first methodology. Target grid

points (blue crosses) were generated during the meshing stage.

Step 1: Each candidate cell centre (black cross) generated vec-

tors pointing towards the posterior with a maximum angulation of

10° off the anterior-posterior axis. Step 2: For each vector, the

associated transducer position was calculated, and a virtual trans-

ducer generated such that the focus was at the cell centre and the

transducer beam axis was aligned with the vector, but in the oppo-

site direction. Step 3: The transducer acoustic beam was checked

for obstruction with OAR or acoustic obstruction meshes, and the

transducer position derived in Step 2 was assessed for whether de-

vice limits must be breached in order to place the transducer there.

If the acoustic beam is not obstructed and the transducer position

was within specification, all target grid points within an 8 mm treat-

ment cell around the transducer geometric focus was marked as

covered (green crosses). The total number of covered target grid

points multiplied by the product of the spacing in between target

grid points was the covered tumour volume. . . . . . . . . . . . . . 134

7.4 Computational time required when using the GPU implementation

(blue) or the MATLAB-native CPU implementation (red) of the ray-

triangle intersection algorithm when assessing whether increasing

numbers of candidate cell centres are reachable. . . . . . . . . . . 138
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8.1 Workflow for calculating the starting treatment angle. Step 1: Tu-

mour, organs at risk and bone (an acoustic obstruction) are seg-

mented and meshed. Step 2: A set of vector rays, each represent-

ing patient treatment angles, are generated within 3D space. All

rays originated from the tumour centroid, are in an axial plane and

are angled at most 40° away from the vertical. Step 3: rays that

intersect any organs at risk and acoustic obstructions, and have

an origin-to-skin intersection distance greater than the MRgHIFU

focal length (140 mm), are removed to improve computational per-

formance. Step 4: For all remaining rays, the acoustic window is

estimated by fitting a cone (originating at the tumour centroid, with

the cone axis coincident with the ray). The treatment angle asso-

ciated with the ray that has the largest cone is used as the starting

treatment angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 A visual comparison of the mesh surfaces of two meshing meth-

ods applied to the same example segment, represented here by a

two dimensional binary pixel array. Each pixel in the segment ar-

ray is either ’1’ or ’0’, representing the segment tissue/material, or

everything else, respectively. The mesh surface generated by the

device-first meshing method (red, described in Chapter 7), which

was used for OARs and bones, is compared to that generated by

the marching cubes isosurface meshing method (cyan), which was

used for the body outline. . . . . . . . . . . . . . . . . . . . . . . . 147
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8.3 Workflow for identifying the ideal treatment angle. Inputs are the

body outline, tumour, organ-at-risk (OAR) and acoustic obstruc-

tion (i.e. bone) meshes, as well as the starting treatment angle.

For ease of visual interpretation, the body outline is not shown ex-

cept in Step 2, where it is used. Step 1: The ray representing the

isocentre line of the starting treatment angle (’starting ray’) is gen-

erated. Rays are generated perpendicular to the inferior-superior

axis around the starting ray, each ray representing the isocentre

line of a particular treatment angle. Step 2: for each ray, the trans-

ducer home position is identified using the techniques developed in

Section 6.2.2.5. Each ray’s intersection with the body mask mesh

is found and the intersection point defined as the skin point. From

the skin point, estimates of the compressed gel-pad thickness (9.8

mm) and the membrane bowing distance (10.0 mm) are used to

obtain the estimated unbowed membrane, from which the trans-

ducer’s home position is known to be a fixed distance (67.5 mm

for the Sonalleve V2) posterior. The patient’s meshes are posi-

tioned and rotated such that the tumour centroid, the skin point,

the magnetic isocentre and the transducer’s home position all lie

on a single ’isocentre line’ (red). Step 3: for each treatment angle,

the tumour coverage is calculated. Ultimately, tumour coverage is

plotted against treatment angle. . . . . . . . . . . . . . . . . . . . . 150
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8.4 The variation of tumour coverage with treatment angle, for all pa-

tients. The starting treatment angle (red vertical), in which the ap-

proximate acoustic window was maximal, the ideal treatment an-

gle (blue dashed vertical), in which the tumour coverage is max-

imal, and the clinical treatment angle (black vertical), which was

used in treatment, are shown. Tumour volume coverage at angles

5°steeper and shallower than the ideal treatment angle were cal-

culated, and the lower of the two was depicted by the horizontal

pink line. For patients G27 and G29, the starting and ideal treat-

ment angles are the same. For patient G3, tumour coverage was

identical for at all angles tested. . . . . . . . . . . . . . . . . . . . . 154

8.5 Difference in estimated tumour volume covered between the start-

ing treatment angle (red arrow), and the ideal treatment angle (blue

arrow), for patient G82. (a): Tumour volume is represented as dis-

crete points; those covered by both the starting and ideal angles

are grey, by the starting angle only were red, and by the ideal angle

only were blue. The tumour itself is represented as the red mesh

in (a) and is grey in the other subplots. (b): An axial view of the

tumour within the pelvis showing covered volumes relative to the

acoustic obstructions and organs-at-risk (green meshes). Views

of the covered tumour volumes from (c) the ideal angle (19° from

supine) and (d) the starting angle (29° from supine). . . . . . . . . 155
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9.1 Schematic for the methodology used to quantify patient treatabil-

ity. Inputs are the patient images (representative treatment image

slices shown here), the deepest and shallowest reachable treat-

ment cells (magenta), the covered tumour volume (yellow) and

the entire tumour volume (red). The transducer (blue) was posi-

tioned and angled such that the geometric focus was placed at the

reachable treatment cell centre. In step 1, the simulation grid was

extracted from the larger dataset. In step 2, each voxel of the ex-

tracted region was assigned acoustic and thermal properties based

on voxel intensity. A density map is displayed, with white denoting

the highest density and black denoting the lowest density in the im-

age. In step 3, an acoustic simulation is performed in order to es-

timate the acoustic pressure field in the tissue. The pressure field,

overlaid on the density map and tumour, shows regions of high

(yellow) and low (blue) pressure. In step 4, a thermal simulation

is performed to identify the ablated tissue resulting from acoustic

energy absorption and heat transfer. In step 5, the ablated tissue

volumes (cyan) from sonicating the deepest and shallowest reach-

able treatment cells were used to estimate the maximum treatable

depth and the proportion of tumour treatable. . . . . . . . . . . . . 163
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9.2 Extraction of the simulation grid from a patient image dataset, us-

ing the known transducer position and angulation required to target

the intended treatment cell. (a): An example cross-section of the

original image dataset is shown, with the tumour (red), covered tu-

mour (yellow), shallowest reachable treatment cell (magenta) and

associated transducer position and angulation (blue beam, orange

beam axis) overlaid. (b): The original image dataset is rotated such

that the transducer beam axis is made vertical, and the Y-axis is

defined as parallel to that. (c): The simulation grid is extracted

from the rotated dataset. The coordinate systems used to refer to

directions within (a) the original image dataset (patient orientation-

based directions), (b) the rotated and (c) the extracted grid are

shown below the images. . . . . . . . . . . . . . . . . . . . . . . . 165

9.3 Comparison of the pressure amplitude simulated by k-Wave and

that calculated by O’Neil’s solution at the spatial resolution of 551

µm (2.2 grid points per minimum wavelength) along the beam axis

(top) and across the beam axis through the transducer focus (bot-

tom). k-Wave underestimated the maximum focal peak by 9 MPa

(33%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.4 Comparison of the pressure amplitude simulated by k-Wave and

that calculated by O’Neil’s solution at the spatial resolution of 119

µm (10.2 grid points per minimum wavelength) along the beam axis

(top) and across the beam axis through the transducer focus (bot-

tom). k-Wave underestimated the maximum focal peak by 2 MPa

(7%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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9.5 Validation of the linear simulation against the O’Neil analytical so-

lution as a function of spatial resolution. (a): the overall (solid

black) and normalised (dashed) L2 relative error between the k-

Wave and O’Neil pressures along the beam axis are shown. The

red line, at 10%, is the accepted uncertainty for pressure measured

by hydrophones [84]. (b): the overall (solid black) and normalised

(dashed) L2 relative error between the k-Wave and O’Neil pres-

sures across the beam axis are shown. The red line, at 10%, is the

accepted uncertainty for pressure measured by hydrophones [84].

(c): the normalisation factor that the k-Wave pressures are multi-

plied by in order to match the O’Neil pressure at peak pressures,

at each spatial resolution. (d): the computational time required for

each simulation at each spatial resolution. . . . . . . . . . . . . . . 177

9.6 Schematic diagram illustrating the calculation of the maximum

treatable depth. (a): if the deepest ablated tissue volume was less

than the treatment cell volume, a line was drawn between the cen-

troids of the deepest and shallowest ablated tissue volumes. The

cell-equivalent point was found by interpolating the ablated tissue

volume along this line until the cell-equivalent point, where it was

the same volume as the treatment cell (84 mm3 for a 4 mm cell),

is found. The maximum treatable depth is defined to be half a

treatment cell length (5 mm for a 4 mm cell) anterior of the cell-

equivalent point. (b): if the deepest ablated tissue volume was

greater than the treatment cell volume, an equivalent volume el-

lipsoid, with the same ratio of diameter to length as the treatment

cell was created and with the same volume as the deepest ablated

tissue volume, is centred at the deepest ablated tissue centroid.

The maximum treatable depth was defined to be half the ellipsoid

length anterior of the deepest ablated tissue centroid. . . . . . . . 184
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9.7 Four representative examples of the acoustic pressure field (see

colour bar, only pressure values >10% of the focal peak pressure

are shown for clarity), generated with no electronic steering ap-

plied, targeting both deepest and shallowest reachable treatment

cells (magenta). All acoustic simulations were performed at source

acoustic power of 300 W. The acoustic field is overlaid on the

patients’ density maps (lighter means material is denser, bone is

white and oil is black). Tumour is shown in red. The cross-section

is the X-Y slice in which contains the peak focal pressure. The focal

peak is offset both axially and laterally from the intended treatment

cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.8 Focal peak pressure is plotted against path length in tissue. The

dotted line is a linear regression. . . . . . . . . . . . . . . . . . . . 188

9.9 Cross-sections of the ablated tissue (cyan) when sonicating the

deepest and shallowest reachable treatment cell (magenta, cen-

tered at the geometric focus of the transducer but shown in images

with full cross-section for scale, 4 mm at the widest diameter and

10 mm maximum length) are shown overlaid on MR images of pa-

tient anatomy. Thermal diffusion was simulated for a total heating

time of 16 seconds (standard for 4 mm cells) and a cooling time

of 30 seconds. The X-Y cross-sections shown are those with the

largest ablated tissue cross-sectional area. For all patients and

both target positions, the ablated tissue is offset from the treatment

cell as quantified in Table 9.4. The treatment cells and ablated tis-

sue are positioned relative to the transducer (blue) in the X-Y plane

as shown in the large subfigure. . . . . . . . . . . . . . . . . . . . . 190
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9.10 The path length in tissue is plotted against (top) ablated tissue vol-

ume and (bottom) the offset between the transducer geometric fo-

cus and the ablated tissue centroid in the Y-axis, with positive offset

meaning the centroid is closer to the transducer than the geometric

focus. Dotted lines are linear regression. The Y-offset associated

with G82 shallowest target point, which was estimated from the Y-

offsets of other patients and target points, is not included in the

Y-offset plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.11 Cross-sections of the treatable volumes (cyan) for each patient are

shown overlaid on MR images of patient anatomy with the tumour

coverage (yellow) and the tumour itself (red). The treatable tumour

volume is a subset of the covered tumour volume, which is a sub-

set of the tumour. The cross-sections shown here are from slices in

the same plane as the cell-equivalent point (which had been inter-

polated or extrapolated from the centroids of the deepest and shal-

lowest ablated tissue volumes). The transducer (130 mm aperture
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Chapter 1

Introduction

1.1 Clinical Use of High Intensity Focused Ultra-

sound

The aim of high-intensity focused ultrasound (HIFU) ablation is to induce coagula-

tive cell necrosis by increasing the temperature within a localised region to greater

than 55°C, for at least 1 second [1]. For the Sonalleve® V2 MRgHIFU system, the

total sonication time required for ablating a ’treatment cell’ (a standard volumet-

ric region defined in the Sonalleve control software, generated by electronically

steering the transducer focus in concentric circles) ranged from 16 seconds for a

2 mm-diameter cell to 56 seconds for a 16-mm diameter cell [2]. HIFU ablation

has been FDA-approved and/or CE-marked for various diseases, including uter-

ine fibroids [3–5], metastatic bone tumour pain palliation [6, 7], prostate cancer

[8–11], and essential tremor [12]. HIFU therapy of various conditions including,

but not limited to, breast and liver cancer [13, 14], thyroid nodules [15], hyper-

tension [16], Parkinson’s disease and neuropathic pain palliation [17], have either

been approved by regulators outside the United States or are in clinical trials. In

the United Kingdom, a clinical trial for the HIFU ablation of recurrent gynaecolog-

ical cancers is being conducted (NCT02714621) [18].

HIFU therapy of pelvic tumours is particularly challenging because of the

depth of the tumours within the body. HIFU systems can only treat targets within

the focal length constraints of their transducers, and identifying acoustic access
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which is free from obstruction by acoustically opaque tissues, such as gas and

bone, and from organs at risk is challenging [18]. Failure to correctly identify

suitable patients for magnetic resonance-guided HIFU (MRgHIFU) therapy could

deprive them of their only treatment option, while failure to identify patients who

cannot be treated wastes patient time and hospital resources on screening ses-

sions (explained below). Patients must therefore be carefully assessed prior to

being accepted for treatment.

1.2 Current Clinical Workflow for MRgHIFU

Currently, the clinical evaluation process relies heavily on experience and opinion.

The process for MRgHIFU treatment using the Sonalleve® V2 (Profound Medical,

Mississauga, Canada) is as follows. Patients are referred to the MRgHIFU clinic

on the basis of diagnostic imaging or follow-up imaging after unsuccessful prior

treatment [18, 19]. Such ’referral image datasets’ are usually obtained with the

patient lying supine. From clinical information, including the referral dataset, only

patients deemed by clinical judgement to be potential candidates for HIFU treat-

ment are invited for screening [18, 20]. At screening, patients are asked to lie

on a 15 mm thick rubber absorber, representing an acoustic-coupling gel pad

and designed to prevent accidental sonication. The absorber sits on top of a

membrane covering the transducer, which lies in an oil-bath below the MRgHIFU

couch. The patient is asked to lie in one or two ‘best guess’ treatment positions

on the MRgHIFU couch, and are imaged with treatment conditions being mim-

icked as closely as possible to produce ’screening image datasets’. The ‘best

guess’ positions are designed to maximise acoustic access to the tumour, and

are identified by the treatment team using prior clinical experience and subjective

interpretation of the referral image dataset. A dummy treatment is performed by

clinicians on the screening image dataset in order to estimate how much of the

tumour could be reached by the transducer focus, and thus of the potential for

a successful treatment. Suitable patients, those for whom clinical trial eligibility

criteria are fulfilled, including satisfying a minimum threshold of tumour volume

that could be reached, are invited back for treatment. In a previous metastatic
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bone pain palliation trial, 16 of 37 patients (43%) initially considered for treatment

were found at screening not to satisfy eligibility criteria because of disease that

could not be targeted, for reasons that included tumour accessibility [19]. In a pilot

planning study assessing MRgHIFU for the treatment of recurrent gynaecological

tumours, 9 of 20 eligible patients (45%) who underwent screening imaging were

subsequently found to be untreatable because <50% tumour coverage could be

achieved without risk of damage to surrounding structures [18]. These two stud-

ies suggest that, for abdominal pelvic tumours, more than 40% of patients may

be overestimated from clinical judgement as being suitable for MRgHIFU at the

referral stage. During the treatment session, patient imaging is acquired before

sonication, during sonication and after sonication. Imaging obtained before soni-

cation are used to plan the positions of the individual treatment cells. Low-power

sonications (’test shots’) are used to calibrate the position of the transducer fo-

cus with the region of observed temperature increase and to assist the clinician

in identifying suitable sonication power settings. MR thermometry [21, 22] is ob-

tained during treatment, and is used to monitor the patient during sonication to

ensure that organs at risk and healthy tissue do not undergo what the clinical

team judges to be excessive heating, as well as ensuring that the cell-killing (ab-

lative) temperature (≥55°C for ≥1 second) is reached within the tumour target

during sonication. After sonication, the resulting thermal dose, which is calcu-

lated by the Sapareto-Dewey equation [23], is checked to ensure that the cell-

killing threshold (≥240 cumulative equivalent minutes at 43°C (CEM43) [23, 24])

is achieved within the tumour target. The thermal dose is used to confirm ablation

because the time at which the tissue crosses the ablation temperature threshold

of 55°C must be interpolated from low-frame-rate MR-derived temperature maps,

a process which introduces uncertainties. Furthermore, the temperature is shown

only in the Sonalleve® software during sonication, whereas the thermal dose is

accumulated over the entire course of the MRgHIFU treatment. The patient is

also imaged after sonication in order to identify changes in tissue as a result of

the treatment.
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1.3 Hypothesis

The principle hypothesis of this PhD is that a workflow could be developed, that

could predict patient suitability for MRgHIFU treatment from referral imaging, and

improve patient selection for MRgHIFU screening. Given the limited time involved

in the PhD, aspects of the workflow were individually developed and tested. A

prospective workflow for assessing patient suitability for MRgHIFU treatment from

referral imaging has been proposed below.

The motivation behind this research is to reduce the subjectivity involved

in making suitability judgements that results from clinical experience and per-

sonal preferences, in order to minimise the number of patients incorrectly denied

treatment, and maximise the number who would benefit from a screening scan.

A quantitative estimation of patient treatability could improve clinical decision-

making regarding whether the patient is suitable for MRgHIFU therapy. In the

literature, quantitative screening software for skin lesions reduced the clinician

error rate from 37% to 13% [25]. In the long-term, with sophisticated screening

methods, it may even be possible to obviate the need for a screening visit, and

reducing the load on the resources of a busy clinical MR department.

1.4 Background

Patient screening aims to identify whether a patient satisfies eligibility criteria

for a treatment or a clinical trial, such as whether ≥50% of the tumour can be

reached [18], whereas treatment planning aims to maximise the treated tumour

volume whilst minimising harm to healthy tissue and treatment time. Hence, pa-

tient screening comprised the identification of the ideal treatment position, be-

cause the proportion of tumour that could be reached (tumour coverage) and

treated (tumour treatability) is expected to vary with position, and the estimation

of the tumour coverage and treatability. On the other hand, treatment planning,

which happens immediately before and during treatment, comprises optimisation

of sonication placement, duration and power using imaging data acquired in the

treatment position which is usually already decided beforehand. Methodology for
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patient positioning and sonication placement, which may be used to assess how

much of the tumour could be reached by HIFU, are discussed in Section 2.5. In

this section, previously published methodology for patient screening is described.

Though there appears to be a wide body of literature on HIFU treatment planning

[26–32], there appears to be far less research published on patient screening for

MRgHIFU treatment suitability.

The current clinical screening method has several downsides. Firstly, it relies

on clinician experience and judgement for both patient positioning and treatment

cell placement, which means that screening results may vary between different

HIFU treatment clinics. Secondly, no methods are used to investigate whether

sufficient energy could be delivered to treatment cells in order to ablate the tis-

sue within. When assessing patient suitability, treatment cells are assumed by

clinicians to retain their shape and size regardless of the acoustic path.

Currently, quantitative screening methods for assessing the patient suitability

for the HIFU therapy of uterine fibroids [33, 34] have been developed. The au-

thors examined a large number of fibroid treatments (422 [34] and 240 treatments

[33]), and developed linear equations to quantify a score denoting relative patient

treatability based on factors such as subcutaneous fat thickness and MR image

intensity ratios. Thresholds for treatment success were determined by analysing

receiver operating characteristic (ROC) curves. The overall positive predictive

value (i.e. the probability that the patient is treatable given that they are predicted

treatable) is 0.9 [33]. These models are not patient specific. However, these mod-

els assume that the fibroids are easily reachable by the HIFU focus and do not

take into account the presence of organs at risk or bone, which would be a major

factor when targeting pelvic region tumours. Furthermore, these approaches had

been tested for targets within the uterus only and with the patient lying prone. It

was not used to explore whether patients could be treated in other orientations.

1.5 Prospective Patient Suitability Workflow
The general aims of the project are to develop aspects of a prospective workflow,

shown in Figure 1.1, designed for assessing whether patients are suitable for
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MRgHIFU therapy from their referral imaging.

The prospective patient suitability workflow, designed to predict the propor-

tion of a patient’s target tumour that could be treated using only their referral imag-

ing, comprises three steps. In Step 1, key anatomical components such as bone,

organs at risk (OARs), and the target tumour, are segmented from the input refer-

ral image dataset (’RID’). Next, Steps 2 and 3 are performed iteratively: first, the

image is then rotated into a potential treatment position, which is selected from a

set of promising treatment positions. Secondly, the percentage of tumour volume

that can be reached by the HIFU focus (% tumour volume covered) is calculated

for that potential treatment position. In Step 4, using the patient orientation that

maximises the target volume covered (i.e. the ideal patient orientation), acoustic

and thermal modelling are used to estimate the treatable tumour volume, de-

fined as the percentage of the tumour volume that receives a thermal dose ≥240

CEM43, in order to facilitate a quantitative clinical decision as to whether a patient

should proceed to treatment or not.
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Figure 1.1: Proposed workflow for the assessment of patient treatability. The input is
a referral image dataset (RID), in which the patient is imaged supine on a
diagnostic scanner. Step 1: important anatomical tissues are identified and
segmented. Step 2: an ideal treatment position is calculated (represented by
the isocentre line, which goes through the predicted transducer home posi-
tion and magnetic isocentre) by iterative assessment of (Step 3) the percent-
age of the tumour volume covered, which is the percentage of the tumour
that can be reached by the HIFU focus. Step 4: when the ideal treatment
angle is found, the percentage of the tumour volume treatable, which is the
percentage of the tumour that has received a thermal dose ≥240 CEM43,
is calculated using acoustic and thermal simulations. From this, a clinical
decision on whether to pursue patient treatment with MRgHIFU is made.
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1.6 Thesis Structure
The thesis develops and tests methodology to deliver steps 2, 3 and 4 in the

prospective patient suitability workflow. Chapter 2 describes the current state of

the art in image segmentation, patient positioning, treatment cell placement, and

acousto-thermal simulation methodologies, and fundamental methods in those

fields that had been used in this project. Chapter 3 describes the process of vol-

unteer and patient image acquisition, and the clinical MRgHIFU system. Chapters

4 and 5 describes the methods and validation of image registration and image

segmentation respectively. Chapter 6 describes the development and testing of a

methodology for predicting tumour coverage from referral imaging, by comparing

the tumour coverage predicted from referral imaging to that from treatment imag-

ing. Chapter 7 describes a refinement of the methodology used to predict tumour

coverage in Chapter 6, with the aim of improving computational speed without

sacrificing accuracy. Chapter 8 describes a method for identifying the ideal treat-

ment angle, using the tumour coverage methodology developed in Chapter 7. Fi-

nally, Chapter 9 assesses patient treatability by simulating acoustic propagation

through complex tissue geometry and the resulting thermal bioeffects in order to

assess the treatable tumour volume.
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Chapter 2

Background

2.1 Introduction
A review of the physics of HIFU as a therapeutic modality is presented here,

as are some clinical drawbacks. The prospective patient workflow comprises

steps involving image segmentation (Step 1), patient positioning and sonication

placement (Step 2 and 3) and acousto-thermal simulation (Step 4). Literature

describing the state-of-the-art for these topics is presented in this chapter.

2.2 Physical Principles of HIFU
HIFU is a therapeutic modality which uses focused ultrasound to induce coagu-

lative necrosis by adiabatic heating within a localised region of tissue, such as

a target tumour, whilst preserving as much healthy tissue around the target as

possible. Localised ablation is achieved by focusing the ultrasound beam. This

concentrates the acoustic intensity at the focus without an increase in source

pressure. Hence, in homogeneous tissues, temperatures at the focus rise faster

than those in the pre- and post-focal regions. HIFU treatments can be ultrasound

[14] or magnetic resonance-guided [18]. Systems deliver ultrasound from a trans-

ducer placed within a human cavity [29] or noninvasively from an extracorporeal

transducer [1]. This PhD project focuses on MRgHIFU therapy using an extracor-

poreal transducer system.

Acoustic waves are longitudinal waves that compress and rarefact the

medium through which they travel. Instantaneous acoustic intensity is defined as
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the product of instantaneous acoustic pressure and particle velocity. In a plane

wave approximation, pressure is related to intensity using equation 2.1:

I =
P2

2ρc
(2.1)

where I is acoustic intensity, P is the acoustic pressure amplitude, ρ is medium

density and c is the medium speed of sound.

For a HIFU treatment, in order to reach the target, the acoustic waves propa-

gate through oil, within which the HIFU transducer sits, an acoustic-coupling liquid

or gel, subcutaneous fat and muscle. Acoustic waves are partially reflected and

partially transmitted when propagating from one medium to another. The propor-

tion of acoustic energy that is reflected or transmitted is dependent on the acous-

tic impedances Z, defined as a product of the density ρ and speed of sound c of

the medium, of the two media [35]. Generally, the greater the difference between

the acoustic impedance of the two media, the greater the reflected proportion of

energy.

Acoustic energy is attenuated as it propagates through a medium, as a re-

sult of viscous absorption (collisions between molecules induced by the com-

pression and rarefaction of the acoustic pressure wave) and scattering by small

inhomogeneities in the medium [1]. Acoustic attenuation follows the frequency-

dependent power law [1] in equation 2.2:

I = I0e−αx (2.2)

where:

α = α0 f γ

α = αa +αs

(2.3)

where the attenuation coefficient α, the absorption coefficient αa, the scattering

coefficient αs and the frequency-dependent exponent γ are material-dependent

properties, f is the acoustic frequency, and x is distance that the acoustic wave
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travels through the medium. I and I0 are the acoustic intensities at distance x

away from the source, and at source, respectively [1]. On average, within human

soft tissues, approximately 75% of attenuation is absorption [36]. Medium sound

speed, density and attenuation coefficient are known to vary with temperature

[37, 38].

Density, and therefore speed of sound, increases in a compressed medium

and decreases in a rarefacted medium, which distorts the original waveform, lead-

ing to nonlinear propagation. This results in a gradual "shocking" of the acoustic

wave, in essence transferring energy from the fundamental to higher harmonic

frequency components. The extent to which this occurs depends on the medium’s

nonlinearity parameter B/A, the incident pressure amplitude, and the distance

travelled by the acoustic wave. As acoustic energy absorption increases with

frequency, higher harmonic content results in greater attenuation and absorption

of acoustic energy, resulting in more heating. Higher frequency components of

the acoustic wave are diffracted less, generating smaller sidelobes and therefore

energy is retained along the beam path, which may also contribute to increased

heating at the focus. Nonlinear effects may therefore increase the energy de-

posited, the size of the generated lesion, and the maximum temperature at the

focus [39].

The temperature change resulting from the absorption of acoustic energy

within tissue is described by the Pennes bioheat equation [40] (equation 2.4):

cρ
∂T
∂ t

= ∇ · (K ·∇T )+ρbcbV (T −Tb)+Q (2.4)

where

Q =
fmax

∑
f0

αa( f )I( f ) (2.5)

where T is temperature, c is the specific heat capacity of the medium, ρ is the

density of the medium, K is the thermal conductivity, ρb is the blood density, cb

is the blood specific heat capacity, V is the blood perfusion rate, Tb is the arterial

blood temperature, and Q is the volumetric thermal energy deposited into the
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medium by absorption of acoustic energy. The absorption coefficient αa( f ) is a

function of frequency, as shown in equation 2.3, and I( f ) represents the acoustic

intensity for each harmonic frequency component. Frequencies range from the

fundamental frequency f0 to the highest harmonic frequency fmax

Proton resonance frequency shift thermometry is the current MR-based clini-

cal standard for noninvasive in-vivo temperature monitoring in non-adipose tissue

[41]. The standard deviation in measured temperature is approximately 1°C[42].

In MRgHIFU, thermometry data is obtained more slowly than real-time (in 3-

second intervals [19]), so the ablation temperature threshold of 55°C for 1 second

must be interpolated, introducing uncertainties. An alternative quantity – thermal

dose – is used clinically to assess whether the target was successfully ablated.

Thermal dose [23] is a concept derived from the field of clinical hyperthermia, a

therapeutic modality in which the target site is heated to 40-43°C for 1 hour or

longer [43]. Because hyperthermia treatments vary in the temperature to which

the target site is heated, the duration of heating, and the number of treatment

fractions, comparisons between results of different hyperthermia trials were diffi-

cult. Furthermore, in the case of a failure to reach the planned target temperature

at the tumour, a method for quantifying the ’dose’ given to the patient resulting

from the treatment attempt was needed. Thermal dose D combines the temper-

ature at the target and the time spent at this temperature into a single quantity,

using equation 2.6:

D =
∫ t f inal

0
RT−43dt (2.6)

where:

R =


0.5, if T ≥ 43◦C

0.25, if 37◦C ≤ T < 43◦C

0, otherwise

(2.7)

where D is the thermal dose in units of cumulative equivalent time at 43°C

(CEM43), as defined by Sapareto and Dewey [23], T is temperature in degrees

Celsius, the heating occurs from time t = 0 to time t = t f inal. A threshold of 240

cumulative equivalent minutes at 43°C (CEM43) has been shown to exist for com-
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plete tissue coagulation [24].

2.3 Drawbacks of HIFU

Clinical applications of HIFU, both ultrasound- and MR-guided, have been docu-

mented, demonstrating both the potential and the drawbacks of this therapeutic

modality. In 2004, Wu et al. published a paper describing follow up of multi-

centre treatments of solid carcinoma by extracorporeal ultrasound-guided HIFU.

Target sites treated included the liver, bone, breast, kidney, pancreas and lung

[14]. However, complications were noted with the 1038 patients treated. They in-

cluded mild local pain within 1 week of treatment (20-30% of patients, with 5-10%

patients prescribed oral analgesics), skin burns (10-20% of patients, attributed by

Wu et al. to clinical inexperience), low grade fever (up to 38.5°C for 5-10% of pa-

tients, with several patients noted to experience fevers of up to 39.5°C). Adverse

effects with a lower incidence rate include hepatic abscesses (6/474 liver carci-

noma patients treated), bone infection (4/153 bone metastases patients treated),

bowel perforation (4/153 patients, attributed to abdominal adhesion induced by

pre-HIFU surgery which caused the HIFU focus to drift off-target), bone fracture

(4/153 bone metastases patients treated) and nerve damage (4/153 bone metas-

tases patients treated). In another study, published in 2009, Li et al. recorded

adverse effects from 59 patients treated for liver carcinoma using ultrasound-

guided HIFU [44]. They noted that all patients suffered burns along the path

of the ultrasound beam, with 8 (14%) patients suffering first-degree burns, 48

(81%) second-degree burns and 3 (5%) third degree burns, and pain (52 (88%)

requiring non-steroidal analgesics or no pain-relief, and the remainder requiring

morphine). Out of 59 patients treated, 48 showed elevated levels of glutamic-

pyruvic transaminase or glutamic oxaloacetic transaminase (up to 80 units per

litre), which are biomarkers of liver damage (threshold being 40 units per litre).

Ten (17%) patients experienced skin numbness post-treatment and six (10%) pa-

tients experienced mild haematuria. Damage to the gallbladder and bile duct was

observed in 2 (3%) and 5 (8%) patients respectively. The incidence of adverse

effects was noted by Li et al. to be greater than that observed in other studies,

43



and was attributed to clinical inexperience and the clinical team’s lack of access to

real-time temperature monitoring of the target. They further noted that the pres-

ence of acoustically reflective material in the acoustic beam path, such as bone

and air within the intestinal tract, resulted in decreased therapeutic efficacy and

increased risk to healthy tissue. According to these authors, proper case selection

was the most important factor for successful treatment of liver carcinoma cases

with HIFU. These results suggest that patient screening is important in identify-

ing patients who would receive the greatest clinical benefit at the lowest risk for

healthy tissue damage, and that treatment planning is important for minimising

both treatment time (up to 8 hours for a 40 x 40 x 40 mm lesion [44]) and harm to

healthy tissue.

2.4 Image Segmentation
Image segmentation was required for this PhD in order to identify and delineate

tissues of interest, such as bone, organs at risk and the target tumour, within the

input images. The target tumour needs to be identified in order to assess whether

MRgHIFU can treat it. Organs at risk (OARs) need to be identified, since the

ultrasound may cause damage to them. Acoustic obstructions, such as bone and

air, need to be identified since they are opaque to ultrasound, and their presence

could affect whether the target tumour can be reached by the focused beam.

In the literature, manual segmentation is described as the gold standard for

validation of image segmentation, despite being subject to intra- and interob-

server variability [45–51]. The degree of intra- and interobserver variability is

routinely quantified by examining the Dice Similarity Coefficient (DSC), a mea-

sure of volume agreement, between segments extracted at different times by

the same observer and by different observers, respectively [45, 46, 48]. In a

study of prostate segmentation, three different observers manually segmented

the prostate, a soft tissue target surrounded by muscle and adipose tissue, for

50 MR datasets. The interobserver variability was quantified by the median DSC

value between all observers, which was 0.87 [45]. In another study on the seg-

mentation of femora and innominate bones, two observers manually segmented
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eight patient datasets, of which four (randomly chosen) had been re-segmented

two weeks later by the same observers. The mean intraobserver DSC values for

femora and innominate bones was 0.970 and 0.963 respectively, and the mean

inter-observer DSC values for femora and innominate bones was 0.971 and 0.965

respectively [46].

Automatic image segmentation methods were investigated briefly in this

study as a possible option for reducing the time involved in manual image seg-

mentation. Automatic segmentation methods reported in the literature include

image intensity-based methods, such as thresholding and feature-space cluster-

ing. These methods take advantage of similarities in image intensity and spatial

position in order to segment regions of interest from the image. Thresholding in-

volves segmentation of an image into regions based on whether individual pixel or

voxel intensities are above or below certain intensity thresholds. The thresholds

themselves can be defined in many ways [52, 53]. Thresholding has been used

to segment adipose tissue from whole-body MRI imaging [53], and to segment

adipose tissue and muscle in the leg [50, 54]. Edge-based segmentation meth-

ods, which identify discontinuities in image intensity gradients to mark edges, can

also be used [55]. The assumption of tissue homogeneity, i.e. that image pixels

or voxels of the same tissue and material are spatially proximal, could be used in

order to group neighbouring pixels or voxels into the same segment despite some

intensity variation (which can be expected from image noise and artefacts) [55,

56]. Binary image operations have been developed [57] and used as intermediate

steps after an initial estimation of the segment was obtained by another process.

These include connected-components labelling [57] (a process in which sets of

connected segment pixels or voxels are identified, and each is labelled as being

separate), morphological dilation and erosion [58] (in which pixels or voxels are

added or removed from the edge of the segments, respectively), and flood-filling

[58] (in which non-segment pixels or voxels surrounded by segment pixels or vox-

els are detected and re-assigned as segment pixels or voxels). These image

operations are designed to remove spurious parts of the segment or fill in holes

in the segment, both of which arise from image intensity heterogeneity and image
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noise. A published method for segmenting subcutaneous adipose tissue around

the pelvis region from MR images used the aforementioned methods in combina-

tion [53]. However, both image intensity and edge-based segmentation methods

are vulnerable to image artefacts, particularly image noise, partial volume ef-

fects, susceptibility artefacts and intensity level heterogeneity. These methods

are therefore usually used in pre-processing steps before more advanced seg-

mentation methods are applied [46].

More advanced image segmentation methods use prior information, usually

derived from a set of manually-delineated segments, to develop a model to per-

form automatic segmentation. For the segmentation of bone from MR imaging,

the literature suggests that atlas-based methods and statistical shape models

provide the best results [55]. Using these methods, hip joints and the pelvic

bones have been segmented, and when compared to manual segmentations,

have agreed with a DSC greater than 0.92 [46]. In comparison, the acceptable

DSC threshold was 0.8 for the segmentation of head and neck organs for ra-

diotherapy [59]. The downside to atlas-based methods or statistical shape mod-

els is that a large number of manual segments (for example, 49 patients [45],

28 patients [46]) is required in order to generate the atlas or model. Atlas and

model segmentation appears suitable for bone segmentation, because the shape

of bone is consistent between different patients, so prior shape information can

easily be translated into a segmentation for a specific patient. However, soft tissue

organs at risk such as the bladder and rectum vary in position, size and shape,

which can present challenges to atlas- or model-based segmentation. Bladder

and rectal volumes have been recorded as varying by up to ±30% [60]. Rec-

tal positions have been reported to vary by up to 5 mm in the Anterior-Posterior

direction, up to 3 mm Left-Right, and by less than 6 mm in the Inferior-Superior di-

rection [61]. Atlas-based segmentation of the rectum resulted in a median DSC of

0.77 over 30 patients [62], which is below the threshold of acceptability mentioned

above.

Semi-automatic methods, which attempt to balance the accuracy associated

with manual segmentation with the speed associated with automatic segmenta-
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tion, have been published. They include active contour and level set methods, in

which an initial contour is manually drawn within, or outside, the object to be seg-

mented, and the contour grows or shrinks, respectively, to align with the bound-

aries of the object. Ma et al. proposed segmenting pelvic organs at risk, including

the vagina, bladder and rectum, from axial T2-weighted MR images using geo-

metric deformable models [51]. Initial contours are manually drawn within the

relevant organs. The contours then expand outwards, at a rate determined by the

similarity between the image at the contour points and the mean and standard

deviation of image intensity surrounded by the contour, which are assumed to

be similar within a segment. This expansion is balanced against the influence of

prior shape information and the smoothness of the contour curve, which prevents

the contour leaking out of the tissue boundary. Results appeared encouraging,

with the average symmetric absolute surface distance (a measure of the average

spatial distance between the surfaces of the semi-automatically generated seg-

ment and the manually generated validation segment) of 0.38 mm for a patient

dataset with a voxel resolution of 0.69 x 0.69 x 5.40 mm3 and 0.50 mm for a pa-

tient dataset with a voxel resolution of 1.00 x 1.00 x 5.40 mm3. The disadvantage

of these models is that they require careful parameter tuning to allow the contour

to ignore image noise and, at the same time, prevent the contour from leaking out

due to blurred image boundaries resulting from partial volume effects. Further-

more, these methods are sensitive to the initial contour. Another semi-automatic

segmentation method involves contour interpolation, in which contours are gener-

ated manually on parallel, non-adjacent 2D slices of a 3D volumetric image, and

for the slices between those, contours are generated automatically by interpola-

tion. Schenk et al. proposed such a method for liver parenchyma segmentation

from CT images [63]. In their method, for the interactive contouring, the user

placed seed points on the boundary of the tissue to contour. After the first seed

point was placed, the software calculated the minimum cost pixel-to-pixel path be-

tween the most recent seed point and the second-most recent seed point. When

interactive contouring was only performed for one slice per 12 mm (correspond-

ing to 1 in 3 slices for 4 patients, 1 in 6 slices for 1 patient), the DSC was ≥0.98
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and time spent was reduced by at least 62% compared to validation segments

obtained by interactive contouring of every slice. The manually contoured slices

were transformed into distance maps, in which each slice pixel was assigned a

number representing distance away from the contour. The distance maps were

interpolated in the slices between the manually contoured slices. Contours were

then derived from the interpolated distance maps. However, because of this, the

choice of which slices to manually segment is important. If the boundary of the

object to be segmented changes rapidly in shape and size along the axis perpen-

dicular to the slice plane, more manually segmented slices are required so that

the interpolated contours fit more accurate to the object boundary.

The body outline is in strong contrast with the surrounding extracorporeal air,

and the extracorporeal air contrasts strongly with the gel-pad, oil-bath and body

outline. They could therefore be segmented with intensity-based automatic image

segmentation techniques, as was done by Kullberg et al [53]. Organs at risk

have relatively low contrast against surrounding tissue, and the outline of bone is

blurred due to partial volume effects, so a semi-automatic segmentation method

based on slice interpolation was chosen in order to obviate the parameter tuning

required for active contour and level set methods, whilst saving time compared to

entirely manual segmentation.

2.5 Screening for High Intensity Focused Ultra-

sound

Patient screening is used to identify whether a patient satisfies eligibility criteria for

a treatment or a clinical trial. A criterion may, for example, be whether≥50% of the

tumour can be reached [18]. Treatment planning, on the other hand, is designed

to maximise the treated tumour volume whilst minimising harm to healthy tissue

and treatment time. Hence, patient screening involves the identification of the

ideal treatment position, because the proportion of tumour that may be reached

(tumour coverage) will vary with position, and determination of the maximum tu-

mour volume that may be covered. On the other hand, treatment planning, which
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is carried out immediately before and during treatment, involves optimisation of

sonication placement, duration and power using imaging data acquired in the

treatment position which has usually been decided beforehand. Similar method-

ologies are used by both processes, in particular the optimisation of sonication

placement in order to estimate the proportion of tumour that could be reached

(used in patient screening) or ablated (used in treatment planning), as discussed

later in Section 2.5. The following section introduces published methodologies

regarding patient positioning and sonication placement, which are relevant for the

current study on patient screening. For context, the current clinical workflow for

patients, including patient screening, is described in Section 1.2.

2.5.1 Patient Positioning

Patient positioning is important in determining the proportion of tumour reachable

by the HIFU focus [18, 19] and is therefore important in the process of patient

screening. However, patient positioning does not appear to have been system-

atically studied in the literature. In 1996, McGough et al. published a ray-tracing

method in which patients were positioned with respect to an ultrasound phased-

array transducer by maximising the number of transducer elements whose output

could access the geometric focus of the transducer, which was placed by clini-

cians at or around the tumour centroid. A transducer element was able to con-

tribute to the focus if a ray linking it and the geometric focus was not obstructed

by bone and/or air. Images from a single patient were only shown to demonstrate

qualitatively the capability of their methodology. Quantitative results and a larger

patient cohort to assess the quality of their positioning methodology would have

improved their analysis. Nevertheless, using ray-tracing to identify the ideal pa-

tient positioning appears to have been an innovative idea. In 2016, Scherrer et

al. [27, 28] proposed a clinical workflow for MRgHIFU ablation therapy, which

included identification of the patient position relative to the MRgHIFU transducer.

They proposed that the patient position be decided on the basis of the maximi-

sation of an acoustic window (approximated to be a cone) under the constraint

that no OARs or acoustic obstructions, such as bone or air, lay within the cone.
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Whether the position with the largest acoustic window would result in the greatest

tumour coverage, or whether positions with smaller acoustic windows produced

the maximum tumour coverage, was not assessed. In a conference presentation

dealing with the simulation of kidney ablation by HIFU [64], Abbas et al. positioned

the transducer relative to the patient tissue volumes by manually identifying the

position with the "shortest acoustic path within the tissue". No further details were

provided. In conclusion, although patient positioning methods are mentioned in

the literature, it appears that little work has been done on assessing the quality of

the positioning method.

2.5.2 Sonication Placement

The Sonalleve® MRgHIFU system electronically steers the transducer focus in

concentric circles to generate treatment cells. This allows the ablation of larger

volumes of tissue with less time [42, 65]. Several standard protocols for generat-

ing differently-sized treatment cells are built into the Sonalleve® control software,

with larger treatment cells being associated with increased sonication time. Son-

ication placement is the process of deciding where to place these treatment cells

within the anatomical target. This is necessary for patient screening and in treat-

ment. Methods for sonication placement have been published, but similarly to pa-

tient positioning, there appears to be no publicly available comparisons between

them. In 2005, Fedewa et al. proposed a method of choosing sonication sites for

ultrasound-guided transrectal HIFU therapy of the prostate. The transducer was

positioned within the tip of a probe that was inserted into the rectum, and could

rotate around the probe axis. Sonication sites were generated according to five

parameters that clinicians would choose: maximum overlap between simulated

lesions at depth, minimum and maximum overlap between simulated lesions in

directions transverse to the depth, the maximum angle that the transducer could

rotate around the probe axis, and the maximum volume fraction of the simulated

lesion that exceeded the target boundary. The lesions were generated by non-

linear simulations. In 2011, Sannholm proposed a methodology for sonication

site placement for the treatment of uterine fibroids by extracorporeal MR-guided
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HIFU [66]. The method was based on optimisation, with the aim of minimising

treatment time whilst maximising treatment volume. A treatment cell defined the

ablated tissue following each individual sonication. The uterine fibroid target was

discretised into a set of regularly-spaced grid points within the target, with the

spacing chosen by the clinician and with each point representing a unit of volume

equal to the multiplicative product of the grid spacing. If a point was surrounded

by any treatment cell, it would be marked as covered and the associated unit of

volume would be added to the count of total volume coverage. Because the clini-

cal targets were uterine fibroids, no OARs or acoustic obstructions were expected

between the transducer and the target, so Sannholm’s work did not take them into

consideration. In 2016, Scherrer et al. [28] proposed placing treatment cells in

layers parallel to the MRgHIFU bed surface, within which treatment cells would

be centred at the corners of an equilateral triangle tiling. No detail was provided

beyond this theoretical sketch, and no results were shown. In 2018, Williamson

et al. [67] proposed a treatment cell placement strategy developed from the bub-

ble meshing algorithm [68], an approach that uses repulsive “forces” between

treatment cells, and between the target boundary and the treatment cells, to dis-

tribute treatment cells within the target volume. Treatment cell orientation was

determined by the presence of acoustic obstructions (in this case, the ribcage).

If an acoustic obstruction was detected, a ’torque’ was applied to the treatment

cell, and the optimisation would rotate the treatment cell to align towards the in-

tercostal space. All treatment cells used were 3 mm diameter by 7 mm length

ellipsoids. For five test targets, Williamson et al.’s strategy resulted in an increase

of 8±2% (mean ± standard deviation) in target tissue covered by the treatment

cells and a 16±5 decrease in healthy tissue exposure compared to a raster ap-

proach, where treatment cells are packed in parallel layers with their centroids

in a regular grid, which Williamson et al. claim is the current clinical approach.

However, the new strategy had not been tested on patient data. Furthermore,

when optimising the placement of treatment cells, the bubble packing strategy

did not take into account whether the treatment cells could be reached. There-

fore, the strategy appears to be aimed at reducing the overlap between individual
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treatment cells, and hence maximising the target volume treated for a given pe-

riod of time (a goal of treatment planning), rather than identifying the maximum

achievable tumour coverage (a goal of patient screening).

2.6 Simulation of Acoustic Propagation

Acoustic propagation simulations allow the estimation of the acoustic energy de-

position during sonication of target tissues. This is input into thermal simulations

to generate temperature and thermal dose maps, which are of clinical interest.

Within the human body, muscle, fat and bone have different acoustic properties

[69] and are distributed without particular symmetry, which means that simplifica-

tion of the simulation into two dimensions cannot be performed. Furthermore, at

the acoustic powers involved in HIFU (40W to 300W source acoustic power for

the Sonalleve® V2), the acoustic wave propagates nonlinearly [70]. This results

in increased energy deposition at the focus [70, 71]. Acoustic simulation meth-

ods that are capable of simulating nonlinear acoustic propagation from a focused,

phased array transducer through a general heterogeneous medium include finite-

difference time-domain (FDTD) methods [72–76], the hybrid angular spectrum

(HAS) method [77, 78] with nonlinear corrections [79], and pseudo-spectral and

k-space (PS) methods [80–84]. Each of these methods is reviewed in greater

detail below. The pros and cons of the methods are summarised in Table 2.1.

Finite-element methods have also been used in acoustic simulation [85] – how-

ever, because patient MR and CT imaging data takes the form of 3D arrays, the

patient data needs to be meshed before finite element methods can be used.

This introduces uncertainties, and raises the problem of interpenetrating meshes

because adipose and muscular tissue are interwoven within the body. Hence,

finite-element methods were not explored further.

2.6.1 Finite-Difference Methods

Finite-difference time-domain (FDTD) methods approximate the spatial and tem-

poral derivatives of a governing equation in the form of linear sums and differ-

ences between spatial and temporal points. An early FDTD method for the sim-
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ulation of nonlinear acoustics was published by Lee in 1993 [86, 87]. Lee used

the Khokhlov–Zabozotskaya–Kuznetsov (KZK) equation [88, 89] as the govern-

ing equation. The KZK equation assumes a directed acoustic beam source and

provides inaccurate results for the pressure field more than 20° off-axis and for

the region close (within several source radii) to the source [86]. It is therefore

used for simulating weakly focused beams where the region of interest is parax-

ial. Lee’s code assumed a homogeneous medium, and only simulated diffraction,

nonlinear propagation and thermoviscous absorption. In 1996, Cleveland, Hamil-

ton and Blackstock [90] published an extension of Lee’s code to include arbitrary

relaxation processes and layered heterogeneity in the medium. Unfortunately, the

limitations of the KZK equation suggest that it cannot be used to simulate clini-

cally used HIFU transducers, which are strongly focused (where the ratio between

the transducer aperture diameter and the focal length, a.k.a the F-number, is ap-

proximately 1 [73, 77]). In 1999, Hallaj and Cleveland [72] used FDTD methods

to simulate nonlinear acoustics within a thermoviscous fluid. The model equa-

tion used for acoustic propagation was the Westervelt equation [91, 92]. The

source frequency was 1.0 MHz and source pressures ranged from 1 MPa to 10

MPa. In 2001, this methodology was further developed by Hallaj, Cleveland and

Hynynen to simulate the thermo-acoustic lensing effect [73], caused by the vari-

ation in medium sound-speed with temperature [37]. Hallaj et al. state that they

lacked data on the temperature variation of other acoustic properties, such as

medium density, attenuation coefficient or nonlinearity. In their FDTD method,

acoustic and thermal simulation steps were performed in alternating steps, with

the acoustic simulation outputting the pressure field to derive the heat source in-

put to the thermal simulation. This outputs the temperature field that was used

to update the medium sound speed for the acoustic simulation. Thermal simula-

tions were performed using FDTD methods with the Pennes bioheat equation [40]

as the governing equation. Transducers with F-numbers ranging from 0.8 to 1.3

were tested, with the maximum transducer power simulated being 140 W. Source

frequencies ranged from 1.0 to 1.5 MHz. Hallaj et al. worked on 2D, azimuthally

symmetric acoustic simulations with a radial and axial spatial resolution of 0.1
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mm and with a time resolution of 10 ns for the acoustic simulations, correspond-

ing to the Courant–Friedrichs–Lewy number (CFL) of 0.16. The CFL is a quantity

representative of numerical stability for time-stepping simulation schemes, and

relates the maximum velocity in the simulation u, the spatial resolution δx and

the time resolution δ t and is given by: CFL = uδ t/δx. The azimuthally symmet-

ric nature of their simulation means that it would have limited clinical applicability

given the heterogeneity and lack of symmetry in the human body. Furthermore,

Hallaj et al. did not present validation data for their method. In 2009, Pinton et

al. [76] developed a nonlinear, attenuating full wave ultrasound simulation. To

prevent acoustic waves from reflecting from the boundaries of the simulation grid,

perfectly matched layers (PMLs) were implemented on all sides of the simula-

tion grid [93]. In the PMLs, wave behaviour was governed by a separate set of

non-physical equations, which only attenuated components of the wave travelling

normally to the PML boundary. Pinton et al. stated that, for three-dimensional

simulations involving more than 109 spatial points and more than 1013 spatio-

temporal points, approximately 32 hours of computation on a 56-processor clus-

ter was required. Their code was validated against experimental data obtained

using a membrane hydrophone in a water bath, with pressure features that were

above 0.3% of the pressure peak being visually indistinguishable between the

simulation and experimental data. In a follow-up paper published in 2011, they

validated their model against an experimental setup representing transcranial ab-

lation therapy [71]. The source frequency was 1.0 MHz, and the transducer was

programmed to emit a 20-cycle enveloped pulse with a time-averaged peak in-

tensity of 20W/cm2. The acoustic simulation grid was 896 x 896 x 726 points,

with spatial resolution of 154 µm and a time resolution of 20 ns, corresponding

to a CFL of 0.2. The number of time steps to be simulated was not provided

by Pinton et al, but by considering the number of time steps required to travel

from one end of the computational grid to the other along the beam axis, at the

minimum sound-speed (1540 m/s) in the medium, the estimated number of time

steps per simulation was 3240. The computational time required for the simula-

tion was not provided by Pinton et al, but the number of spatio-temporal points
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to process were similar to those mentioned in the validation study, suggesting a

similar computation time of 32 hours on a 56-processor cluster.

Finite-difference methods appear unsuitable for large-scale (on the order of

10 cm) and high-frequency (on the order of 1 MHz or higher) simulations, because

a high spatial resolution (at least 10 points per shortest wavelength) is required to

accurately model short wavelengths [82]. This increases the memory and com-

putational time requirements for the simulation. Due to the high spatial resolution

requirement, high temporal resolution is also required for numerical stability, as

represented by the CFL, which increases the number of time steps required to

complete a simulation, and therefore further increases the computation time re-

quired.

2.6.2 Pseudo-spectral and k-space Methods

Pseudo-spectral and k-space (PS) methods have been proposed as a faster al-

ternative to FDTD [82]. Instead of discretising the governing equation as in FDTD,

in pseudo-spectral methods the acoustic pressure at each time step is approxi-

mated as a Fourier series. This can be done using the computationally efficient

Fast Fourier transform (FFT) algorithm. The FFT is also used to calculate spatial

derivatives in the governing equation. Because the pressure is represented as a

sum of sinusoids, the minimum spatial resolution requirement is two grid points

for the shortest wavelength. The time derivative is approximated using a finite

difference in pseudo-spectral time domain methods. In ’k-space’ methods, the

time derivative is approximated using a k-space time propagator, which allows

larger time steps to be taken for similar numerical accuracy and stability when

compared to using the finite difference [82, 94, 95]. According to Tabei et al., a

k-space method with a spatial resolution of 3 points per shortest wavelength gen-

erates the same error as a FDTD method with a spatial resolution of 14 points

per shortest wavelength [94].

PS methods have been used to simulate acoustic propagation in patients at

clinically-relevant settings for HIFU ablation [64, 83]. Open source PS simulation

packages include k-Wave [80, 81, 96] and openPSTD [97]. k-Wave was originally
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developed as a simulation package for modelling photoacoustic waves, and has

been expanded to include modelling of nonlinear acoustic propagation through

heterogeneous media with power-law frequency-dependent attenuation. It has

been validated against linear analytical solutions [98] and experimental data [84],

and has been used in simulations of HIFU [64, 83]. openPSTD is software de-

veloped to assess acoustic sound propagation in an urban environment, and as

of the date of thesis submission, only supports acoustic propagation in two di-

mensions within a space composed of rectangular subdomains [97]. A limitation

of k-Wave is that, because of the way k-Wave models the power-law frequency-

dependent attenuation within its governing equations [81, 96] the power-law at-

tenuation exponent must be fixed across the propagation medium, even though

all other acoustic parameters can vary spatially. In 2018, a simulation study by

Suomi et al., on the efficacy of HIFU ablation of the kidney, modelled nonlinear

acoustic propagation from an annular transducer (operating frequency 0.95 MHz)

in patient kidneys [83]. Suomi et al. used a computational grid of 1200 x 1200 x

1200 points, with an isotropic spatial resolution of 185 µm, and simulated 31876

time steps with a time resolution of 8.15 ns, corresponding to a CFL of 0.18.

Each simulation required approximately 50 hours on a 400 core cluster with a

memory requirement of 200 GB. In the same year, Abbas et al. presented simu-

lations which examined the effect of tissue geometry on HIFU ablation of kidney

tumours [64]. Unlike Suomi et al, Abbas et al. performed linear simulations. No

reason was given as to this decision. The computational grid was 864 x 864 x

864 points, with an isotropic spatial resolution of 243.6 µm, and 26,867 time steps

were simulated with a time resolution of 9 ns. Each simulation required approx-

imately 53 hours on a 144-core cluster to complete. In 2019, a study by Martin

et al. reported validation of k-Wave against experimental data [84]. Their work

involved simulating acoustic propagation from a single-element bowl transducer

(aperture diameter 64 mm, focal length 98 mm, operating frequency 1.1 MHz)

within a water tank, with glycerol inserts placed in the beam path to introduce

medium heterogeneity. Martin et al. used a computational grid consisting of 2048

x 864 x 864 points, with an isotropic spatial resolution of 100 µm, and simulated
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11467 time steps with a time resolution of 15 ns, corresponding to a CFL of 0.23.

Simulated spatial-peak temporal-peak positive and negative pressure were lower

than hydrophone measurements by 11% and 10% respectively, with hydrophone

measurements having estimated uncertainty of 10%. The simulated focus was

displaced from the measured focus by at most 1.4 mm. The simulation required

9.5 hours to simulate on a 864-core cluster with a total memory requirement of

1.3 TB. In an effort to reduce the computational requirements of PS methods,

Grisey et al. proposed a scheme in which simulations were performed in multiple

layers [99, 100], with each layer increasing in spatial resolution and decreasing in

field-of-view size as they approached the focus, and with the output of one layer

being Fourier-upsampled and used as the input for the next layer. However, no

results had been provided as to how this would improve computation time. Evi-

dence that the multilayer methodology converged to a single-domain simulation

had not been presented. Grisey et al. also did not present specific information re-

lating to the construction of the multilayer model, such as overlap between layers,

the increase in spatial resolution per layer, and how the field-of-view size shrunk

between layers.

2.6.3 Angular Spectrum Methods

The angular spectrum method takes an initial pressure distribution within a plane,

and propagates it in the direction perpendicular to that plane. Propagation to the

next plane is performed by decomposing the pressure wave distribution in the

initial plane into a weighted sum of 2D plane waves with different wavevectors,

multiplying each 2D plane wave by a phase term related to the expected phase

shift of propagation to the next plane, and then summing the modified 2D plane

waves together to generate the pressure distribution in that next plane [101]. The

decomposition and summation process can be performed quickly using the com-

putationally efficient FFT algorithm. The angular spectrum method requires a

method of generating the initial pressure distribution. The Rayleigh-Sommerfeld

integral [101] has been suggested for this purpose [77], as has the fast nearfield

method [102–104]. The disadvantage of the angular spectrum method is that
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it assumes linear propagation, and that it can only simulate propagation through

layered media in which the interfaces between different materials are all parallel to

the initial plane. In 2016, Wang and Zhou [78] validated a modified angular spec-

trum method, capable of simulating acoustic attenuation and nonlinearity through

layered media, against experimental data obtained by needle hydrophone in a

water tank. The validation simulations were conducted with a concave source

(operating frequency 2.08 MHz, source pressure 480 kPa) emitting into a two-

layer medium (3 cm water, 5 cm tissue). The total computational grid was 768 x

768 x 212 points, with the transverse spatial resolution being 238 µm, axial spatial

resolution in the water layer being 356 µm and that in the tissue layer being 390

µm. The simulated peak negative pressure was greater than the measured value

by 7%. Simulated peak positive pressures for the first three harmonics visually

matched measured values. Computation time was approximately 50 minutes on

a 4-core desktop PC.

The hybrid angular spectrum (HAS) method was developed by Vyas and

Christensen in 2012 [77]. It incorporates modifications to simulate acoustic prop-

agation through heterogeneous and attenuating media. In their implementation,

only the first reflection from medium interfaces was simulated. Vyas and Chris-

tensen compared the HAS method and the FDTD method in a simulation of lin-

ear acoustic propagation through a 3D breast model. For both methods, the

pressure distribution was initialised using a Rayleigh-Sommerfeld integral, with

the source frequency being 1 MHz. The computing grid was 301 x 300 x 300

points, with isotropic spatial resolution of 150 µm. The HAS method required

46 seconds to complete the simulation on a laptop, whilst the FDTD method re-

quired 467 minutes. However, Vyas and Christensen’s implementation was only

capable of simulating linear acoustic propagation. In 2015, Schwenke et al. [26]

implemented a variant of the HAS method, with the ability to simulate nonlinear

acoustic propagation [79], as a component of their treatment planning software.

They claim to have validated it, but have not shown data. In 2018, Johnson et

al. performed a validation study of Vyas and Christensen’s linear HAS method

[105]. Acoustic propagation and the thermal bioeffects from a MRgHIFU trans-
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ducer sonicating a homogenous tissue phantom were modelled, with acoustic

simulation performed using the HAS method and thermal simulations performed

using a previously-validated FDTD method. Simulation results were then com-

pared to MR thermometry data. The initial pressure distribution from the source

transducer, a 256-element transducer with operating frequency of 0.94 MHz and

acoustic powers of 6.3 and 7.9 W, was generated from the Rayleigh-Sommerfeld

integral. It appears that Johnson et al. believed the effects of nonlinearity were

negligible at the acoustic powers used. The simulation grid was 647 x 343 x 280

points, with an isotropic spatial resolution of 250 µm. Johnson et al. state that the

average computation time for a single simulation was 32 seconds. However, no

description of the computing system they used was provided.

Although the angular spectrum method and its variants are computationally

efficient in comparison to the FDTD and PS methods, they have several limita-

tions. Firstly, because angular spectrum methods do not involve time stepping,

they implicitly simulate acoustic propagation at pseudo-steady state conditions.

This does not appear to be a problem for the simulation of continuous waves, as

used in clinical HIFU ablation [65, 106]. Secondly, because the initial pressure

distribution must be planar, transducers without a principal propagation direction,

such as hemispherical transducers for transcranial HIFU, cannot be simulated

using these methods. Thirdly, the HAS method as described by Vyas and Chris-

tensen, which appears the most clinically relevant [26, 105, 107], only incorpo-

rates transmission and the first backwards reflection. It appears possible for the

code to be extended to allow for more reflections. Fourthly, for the HAS method

as implemented by Vyas and Christensen, mirror sources (which arise from the

inherent periodicity implied in the Fourier transform) could interfere with the wave

propagation, resulting in ripple artefacts [108]. To reduce this interference, the

transverse field-of-view can be made larger so that the boundaries are further

away [78], absorbing boundary conditions could be applied to the transverse grid

boundaries [109], or by removing the decomposed plane waves with wavevec-

tors that are angled away from the propagation direction past a depth-dependent

critical angle when propagating from one plane to the next [108].
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Open-source software that use the angular spectrum method include Aber-

sim [110], which can simulate nonlinear acoustic propagation through a homo-

geneous medium, FOCUS [111], which can simulate nonlinear acoustic propa-

gation through layered media with all interfaces parallel to the source plane, and

CREANUIS [112, 113], which was developed for ultrasound harmonic imaging

and simulates nonlinear acoustic propagation through a medium which is homo-

geneous in sound-speed, density and attenuation coefficient but fully heteroge-

neous in nonlinearity parameter.

2.6.4 Summary of Acoustic Simulation Methods

A summary of the acoustic simulation methods discussed here is given in Table

2.1. A pseudo-spectral and k-space simulation package (k-Wave [80]) was se-

lected for use in simulating acoustic propagation for this project. The FDTD and

nonlinear HAS codes capable of simulating acoustic propagation through nonlin-

ear, heterogeneous media are not publicly available. Furthermore, k-Wave had

been validated [84, 98] and applied to simulations of HIFU ablation in patient data

[64, 83].
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2.7 Simulation of Thermal Bioeffects
Thermal simulation is used to predict the temperature change and thermal dose

delivered to a target when acoustic energy is deposited. Since the human body

is heterogeneous, without underlying symmetries, the simulation methodology

must be capable of simulating heat transfer through a heterogeneous medium.

The acoustic energy deposition is also without underlying symmetry, so the sim-

ulation methodology must be capable of simulating heat transfer from a general

heat source. Much of the published literature appears to use the Pennes bio-

heat equation [40], discussed above in Section 2.2, as the governing equation.

Because thermal diffusion occurs on longer time scales than that for acoustic

propagation [73], its simulations tend to use coarser spatial and/or temporal res-

olutions (e.g. same isotropic spatial resolution of 0.1 mm but increased time step

from 10 ns (acoustic) to 0.1 seconds (thermal) [73]). For thermal simulations,

time-steps are on the order of 0.1 seconds [73, 105]. Thermal simulation times

are on the order of seconds [105] to minutes [64] on workstation hardware.

Because patient MR and CT image data is obtained in the form of 3D met-

rics, thermal simulation methodologies that can be directly applied to gridded

data were explored. These included finite-difference time-domain [64, 71, 78, 83,

105, 117–120], pseudo-spectral and k-space [80, 121], and Monte Carlo meth-

ods [122–124]. Finite element methods have also been used for simulating heat

transfer [85, 125], but as mentioned before, they require meshing of the medium

which contributes to uncertainty and introduces the problem of interpenetrating

meshes. In the literature, descriptions of the thermal simulations appear to be

sparse compared to that for acoustic simulations.

2.7.1 Finite-Difference Methods

Garnier et al. developed an FDTD method for simulating tissue temperature evo-

lution with time [118] using the bioheat equation as the governing equation. Tem-

peratures were not allowed to exceed 100°C and the perfusion rate of tissue was

set to zero upon necrosis (after exposure to ≥340 CEM43 thermal dose). The

increase in tissue attenuation coefficient with temperature was incorporated into

62



the thermal simulation. The peak difference between the measured and simu-

lated temperatures was approximately 5°C, with thermocouple uncertainty being

up to ±9°C. Garnier et al. used a time step of 0.02 seconds (a total of 1000

time steps were simulated for a 20 second-long exposure), but did not mention

the spatial grid size, resolution or the computational time required for the FDTD

bioheat simulation. In 2010, Dillenseger and Esneault used this FDTD simula-

tion methodology to validate a separate pseudo-spectral time-domain method for

computing the bioheat equation [121]. For a grid size of 256 x 256 x 64 points,

with a spatial resolution of 0.4 mm, and a total number of 200 time steps being

simulated with a time resolution of 0.1 seconds (corresponding to a total simula-

tion duration of 20 seconds), the computational time for the FDTD simulation was

62 seconds on a 4-core desktop PC.

In 2018, Johnson et al. [105] used a three-dimensional FDTD method to

perform thermal simulations as part of the validation for an acoustic simulation

method in tissue phantoms. The FDTD method had previously been implemented

as part of a method for speeding up MR thermometry [126]. In that process, val-

idation had been performed by quantifying the root-mean-square error between

the simulated temperature and the measured temperature (measured using pro-

ton resonance frequency shift thermometry) within a heated region of interest,

with the resulting root-mean-square error being 0.8°C. Johnson et al. performed

simulations with the following settings: the computational grid and spatial reso-

lution was the same as those used in the acoustic simulation: 647 x 343 x 280

grid points, with a spatial resolution of 250 µm. A total of 227 time steps was

simulated with a time resolution of 0.08 sec (corresponding to a total simulation

duration of 18.16 seconds). Blood perfusion was assumed to be negligible. The

average computing time required for thermal simulations was 35.3 sec. However,

no description of the computing system was provided by Johnson et al.

2.7.2 Pseudo-spectral and k-space Methods

In 2010, Dillenseger and Esneault developed a pseudo-spectral time-domain

method to compute the bioheat equation for a homogeneous medium [121],
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where the derivative property of the Fourier transform was used to simplify the

spatial derivative in the bioheat equation. Similarly to a previous simulation study

performed by their group [118], they incorporated the change in tissue attenua-

tion coefficient with temperature. Simulations were performed in a computational

grid of 256 x 256 x 64 points with a spatial resolution of 0.4 mm. The code

was implemented in C++ and run on a 4-core desktop PC. A total of 10 time

steps, with time resolution being 2 seconds, was simulated, for a total duration

of 20 seconds. Results were visually indistinguishable from the FDTD method

developed by their group [118], and when compared against in-vivo animal ex-

periment data obtained from thermocouple measurements, the peak difference

between the measured and simulated temperatures was approximately 5°C, with

thermocouple uncertainty being up to ±9°C. The computational time required

was 31 seconds compared to the 62 seconds required by an FDTD method that

Dillenseger and Esneault’s group implemented previously [118]. The biggest is-

sue with Dillenseger and Esneault’s method was that it was limited to simulating

bioheat transfer in a homogeneous medium. Furthermore, Dillenseger and Es-

neault noted that the improvement of the pseudo-spectral method compared to

the FDTD method was not as great as they expected, which they attribute to the

computational complexity of the Fast Fourier Transform (FFT). It appears that for

smaller computational grids, the extra processing required by the FFT requires

means that the time saved is relatively short compared to FDTD methods. Dil-

lenseger et al. note that computational speedup could be achieved for both FDTD

and pseudo-spectral methods using GPU implementation of the software.

The k-Wave software package [80] also includes a thermal diffusion simula-

tion component based on pseudo-spectral and k-space methods [127], with the

bioheat equation as the governing equation. The divergence and gradient terms

in the bioheat equation are calculated separately using Fourier transforms. The

time derivative was calculated using a k-space propagator. In the k-Wave docu-

mentation [128], for a homogeneous medium, the thermal simulation agreed with

an exact solution, derived using Green’s functions [129], to machine precision.
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2.7.3 Monte Carlo Methods

Monte Carlo methods set up an ensemble of simultaneous and random pro-

cesses, with the end result of the processes being collected together and re-

ported as the simulation output. Therefore, Monte Carlo methods can easily be

parallelised. The only paper found on the topic was written in 2002 by Deng

and Liu who developed a Monte Carlo method to simulate bioheat transfer using

the bioheat equation as the governing equation [123]. They discretised the bio-

heat equation to extract a probability model from it. At a particular instant in time

t = Nδ t, where δ t is the time resolution and N the number of time steps, individual

particles are created within the simulation domain grid and moved as governed

by the extracted probability model. Each particle is only allowed at most N moves.

If the particle runs out of steps, a temperature based on its initial temperature is

registered; if the particle hits the boundary of the domain before running out of

steps, depending on chance, it may be terminated and a temperature dependent

on the boundary conditions is recorded, or it may be sent to another grid point.

The temperature of a single point on the domain grid was calculated from the

total tally of all particles created from that point, divided by the number of par-

ticles created from that point. Validation was performed by comparison with an

analytical solution in one dimension, with the difference between the two being

less than 0.5°C at any point. For a one-dimensional system consisting of 31 grid

points, with 10,000 particles created and measured at a single location at time

t = 2,000 sec, required approximately 14 seconds of computational time. Un-

fortunately, neither the time step size, nor the computer system within which the

simulation was performed, were mentioned. Deng and Liu mention that the na-

ture of Monte Carlo simulation allows for easy parallelisation and therefore, easy

speedup, if optimised hardware is used. Furthermore, the methodology allows the

simulation of temperatures at particular spatio-temporal points of interest, without

requiring the calculation of other spatio-temporal points beforehand, which could

save time. However, Deng and Liu noted that computing accuracy at the domain

boundaries is worse than that at the interior domain points, and that even for a
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one-dimensional system, the method was time-consuming. It appears that if the

desired output is the evolution of a temperature map over time, which is required

for the identification of thermal dose contours, then another method may be more

ideal. The authors used this method to evaluate the cooling effect of large blood

vessels on temperature distributions during hyperthermia [130] and to correlate

skin surface temperature and heat flux with pathophysiology [122]. Monte Carlo

methods appear unpopular compared to finite-difference methods.

2.7.4 Summary of Thermal Simulation Methods

A summary of the thermal simulation methods explored is given in Table 2.2.

The pseudo-spectral and k-space method was chosen as the thermal simulation

method for this project. From acoustic simulation, grids on the order of 1000

x 1000 x 1000 points were expected; for such grids, pseudo-spectral methods

were expected to be faster than FDTD methods. To identify where tissue ablation

occurs, thermal dose must be evaluated for each grid point, suggesting that grid-

based methods would be superior to Monte Carlo methods. Lastly, k-Wave is

publicly available, whereas to the author’s knowledge, the FDTD codes used in

the literature are not.
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Table 2.2: Summary of thermal simulation methodology.

Methods Finite-
Difference Time
Domain (FDTD)

Pseudo-spectral
and k-space

Monte Carlo

Advantages Used widely in
the literature
[64, 71, 78, 83,
105, 119, 120],
and therefore
well understood.
Available in open-
source software
FDTD [131]

Faster than
FDTD for large
simulation grids
[121]. Available
in open-source
software k-Wave
[80].

Can be paral-
lelised easily for
huge speed up.
Fast if only a
small number of
spatio-temporal
time points are
to be examined
[123].

Disadvantages May be slower
than pseudo-
spectral methods
for large grids
[121]

May be slower
than FDTD for
small grids [121].
Not as common
as FDTD in the
literature.

Very slow if
non-parallelised,
and if more than
several spatio-
temporal points
are examined
[123]. Very little
literature on this
method.
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Chapter 3

Clinical Studies

3.1 Introduction
A volunteer study was performed before imaging data from a recent clinical

trial, MRgHIFU for Recurrent Gynaecological Cancer (NCT02714621), was made

available. Image data from both the volunteer and the patient study were used

over the course of the PhD. The purpose of the volunteer study was to provide

human data similar to that which would be provided by patients. The methodol-

ogy for predicting target (tumour) coverage from referral images (Chapter 6) was

developed on the volunteer data. The patient data, which was obtained later, was

used to test the methodology that had been developed.

3.2 The Sonalleve® V2 MRgHIFU System
The MRgHIFU system used at The Royal Marsden Hospital (RMH) for the clini-

cal trial was the Sonalleve® V2 (Profound Medical, Mississauga, Canada). This

contains a 256-element phased-array transducer (outer diameter 138 mm, inner

diameter 44 mm, focal length 140 mm, with the 256 6-mm diameter circular trans-

ducer elements arranged pseudorandomly within this annulus). During treatment,

the Sonalleve® bed replaces the imaging couch in the bore of the MR scanner.

The transducer is mounted in an oil bath, filled with medicinal-grade white oil, on

a robotic positioner with 3 linear and 2 rotational motion capabilities, and faces

the patient through a thin (50 µm thick) acoustically transparent membrane. The

transducer’s home position (posterior white cross in the left diagram in Figure 3.1)
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is calibrated to always be 140 mm below the magnetic isocentre, and the unde-

formed membrane-to-isocentre distance is calibrated to be 72.5 mm. Acoustic

coupling is achieved using a degassed-water wetted gel-pad (either 15 or 40 mm

thick), which is placed on top of the membrane, and on which the patient is po-

sitioned for treatment. Due to the patient’s body weight, the gel-pad compresses

and the acoustic membrane bows when the patient is placed on top of the gel-

pad. From its home position, the transducer can translate in 50 µm steps by up

to: 72.5 mm left or right and inferior or superior, and 34 mm towards the patient

and 33 mm away. The transducer can angle up to 10° away from the perpendicu-

lar in the Left-Right and Inferior-Superior directions. It emits acoustic waves at a

frequency of 1.22 MHz and, during therapy, outputs acoustic power ranging from

40W to 300W.

Figure 3.1: Schematic of the Sonalleve® V2 MRgHIFU system showing: LEFT - a subject
lying on the MR bed, compressing the acoustic-coupling gel-pad and bowing
the acoustic membrane which seals the oil bath. The membrane coil bows
with the membrane. Ideally, the target tissue is centred directly above the
transducer’s home position, and the centre of the membrane/gel pad, and
below the magnetic isocentre. RIGHT- a coronal view of the MRgHIFU couch
showing the transducer’s home position below the centre of the membrane.
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The Sonalleve® transducer focus can be steered electronically to ablate stan-

dardised, approximately ellipsoidal volumes called ‘treatment cells’, resulting in

ablation of large volumes of tissue whilst reducing total treatment time [42, 65].

This is done by rapidly steering the focus between particular ‘trajectory points’ that

lie on the focal-plane, with larger treatment cells having more trajectory points,

and taking advantage of heat diffusion to ablate tissue between the trajectory

points. The precise positions of the trajectory points are derived from the config-

uration file. Each trajectory point is sonicated for 50 ms [42]. The transducer is

switched off when the focal position is steered to another trajectory point, a pro-

cess requiring <10 ms [42]. The Sonalleve compensates for the loss in focal peak

intensity when electronically steering off-axis by increasing the source power (up

to 20% at 8 mm lateral off-axis according to Philips internal documents). Each

treatment cell has a cylindrical safety margin aligned with and centred on the

cell associated with it, within which organs at risk should not be present[132],

although in practice, clinician judgement is exercised. The range of treatment

cells[18, 133] and their associated details are summarised in Table 3.1, with num-

bers extracted from the Sonalleve® configuration file.

Treatment Cell
Diameter
(mm)

16 14 12 8 4

Length
(mm)

34.88 31.5 27.96 21.84 10

Cell Safety Margin
Diameter
(mm)

50 45 40 30 20

Height
(mm)

80 72.5 65 50 35

Sonication
Time (sec)

56 45 36 20 16

Table 3.1: Details of treatment cells and associated safety margins with each cell.
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3.3 Magnetic Resonance (MR) Image Acquisition

3.3.1 Common MR Scanning Protocol

All subjects (all female, five volunteers, five patients) were scanned on a 3.0T

Philips Achieva® MR scanner (Amsterdam, Netherlands), using a two-point Dixon

sequence [134] (TE1/TE2 = 1.186 (out-of-phase) / 2.372 (in-phase) ms, TR = 3.62

ms, number of echoes = 2, flip angle = 10°); patients were further imaged using,

amongst others, a T2w Large Field-of-View (T2wLFOV) sequence.

"Referral Image Datasets" were acquired with subjects lying supine on the

standard MR bed using SENSE XL torso coils (Philips, Netherlands) wrapped

around the pelvis. "Treatment Image Datasets" were acquired with subjects ly-

ing oblique supine decubitus on a gel-pad covering the acoustic window of the

Sonalleve® V2 MRgHIFU bed, using two Sonalleve® coils – one built into the

bed, and an external pelvic coil. All subjects were positioned by an experienced

radiographer who was involved in the MRgHIFU treatments at the RMH. Each

referral and treatment image dataset included in-phase, out-of-phase, water-only

(‘Water’) and fat-only (‘Fat’) 3D images. Treatment angles were measured us-

ing ITK-Snap 3.6.0 software [135] (University of Pennsylvania, USA), by manu-

ally drawing a line between the axial-plane positions of the left and right ischial

spines, and finding the angle between this and a horizontal line.

Volunteer images were acquired before the first patient was treated. Cohort-

specific imaging information is given in Section 3.3.2 for volunteers and Section

3.3.3 for patients.

3.3.2 Volunteer Image Acquisition

Five female volunteers (details in Table 3.2) were scanned with ethics approval

from The Royal Marsden and the Institute of Cancer Research Committee for

Clinical Research (CCR1406). Volunteer Body Mass Index (BMI), height and

weight data was recorded. Uncertainties for weight, height and BMI were esti-

mated to be ±1 kg, ±4 mm and 2% respectively. The volunteers did not have

tumours.
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In addition to the supine referral dataset described above, each volunteer

was scanned in two "treatment" positions which were deemed to be plausible

from experience treating patients with pelvic bone pain using MRgHIFU [18, 19]:

1) a nominally "Steep" (17-29°) treatment position and 2) a nominally "Shallow"

(8-17°) treatment position. The exact angle was dependent on the volunteer’s

size and shape, as this affected how they could be fitted into the bore of the MR

scanner. Each volunteer thus generated two treatment imaging datasets. The

volunteers, wearing thin trousers, were rotated anticlockwise from the subject’s

perspective, with their left buttock roughly centered over the Sonalleve® acoustic

window and with their right side elevated using angled foam pads placed under

the Sonalleve® bed cushion. The volunteer pelvises were scanned from the L5-

sacrum disc down to the inferior-most point of the ischial tuberosity in the axial

direction. Fields-of-view were chosen to include the entire body outline in the axial

slices. 15 mm-thick gel-pads were used to provide acoustic coupling between

the skin and the Sonalleve® acoustic window. Voxel resolution for referral and

treatment datasets was approximately 0.78 × 0.78 × 1.50 mm3.

Lastly, volunteers were also scanned "Supine" (0-3°) to examine the effect of

geometric deformation associated purely with changing from the diagnostic MR

bed to the therapy bed. Treatment angles are recorded in Table 3.2. Represen-

tative examples of volunteer images are shown in Appendix A Figure A.1. Due to

time limitations, no investigation was carried out with Supine treatment datasets.

3.3.3 Patient Image Acquisition

After volunteer image acquisition, five patient datasets were acquired, as

part of a recurrent gynaecological tumour clinical trial (NCT02714621, REC:

15/WM/0470)[18]. Patient data is recorded in Table 3.3. Weight data had been

collected as part of the clinical trial data (estimated uncertainty ±1 kg), but height

data (and therefore BMI) had not. To generate treatment imaging datasets, pa-

tients were oriented into a clinically judged treatment position, with the tumour as

close to the magnetic isocentre as possible. Because pre-treatment diagnostic

referral images were not available, the earliest (Day-7) follow-up supine images
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Details of Volunteers
Volunteer 1 2 3 4 5
Age
(years)

28 44 29 27 36

Body Mass
Index

20.2 26.4 23.5 23.8 20.9

Height
(cm)

165 165 170 160 168

Weight
(kg)

55 72 68 61 59

Pelvic Tilt from Supine (degrees)
Steep 23 19 17 24 29
Shallow 17 12 8 13 16
Supine 1 0 0 1 3

Table 3.2: Details of volunteers from whom imaging data was acquired. Positive rota-
tion of the pelvis denotes rotation anti-clockwise from the perspective of the
volunteer.

were used as referral image datasets; this time point was chosen to minimise

anatomical changes between the two imaging datasets. 15 mm-thick gel-pads

were used for all patients, except patient G24. For patient G24, a 40 mm-thick

gel-pad was manually cut out to provide a degassed-water-filled recess, into

which the patient was lowered. For both referral and treatment datasets, patient

Dixon image data were acquired after gadolinium contrast injection for improved

contrast, and were acquired with a Field-of-View (FoV) of 288 × 288 × 133 voxels

and voxel size 0.87 × 0.87 × 1.50 mm3. Treatment angles were measured from

treatment datasets as described in Section 3.3.2. Representative examples of

patient images are shown in Appendix A Figure A.2.

As part of a separate study, tumours were segmented from patient T2-

weighted Large Field-of-View (T2wLFOV) datasets (TE = 90 ms, TR = 3620.4

ms, number of echoes = 16, flip angle = 90°, FoV 672 × 672 × 40 voxels, voxel

size 0.45 x 0.45 × 4.5 mm3) obtained immediately pre-treatment. The clinical pur-

pose of this sequence was to provide a wide overview of the anatomy, allowing

clinicians to detect issues that could affect the quality of the treatment. Seg-

mentation was performed by an experienced radiographer, who positioned the

subjects, using in-house software (Adept v0.2, The Institute of Cancer Research,
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UK) [18] (see Section 5.2.6). These segments were used to define the target

tumour volume for each patient.

Details of Patients
Patient G3 G82 G24 G27 G29
Age
(years)

74 59 64 53 72

Weight(kg) 61 61 42 76 57
Treatment
Angle
(degrees)

9 24 -6 33 16

Table 3.3: Details of gynaecological tumour patients from whom imaging data was ac-
quired. Positive rotation of the pelvis denotes rotating anti-clockwise from the
perspective of the volunteer.

Since the volunteer study began before the first patient was treated, the range

of patient treatment angles was not known. The upper and lower bounds of the

patient treatment angles were found to exceed the upper and lower bounds of

the volunteer ’treatment’ angles by 4 and 2 degrees, respectively. Patient mean

weight (mean: 59 kg, with standard deviation: 12 kg, henceforth formatted 59±12

kg) matched average volunteer weight (63±7 kg), but because height information

was not captured for patients, the similarity in height and BMI between patients

and volunteers was unknown.
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Chapter 4

Image Registration

4.1 Introduction
Image registration is the process of aligning two image datasets, to allow for com-

parison between them. In this study, registration involved rotation of the referral

dataset into the orientation used in the treatment dataset, thus allowing the target

coverage predicted from the registered-referral dataset to be compared with that

calculated from the treatment dataset. Registration was also used to align the tu-

mour segments (see Section 5.2.6), which had been segmented from T2wLFOV

datasets, with the Dixon image datasets that later underwent further processing.

In order to reduce time spent in manual segmentation, pelvic bones segmented

from volunteer referral images were also aligned with treatment datasets. In light

of the limited volunteer and patient data available here, a manual image registra-

tion method was selected in order to ensure good registration quality.

4.2 Method
Each subject’s referral image dataset was registered to the corresponding treat-

ment image dataset by aligning 10 or more pelvic bone landmark points. These

were manually placed throughout the pelvis using Horos v2.4.0, v3.0.1 (open-

source, https://horosproject.org/) [136] and OsiriX Lite 10.0.4 (Pixmeo, Switzer-

land) [137]. The Standard Operating Procedure is attached in Appendix B. Horos

and OsiriX calculated the required affine transformation [138, 139] and applied

it to the referral dataset to create a registered-referral dataset. The registered-
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referral dataset was ensured to be in the same coordinate system as the treat-

ment dataset.

For patients, tumours had been segmented from T2wLFOV datasets (see

Section 5.2.6). Registration from T2wLFOV datasets to the corresponding Dixon

datasets was also performed to align tumour segments to Dixon imaging for re-

ferral and treatment datasets. Tumour segments were then further transformed

to align with registered-referral datasets.

An external python environment (Python 3.6.2, NumPy 1.13.1 [140, 141],

SciPy 1.3.1 [142], SimpleITK 1.0.1 [143]) was created and code was written for

extracting data from Horos/OsiriX [144] transforming it into MATLAB format. The

code was written by Dr Matthew Blackledge.

4.2.1 Evaluation of Uncertainties in Image Registration

As there is no ground-truth data available to determine the registration accuracy, it

was assumed to be linked to the observer’s ability to repeatedly place registration

points on identical features in paired referral and treatment images. The Mean

Euclidean Distance between Corresponding Points (MDCP) was calculated for

paired, post-registration landmark points in the registered-referral and treatment

datasets to represent the registration uncertainty [145].

It was assumed that the quality of the registration of volunteer data is indica-

tive of the quality of the registration of patient data. To examine inter-observer

variability, three observers (all medical physicists) each registered volunteer V1’s

referral dataset to its Steep treatment dataset three times, with at least a three day

interval between repeats. To examine intra-observer variability, one observer (the

thesis author) registered three volunteer referral datasets to their corresponding

Steep treatment dataset, repeating each registration thrice with at least a three

day interval between repeats. Registration validation used the Steep treatment

dataset as the fixed image dataset because, as the most steeply angled, it was

assumed to vary the most from the supine referral dataset, and hence to be the

most difficult treatment dataset to register the referral dataset to.
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4.3 Results

4.3.1 Evaluation of Uncertainties in Image Registration

Inter-observer uncertainty in image registration for volunteer V1
MDCP Observer 1 Observer 2 Observer 3
Repeat 1 (mm) 1.00 1.27 1.40
Repeat 2 (mm) 1.43 1.41 1.22
Repeat 3 (mm) 1.32 0.95 0.98
Mean±SD
(mm)

1.25±0.18 1.21±0.19 1.20±0.17

Intra-observer uncertainty in image registration
MDCP Volunteer 1 Volunteer 2 Volunteer 3
Repeat 1 (mm) 1.00 1.55 1.18
Repeat 2 (mm) 1.43 1.37 1.29
Repeat 3 (mm) 1.32 1.28 0.98
Mean±SD
(mm)

1.25±0.18 1.40±0.11 1.15±0.13

Table 4.1: Inter-observer (top) and intra-observer (bottom) uncertainty for image registra-
tion. MDCP is mean Euclidean distance between corresponding points. SD is
standard deviation.

Results for the assessment of image registration uncertainty are recorded

in Table 4.1. Between three observers, the mean distance between correspond-

ing points for the referral imaging dataset for one volunteer, registered to one of

their treatment imaging datasets, was on average 1.2±0.2 mm. For one observer,

the mean distance between corresponding points for the referral imaging dataset

for three volunteers registered to their Steep treatment imaging datasets was on

average 1.3±0.2 mm. Single-factor ANOVA showed no statistically significant dif-

ference in registration uncertainty between observers (p > 0.95), or in registration

uncertainty between different Volunteers for one observer (p > 0.28). For com-

parison, a dataset voxel was approximately 0.75 x 0.75 x 1.50 mm3.

4.4 Discussion and Conclusion
Mean post-registration misalignment was found to be less than the axial slice

width of the Dixon image datasets, in line with results from the literature [146].

Hence, the introduced registration methodology was used throughout this study.
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Chapter 5

Image Segmentation

5.1 Introduction

Image segmentation was performed in order to extract regions of interest from the

image datasets. These included important tissues, such as bony anatomy, which

act as acoustic obstructions; organs at risk (OARs), which would be damaged

if ultrasound was transmitted through them, and patient tumours, which are the

ablation target. Extracorporeal air, an acoustic obstruction, is also segmented.

The presence of OARs and acoustic obstructions in the beam path prevents safe

and effective sonication of the target, and hence is important in determining the

extent of tumour coverage (Chapter 6). The body outline was segmented to assist

with other segmentation processes, such as that of extracorporeal air, as well

as identification of the transducer home position relative to the tissue volume of

interest (see Chapters 6 and 8). Because medical image segmentation (step 1 in

the workflow) is a well-studied field [55, 147], little time was spent developing new

methodologies for image segmentation, in order to allow focus on other steps in

the prospective patient workflow.

OARs were segmented manually due to low contrast with surrounding tissue.

Bones were manually segmented because partial volume effects reduced the

contrast between cortical bone and surrounding tissue. Extracorporeal air and

the body outline were automatically segmented. Segments take the form of a

three-dimensional binary array of voxels, the size of which matches the size of

the image dataset from which the segments were extracted. A binary array is one
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where each voxel in the array can only have one of two values: ’1’ or ’0’. For all

segments, the ’1’ voxels represent the segmented tissue or material, whilst the ’0’

voxels represent everything else.

5.2 Method

Manual segmentation of bony anatomy and OARs was performed by semi-

automatic contouring (using contour interpolation between manually contoured

slices) of in-phase Dixon image datasets using Horos, OsiriX and 3D Slicer

v4.10.2 (open-source, https://www.slicer.org, Harvard University, Boston, USA)

[148][149]. The software was chosen since the scripts required to extract contour

data from them already existed within the ICR. Contour data was extracted from

Horos and OsiriX in DICOM RTStruct format, and read into MATLAB, via Python

2.7 [144] and MATLAB scripts written at the ICR by Matthew Blackledge, Matthew

Orton and Simon Doran. Contour data was extracted from Slicer3D using the

open-source SlicerRT package[150]. Automatic segmentation of extracorporeal

air and the body outline was performed as described below.

5.2.1 Body Outline

In order to delineate the body outline, and to separate the tissue volume from the

gel-pad and oil bath in the treatment datasets, the body outline was segmented

automatically from the registered-referral and treatment datasets. This was ac-

complished as described in Figure 5.1. In order to obtain the body outline from

treatment datasets, the input image used was the Fat dataset (see Section 3.3.1);

from registered-referral datasets, the input image was the in-phase dataset. In

step 1, the input image was Otsu thresholded [52] using an 512-bin intensity

histogram. Otsu thresholding is a method for automatically determining an inten-

sity threshold by minimising a weighted sum of the intensity variance below the

threshold and that above the threshold, with the weights being the probability of

being below and above the threshold. Voxels below the threshold were marked

’0’ and those above were marked ’1’. Because the gel-pad is water-based, it has

relatively low intensity in the Fat images. The thresholding process therefore al-
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lowed removal of the gel-pad from treatment datasets. For the registered-referral

datasets, there is no gel-pad or oil-bath, so the Otsu thresholding separated the

tissue from air. In step 2, in order to separate body tissue voxels from other

structures such as noise or oil-bath, connected-components labelling [57] was

performed. This process identified regions of ’1’ voxels that were connected only

to each other, and each region was uniquely labelled. In order to fill holes that

had resulted from the thresholding, morphological flood-filling [58] of each region

was performed. The largest (by number of voxels) region, which was assumed to

be the body, was extracted and the remaining regions discarded. In step 3, the

body region was prepared for hole-filling. Each axial slice of the extracted body

region was examined to determine whether it reached to the leftmost and right-

most column and anterior-most row. Where it did, for those columns, the topmost

and bottommost extents of the body region were identified, and column voxels

between them were marked as body segment voxels; for the anterior-most row,

the leftmost and rightmost extent of the extracted body region was identified, and

row voxels between these extents were marked as body segment voxels. This

process allows the subsequent morphological operations to function properly in

step 5. In step 4, in order to allow the morphological operations to function, the

entire array was zero-padded by at least 50 voxels. This meant that the array was

placed within a larger array, such that the original array was entirely surrounded

by a border of ’0’ voxels at least 50 voxels thick. In step 5, for each axial slice, the

body segment is morphologically dilated to smooth cracks in the thresholding, the

interior is flood-filled to remove interior holes, and the segment is morphologically

eroded to counter the effect of the earlier dilation. The structuring element used

for dilation and erosion was a 2D disk with radius of 16 voxels. In step 6, the array

is unpadded to return to the same dimensions as the body mask segment.
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Figure 5.1: Body masking workflow, depicted for a representative volunteer treatment
dataset and described in the text. Step 1: Otsu thresholding using a 512-
bin histogram. Step 2: Connected components labelling and extraction of
the largest component, assumed to be the body. Step 3: Anterior, left and
right edges of the body segment are outlined, and Step 4: the array is zero-
padded by at least 50 voxels at each side, in order to allow for processes in
Step 5 to function. Step 5: morphological dilation, flood-filling and erosion.
Step 6: the padding is removed, and the result is the body mask.
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5.2.2 Organs at Risk

Organs at risk (OARs) are healthy tissues that, if damaged, could lead to severely

decreased quality of life. Hence, their presence within the beam path restricts

acoustic access to the target, and thus affects the patient’s treatability. Their seg-

mentation is therefore necessary for the accurate assessment of target coverage.

Relevant organs at risk in the pelvic region include the uterus, bladder, the small

intestine (particularly the ileum), the colon and the rectum. Some patients had

undergone pelvic exenteration prior to undergoing MRgHIFU therapy, so not all

the relevant organs were present in all patients.

Volunteers have not undergone the clinical preparation, such as dieting and

bowel-filling, that some patients will have undergone in an effort to protect OARs

[18]. For this reason and for simplicity in this feasibility study, neither bowel gas

nor OARs were segmented from volunteer data.

5.2.3 Acoustic Obstructions

Tissues and materials that are acoustically opaque, such as bone, trapped air

within the intergluteal cleft, and extracorporeal air act as acoustic obstructions.

Because of their acoustic opacity, ultrasound cannot propagate through them.

Segmentation of acoustic obstructions is therefore necessary for the accurate

assessment of target coverage. For all subjects (volunteers and patients), bone

was segmented manually from treatment and referral datasets, using the same

method as used for OARs (see Section 5.2.2). In volunteers, it was assumed that

the intergluteal cleft would be filled with acoustic-coupling gel in a real clinical

procedure as part of clinical preparations, and hence, this was not treated as an

acoustic obstruction. However, in patients, the intergluteal cleft was sometimes

observed to contain air, and was therefore manually contoured and included as

part of the extracorporeal air segment.

Extracorporeal air was segmented only for treatment datasets. When esti-

mating target coverage from referral images, clinical preparations were assumed

to ensure perfect acoustic coupling between the subject and the transducer. Ex-

tracorporeal air was not segmented for volunteers, because the trousers worn by
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volunteers during image acquisition prevented skin-to-gel-pad acoustic coupling.

Instead, volunteer acoustic coupling limits in the left-right direction were manually

identified, as described in Section 6.2.2.4. For patients, extracorporeal air was

segmented using an automatic segmentation method inspired by Kullberg et al.

[53], which is shown in Figure 5.2 and described here. In step 1, input Fat and Wa-

ter treatment dataset images were each normalised until their maximum intensity

was 0.5, and then summed to increase contrast between air and the tissue, gel-

pad and oil-bath. In step 2, a 64-bin intensity histogram was generated from the

image, and the lowest intensity trough was identified. The intensity corresponding

to the centre of that bin was taken as the threshold. This threshold was chosen

because the extracorporeal air was assumed to have the lowest voxel intensity in

the image (alongside cortical bone) and in preliminary experiments, this threshold

performed well for multiple patients. In step 3, the image from step 1 was thresh-

olded to extract voxels of low intensity. To remove segments representing cortical

bone and bowel gas, the thresholded image was masked by the complement of

the body outline, the segmentation of which is described in Section 5.2.1. In step

4, connected-components labelling (6-connectivity) split the thresholded image

into disparate segments, each of which were tested for whether it was connected

to the right, anterior or left sides of the dataset. Any segment that was not con-

nected to any of these was assumed to be spurious. For example, a susceptibility

artefact around the Sonalleve bed coil resulted in localised intensity variations in

the image which passed the thresholding. These segments would be removed in

this step. Finally, in step 5, any holes in the segments that resulted from image

noise were filled using 3D morphological flood-filling, and the result was output

as the extracorporeal air segment.
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Figure 5.2: Extracorporeal air segmentation workflow. Input Fat and Water treatment
datasets are individually normalised and then summed together (Step 1).
Step 2: an intensity histogram is generated from the image, and the thresh-
old is found at the lowest-intensity trough. Step 3: the image is thresholded
so that voxels with intensities below the threshold are marked. Step 4: Using
connected-components labelling, individual connected segments are identi-
fied. Segments that are not connected to the anterior, right or left edges of
the image dataset are removed. Step 5: morphological flood-filling is used to
fill holes in the remaining segments, and the output result is the air segmen-
tation.
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5.2.4 Volunteers

For volunteers, bone was manually segmented as an acoustic obstruction. Pelvic

bones were segmented from referral imaging. The referral pelvic bone segments

were aligned with the corresponding treatment datasets in order to reduce the

burden of manual contouring. Femora were manually segmented separately from

referral and treatment datasets, because of the likelihood of them being articu-

lated differently between datasets (unlike the more rigid pelvis). To further reduce

time-consuming manual delineation, the femurs were segmented only from the

femur head to the axial slice at which the pelvic bones ended, and for treatment

datasets, only the femur closest to the gel-pad was segmented.

5.2.5 Patients

Bone and the intergluteal cleft were manually segmented, and extracorporeal air

was automatically segmented, as acoustic obstructions. All observed OARs were

manually segmented. Because the treatment region was considerably smaller

for patients than for volunteers, in order to reduce time-consuming manual de-

lineation, only acoustic obstructions and OARs within the region-of-interest (the

axial slices containing the tumour plus a margin of 10 axial slices in the inferior

and superior directions) were segmented. The pelvic bones at the greater sci-

atic notch were always segmented, because the notch defines the superior edge

of the sciatic foramen through which the acoustic beam is expected to sonicate

the tumour. For pelvic bone in particular, the region of the greater sciatic notch

was segmented regardless of whether it was within the region-of-interest, in order

to enforce a constraint on the travel and angulation of a virtual transducer. For

treatment datasets, the extracorporeal air was segmented manually.

5.2.6 Target Tumour

The target tumour for each patient was segmented by Sharon Giles, who carefully

contoured the tumour outlines on T2wLFOV axial slices for both the referral and

treatment datasets, using in-house software (Adept v0.2, The Institute of Cancer

Research, UK) [18]. Image data from other sequences were referenced dur-
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ing contouring. Treatment contours were used to guide segmentation in referral

datasets. As the target tumour was segmented by an expert, it was assumed that

the contour was accurate. Healthy volunteers had no tumours to segment.

Figure 5.3: Target tumour segmentation from T2wLFOV images (a representative axial
slice from a patient). The green line is the manually drawn tumour contour.

The tumour segment output from Adept was represented as a set of 3D co-

ordinate points. A MATLAB script was written to extract the coordinate data. As

the T2wLFOV slice thickness was approximately 10 times the voxel in-plane side

length, the interpolation involved in aligning the T2wLFOV image array with the

corresponding Dixon image array was assumed to introduce large errors. The re-
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ferral and treatment tumour coordinates were therefore meshed using the March-

ing Cubes isosurface generation algorithm [151] to generate a triangulated sur-

face mesh, and the coordinates of the surface mesh were aligned with the re-

ferral and treatment Dixon image dataset by using the registration described in

Section 4.2. Once in the Dixon image coordinate space, a set of points with the

same spacing as the Dixon image voxels was generated within the tumour surface

meshes to represent the interior tumour volume. This was done by first obtaining

an isosurface triangulated mesh using the marching cubes algorithm [151][152]

with an isovalue of 0.5, chosen in order to place the isosurface midway between

the centres of segment and non-segment voxels. Then, a regular grid of points

with the same spacing as the Dixon image voxels was generated, and only those

points that were within the mesh were kept [153]. These points were designated

as the tumour coordinates. Referral tumour coordinates were further aligned with

the registered-referral Dixon dataset by using the transformation derived from the

referral-to-treatment registration (see Section 4.2).

5.2.6.1 Target Tumour Misalignment

Treatment and registered-referral tumour segments were compared to assess the

misalignment of tumours which could not be explained by registration, and which

was therefore attributed to body deformation and clinical preparation. To quantify

the extent of the misalignment, the mean surface-to-surface distance (MSSD),

which quantifies the mean distance between the two tumour surfaces and hence

the mean disagreement in shape [154], was calculated as defined in equation

5.1:

MSSD =
d(A,B)+d(B,A)

2
(5.1)

where

d(A,B) =
1
|A| ∑a∈A

min
b∈B
||a−b|| (5.2)

where A and B are the two tumour surfaces which are represented by discrete

points in the sets A = {a1,a2, ...,ap} and B = {b1,b2, ...,bq}, ]}||a− b|| denotes the

Euclidean norm between the points a ∈ A and b ∈ B, and |A| denotes the number
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of points in the set A.

The Hausdorff distance, which represents the greatest disagreement be-

tween the two tumour surfaces and hence quantifies the worst-case shape dif-

ference, was also calculated using equation 5.3 [155]:

H = max(h(A,B),h(B,A)) (5.3)

where

h(A,B) = max
a∈A

min
b∈B
||a−b|| (5.4)

5.2.7 Evaluation of Segmentation Quality

Automatic segmentation quality for the body outline and for extracorporeal air

was quantified by comparing randomly selected, automatically segmented image

slices with corresponding manually segmented validation slices (Body: five slices

per dataset, from three ‘steep’ treatment and two ‘shallow’ registered-referral

datasets; Air: five slices per dataset from three patient treatment datasets). For

body outline segmentation, each validation slice was at least 10 axial slices away

from any other and no validation slice was created from slices with incomplete

information (due to the registration process). In order to determine the ability of

the segmentation to determine acoustic coupling between patient and transducer,

only the extracorporeal air segments around a region of interest, where the body

and gel-pad interfaced, were assessed. The patient treatment datasets from

which validation slices were generated were visually ensured to contain some

extracorporeal air in this region of interest. A patient treatment dataset with no

extracorporeal air within this region of interest was also tested. The slices were

positioned with one approximately at the target tumour centroid, two at the infe-

rior and superior extents of the target tumour, and two more at most 10 slices (15

mm) away from the target tumour. It was assumed that body outline segmentation

quality for volunteers would be indicative of the body outline segmentation quality

for patients.

The assumption that the referral pelvic bone segments could be used to auto-
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matically segment the pelvic bones in the treatment dataset was similarly tested

against manual contouring performed on the treatment dataset (five slices per

dataset, four datasets). The segmentation quality of the volunteer bony pelvis

and femora was taken to be indicative of the segmentation quality for all manually

segmented tissues. Each validation slice was at least 10 (15 mm) or 5 slices (7.5

mm) away from any others in the same treatment dataset for pelvis and femur

respectively, and was at least 15 slices away from the superior-most and inferior-

most slices of the treatment dataset, in order to avoid incomplete post-registration

data.

For both manual and automatic segmentation, one observer manually pro-

duced all validation slices. The quality metrics that were used to quantify agree-

ment between the segment slices and the validation slices were the Dice Similar-

ity Coefficient (DSC) and the Mean Contour-to-Contour Distance (MCCD). The

DSC quantified the area agreement between the segment slices and the valida-

tion slices, and was calculated for each validation slice. It is described by equation

5.5:

DSC =
2T ∩V
|T |+ |V |

(5.5)

where T is the set of voxels that make up the automatically/manually generated

segment in an image slice, and V is the set of voxels that make up the segment

in the corresponding validation slice.

The MCCD was used to quantify the mean distance between the automati-

cally/manually generated segment boundary in an image slice and the validation

segment boundary in the corresponding validation slice. It was calculated for

each validation slice as defined in equation 5.1, with the sets A and B represent-

ing points on the boundaries of the segments within the image slice and within

the validation slice, respectively.
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5.3 Results

5.3.1 Target Tumour Misalignment

Quantitative and visual results for the misalignment between treatment and

registered-referral tumours are shown in Figure 5.4.

Figure 5.4: Quantitative data (a,b) and a representative image (c) of the agreement
between treatment and registered-referral tumour segments. (a): Mean
Surface-Surface Distance (MSSD) and Hausdorff distance is depicted. (b):
Dice Similarity Coefficient. (c): The blue region represents the G29 treatment
tumour surface, and the red region represents the G29 registered-referral tu-
mour surface.

5.3.2 Evaluation of Segmentation Quality

Manual segmentation quality is shown in Table 5.1.

Manual Segmentation Validation
Pelvis Femur

DSC (mean±SD) 0.93±0.01 0.96±0.01
MCCD (mm, mean±SD) 0.76±0.10 0.53±0.12

Table 5.1: Manual segmentation validation results. SD is standard deviation. DSC is
Dice Similarity Coefficient. MCCD is mean contour-contour distance.

Automatic segmentation quality is shown in Table 5.2. For extracorporeal

air segmentation, the edge-case (no extracorporeal air) patient treatment dataset

resulted in a DSC of 1 and an undefined MCCD. A representative example of the

extracorporeal air segmentation is shown in Figure 5.5.
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Automatic Segmentation Validation
Extracorporeal Air Body Outline

DSC(mean±SD) 0.89±0.06 0.991±0.003
MCCD(mm, mean±SD) 0.1±0.2 0.88±0.25

Table 5.2: Automatic segmentation validation results. DSC is Dice Similarity Coefficient.
MCCD is mean contour-contour distance.

Figure 5.5: Automatic segmentation of the volunteer treatment image datasets results in
spurious segments between the subject and the gel-pad. Green represents
the manually-segmented validation slice, magenta represents the automatic
segmentation, and white denotes the overlap between the two segments.

5.4 Discussion

5.4.1 Target Tumour Misalignment

Figure 5.4(a) places Hausdorff distance, a measure of the maximum disagree-

ment between treatment and registered-referral tumour surfaces, at approxi-

mately 10 mm, while the mean MSSD is approximately 3 mm. The relatively

large Hausdorff distance suggests that deformation of the tumour between treat-

ment and referral datasets involves shape change, although the relatively small

MSSD suggests that the shape change is relatively limited. The low DSC for

G3 is probably due to the tumour being smaller (approximately 1000 mm3) than

the others (approximately 10,000-40,000 mm3), so any mismatch in position be-

tween tumours results in a larger volume disagreement as a percentage of the

total tumour volume.
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5.4.2 Manual Segmentation Validation

The manual segmentation quality for volunteer bones (DSC > 0.93, MCCD < 0.76

mm) demonstrates that this segmentation method is fit for purpose. In literature,

a DSC of 0.8 is considered acceptable [156][157][59][158]. Given that volunteer

and patient datasets were both manually segmented by the same observer using

similar processes, the segmentation quality for volunteer bones was assumed to

be indicative of the quality of the manual segmentations of acoustic obstructions

and OARs from patient datasets as well.

5.4.3 Automatic Segmentation Validation

The automatic extracorporeal air segmentation method was fit for purpose when

applied to patients, even in the edge case where there was no extracorporeal

air to segment. From visual examination, in volunteer datasets, the automatic

air segmentation misidentified skin and gel-pad as air. This probably was due to

volunteers wearing thin trousers when they were scanned, which created a thin

separation layer between the patient and the gel-pad, which led to the misiden-

tification of the trouser layer and the susceptibility artifact close to the bed coil

as extracorporeal air. This could result in underestimations of accessible volume.

Thus, the extracorporeal air segmentation algorithm can only be said to be fit for

purpose when applied to the patient datasets, in which skin is directly coupled

with the gel-pad.

5.5 Conclusion
The image segmentation methodology presented here showed results that were

acceptable and in line with literature. The segments generated here were used

to predict target (tumour) coverage (Chapter 6) and to identify the ideal treatment

position (Chapter 8).
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Chapter 6

Predicting Target Coverage from

Referral Imaging

6.1 Introduction
Target coverage is defined here as the proportion of the target volume that can

be reached by the Sonalleve® focus. Targets include, but are not limited to, ma-

lignant tumours. Currently, target coverage is estimated manually and is subject

to clinical opinion and prior experience. Here, target coverage is assumed to be

a proxy for the volume of tumour that could be ablated. The quantitative pre-

diction of target (tumour) coverage from referral imaging was a component of the

prospective patient suitability workflow for MRgHIFU therapy (see Figure 1.1 Step

3).

As far as the author knows, previous literature on this topic is sparse to non-

existent. Methods for MRgHIFU screening are discussed in Chapter 2. In 2018,

Abbas et al. [159] described rotation of supine patient diagnostic CT datasets, be-

fore simulating ultrasound propagation through the rotated dataset. The shortest

acoustic path had been identified manually, and the transducer had been posi-

tioned relative to the tissue volume such that the beam axis would align with the

identified acoustic path. However, they did not quantitatively evaluate whether this

was a valid approach to take. Various methods for predicting tumour coverage,

or treatability, from treatment imaging have been developed as part of proposed

treatment planning systems. In 2004, Seip et al. proposed an automated treat-
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ment planning system for intracavity prostate ablation [160], based on a library

of lesions associated with treatment parameters. This had been developed and

tested by Fedewa et al. in 2005 [29]. The lesion library had been generated us-

ing nonlinear simulations in homogeneous media. A set of treatment sites had

been generated within and around the target according to user-set parameters.

Fedewa’s method was specifically for intracavity HIFU, and assumed no acoustic

obstructions or organs at risk (OARs) between the transducer and the tumour. In

2011, Sannholm [66] developed a combinatorial optimisation method of packing

treatment cells within a target volume. It also assumed no OARs or acoustic ob-

struction between the transducer and the target. In 2018, Williamson et al. [67]

proposed an alternative treatment cell placement strategy based around bubble-

packing [68], and measured the resulting tumour coverage. Cells had been ini-

tialised randomly within the target volume, with their positions optimised. The

presence of acoustic obstructions (in this case the ribcage) had been accounted

for only by rotating the cells such that they would align towards the intercostal

space.

In this chapter, a novel methodology for calculating target (tumour) coverage

is described. Using this methodology, a feasibility study was performed to de-

termine whether it is possible to predict tumour coverage accurately from referral

imaging, by comparison with predictions made from subjects lying in treatment

orientation. The methodology was first developed from volunteer imaging data,

because patient data was unavailable at the start of this project (see Chapter

3). The novel methodology was designed to take into account the presence of

acoustic obstructions, OARs, and the expected deformation of soft tissue caused

by reorientation of the patient from supine to treatment orientation. Patient imag-

ing data, which became available as a concurrent clinical trial (and this project)

progressed, was used to test the accuracy of the method. Some of the research

presented here has been published [161] (included in Appendix D).
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6.2 Method

6.2.1 Overview

To evaluate the methodology developed for calculating target coverage, estima-

tions of target coverage from referral imaging and treatment imaging obtained

for each subject (volunteer or patient) were compared. Here, the referral image

dataset is the expected input into the prospective patient workflow and is used

to predict target coverage. The treatment image dataset depicts the volunteer or

patient positioned in a plausible or actual treatment position, respectively, on the

MRgHIFU bed. The treatment dataset is used to calculate the ground-truth target

coverage.

The workflow for this study is shown in Figure 6.1. Subject referral and treat-

ment datasets were acquired following the procedures described in Chapter 3. As

the treatment position is known from the treatment dataset, the referral dataset

was oriented into the known treatment position to compare the predicted target

coverage with the actual target coverage. This was achieved by an affine regis-

tration of the referral dataset to the treatment dataset (Step 1 in Figure 6.1), as

described in Chapter 4. If the methodology is applied to patient screening from

referral images, the treatment dataset would not be available, so the treatment

orientation would have to be determined in another way. In this chapter, however,

it is the accuracy of the methodology itself which is of interest. Segmentation of

the acoustic obstructions and OARs (Step 2 in Figure 6.1) from both datasets

was performed to identify tissues that could prevent target coverage, using the

methods described in Chapter 5. This was followed by calculating target cover-

age (Step 3 in Figure 6.1) and comparing the results for predictions from referral

datasets with those from treatment datasets, the methods for which are described

in this chapter.

At the start of the project, clinical trial data were not available. The method-

ology was therefore developed using volunteer images, with the goal of testing it

on anticipated clinical datasets. As a result of significant anatomical differences

between volunteers and patients, certain adaptations were necessary. Firstly, vol-
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Figure 6.1: Schematic of developmental methodology used in this study. The target (tu-
mour) volume coverage estimated from a subject’s referral image dataset
(top row), and that calculated from the treatment image dataset (bottom row),
were compared in order to assess the accuracy of predicting target (tumour)
coverage from referral datasets. Step 1: The referral dataset is rotated into
the same orientation as the treatment dataset using affine registration both
to allow comparison with the treatment dataset and to simulate the rotation
in Step 2 of the prospective patient workflow (Figure 1.1). In step 2, segmen-
tation of relevant tissues (e.g. bony acoustic obstructions) was performed
to identify tissues that could obstruct acoustic access to the target. Step 3:
target volume coverage was calculated for the rotated referral dataset and
the treatment dataset, and then compared to assess the accuracy of the
methodology.

unteers lacked target tumours. This could have been addressed by the creation

of dummy tumours, but in the absence of an obvious method for defining the size,

shape and position of dummy tumours in an unbiased and clinically relevant way,

all the soft tissue in the pelvis was defined as “target tissue”. Secondly, while

patients undergo dietary and physical bowel preparation prior to treatment in or-

der to minimise the risk of damage to OARs, such as the rectum and bowels,

volunteers were not required to do so. As a result, OAR tissues were ignored

in the volunteer datasets. While these two limitations present challenges, they

do not prevent like-for-like comparison between the referral and treatment target

coverage predictions.
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6.2.2 Target Coverage Analysis

6.2.2.1 Overview

Datasets from 5 volunteers, comprising pseudo-referral datasets and pseudo-

treatment datasets, were available for the development of the methodology. Each

volunteer had been placed in two different plausible treatment positions to gen-

erate two treatment image datasets, and in the supine position to generate a re-

ferral imaging dataset. The methodology was subsequently tested on 5 patients

who had undergone ablative MRgHIFU treatment for recurrent gynaecological tu-

mours. Volunteer and patient images were acquired as described in Section 3.3.

As seen in Figure 6.1, after registering the referral dataset to match the treatment

position in the treatment dataset (see Section 4), and segmenting important tis-

sues and materials, such as the tumour, bony anatomy, OARs, extracorporeal air

and the body mask, (see Section 5), the target coverage was calculated for treat-

ment and registered-referral datasets as described. An MRgHIFU transducer

was simulated and positioned relative to the treatment and registered-referral

datasets. Practical and clinically-relevant transducer translation restrictions were

applied to the virtual transducer to reduce computational speed and, for volun-

teers, to account for limited acoustic coupling since extracorporeal air was not

segmented (see Section 5.2.3). For each subject (volunteer or patient), the target

(tumour) volume that could be covered by treatment cells was calculated for the

subject’s treatment dataset and predicted from the subject’s registered-referral

dataset by exhaustively translating and tilting the virtual transducer, and the two

volumes were then compared quantitatively. The details of this process are pre-

sented below.

6.2.2.2 MRgHIFU System

The MRgHIFU transducer, based on the system described in Section 3.2, was

simulated in MATLAB R2018b. The virtual transducer consisted of 256 points

that represented the centre of each transducer element. The acoustic beam was

modelled as a set of 256 ’rays’ traced from each transducer element to the ge-

ometric focal point, where each ’ray’ was represented as equally-spaced points
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on a straight line from the centre of a transducer element to the geometric fo-

cus. This was done because the OAR and acoustic obstruction segments had

not been meshed, in order to avoid errors associated with poor-quality meshing.

As seen in Figure 6.2, each ’ray’ was checked for intersection by summing the

score associated with each ray-point and multiplying the result by the separation

between consecutive ray-points, which was 0.2 mm. This was chosen to provide

a compromise between computational speed and accurate discretisation of the

’ray’. A ’ray’ was counted as intersecting if the ray’s total path length of intersec-

tion was greater than 0 mm. If no ’rays’ were intersecting any OAR and acoustic

obstruction segments, the transducer was assumed to produce a perfect 8 mm

treatment cell, i.e. an 8 x 21.84 mm ellipsoid [65][162], centred at the geometric

focus with its long-axis aligned to the beam axis. An 8 mm cell was chosen for

this study because it was the most commonly used treatment cell in a previous

bone metastases pain palliation trial conducted at the ICR [19].

Figure 6.2: Ray intersection with segments, represented as binary (0 and 1) arrays, were
checked as follows. Rays are represented as a set of ’ray-points’ (red stars)
that form a line. Scores at each ray-point were linearly interpolated from
the values of the surrounding voxels. Each ray-point’s score is multiplied by
the interval between ray-points, and summed to generate a path length of
intersection for the entire ray.
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6.2.2.3 Volunteer Targets and Patient Tumours

For volunteers (who had no tumours), all soft tissue within the body was chosen

to be the target. This decision was made instead of creating test targets within the

volunteer body, because the choices of test target shape, size and position would

affect test target coverage, and hence the test target coverage results would be

more indicative of the parameters of the test target than of the accuracy of the

methodology. For patients, the targets were patient tumours, which were manu-

ally identified and segmented as described in Section 5.2.6.

6.2.2.4 Practical and Clinically-relevant Restrictions on Translation

Figure 6.3: Practical restrictions applied to the transducer’s translation capabilities (solid
red lines) for volunteer datasets only. (a) For treatment datasets (TID), the
left-right translation was limited by the extent of acoustic coupling between
the volunteer’s skin and the gel pad. Registered-referral datasets shared
these left-right restrictions. (b) For registered-referral datasets (RRID), the
transducer’s inferior-superior translation was restricted by the extent of pelvic
bone and the requirement for a full body outline within the image. Treatment
datasets shared these inferior-superior restrictions.

Practical and clinically-relevant restrictions on transducer translation were

applied to volunteers and patients. Translation restrictions represented limits,

beyond which none of the simulated transducer elements were allowed to ex-

tend. For volunteers, because the target was all soft tissue within the body, in-

cluding soft tissue in the incomplete slices at the superior and inferior extents

of registered-referral datasets, restrictions were placed in order to prevent the

transducer from translating beyond the Superior limit (Figure 6.3b) so that the

incomplete slices would not be a source of error. The Inferior limit was placed
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at the inferior-most extent of the pelvis, since when the volunteer study was per-

formed, patient data was not available and thus gynaecological tumours had been

assumed to be positioned within the inferior-superior extents of the pelvic bones.

Because the automatic air segmentation algorithm does not function for volunteer

imaging (see Section 5.2.3), the extent of acoustic coupling (skin-to-gel-pad and

gel-pad-to-membrane) was manually identified in the left-right direction (Figure

6.3a), and the transducer was restricted from translating past those restrictions.

For patients, in order to reduce computational time, the total number of trans-

lation steps were reduced by placing limits on the extent of translation. The left-

right and inferior-superior transducer translation limits were derived using knowl-

edge of the transducer focal length, the transducer’s maximum angulation, and

trigonometry. The maximum left-right and inferior-superior translations that al-

lowed the transducer to focus onto the tumour at maximum angulation were cal-

culated. The automatic air segmentation (Section 5.2.3) was used to account for

the limited extent of acoustic coupling in treatment datasets. As with volunteers,

the transducer elements were restricted from extending into regions with incom-

plete slices in the registered-referral imaging dataset. An additional translation

restriction in the anterior-posterior direction was implemented, which would re-

duce the anterior-posterior translation so that the transducer focus could only be

translated between the following two limits: (1) the anterior-most extent of the tu-

mour and (2) the posterior-most extent of the tumour plus half the treatment cell

length (10.92 mm, see Table 3.1).

6.2.2.5 Positioning the Simulated MRgHIFU Transducer

In this study, the treatment position was known from the treatment dataset. In

the treatment datasets, the isocentre, and hence the transducer’s home position

(Section 3.2), was known. In the registered-referral dataset, because the treat-

ment position is the same, the transducer’s home position left-right and inferior-

superior coordinates were the same as those identified in the treatment dataset.

However, to mimic the prospective workflow (Figure 1.1), the anterior-posterior

coordinate had to be estimated from data within the registered-referral dataset.

100



The method for doing so is shown in Figure 6.4. Briefly, it was assumed that: i)

the gel-pad would be most compressed and the membrane most bowed at the

isocentre line, and ii) after soft tissue deformation resulting from the reorientation

into the treatment position, the isocentre-to-skin point distance would remain the

same.

Figure 6.4: Method used to predict transducer’s anterior-posterior home position. The
magnetic isocentre in the treatment dataset is known because the registered-
referral image dataset (RRID) had been registered to the treatment dataset.
A line was drawn downwards from the treatment image dataset (TID) isocen-
tre and intersected the skin at the skin point. From this skin point, the home
position was calculated using the average compressed gel-pad thickness, the
average membrane bowing distance, and the calibrated distance between
undeformed membrane and home position of 67.5 mm (see Figure 3.1).

After identifying the skin point, an estimate of the compressed gel-pad thick-

ness and the membrane bowing distance were required in order to obtain the

home position (see Figure 6.4). In volunteer image datasets, the membrane was

observed to bow towards the transducer due to the volunteer’s body weight. Fur-
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thermore, the gel-pad appeared thinner close to the isocentre, probably because

the subject’s body weight was compressing the gel-pad. Estimation of the mem-

brane bowing distance and the actual thickness of the gel-pad at the isocentre

would allow for a more accurate estimate of the registered-referral home position,

and hence a more accurate prediction of tumour coverage.

Where possible, the gel-pad thickness and membrane bowing distances

were measured for all volunteer Steep and Shallow treatment datasets. The com-

pressed gel-pad thickness was measured in a region of interest close to (at ran-

dom spots within 12 mm left or right and within 45 mm inferior or superior) the

left-right inferior-superior magnetic isocentre from the in-phase Dixon datasets

of each treatment dataset, using ruler tools in ITK-Snap, with five repeat mea-

surements per treatment dataset. The choice of 12 mm in left-right and 45 mm

anterior-posterior was made after observing that, for at least one volunteer, the

compressed gel-pad thickness did not vary with distance from the isocentre as

much in the inferior-superior direction as in the left-right direction. The membrane

bowing distance was measured from the same in-phase Dixon datasets and using

the same software, by comparing the anterior-posterior position of the membrane

edges, which were pinned at the edge of the acoustic window and hence fixed at

72.5 mm below the isocentre (Section 3.2), with the posterior-most position of the

membrane. The membrane bowing distance directly below the isocentre could

not be measured because of a susceptibility artefact there, centred around the

Sonalleve® bed receive coil.

In order to reproduce what would happen with the prospective workflow, and

because patients and volunteers were observed to have similar weights (see Ta-

bles 3.3 and 3.2), the average membrane bowing distance and average com-

pressed gel-pad thickness for patients were assumed to be the same as that

calculated for volunteers. An exception was made for patient G24, who had

been treated using a customised gel-pad, so their gel-pad thickness was inde-

pendently measured and used for this positioning method. Each patient’s actual

gel-pad thickness and membrane bowing distance were measured in a similar

way to that described for volunteers, with the exception that for G82 and G27,
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gel-pad thickness and membrane bowing was measured on T2wLFOV instead of

in-phase Dixon datasets, because the Dixon dataset field-of-view was too small.

Furthermore, because the tumour was the region of interest, the gel-pad thick-

ness and membrane bowing was measured in a smaller region posterior to the

tumour centroid (within ±12 mm in left-right and ±13.5 mm in inferior-superior),

with five repeats for each patient. The actual measured gel-pad thickness and

membrane bowing distances for patients were compared to the volunteer-derived

estimates. Tumour coverage for patients was calculated using both the volunteer-

derived estimates and the actual measured quantities, and compared.

6.2.2.5.1 A Modification to the Positioning Method

A modification of the positioning technique was pursued. This was motivated

by the assumption that the reliance of the original technique on a single point,

the position of the skin on the isocentre line, made it vulnerable to outliers. The

modified technique involved identifying the mean anterior-posterior position of the

skin within a square region around the isocentre line, and using that average as

the Anterior-Posterior position of the skin point, from which the registered-referral

home position could be derived. An investigation was performed in order to iden-

tify the ideal size of the square region to sample (see Appendix C), resulting in

a 15 x 15 mm square being chosen. Differences in volunteer target coverage

calculated using the original (single point) and the modified (sampled square)

technique were compared using a paired Student’s t-test.

6.2.2.6 Calculating Target Coverage

For volunteers, a regular grid of target points [66], one per image voxel, was

created in the soft tissue (see Figure 6); for patients, this grid was only created

within the tumour. Each target grid point represented the voxel surrounding it,

and would record whether it was covered or not. The transducer acoustic beam

had been discretised into 256 rays, linking the centre of a transducer element to

the focus. Each ray was itself discretised into regularly spaced (0.2 mm) points

along its length, and each was tested for intersection with acoustic obstructions or
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Figure 6.5: Method for quantifying target volume covered within a dataset (volunteer
treatment dataset in this example). A regular 3D grid of potentially accessible
points was created (blue crosses) within the target: soft tissue (volunteers)
or tumour (patients). For each transducer position and tilt, the acoustic beam
was checked for intersection with any acoustic obstructions (green contours)
or organs at risk. If no obstruction exists, an 8 mm treatment cell was cre-
ated around the focus (yellow ellipse). Grid points within a treatment cell
were marked as ’covered’ (red crosses).

OARs. If no point intersected acoustic obstructions or OARs, an 8-mm treatment

cell was drawn around the focal point, and all grid points within this were marked

as covered (Figure 6.5). This was repeated as the transducer was exhaustively

translated and tilted within the Left-Right and Inferior-Superior limits specified in

Section 6.2.2.4.
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For volunteers, the target is large, so the transducer was translated in rel-

atively large steps (4 mm) in order to sweep the focus through it. For patients,

the tumour was relatively small, so smaller (2 mm) translation steps were re-

quired in order to accurately determine the tumour coverage. The choice of 4

mm translation steps for volunteers was made because that was the radius of the

treatment cell. The choice of 2 mm, which was slightly longer than the longest

diagonal across a patient image voxel (approximately 1.94 mm), was made as

a compromise between increased computational time and improved accuracy in

determining target coverage. At each translation step, the transducer was tilted.

Because of the missing data (target tissue, acoustic obstructions and OARs) in

the superior and inferior extents of the registered-referral images (see Figure 6.3),

which were a result of aligning the referral dataset to the treatment dataset, the

virtual transducer was restricted to only tilting in the left-right direction, by up to

±10° (device specifications, Section 3.2) in 2.5° steps for both patients and vol-

unteers. This was repeated with the transducer in different positions and angles,

until all tilt angles and all translated positions were checked. The total number

of target (tumour) grid points covered, multiplied by the image voxel volume, was

used to quantify target (tumour) volume covered.

For volunteers, the accuracy of the methodology was quantified by comparing

target volume coverage calculated from the treatment dataset with that from the

registered-referral dataset, as given in equation 6.1, where CV is the covered

target (tumour) volume. In effect, the soft tissue volume covered in the treatment

dataset becomes the target volume for the registered-referral dataset, allowing

calculation of the percentage target volume covered (TVCvol).

TVCvol = 100%×
(CVRegisteredRe f erral ∩CVTreatment)

(CVTreatment)
(6.1)

For patients, the accuracy of the methodology was quantified by examining

the difference between the percentage target (tumour) volumes covered (TVCpat,

calculated using equation 6.2) for both treatment and registered-referral datasets.
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TVCpat,Treatment = 100%× (CVTreatment)

(TVTreatment)

TVCpat,RegisteredRe f erral = 100%×
(CVRegisteredRe f erral)

(TVRegisteredRe f erral)

(6.2)

where TV is the total tumour volume. The computation was performed on a 20-

core cluster, with each core clocked at 2.6 GHz and 12.8 GB of RAM per core.

6.2.3 Uncertainty of Tumour Coverage Analysis due to Quan-

tisation

In the process of calculating target (tumour) coverage, the target (tumour) vol-

umes were discretised into target grid points. These target grid points are an

imperfect representation of the original target (tumour) volume, and hence were

a source of uncertainty for the target volume coverage results. The uncertain-

ties related to the discretisation of the target (tumour) volume are assessed as

described below.

Target (tumour) coverage was assessed by covering target grid points within

the target (tumour) with treatment cells. To assess the effect discretisation has

on the assessment of tumour coverage, the target volume covered by a single

treatment cell was compared to the analytical volume of that treatment cell. Any

absolute difference between the two was taken to be the uncertainty associated

with calculating target coverage. A target grid of points was created, with the

grid spacing being that of patient image voxel dimensions (0.86 x 0.86 x 1.5

mm). A single treatment cell (an 8 mm diameter, 21.84 mm length ellipsoid) was

placed randomly within this target grid, such that no part of the treatment cell ex-

tended beyond the extents of the target grid. The covered volume calculated was

compared against the treatment cell’s analytical volume. This was repeated 100

times, and the mean difference between the analytical and computed results, as

a percentage of the total treatment cell volume, was defined as the discretisation

uncertainty.
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6.2.4 Cell Packing Density

The methodology described in this chapter uses the exhaustive translation and

angulation of the transducer to place treatment cells, and then assesses the total

target (tumour) coverage within these treatment cells. Some translation and tilt

combinations result in the treatment cells being placed closer together than the

translation step size (4 mm or 2 mm for volunteers or patients, respectively) may

suggest. Quantifying the cell packing density effectively identifies how closely

cells are placed together in the target (tumour) volume, rather than having to

derive it from translation and angulation increments. This is important because

closer cell placement results in greater target (tumour) coverage, since more of

the tumour volume between treatment cells is covered, as seen in Figure 6.6.

Figure 6.6: The coarse cell packing (red) leaves more of the target volume (black) in
between cells uncovered than the fine cell packing (green).

A study of the cell packing density was performed for patient G24 (chosen

arbitrarily). The virtual transducer was translated and tilted using the translation

and tilting settings used for calculating TVCpat (Section 6.2.2.6). The treatment

cell density was calculated by counting the number of treatment cell centres within

a 1 mm3 region.

6.3 Results

6.3.1 Gel-Pad Thickness and Membrane Bowing Distance

Of all ten volunteer treatment datasets, only seven captured the full extent of

the gel-pad thickness and the membrane bowing at the isocentre. For volun-
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teers, averaging over all measured datasets, the membrane bowing distance was

10.0±1.3 mm, and the gel-pad was found to be 9.8±0.3 mm thick at the isocentre.

The gel-pad thickness and membrane bowing distance were plotted as a function

of BMI and weight to assess the correlation between the variables (see Figures

6.7, 6.8).

Figure 6.7: Body Mass Index (BMI), weight, angle and height versus the compressed
gel-pad thickness close to the isocentre for volunteer treatment datasets.
Uncertainties for weight, height and BMI were estimated to be ±1°, ±1 kg,
±4 mm and 2% respectively.
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Figure 6.8: Body Mass Index (BMI), weight, angle and height versus the membrane bow-
ing distance close to the isocentre for volunteer treatment datasets. Uncer-
tainties for angle, weight, height, and BMI were estimated to be ±1°, ±1 kg,
±4 mm and 2% respectively.

Table 6.1: Table of measured (nominal) gel-pad thickness, and measured membrane-
bowing distance for patients.

Patient G3 G82 G24 G27 G29
Gel-pad
Thickness
(mm)

12.3 8.0 5.3 10.9 8.6

(Nominal) (15) (15) (40) (15) (15)
Membrane
Bowing
(mm)

5.0 10.0 4.0 10.0 9.0
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6.3.2 Volunteer Target Coverage

For each volunteer in each of their two treatment positions (Steep and Shallow,

see Section 3.3.2), the TVCvol is shown in Figure 6.12 (top). On average, over

all volunteers and treatment positions, the tumour volume covered predicted from

the registered-referral dataset is within 9% (range: 2 to 22 %) that calculated from

the treatment dataset. Representative axial images for each volunteer, in each

treatment position, are shown in Figure 6.9.

6.3.2.1 A Modification to the Positioning Technique

The absolute difference in volunteer target coverage between the positioning

techniques (one based on a single-point, the other based on the sample square

region of interest) was 0.4±0.2%, corresponding to an absolute difference in vol-

ume of approximately 1100±700 mm3. A paired t-test showed no statistically

significant difference (p > 0.83) between the two results.
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Figure 6.9: Representative axial anatomical images of volunteers, with the treatment im-
age (green) overlaid on the registered-referral image (magenta). The soft
tissue volume covered as predicted from the registered-referral dataset only
(red), that calculated from the treatment dataset only (cyan) and that iden-
tified by both datasets (white) were overlaid on the anatomical data. For
volunteers, the target volume was defined as the soft tissue volume covered
in the treatment dataset (white plus blue volumes). The percentage target
volume covered is the white volume divided by the white plus blue volume
represented as a percentage.

Because V2 Shallow had the worst agreement between registered-referral

and treatment datasets (approximately 83%, Figure 6.12), this was investigated

further. It was found that the skin point below the isocentre differed by 12.2 mm
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between the treatment and registered-referral datasets (grayscale and red re-

spectively, see Figure 6.10), meaning that for the registered-referral image, the

transducer home position should have been placed 12.2 mm posterior to where

it had been estimated to be.

Figure 6.10: Left: Anatomical overlay between registered-referral (red) and treatment
(grayscale) datasets, with the isocentre at the crosshair centre. The isocen-
tre line goes vertically through the isocentre. The contents of the green
rectangle is shown magnified on the right. Right: The anterior-posterior
distance between the registered-referral skin point and the treatment skin
point, directly below the isocentre, was measured to be 12.2 mm.

6.3.3 Patient Tumour Coverage

Because the difference between the referral positioning techniques explored in

the volunteer study was not statistically significant, the patient study that followed

was conducted using the positioning technique that used the skin point directly

below the magnetic isocentre. The TVCpat for each patient’s treatment and re-

ferral datasets are shown in Figure 6.12 (bottom). On average, the registered-

referral TVCpat predicts the treatment TVCpat to within 20% (range: 4 to 53%).

If patient G3 is excluded, the mean percentage difference between registered-

referral and treatment TVCpat is 12%. Representative axial images for each pa-

tient are shown in Figure 6.11. The computational time required was 19±10 hours

(mean ± standard deviation, range: 3-32 hours).

For patient registered-referral datasets, patient tumour coverage was re-

calculated using the measured values for compressed gel-pad thickness and

membrane bowing distance, instead of the volunteer-derived estimates. The max-

imum difference in tumour coverage between the two sets of results was 0.2%.
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Figure 6.11: Representative axial anatomical images of patients, with the treatment
(green) and registered-referral anatomy (magenta) overlaid. The entire
treatment dataset tumour segment outline (orange), the treatment-only cov-
ered volume (cyan), the registered-referral-only covered volume (red) and
the overlap between the treatment and registered-referral covered volumes
(white) were overlaid on the anatomical images. The overall treatment tu-
mour covered volume is white plus blue; the overall registered-referral tu-
mour covered volume is white plus red. For simpler visual interpretation,
only the treatment tumour outline is shown (orange line).
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Figure 6.12: Bar charts depicting the percentage of the target volume covered for volun-
teers (a) and the percentage of the tumour volume covered for patients (b).
(a) For volunteers, target volume was defined as the soft tissue volume cov-
ered as assessed from the treatment images. The percentage of the target
volume that was predicted to be covered from registered-referral datasets
was plotted, for each volunteer, for each treatment position (Steep (blue)
or Shallow (orange)). (b) For patients, the percentage of the registered-
referral tumour segment volume predicted to be covered from registered-
referral datasets (red), are compared to the percentage of the treatment
tumour segment volume calculated to be covered from treatment datasets
(cyan). For simpler visual identification, the numbers above each pair of
bars represents the difference in % Tumour Volume Covered predicted from
registered-referral datasets and that calculated from treatment datasets.

Patient G3 showed the greatest disagreement between the registered-

referral and treatment TVCpat. The patient’s treatment dataset was examined

114



more closely, with a sagittal slice being shown in Figure 6.13. The beam path is

close to the extracorporeal air in the inferior-superior direction, restricting access

to the tumour for some positions.

Figure 6.13: Sagittal anatomical image of patient G3 at the tumour centroid, overlaid with
acoustic obstructions (AOs) and organs at risk (OARs, combined red over-
lay), the tumour (green) and the virtual transducer (blue transducer, orange
acoustic beam). Notably, the extracorporeal air was present inferior to and
posterior of the tumour. The virtual transducer is focused on the isocentre,
but offset in the Inferior-Superior direction in order to draw attention to the
relative position of the extracorporeal air and the tumour.

6.3.4 Uncertainty of Tumour Coverage Analysis

The uncertainty associated with the discretisation of the target (tumour) into grid

points was estimated to be 1.7±0.8%. In total, the uncertainty associated with
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volunteer and patient target coverage was calculated to be approximately 4.3%.

The major contributions to uncertainty were the uncertainty involved in manual

image segmentation, estimated to be 4% (Section 5.3) and the discretisation un-

certainty at 1.7%.

6.3.5 Cell Packing Density

The maximum cell packing density observed was 4 cell centres per mm3. The

spatial distribution of the cell packing density for patient G24 is shown in Figure

6.14.

Figure 6.14: Spatial distribution of reachable treatment cell density for patient G24 in
the axial plane. Point colours correspond to the number of treatment cell
centres found within a 1 mm3 cube centred at the point. The maximum cell
packing density was 4 cells per mm3. The tumour is overlaid as a mesh
segment (red), and an 8 mm diameter treatment cell (orange) is overlaid for
comparison.
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6.4 Discussion

6.4.1 Gel-Pad Thickness and Membrane Bowing Distance

Compressed gel-pad thickness and membrane bowing distance varied minimally

between volunteers, with standard deviation in gel-pad thickness of 0.3 mm and

in membrane bowing distance of 1.3 mm. This supported its use in patient data.

The scatter plots (Figures 6.7 and 6.8) suggest that membrane bowing and gel-

pad thickness do not vary with BMI, height or weight.

The compressed gel-pad thickness and membrane bowing distances mea-

sured from the treatment datasets of some patients (Table 6.1) varied from the

averages derived from volunteer data (9.8 and 10.0 mm, respectively). In particu-

lar, the actual patient membrane bowing distances of 5 mm and 4 mm measured

for patients G3 and G24, respectively, were significantly different. To evaluate

the effect of this, the TVC was recalculated with the actual gel-pad thickness and

membrane bowing distance for all patients. The maximum difference that resulted

from using the average membrane bowing and gel-pad thickness, rather than the

actual measured values, was 0.3% (patient G24), suggesting that other factors

have a greater impact on the difference between the TVCpat predicted from the

referral dataset and that calculated from the treatment dataset.

6.4.2 Volunteer Target Coverage

For volunteers, the results show that the average target coverage agreement

between treatment imaging datasets and registered-referral imaging datasets is

91% (range: 78 - 98%), corresponding to a mean difference of 9%. These results

suggest that the techniques used for positioning the transducer home position in

the registered-referral imaging datasets were sufficient to proceed to testing with

patient data. The worst disagreement, 78%, for Volunteer 2 tilted at a 12° treat-

ment angle, was probably related to the inaccurate placement of the registered-

referral transducer home position, caused by a wrong assumption that the dis-

tance between the isocentre and the skin point directly below the isocentre (see

Figure 6.4) would remain constant. As a consequence, the transducer focus was
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predicted to reach 12 mm deeper into the volunteer than it actually could (Figure

6.10). In practice, because of the deformation of the soft tissue layers between the

isocentre and the skin, the distance between the isocentre and the skin point had

probably changed between the registered-referral and treatment datasets. The

next worst disagreements were associated with Volunteer 2 in the Steep position,

and Volunteer 3 in both treatment positions. For these cases, similarly to Figure

6.10, the home position for the registered-referral dataset was placed approxi-

mately 6 mm closer to the volunteer than was achieved in the treatment dataset,

which resulting in an overestimate of the depth that the MRgHIFU focus could

reach. Again, this was probably related to the assumption that the isocentre-to-

skin point distance remained constant between the registered-referral and treat-

ment datasets.

The registered-referral imaging dataset and treatment imaging dataset tar-

get coverage assessments differ only in the choice of transducer home position

for the registered-referral imaging dataset, as discussed above, and in the femur

segmentation. Another source of the difference in target coverage between the

registered-referral and treatment datasets could have been related to the articu-

lation of the femur. A change in articulation with respect to the pelvis between the

referral and treatment datasets could have contributed to the differences in the

target volume coverage predicted by the registered-referral dataset versus that

calculated from the treatment dataset. This is because the femur is connected

to the pelvis at the approximate inferior-superior midpoint of the pelvic bones.

Therefore, a change in the position of the femur relative to the pelvis could change

access to pelvic soft tissue, the target tissue for volunteers. Since the angulation

is restricted to tilting left-right only, and the transducer movement is restricted to

prevent translation beyond the inferior-superior extents of the pelvis, differences

in femur segmentation were judged to have only a small effect. Another source

of uncertainty was the discretisation of the target volume, which was found to

contribute 1.7% to the difference in target covered volumes.

The modified transducer positioning technique, based on sampling within a

square region of interest around the isocentre line, provided no statistically signif-
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icant difference to the positioning method that used the skin point directly below

the isocentre (see Figure 6.4). In light of this, the single skin-point transducer

positioning technique was used when analysing patient data.

6.4.3 Patient Target Coverage

The goal of the work described in this chapter was to develop a methodology to

quantitatively assess the tumour coverage from referral imaging, as opposed to

the current clinical practice of qualitative assessment, and to assess the feasibility

of the methodology. Agreement in tumour coverage between referral and treat-

ment imaging datasets to within 20% was judged as acceptable [59]. From the

results, quantitative prediction of tumour coverage from referral imaging appears

feasible. Despite the simplicity of the technique used to account for the expected

body deformation that results from reorientation from supine into a treatment po-

sition, the TVCpat predicted from the registered referral imaging dataset and that

calculated from the treatment imaging dataset had a mean difference of 12±7%

(range: 4-21%), excluding what is believed to be an outlier for whom the differ-

ence was 53% (patient G3). The outlier is explored in greater detail below. In

the context of current clinical studies, where more than 40% of referred patients

ultimately fail screening, these results are encouraging [18][19]. The small cohort

involved in this study (5 volunteers, 5 patients) represents lower than expected

patient recruitment for the clinical trial. However, other published studies have

also involved small patient cohorts, e.g. a transcranial simulation study involved

5 patients [74], a simulation study for kidney ablation examined 4 patients [24],

and in various therapeutic feasibility studies, between 10 to 13 patients’ data was

available [163][164][165]. In addition, the capability of an automatic geometric

optimisation technique for the packing of HIFU treatment cells has been demon-

strated using test objects and the publicly available dataset of a single volunteer

[67]. Results from these small-cohort feasibility studies also demonstrate high

variance in results. For example, in the transcranial simulation study, simulation

results differed from measured data by up to 40±13% [74]. The results here indi-

cate a step towards the long-term objective of widespread quantitative analysis of
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patient suitability for MRgHIFU therapy, with the aim of improving clinical decision-

making and minimising the impact on patient and hospital time and resources.

The outlier, with the worst prediction by far (53% overprediction), was pa-

tient G3. The main reason for the poor results with this patient was thought

to be the assumption of perfect acoustic coupling between the patient and the

gel-pad when predicting TVCpat from the referral dataset. In practice, the treat-

ment imaging dataset showed that the peripheral position of the tumour was ob-

structed by extracorporeal air between the patient and gel-pad (see Figure 6.13).

This highlights a possible advantage of the prospective patient suitability work-

flow, in which this methodology is a core component. Having established that

greater tumour coverage could have been achieved by examining referral imag-

ing, clinicians could have pursued more aggressive clinical preparation in order to

increase tumour coverage, for example by using a customised, degassed-water-

filled recessed gel-pad as was done for patient G24. This was not done in practice

for patient G3, since the clinical team had limited experience with treating abdom-

inal soft tissue tumours and had not expected such difficulty during treatment.

Two reasons why results for patients appear, in general, worse than those

for volunteers, are discussed below. First, volunteer target volumes were approx-

imately 10 times larger ( 300±100 cm3) than patient targets ( 20±10 cm3) whilst

target grid spacing for volunteers (approximately 0.78 x 0.78 x 1.50 mm) and that

for patients (0.868 x 0.868 x 1.50 mm) are similar. Hence, a single target point be-

ing covered would have a larger proportional effect on percentage target volume

covered for smaller target volumes than for larger target volumes. Secondly, vol-

unteer OARs were ignored, whilst patient OARs changed shape, size and position

between referral and treatment datasets, due to patient orientation from supine

to treatment position, and clinical preparation such as pre-treatment dieting and

bowel-preparation. This could have affected tumour coverage. For example, blad-

der and rectal volumes have been seen to vary by up to ±30% [60], and rectum

positions by up to 5 mm in the Anterior-Posterior direction, up to 3 mm left-right,

and by less than one slice thickness in the Inferior-Superior direction [61].

Given that the ’referral’ imaging in this study was actually the 7-day follow-
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up imaging, post-ablation tumour volume changes were proposed as a possible

source of error. However, in the literature, it has been suggested that superficial

malignant tumour volume does not decrease by a statistically significant amount

[166] even 6-8 weeks after ablation. This suggests that any post-ablation tumour

volume change in 7 days is negligible. Tumour growth in the time between referral

and treatment (maximum 1 month for NHS England [167]) was explored as a

possible source of error if the software were to be used clinically. Cervical tumours

have a mean metabolic tumour volume doubling time of approximately 300 days

[168][169], suggesting that prediction error related to tumour growth would be

minimal.

The threshold path length of intersection, below which rays were assumed

not to have intersected, was proposed as a possible source of uncertainty. The

path length of intersection was increased to 0.2 and 1.0 mm, and TVCpat,TID for

patient G3, who was chosen because of the acoustic beam’s proximity to the

extracorporeal air (Figure 6.13), was calculated. The resulting TVCpat,TID was

increased to 51% and 71% respectively. This suggests that the path length of

intersection, which essentially defines a "margin of acceptance" around the OAR

and acoustic obstruction segments, can play an important part in determining the

tumour coverage. This implies that tumour coverage is sensitive to the path length

of intersection, and by extension, the segmentation quality.

Computational time ranged from 3 hours to 32 hours for different patients.

This was related to the Left-Right, Anterior-Posterior and Inferior-Superior dimen-

sions of each patient tumour. The tumour of patient G3 had Left-Right, Anterior-

Posterior and Inferior-Superior dimensions of 13.0 mm, 11.3 mm, and 12.0 mm

respectively, with time elapsed during computation being 3 hours; for patient G27,

the tumour dimensions were 51.2 mm, 54.7 mm and 31.5 mm respectively, with

time elapsed during computation being 32 hours. The current computational time

requirement (an average of 20 hours on a 20-core cluster node) is thought to be

unrealistic in a clinical setting. Computational time could be improved with better

software engineering, such as rewriting the code in a compiled language, and by

employing specialised computational hardware such as graphics processing units
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(GPUs) or field-programmable gate arrays (FPGAs). Refinements of the method-

ology for calculating patient tumour coverage, aimed at improving computational

speed without sacrificing accuracy, are described in Chapter 7.

6.4.4 Cell Packing Density

Due to a combination of translation and tilting, treatment cells were placed in

regions distant from the tumour. Furthermore, up to 4 treatment cell centres

were placed within some 1 mm3 regions, which appears redundant given that

the target grid points within the tumour had the same spacing as image voxel

dimensions (0.868 x 0.868 x 1.50 mm for patients). The cell density decreased as

the transducer translated towards the anterior, likely because the acoustic beam

began to intersect OARs and acoustic obstructions. The same phenomenon was

observed for cell density near the left and right extremes of the image (Figure

6.14), because the transducer was forbidden from translating beyond a certain

point (see Section 6.2.2.4), although it was allowed to tilt in the Left-Right direction

by up to 10° off axis.

These results suggest that, if refinements of the methodology were pursued

with the goal of reducing computational speed, several refinements to the place-

ment of treatment cell centres could be made. One possible refinement would

be to generate treatment cell centres close to and within the tumour. Another re-

finement would be to place treatment cell centres more evenly, in order to reduce

the redundancy in their placement involved in the current methodology and hence

reduce computational time.

6.4.5 Limitations of the Study

This study focused on tumour coverage rather than tumour treatability, because

preliminary experiments suggested that calculating tumour coverage required

less time than calculating tumour treatability. Hence, tumour coverage was

planned to be used to identify the ideal treatment orientation. However, atten-

uation and refraction from the pre-focal fat and muscle may lead to less thermal

ablation than expected from the tumour coverage. The region of heating may also

be offset from the geometric focus. This is the subject of a later study (Chapter
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9).

Another major limitation of the study is the small number of volunteers (n=5,

two ’treatment’ positions each) and patients (n=5) involved, which makes deriv-

ing a definitive conclusion about the quality of the methodology difficult. With a

larger sample set, patient outliers could be clearly distinguished. Furthermore,

this study is limited to predicting pelvic soft tissue tumour coverage in oblique

supine decubitus treatment positions. For other tumour sites and other treatment

positions, for example liver carcinomas treated in the prone position, it is likely

that the prospective patient suitability workflow would need to be adapted. While

the precise results of this study are only applicable to the specific diagnostic MR

bed and MRgHIFU couch used, the core principles are expected to be applicable

to other HIFU devices.

Deformation of the patient was not simulated – instead, only the simple as-

sumption that the distance between the isocentre and the skin point directly pos-

terior to it would be the identical in both the rotated referral dataset and the de-

formed treatment datasets, was applied. The work here is assumed to apply for

the patients going through the prospective patient workflow, in which the patient

referral dataset would be rotated such that the isocentre, the tumour centroid and

the skin point would be collinear. Full simulation of the deformation of the soft

tissues between the gel pad and the target for acousto-thermal modelling pur-

poses may increase the predictive capability of the prospective patient suitability

workflow.

6.5 Conclusion
Novel methodology for predicting the MRgHIFU target coverage from supine (MR)

referral imaging has been developed using 10 volunteer datasets and retrospec-

tively applied to 5 patient datasets. The difference between the target coverage

computed using referral versus treatment image datasets was within 12±7% on

average (range: 4-21%), when one patient, in which inadequate acoustic cou-

pling was achieved during treatment, was excluded from the analysis. Alternative

methods to account for soft tissue deformation should be explored. Despite the
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relatively small cohort size, the focus on pelvic tumours, and the limited range of

patient positions and MRgHIFU equipment on which the methodology was de-

vised and tested, these results suggest that the development of a quantitative

screening workflow, which should obviate the need for patient suitability to be as-

sessed using solely clinical judgement based on operator experience, should be

feasible.
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Chapter 7

Improved Method for Calculating

Patient Tumour Coverage

7.1 Introduction

The ’device-first’ method described in Chapter 6 was developed using volunteer

data, for which there was no tumour target. As we have seen, in volunteers, all

soft tissue in the pelvic region was defined as the "target" tissue. Because this is

a large target, a method based around exhaustive angulation and translation of

the transducer was developed. The computational time required scaled with the

number of transducer translation and tilting steps. For smaller targets, such as

patient tumours, a higher step resolution (i.e. smaller translation and tilting steps)

was required to ensure extensive tumour coverage. Some transducer position

and angle combinations, particularly those with the transducer at the left-right or

inferior-superior translational extent, require processing even though they are un-

likely to contribute to tumour coverage. A problem arose from the representation

of the acoustic beam. In this device-first method, when checking for acoustic

beam intersection with organs at risk (OARs) or acoustic obstructions, the beam

was represented as a set of rays reaching from each transducer element to the

transducer focus, with each being represented as a collection of collinear points

instead of a line, and each point being tested for intersection with acoustic ob-

structions or OARs. To avoid under counting intersections with acoustic obstruc-

tions or OARs, the distance between consecutive ray-point was required to be
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less than the smallest image voxel dimension, and was set to 0.2 mm. Each ray

(140 mm long) therefore consisted of 700 ray-points. There are 256 rays from

the transducer elements to the geometric focus. The device-first method also in-

troduces uncertainty from the interpolation of patient data into a new grid when

rotating the referral imaging dataset, as required for the prospective workflow

(Figure 1.1 Step 2). The computing time complexity of this method scales with

the number of translation steps, the number of tilt increments per translation step,

and the number of points per ray.

In this chapter, refinements to the method for calculating tumour coverage

were investigated, with the aim of improving computational speed without sacri-

ficing accuracy. A new ’target-first’ method was developed, in which the problem

was approached from the ’other end’, as shown in Figure 7.1, and was tested

on patient treatment images. Instead of scanning through device parameters

to establish where the focus would cover part of the tumour, points represent-

ing candidate treatment cell positions were generated within the tumour, and the

transducer beam interrogated to see whether it could reach this point from al-

lowed positions and angles. Acoustic beam intersection checking could be sped

up by representing the acoustic beam as a set of vector rays from the transducer

elements to the geometric focus, and the OAR and acoustic obstruction segments

as triangulated meshes. This allowed use of the Möller–Trumbore ray-triangle in-

tersection algorithm [170] that takes advantage of GPU parallelisation [171]. An

iterative, coarse-to-fine cell packing approach was adopted – with cells initially

being packed loosely, and the packing tightening around the remaining uncov-

ered tumour volume with each iteration. This improved computational speed by

reducing the redundant processing of very closely packed treatment cells. The

tumour coverage and the computational time required for the target-first method

is compared here to that needed for the device-first method.
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7.2 Method

7.2.1 Overview

Figure 7.1 shows an overview of the target-first method, with details given in the

Sections below. Patient treatment images were used to test the workflow, firstly

because the MRgHIFU transducer home position could be easily located (140

mm posterior to the magnetic isocentre, see Figure 3.1), and secondly because

the automatic segmentation of extracorporeal air, a large acoustic obstruction,

was only available for these images.

In Step 1, the image datasets are segmented to extract important OARs and

acoustic obstructions using the methods described in Chapter 5. Each segment

is then transformed into a triangular surface mesh. In Step 2, candidate treat-

ment cell centres are generated within, and around, the tumour mesh. In Step 3,

each candidate cell centre is assessed for whether it could be reached, by back-

projecting virtual transducers at angles that could theoretically reach that point up

to 10° away from the anterior-posterior axis. Each virtual transducer is tested for

breaching device limits, or for obstruction of its acoustic beam by OARs or acous-

tic obstructions. If the acoustic beam is unobstructed and the transducer has not

exceeded device limits, then the candidate cell centre is marked as reachable.

For each reachable cell centre, 8 mm diameter treatment cells are drawn around

them, and the tumour volume within the cells is marked as being covered by the

MRgHIFU focus. In Step 4, in order to reduce computational time in process-

ing cell centres in unreachable and already-covered regions, ’exclusion meshes’,

within which treatment cell centres generated in the next iteration of Step 2 would

be removed, are generated from unreachable and redundantly reachable treat-

ment cell centres. Steps 2 to 4 were repeated until step 3 had been completed for

the final iteration. With every iteration, Step 2 generated candidate cell centres

more finely around the tumour volume that remained uncovered by the MRgHIFU

focus than the previous iteration. After Step 3 in the final iteration, the percentage

of the tumour volume covered was calculated and output.
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Figure 7.1: Workflow for the target-first methodology, demonstrated using a representa-
tive patient treatment dataset. Step 1: Input Dixon images are segmented
to give acoustic obstructions (green), organs at risk (blue, OARs), the tu-
mour (red) and the body outline (grey). The segments are then transformed
into triangular surface meshes. In step 2, candidate cell positions (black
crosses) are generated within and around the tumour mesh. In step 3, the
tumour coverage is calculated by back-projecting plausible transducer posi-
tions (only one shown, for ease of visual interpretation) from each candidate
cell position. Each transducer position is then tested for whether the beam
would intersect OARs and acoustic obstructions, and whether placing the
transducer in that position would breach the specified limits of translation for
the MRgHIFU system. In step 4, if the current iteration is not the final iter-
ation, then the reachable and unreachable cell positions are identified. Ex-
clusion meshes were derived such that the next iteration of cell points would
be generated only outside of the exclusion meshes, and within and around
the remaining uncovered tumour volume. If the current iteration was the final
iteration, then the percentage of the tumour volume covered is output.
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7.2.2 Comparison with the Device-First Method

In order to assess the performance of the target-first method, it was compared

against the device-first method (Chapter 6). The meshing and cell packing of the

target-first method was designed to be as similar to the device-first method as

possible. The resulting tumour coverage calculated by the two methods, and

the computation time required, was compared for all patient treatment image

datasets.

7.2.2.1 Meshing

In the device-first method, OAR and acoustic obstruction segments remained as

binary 3D arrays. A binary array is one in which each voxel in the array can

only have one of two values: ’1’ or ’0’. For all segments, the ’1’ voxels represent

the segmented tissue or material, whilst the ’0’ voxels represent everything else.

Intersection between the acoustic beam and the OARs or acoustic obstructions

was checked by discretising the acoustic beam into ray-points, the value of each

point being interpolated from the values of the voxels surrounding each point. If

for each ray, the allowed path length of intersection is 0 mm, i.e. no intersection

of any part of the beam with any acoustic obstruction or OAR is allowed, this en-

forces a strict requirement for the ray-points to be at the centre of, or surrounded

by, zero-value voxels. Therefore, the device-first method effectively assumes a

segment surface boundary as shown in Figure 7.2.
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Figure 7.2: An illustrative example of a segment, where the ’1’ boxes are the segment
voxels and the ’0’ boxes are the background voxels. DFM is device-first
method. If the allowed path length of intersection was set to 0 mm, the red
line demonstrates the effective surface of the segment that rays may not pass
without being marked as intersecting.

The target-first method was developed on the basis of using the Möller–Trumbore

ray-triangle intersection algorithm [170] to speed up intersection checking. This

algorithm required the OARs and acoustic obstructions to be represented as

triangulated surface meshes. To replicate the segment surface boundary seen

in the device-first method in the target-first method, the meshing strategy used

for each segment array was performed as follows. The segment array was trans-

formed into sets of coordinate points, where each coordinate was the centre of

a ’1’ voxel. The coordinate points of the ’0’ voxels neighbouring the ’1’ voxels

were found. Alpha-shape meshing [172], with the alpha radius set to be the

smallest alpha-shape that resulted in enclosure of all points, was used to trans-

form the coordinate points into a triangulated surface mesh. In order to remove

spurious triangles, meshes were filtered to remove triangles with any edge length
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exceeding the distance D (given by equation 7.1):

D = 2
√

a2 +b2 + c2 (7.1)

where a, b and c are the voxel dimensions.

As in the device-first method, a target grid was generated within the tumour

mesh, the purpose of which was to keep track of what part of the tumour tar-

get had been covered by the MRgHIFU focus. The target grid was generated

with spacing equivalent to image voxel dimensions (0.868 x 0.868 x 1.50 mm),

in order to match the target grid spacing used in the device-first method. The

discretisation error was assumed to be the same as that found for the device-first

method (see Section 6.2.3). In order to reduce meshing time and improve com-

putational speed, and because the transducer would be positioned posterior to

the isocentre, the parts of the extracorporeal air segment that was anterior to the

magnetic isocentre were removed. Preliminary work suggested that this could

allow a native MATLAB implementation of the ray-triangle intersection algorithm

to work five times faster.

7.2.2.2 Cell Packing

To replicate the cell densities observed in the device-first method, cells were

packed in a cuboidal manner, with a constant Left-Right, Anterior-Posterior and

Inferior-Superior spacing between candidate cell centres. The spacings used

for each iteration are shown in Table 7.1. The Inferior-Superior spacing was

constant at 2 mm, because in the device-first method, transducers were lim-

ited to tilting in the Left-Right direction and could only be translated by 2 mm

in the Inferior-Superior direction. The initial iteration’s (Iteration 1) Left-Right and

Anterior-Posterior spacing of 4 mm was chosen since this was the radius of the

chosen 8 mm treatment cell. The final iteration’s (Iteration 3) Left-Right and

Anterior-Posterior spacing of 1 mm was chosen since patient target grid points

were spaced by 0.868 mm in the Left-Right and Anterior-Posterior directions, and

was chosen to reduce the redundancy involved in treatment cell placement in the

device-first method. Iteration 2’s Left-Right and Anterior-Posterior spacing was
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chosen as a midpoint between the initial and final iteration settings.

Table 7.1: Spacing between candidate cell centres for each iteration of the target-first
method.

Iteration No. Left-Right (mm) Anterior-Posterior
(mm)

Inferior-Superior
(mm)

1 4 4 2
2 2 2 2
3 1 1 2

For the first iteration, candidate cell centres were generated within a cuboidal

region, with the sides of the cuboid defined by the Left-Right and Inferior-Superior

extents of the tumour, the anterior extent of the tumour, and the posterior extent

of the tumour plus half the treatment cell length. For all other iterations, in order

to reduce computation time as cell centres are generated with increasingly fine

spacing, the candidate cell centres were generated within a cuboidal region de-

fined by the Left-Right and Inferior-Superior extents of the remaining uncovered

tumour volume, the anterior extent of the remaining uncovered tumour volume,

and the posterior extent of the remaining uncovered tumour volume plus half the

treatment cell length. The remaining uncovered tumour volume was used to re-

duce the total number of cell points generated, compared to when the entire tu-

mour volume was used. Any candidate cell centres within the exclusion mesh,

which had been derived from the previous iteration, were then removed.

7.2.2.3 Calculating Tumour Coverage

The workflow for calculating tumour coverage from the candidate cell centres is

shown in Figure 7.3. A virtual MRgHIFU transducer was created, with the same

specifications as the virtual MRgHIFU transducer used in the device-first method

(see Section 6.2.2.2). Similarly to the device-first method, the virtual transducer

was only allowed to angle in the Left-Right direction, with angular increments of

2.5° up to a maximum angle of 10° away from the Anterior-Posterior axis. From

the MRgHIFU home position, the transducer was allowed to move up to 72.5 mm

away from the home position in the left, right, inferior and superior directions, up

to 34 mm in the anterior direction and 33 mm in the posterior direction. Because
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the input images were treatment datasets, the home position is known to be 140

mm posterior of the magnetic isocentre. Unlike in the device-first method, how-

ever, the acoustic beam was now represented as a series of lines connecting

the geometric focus with each of the transducer elements. Intersection of the

acoustic beam with OAR or acoustic obstruction meshes was assessed using a

ray-triangle intersection algorithm [170], which was implemented for GPUs [173].

This choice was made in order to speed up intersection checking.

In step 1, a set of vectors were generated from each of the candidate cell

centres. These vectors represent beam axes, and were generated based on

the allowed angulation of the virtual transducer. Hence, the vectors were gen-

erated with angulation in the Left-Right direction only, with each vector being

separated from other vectors by 2.5°, and with the maximum angulation away

from the Anterior-Posterior axis being 10°. In step 2, for each beam axis, the

associated transducer position was derived by assuming that the geometric focus

was at the cell centre, and then ’back-projecting’ the transducer position. In step

3, the transducer position was first checked to see if it exceeded the translation

limits away from the home position defined in the device specifications above. If

the transducer position was within device specifications, the acoustic beam was

tested for obstruction with any OAR or acoustic obstruction meshes using the ray-

triangle intersection algorithm [170]. The acoustic beam was obstructed if any

line within the acoustic beam intersected an OAR or acoustic obstruction mesh.

If the acoustic beam was not obstructed, and the transducer position fell within

device specifications, then an 8 mm diameter treatment cell (the same used in

the device-first method) was drawn around the transducer geometric focus and

all target grid points within the treatment cell were marked as covered. This was

repeated for all candidate cell centres within an iteration.

After all iterations were complete, the total number of covered target grid

points, multiplied by the product of the spacing between target grid points, was

the total covered tumour volume. Percentage tumour volume covered (%TVC)

was calculated (defined in equation 6.2 in Chapter 6).
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Figure 7.3: Workflow for Step 3 in the target-first methodology. Target grid points (blue
crosses) were generated during the meshing stage. Step 1: Each candidate
cell centre (black cross) generated vectors pointing towards the posterior
with a maximum angulation of 10° off the anterior-posterior axis. Step 2: For
each vector, the associated transducer position was calculated, and a vir-
tual transducer generated such that the focus was at the cell centre and the
transducer beam axis was aligned with the vector, but in the opposite direc-
tion. Step 3: The transducer acoustic beam was checked for obstruction with
OAR or acoustic obstruction meshes, and the transducer position derived in
Step 2 was assessed for whether device limits must be breached in order
to place the transducer there. If the acoustic beam is not obstructed and
the transducer position was within specification, all target grid points within
an 8 mm treatment cell around the transducer geometric focus was marked
as covered (green crosses). The total number of covered target grid points
multiplied by the product of the spacing in between target grid points was the
covered tumour volume.

7.2.2.4 Processing for the Next Iteration

For each iteration except the final one, results were processed in order to improve

computational speed in the following iteration, in which candidate cell centres

would be generated with finer spacing, thus packing treatment cells more closely.
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Firstly, all target grid points that remained uncovered were identified. The next

iteration of candidate cell centres were generated from the Left-Right, Inferior-

Superior and Anterior-Posterior extents of these uncovered points (see Section

7.2.2.2), in order to reduce the total number of cell centres being generated and

assessed, and hence improve computation time. Secondly, inaccessible regions

and ’redundantly accessible’ regions were identified, so that the candidate treat-

ment cell centres generated in the next iteration within those regions were re-

moved. Treatment cells within inaccessible regions were automatically assumed

inaccessible. Treatment cells within redundantly accessible regions were iden-

tified as covering regions of the tumour that had already been covered in the

previous iterations. The removal of candidate treatment cell centres reduced the

total number of cell centres to assess, and therefore improved computation time.

Inaccessible and redundantly accessible regions were generated from candidate

cell centres that were found to be inaccessible or redundantly accessible, respec-

tively, and were identified as follows:

1. From the first iteration to the current iteration inclusive, the treatment cell

centres that could not be reached (inaccessible), and those that could be

reached (accessible), where identified.

2. For each individual iteration, inaccessible and accessible cell centres were

transformed into inaccessible and redundantly accessible meshes. This

iteration-by-iteration meshing allowed the finely sampled later iterations to

retain detail in the mesh.

• Inaccessible cell centres were meshed using the alpha-shape algo-

rithm [172], with the alpha-radius set to be
√

A2 +B2 +C2 where A, B

and C are the Left-Right, Inferior-Superior and Anterior-Posterior cell

packing spacing for the iteration.

• Redundantly accessible cell centres were defined as the accessible

cell centres that were further than 1 alpha-radius away from all inacces-

sible cell centres. Redundantly accessible cell centres were meshed in

135



the same way as for the inaccessible cell centres, to create a redun-

dantly accessible mesh.

3. Collectively, the inaccessible and redundantly accessible meshes are

termed as the ’exclusion mesh’.

As shown in the workflow (Figure 7.1), cell centres generated (see Section

7.2.2.2) in the next iteration that lie within the exclusion mesh were removed be-

fore target coverage was assessed for that iteration.

7.2.2.5 Time Comparison

The required computational time for the device-first method to calculate target

coverage (Section 6.2.2.6) was compared with that for the target-first method

(Figure 7.1 Steps 2-4 until all iterations were complete). The device-first method

was run on a 20-core cluster node (2.6 GHz and 12.8 GB per core). The target-

first method was run on a 7-core cluster node (2.6 GHz and 12.8 GB per core)

with a single NVIDIA Tesla V100 16GB GPU. The difference in hardware arose

from university policy; only a maximum of 7 CPU cores could be requested per

GPU used.

7.2.3 CPU versus GPU Implementations of the Ray-triangle In-

tersection Algorithm

In order to assess the expected improvement in computational time that arises

from implementing the ray-triangle intersection algorithm [170] on a GPU [173], a

comparison with an implementation that used MATLAB-native CPU routines [174]

was performed. For this comparison, the treatment dataset of patient G82 was

arbitrarily selected. The difference in computational speed between the GPU and

native implementations was assessed for six sets, each set holding a different

number of candidate cell centres (10, 50, 100, 250, 500, 1000). The candidate

cell centres were generated randomly around the magnetic isocentre. Each cell

centre had a transducer placed directly posterior to it. The computational time

required to assess the reachability of all the cell centres using the vectorised

implementation was compared to that using the GPU implementation. The vec-
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torised implementation was performed on a single 2.6 GHz core; the GPU imple-

mentation performed on a Tesla V100 16GB GPU. Uncertainty in computational

time was assessed by repeating computation for the 10, 50, 100 cell centre sets

until three repeats were obtained, and then calculating the standard deviation in

computational time as a fraction of the mean computational time.

7.3 Results

7.3.1 Comparison with the Device-First Method

The mean absolute difference between the device-first method and the target-first

method in %TVC is 0.31±0.08% (range: 0.18-0.38%). Results are recorded in

Table 7.2.

Table 7.2: Comparison of the percentage tumour covered required between the device-
first method (DFM) and the target-first method (TFM).

Patient %TVC (DFM) %TVC (TFM)
G3 46.6 47.0
G82 52.1 52.5
G24 50.0 50.3
G27 56.6 56.4
G29 82.5 82.1

Refinements to the methodology and the use of more sophisticated com-

puting equipment resulted in a decreased computational time for the target-first

method, which had a mean of 2.8±2.0 hours (range: 0.3-5.5 hours), compared to

the device-first method, which required 19.7±8.8 hours (range: 4-29 hours). On

average, the target-first method was 7 times faster than the device-first method.

Computational times are shown in Table 7.3.

Table 7.3: Comparison of computational time required by the original device-first method
(DFM), and by the refined target-first method (TFM).

Patient Time (DFM) (hours) Time (TFM) (hours)
G3 4.2 0.3
G82 24.7 5.5
G24 15.7 0.7
G27 28.6 4.5
G29 25.2 3.2
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7.3.2 CPU versus GPU Implementations of the Ray-triangle In-

tersection Algorithm

The computational time required by the GPU implementation, and that required

by the vectorised implementation, for different numbers of cell centres is shown in

Figure 7.4. The GPU implementation is approximately 120 times faster than the

vectorised implementation for each set of cell centres tested. The uncertainty in

computational time was calculated to be approximately 1%.

Figure 7.4: Computational time required when using the GPU implementation (blue) or
the MATLAB-native CPU implementation (red) of the ray-triangle intersec-
tion algorithm when assessing whether increasing numbers of candidate cell
centres are reachable.

7.4 Discussion
The maximum difference between the tumour coverage estimated using the re-

fined target-first method and that using the original device-first method is less
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than 0.4%, which is less than the 1.7% discretisation error (Section 6.3.4). This

is also less than the 4% associated with image segmentation uncertainty. This

demonstrates that, given the same conditions, the methods yield the same tu-

mour coverage.

The computational speedup associated with using the GPU implementation

instead of the vectorised implementation was a factor of 120, so even though

the vectorised implementation could be parallelised across 20 CPU cores (as

was the case in the device-first method), an estimated speedup by a factor of 6

could be predicted. This is shown in the computational time results (Table 7.3),

with a mean speedup of approximately 7 times (range: 4.5 times for G82 to 23.6

times for G24). The variation in speedup may be due to many factors. Increas-

ing the size and shape complexity of the OARs and acoustic obstructions result

in their meshes consisting of a greater number of triangles, and therefore more

time may be required for intersection checking. Another reason for the variation

in speedup amongst patients may be related to the position of the tumour. The

back-projected transducer position was checked initially for whether it was within

device specifications, which was relatively computationally efficient compared to

the acoustic beam intersection checking. Hence, if a tumour was positioned far

from the home position, candidate cell centres could be judged to be inaccessi-

ble based on exceeding device specifications, without computationally intensive

intersection checking. Computational overhead, such as transferring data from

RAM memory to GPU memory and back, could have reduced the overall com-

putational speedup. Computational processing that did not involve ray-triangle

intersection checking, such as creation of the exclusion mesh and reducing the

number of cell centres, was done on the CPU, and therefore may have reduced

the overall computational speedup.

7.5 Conclusions
The target first method yields the same results as the device-first method, with a

mean difference of 0.3% in estimates of tumour coverage, with the former method

being seven times faster than the latter. The target-first method can therefore be
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substituted for the device-first method in any prospective workflow.
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Chapter 8

Identification of the Ideal Treatment

Angle

8.1 Introduction
In order to deliver the best possible HIFU treatment, it is critical to position the

patient in the position that maximises acoustic access and thus energy delivery

to the tumour target [18, 19]. Selection of this ideal treatment position is an

important part of the proposed prospective patient workflow (Figure 1.1 Step 2)

for determining a patient’s suitability for MRgHIFU treatment.

Methods for identifying the ideal treatment positions for ultrasound therapy

have appeared in literature. As mentioned in Section 1.4 and 2.5.1, McGough et

al. [120] defined the ideal patient position for ultrasound hyperthermia as that in

which the greatest number of transducer array elements had unobstructed acous-

tic access to prostate cancer targets. In 2016, Scherrer et al. [28] proposed that

the ideal treatment position for HIFU ablation was the position in which the angle

of a cone emitted from the tumour centroid was maximised, under the constraint

that no organs at risk (OARs), such as rectum, or acoustic obstructions, such as

bone, lay within, or intersected, the cone. Scherrer et al. showed no results for

this. In essence, they assumed that maximising the cone angle, which served

as a proxy for the acoustic window, would maximise tumour coverage (the per-

centage of the tumour that could be covered by the MRgHIFU focus) and tumour

treatability (the percentage of the tumour that could be ablated). In 2018, Abbas
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et al. [159] proposed – again, without justification or validation – that the ideal

patient position was that which gave the shortest acoustic path within the tissue.

In this chapter, a patient’s treatment position is represented by the ’treatment

angle’, which is defined as the angle at which the patient is rotated away from

supine around their body axis when positioned for treatment. Here, the ideal

treatment angle is defined as the treatment angle at which tumour coverage is

maximised. In the proposed prospective patient workflow, after the ideal treat-

ment angle has been identified, the patient is expected to be placed at that angle

with the tumour centroid on the isocentre line (the line going through the mag-

netic isocentre and transducer home position). The next steps are to calculate

tumour coverage and treatability. The aim of the work described in this chapter

was to develop a method for identifying the ideal treatment angle. Furthermore,

because of the challenges associated with achieving precise three-dimensional

patient placement in clinical practice, the tumour coverage at a range of angles

(steeper and shallower than the ideal) was examined, in order to assess the ac-

ceptable margin of error when placing the patient.

This aim was achieved by first implementing the method suggested by Scher-

rer et al. to rapidly identify an initial ’starting’ treatment angle from patient referral

images. In order to investigate whether this starting treatment angle gave the

maximum tumour coverage, the starting treatment angle, and angles steeper and

shallower than that, were transformed into treatment positions and the tumour

coverage was calculated for each position. In order to identify the ideal treatment

angle, and to assess the effect of imprecise patient positioning, tumour coverage

was plotted as a function of angle. Finally, for each patient, the predicted (starting

and ideal) treatment angles were compared to the clinical treatment angle, which

represented a compromise between the clinically judged ’optimal’ treatment an-

gle and the practical limitations that prevented the placement of the patient at that

angle.
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8.2 Method

8.2.1 Calculation of the Starting Treatment Angle

The starting treatment angle provides a starting point from which the ideal treat-

ment angle can be identified. The methodology for calculating this starting treat-

ment angle is outlined in Figure 8.1. In step 1, organs at risk (OARs), bone (an

acoustic obstruction), and the tumour were segmented from input patient ’referral’

images, using the methods described in the Image Segmentation chapter (Chap-

ter 5). This was necessary because ultrasound propagation through OARs is

considered unsafe, and bone is acoustically opaque. The tumour was segmented

as the target. The body outline was segmented for use in the various processes

required to calculate the ideal treatment angle, including the calculation of tumour

coverage. As in Section 7.2.2.1, these segments were meshed in order to allow

the use of rapid geometric intersection algorithms, as described later. In step

2, vector rays representing a set of treatment angles and positions, originating

from the tumour centroid and all lying within an axial plane perpendicular to the

inferior-superior axis, were generated up to a maximum angle away from the pa-

tient anterior-posterior axis. One of these rays represents the starting treatment

angle. Details are given in Section 8.2.1.2 below. In step 3, any rays that inter-

sect any OARs or bones were removed, as ultrasound cannot safely propagate

through OARs or bone to the tumour. Intersections were checked using a ray-

triangle intersection algorithm [170], as was done in a previous study (Section

7.2.2.3). Rays for which the tumour centroid-to-skin distance was greater than

the MRgHIFU transducer focal length (140 mm) were removed, because in those

treatment positions the focus cannot reach the tumour. Furthermore, reducing

the total number of rays to process improves the computational speed of step 4.

In step 4, acoustic windows were estimated for all rays in order to identify that with

the largest acoustic window, which was defined as the starting treatment angle.

Estimation of the acoustic window size for each treatment angle was carried out,

because it is faster to calculate the acoustic window (on the order of minutes for

each treatment angle) than the tumour coverage (on the order of hours to days
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for each treatment angle) or treatability (on the order of days to weeks), accord-

ing to preliminary experiments. The acoustic window was approximated using

Scherrer et al.’s method [28]: a cone, with its origin at the tumour centroid (same

as the ray origin) and with the ray being the cone axis, was created for each ray.

Then, for each ray, the cone was widened symmetrically around the axis until it

met an OAR or bone segment. This determined its maximum size. Intersection

between the cone and OARs or bones was checked using a cone-triangle inter-

section algorithm [175]. The resulting cone gave an approximate representation

of the acoustic window. The treatment angle with the largest cone was chosen

as the starting treatment angle. Details for steps 1 and 4 are contained in the

sections below. The code was run in MATLAB R2018b on a 14 core cluster node

(2.6 GHz and 12.8 GB of RAM per core) alongside 1 NVIDIA Tesla V100 16GB

GPU.
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Figure 8.1: Workflow for calculating the starting treatment angle. Step 1: Tumour, or-
gans at risk and bone (an acoustic obstruction) are segmented and meshed.
Step 2: A set of vector rays, each representing patient treatment angles, are
generated within 3D space. All rays originated from the tumour centroid, are
in an axial plane and are angled at most 40° away from the vertical. Step
3: rays that intersect any organs at risk and acoustic obstructions, and have
an origin-to-skin intersection distance greater than the MRgHIFU focal length
(140 mm), are removed to improve computational performance. Step 4: For
all remaining rays, the acoustic window is estimated by fitting a cone (origi-
nating at the tumour centroid, with the cone axis coincident with the ray). The
treatment angle associated with the ray that has the largest cone is used as
the starting treatment angle.
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8.2.1.1 Meshing

As described previously (Section 7.2.2.1), segments were obtained as three-

dimensional binary voxel arrays. Segments were transformed into triangulated

surface meshes in order to allow use of the ray-triangle and cone-triangle in-

tersection algorithms involved in Figure 8.1 Step 3 and 4, and later, to allow

the calculation of tumour coverage. OARs and bones were meshed using the

’device-first’ meshing method described in Section 7.2.2.1. This meshing method

was used for meshing the OARs and acoustic obstructions when the target-first

method was compared with the device-first method, with results that demon-

strated consistency between the two methods under the same initial conditions

(see Section 7.3.1). The tumour had already been meshed as a result of the seg-

mentation process, using the marching cubes isosurface method [151, 152] (see

Section 5.2.6).

The body outline was meshed using the marching cubes isosurface method

as well, but this time with the isovalue set to 10-6. The marching cubes method

was used for the body outline because the device-first meshing method produced

staircased mesh surfaces (red line in Figure 8.2). This is thought to make iden-

tification of the skin points (where the vector rays intersect the surface of the

body outline) more difficult, and hence introduced error into the identification of

the MRgHIFU transducer home position and the calculation of the tumour cover-

age. This parameter was chosen in order for the mesh to delineate the outermost

surface of the skin. The difference in the surface mesh produced by these two

meshing schemes is shown for an example segment array in Figure 8.2.
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Figure 8.2: A visual comparison of the mesh surfaces of two meshing methods applied to
the same example segment, represented here by a two dimensional binary
pixel array. Each pixel in the segment array is either ’1’ or ’0’, representing the
segment tissue/material, or everything else, respectively. The mesh surface
generated by the device-first meshing method (red, described in Chapter 7),
which was used for OARs and bones, is compared to that generated by the
marching cubes isosurface meshing method (cyan), which was used for the
body outline.

8.2.1.2 Generation of Treatment Angles

Rays, each representing a different treatment angle, were generated. All treat-

ment angles were angles of rotation around the inferior-superior axis, because

even though the patient meshes were three dimensional, the patient was ex-

pected to be able to be rotated around that axis only. In later processes, one

of these treatment angles will be identified as the starting treatment angle. Each

ray represents the isocentre line (the line that would connect the magnetic isocen-

tre and the transducer home position if the patient were actually oriented into that

angle on the MRgHIFU bed) of a particular treatment position, with the associated

treatment angle being the acute angle between the ray and the vertical isocentre

line. In essence, if the patient were to be rotated into that particular treatment
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position and placed on the MRgHIFU bed, the ray would ideally go through the

magnetic isocentre as well as the tumour centroid (see Figure 1.1 Step 2). Rays

up to 40° away from the anterior-posterior axis, where the 0°ray represented the

supine position, were generated in 1° increments. The choice of 40° represents,

in light of clinical experience, the expected maximum angle that a patient can tilt

and still fit within the MR scanner bore during treatment.

8.2.1.3 Acoustic Window Estimation

As stated above, the starting treatment angle was defined as that with the largest

acoustic window. To identify it, acoustic windows were approximated for all re-

maining treatment angles by creating a right circular cone for each, originating

at the tumour centroid (same as the ray origin), with the cone axis being the ray

associated with that angle (see Figure 8.1 Step 4). The cones were widened by

increasing their opening angle (the angle at the cone origin between the cone

axis and the cone’s curved sides), since the opening angle controlled the width of

the cone base relative to the cone height. This was done using a custom-built op-

timiser. The cone opening angle was initialised at 0°, and was increased in initial

steps of 45 degrees. For each increment, the cone was checked for intersection

with any OAR or acoustic obstruction meshes using a cone-triangle intersection

algorithm [175]. If intersection occurred, the cone opening angle was reset to that

of the previous step, and the step size was halved. This was repeated until the

opening angle increment was less than 6×10-5°. This limit was chosen because

it was the minimum difference between cone opening angles observed for differ-

ent treatment angles in preliminary experiments. An upper bound of 90°(where

the cone becomes a plane) was enforced on the cone opening angle, as the

cone-triangle intersection algorithm only functioned for cones with acute open-

ing angles. The treatment angle associated with the cone that had the largest

opening angle was chosen as the starting treatment angle.

8.2.2 Identifying the Ideal Treatment Angle

The ideal treatment angle is defined as that which results in the maximum tumour

coverage. Identification of the ideal treatment angle was critical for the assess-
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ment of patient suitability, and a major aspect of the prospective patient workflow

which underpins this PhD project. The methodology used to identify the ideal

treatment angle was also used to test whether the tumour coverage was maxi-

mal at the starting treatment angle, for which the approximate acoustic window

was maximal. Furthermore, the process of identifying the ideal treatment angle

allowed assessment of the variation in tumour coverage with angle and thus the

effect of imprecise patient positioning.

An overview of the method developed for identifying the ideal treatment an-

gle is shown in Figure 8.3 and described below. The inputs are the OAR, bone,

tumour and body outline meshes, and the starting treatment angle. These were

calculated as described in Section 8.2.1. In Step 1, a set of treatment angles

was generated around the starting treatment angle, by generating rays originating

from the tumour centroid within the same axial plane. As before, each ray rep-

resents the isocentre line of a particular treatment position, and was associated

with a treatment angle. Details were provided in Section 8.2.2.1 below. In Step 2,

for a particular treatment angle, the position of the MRgHIFU transducer relative

to the tissue volume was found. First, the position of the associated ray’s inter-

section with the skin, represented by the body mask mesh surface, was found.

Secondly, because the ray is assumed to be the isocentre line for a particular

treatment position, volunteer-derived estimates for the compressed gel-pad thick-

ness and membrane bowing distance were used to estimate the position of the

unbowed membrane, and from that the MRgHIFU transducer home position was

estimated as described in Section 6.2.2.5 and Figure 6.4. In Step 3, the patient’s

tumour coverage for each treatment angle was calculated using the methodology

described in Chapter 7. The tumour coverage was plotted against the treatment

angle, in order to identify the ideal treatment angle, to identify how the tumour

coverage would decrease as the patient is tilted away from the ideal treatment

angle, and to compare between the starting, ideal and clinical treatment angles.

Computation was performed on a 14-core cluster node (each core clocked at 2.6

GHz and with 12.8 GB of RAM) with a single NVIDIA Tesla V100 GPU.
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Figure 8.3: Workflow for identifying the ideal treatment angle. Inputs are the body outline,
tumour, organ-at-risk (OAR) and acoustic obstruction (i.e. bone) meshes, as
well as the starting treatment angle. For ease of visual interpretation, the
body outline is not shown except in Step 2, where it is used. Step 1: The ray
representing the isocentre line of the starting treatment angle (’starting ray’)
is generated. Rays are generated perpendicular to the inferior-superior axis
around the starting ray, each ray representing the isocentre line of a partic-
ular treatment angle. Step 2: for each ray, the transducer home position is
identified using the techniques developed in Section 6.2.2.5. Each ray’s inter-
section with the body mask mesh is found and the intersection point defined
as the skin point. From the skin point, estimates of the compressed gel-pad
thickness (9.8 mm) and the membrane bowing distance (10.0 mm) are used
to obtain the estimated unbowed membrane, from which the transducer’s
home position is known to be a fixed distance (67.5 mm for the Sonalleve
V2) posterior. The patient’s meshes are positioned and rotated such that the
tumour centroid, the skin point, the magnetic isocentre and the transducer’s
home position all lie on a single ’isocentre line’ (red). Step 3: for each treat-
ment angle, the tumour coverage is calculated. Ultimately, tumour coverage
is plotted against treatment angle.
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8.2.2.1 Generation of Potential Treatment Angles

In a similar fashion to the initial stages of the calculation of the starting treatment

angle, a set of treatment angles was generated by representing them as vector

rays originating from the tumour centroid, from which one would be identified

as the ideal angle. These treatment angles were generated around the starting

treatment angle in 2° increments up to 10° from the starting treatment angle,

then in 4° increments beyond that. The smaller increments around the starting

treatment angle were chosen because the ideal treatment angle is expected to

be close to the starting treatment angle. The treatment angles were generated

until they reached a lower limit of being supine (defined as 0 °), or an upper limit

of a 40° tilt away from supine. The rationale for the 40° upper limit is the same

as that for the starting treatment angle, namely that the patient was expected to

be unable to fit within the MR scanner bore in that position. For the patient data

used in this study, 33° was the greatest tilt observed (see Table 3.3).

8.2.2.2 Potential Treatment Positions

For each treatment angle, the MRgHIFU transducer home position was identified.

This is required in order to identify the tumour coverage that can be achieved at

that treatment angle. The MRgHIFU transducer was modelled on the Sonalleve®

V2 transducer (Section 3.2), and its home position was known to be 67.5 mm pos-

terior to the undeformed membrane (see Figure 3.1). The assumption was made

that, in clinical practice, the patient would be angled at the treatment angle and

positioned such that the tumour centroid, the magnetic isocentre and the trans-

ducer home position would be on the same anterior-to-posterior line (’isocentre

line’, as seen in Section 1.5). Given that assumption, the left-right and inferior-

superior position of the transducer home position is known to be the same as

that of the magnetic isocentre, and it is only the anterior-posterior placement of

the transducer home position that is in question. This was identified using the

method described in Section 6.2.2.5 and Figure 6.4. The intersection point be-

tween the isocentre line and the skin, represented by the body outline mesh,

was found. The anterior-posterior position of the unbowed membrane was iden-
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tified from the skin intersection point by using volunteer-derived estimates of the

compressed gel-pad thickness and membrane bowing distance (9.8 mm and 10.0

mm, respectively, as in Section 6.3.1), with the exception of patient G24, who was

treated on a customised gel-pad. For patient G24, the actual gel-pad thickness of

5.3 mm was used along with the volunteer-derived estimated membrane-bowing

distance of 10.0 mm. The transducer home position was known to be 67.5 mm

posterior to the estimated unbowed membrane (Section 3.2).

8.2.2.3 Calculation of Tumour Coverage

For each treatment angle, the tumour coverage was calculated using the method

described in Section 7.2.2. The MRgHIFU transducer was modelled such that

each element was represented by a point at its centre, and the acoustic beam

was modelled as discrete lines connecting the transducer element points to the

transducer focus. To be consistent with the previous work, the transducer was

restricted to angulation only in the left-right direction, in 2.5° increments up to 10°

off the anterior-posterior axis.

After tumour coverage had been calculated for all treatment angles, the ideal

treatment angle, defined as that which results in the greatest tumour coverage,

was identified. The starting treatment angle was compared to the ideal treatment

angle to see whether the maximisation of the acoustic window size, as was done

to derive the starting treatment angle, results in maximisation of the tumour cov-

erage. Comparison between the ideal and the clinical treatment angles quantifies

the quality of patient positioning provided by the computational method versus

current clinical practice. An assessment of the effect of imprecise patient position-

ing, which is expected to be 5° in clinical practice, was performed for each patient

by examining the tumour coverage at treatment angles 5° steeper and shallower

than the ideal. The two resulting tumour coverage values are compared to the

maximum tumour coverage at the ideal treatment angle, and the greatest differ-

ence between them is used to quantify the effect of imprecise patient positioning

for that patient.
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8.3 Results

8.3.1 Starting Treatment Angle

A comparison of the starting treatment angle for each patient against the clini-

cally used treatment angles and the ideal treatment angles, as shown in Figure

8.4, showed that the starting treatment angles differed from the ideal treatment

angles by 4±4°(range: 0-10°, 4 patients) and from the clinical treatment angles

by 9±6°(range: 3-20°, 5 patients). For patient G3, all treatment angles produced

the same tumour coverage (100%). The computational time required to identify

the starting treatment angle was 3±1 hours (range: 2 hours (G27) to 5 hours

(G3)).

8.3.2 Ideal Treatment Angle

The variation in tumour coverage with patient tilt angle is shown in Figure 8.4. The

ideal treatment angle differed from the clinical treatment angle by 5±2°(range: 2-

7°, 4 patients). Tumour coverage at the starting treatment angle was at, or close

to (within 1%), maximum except for patient G82, whose tumour coverage was 5%

below the maximum. The tumour coverage for patient G3 was the same (100%)

at all angles.

The effect of imprecise patient positioning was a decrease in tumour cover-

age of 3±2% (range: 0-7%), with the maximum decrease for patient G27. Patient

G82 was examined in closer detail (Figure 8.5). Computational time required to

identify the ideal angle, including the time required to identify the starting angle

which initialises the search for the ideal angle, was 39±28 hours (range: 5 (G3)

hours to 78 hours(G82)).
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Figure 8.4: The variation of tumour coverage with treatment angle, for all patients. The
starting treatment angle (red vertical), in which the approximate acoustic win-
dow was maximal, the ideal treatment angle (blue dashed vertical), in which
the tumour coverage is maximal, and the clinical treatment angle (black ver-
tical), which was used in treatment, are shown. Tumour volume coverage at
angles 5°steeper and shallower than the ideal treatment angle were calcu-
lated, and the lower of the two was depicted by the horizontal pink line. For
patients G27 and G29, the starting and ideal treatment angles are the same.
For patient G3, tumour coverage was identical for at all angles tested.
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Figure 8.5: Difference in estimated tumour volume covered between the starting treat-
ment angle (red arrow), and the ideal treatment angle (blue arrow), for patient
G82. (a): Tumour volume is represented as discrete points; those covered
by both the starting and ideal angles are grey, by the starting angle only
were red, and by the ideal angle only were blue. The tumour itself is rep-
resented as the red mesh in (a) and is grey in the other subplots. (b): An
axial view of the tumour within the pelvis showing covered volumes relative
to the acoustic obstructions and organs-at-risk (green meshes). Views of the
covered tumour volumes from (c) the ideal angle (19° from supine) and (d)
the starting angle (29° from supine).

8.4 Discussion

The aim of this study was to develop a novel method of identifying the ideal treat-

ment angle, in which the tumour coverage is the greatest, and to assess the

acceptable margin of error in patient positioning, as part of a wider study into

automating the evaluation of patient suitability for MRgHIFU therapy.
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8.4.1 Comparison between the Starting and Ideal Treatment

Angles

One of the objectives of this study was to investigate whether the treatment an-

gle that maximised the acoustic window, i.e. the starting treatment angle, would

be the same as that which maximises the tumour coverage, i.e. the ideal treat-

ment angle. This was of interest because identifying the starting treatment angle

requires less computing time (3±1 hours, range: 2-5 hours) than calculation of

the ideal treatment angle (including time required to calculate the starting angle,

39±28 hours, range: 5-78 hours). For all patients except G3, the ideal treat-

ment angle differed from the starting treatment angle by 4±4°(range: 0-10°). For

patient G3, the tumour coverage was the same (100%) at all treatment angles

tested, so every angle was "ideal". In comparison, the estimated precision with

which a clinician could place a patient was expected to be approximately ±5°.

Although the starting angle for patient G27 reached the upper bound of 40°, clin-

ical experience suggests that steeper angles could only be achieved in smaller

patients.

The greatest difference between the starting and ideal treatment angles was

10° (patient G82). The hypothesis that maximising the acoustic window size

would result in the maximisation of tumour coverage was shown to be valid for 3/5

patients (G3, G27 and G29). The reason for the angular difference for patients

G82 and G24 was that the starting treatment angle’s acoustic window originated

from the tumour centroid, so maximisation of the acoustic window just maximised

the transducer’s ability to reach this one position from a variety of angles, whilst

access to the surrounding tissue was not considered. Thus, for some OAR, bone

and tumour geometries, a treatment angle that provides less access to the cen-

troid could result in a greater tumour volume coverage overall. Nonetheless, tu-

mour coverage at the starting treatment angles were within 5% of the maximum

tumour volume covered for all patients, so the starting treatment angle was shown

to be a good initial angle from which to begin the search for the ideal treatment

angle. The development of an optimisation-based method to identify the ideal
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angle could be pursued, in order to reduce the computational time required for

the current method.

8.4.2 Comparison between the Ideal and Clinical Treatment

Angles

The difference between the ideal and the clinical treatment angle was

5±2°(range: 0-7°, 4 patients). For comparison, the estimated imprecision in

patient positioning is ±5°. Since the ideal and clinical treatment angles are so

close, this suggests that the current clinical procedures involved in deciding pa-

tient placement are reasonably accurate. The clinical treatment angle represents

a compromise between the clinically determined ’ideal’ treatment angle and the

practical considerations that prevent the patient from being positioned at that

angle, for example whether the patient could fit in the MR scanner bore.

8.4.3 Comparison between the Starting and Clinical Treat-

ment Angles

The starting treatment angle differed from the clinical treatment angle by 9±6°,

with a maximum discrepancy at 20° for patient G3. The starting treatment an-

gle (27±8°) appeared to be biased towards recommending a steeper treatment

angle than that eventually used clinically (18±10°). This could be because pa-

tients could not physically fit within the MR bore at steeper treatment angles,

and because patients may have settled stably into shallower angles prior to treat-

ment commencing. Furthermore, whilst the starting angle is decided from fixed

anatomy in referral images, the clinical treatment position is decided by clinicians

on treatment day after accounting for soft tissue deformation and OAR displace-

ment resulting from patient reorientation into the treatment position, clinical prepa-

rations such as bowel-filling and pre-treatment dieting, and biological variation.

Clinicians may also have judged that a shallower angle would expose more of the

tumour to ablation.
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8.4.4 Precision Required in Patient Positioning

From clinical experience and practice, because patient reorientation into the treat-

ment angle is done manually, it is expected that the patient could not be positioned

exactly at the ideal treatment angle. The expected imprecision involved in patient

placement is ±5°. The decrease in tumour coverage resulting from this impreci-

sion was 3±2% (range: 0-7%), with the maximum decrease for patient G27. By

comparison, the average difference between the tumour coverage predicted from

referral images and that calculated from treatment images (Section 6.3.3) was

±12%, assuming perfect acoustic coupling between patient and the gel-pad. The

uncertainty involved in calculating tumour coverage due to uncertainties in image

segmentation and tumour discretisation was approximately 4.3% (Section 6.3.4).

Therefore, imprecise patient positioning does not appear to present a major limi-

tation to the clinical adoption of this method.

8.4.5 Limitations of this Study

There are several limitations to this study. One is the small patient sample size

involved, due to the limited number of patients that underwent treatment. Volun-

teers could not be used to supplement the limited patient data without arbitrarily

deciding on shapes, sizes and positions of dummy tumours. Another is that a

sufficiently wide acoustic window does not mean that sufficient energy can be

transmitted to the depth of the tumour to achieve tissue ablation – this is the sub-

ject of the next chapter. Furthermore, the ability to fit the patient within the MR

bore at the ideal angle was only taken into account by setting an upper bound

for the treatment angle at 40°. In practice, the larger the patient, the lower the

maximum treatment angle achievable; within the available set of patients in this

study, the steepest treatment angle achieved clinically was 33° (G27).

A limitation of the identification of the ideal angle was that perfect acoustic

coupling was assumed. As a result of this, the tumour coverage for patient G3

was estimated to be 100% at all treatment angles. In clinical practice, extracor-

poreal air could be a major factor determining the coverage of the tumour as

demonstrated in Section 6.3.3. When positioning the transducer home position
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relative to the referral dataset, the same assumptions were made here as those

made in Section 6.2.2.5, which were that: i) the gel-pad would be most com-

pressed and the gel-pad most bowed at the isocentre line, and ii) after soft-tissue

deformation resulting from the patient being placed on top of the gel-pad in the

treatment position, the distance between the skin-intersection point (where the

isocentre line met the skin) and the tumour centroid stayed constant. Because

the same procedure was performed for all treatment angles, any relevant error in

the tumour coverage was thought to apply at all angles.

8.5 Conclusions
A method for identifying the ideal treatment angle from referral imaging has been

developed and tested on patient data for future use in the prospective patient

workflow. The method first determines a ’starting’ treatment angle, for which the

acoustic window was maximised. The ideal treatment angle was then found,

for each patient, by exhaustively examining steeper (up to 40°) and shallower

(down to 0° i.e. supine) angles than their starting angle. For the five patients

studied, the angular difference between the starting and ideal treatment angles

was 4±4° (range: 0-10°), and that between the ideal and clinical treatment angles

was 5±2° (range:2-7°). The maximum effect of patient positioning up to 5° away

from the ideal angle was estimated to be a 7% decrease in tumour coverage,

suggesting that imprecise patient positioning does not present a major limitation

to the clinical adoption of this method. Tumour coverage at the starting treatment

angles was within 5% of the maximum tumour volume covered, which occurred

at the ideal treatment angle, suggesting that the starting treatment angle could

be used as a faster-to-calculate substitute for the ideal treatment angle. Future

work related to identifying ideal patient positioning could be focused on reducing

the computational time required to calculate the ideal treatment angle.

159



Chapter 9

Evaluating Patient Treatability

9.1 Introduction

Quantitative evaluation of the patient treatability, the topic of this chapter, is the

final step in the prospective patient suitability workflow which was outlined in Sec-

tion 1.5. A patient’s treatability is defined as the percentage of their tumour(s)

that could experience HIFU-induced coagulative necrosis. In the literature, this

is interpreted as regions reaching a temperature threshold of 55°C for at least 1

second [1], or a thermal dose greater than 240 cumulative equivalent minutes at

43°C (CEM43) [24].

Currently, patient treatability is estimated by clinicians, who, as part of treat-

ment planning, place notional treatment cells within and around the target tu-

mour(s) on the screening image dataset, which may not be acquired at the ideal

orientation for treatment. Clinicians concentrate on the placement of treatment

cells, and assume that enough energy can be delivered from the transducer to

each [18]. In the literature, acousto-thermal simulations designed to investigate

how the different tissue layers between the transducer and target affect the ultra-

sound beam intensity and shape have been described [64, 83]. Acoustic simula-

tion has been used in order to predict the acoustic energy that would be deposited

within patient tissue. Thermal simulation have been used to predict the resul-

tant temperature changes. Published methodologies for performing acoustic and

thermal simulations are described in Sections 2.6 and 2.7, respectively. However,

due to the high computational requirements of acoustic simulation (approximately
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2 days per simulation [64, 83]), an exhaustive assessment of treatability has not

been possible here.

The aim of the work described in this chapter, therefore, was the development

of a method to estimate the percentage of a tumour that should be treatable. As

discussed in Sections 2.6.4 and 2.7.4, acoustic and thermal simulations were

performed using the open-source pseudo-spectral simulation package k-Wave

[80]. This software package is publicly available, has been validated [84, 98] and

has been used for simulating acoustic propagation in human tissue [64, 83]. This

choice of simulation method affects several steps of the method, as detailed in

the sections below. A broad overview of the method is provided below in Section

9.2.1.

9.2 Development of Simulation Methods

9.2.1 Overview

Treatability was assessed for the five patients described in Section 3.3.3. The

workflow for this study is shown in Figure 9.1, with details for each step in the

relevant subsections below. The inputs into the workflow were five patient treat-

ment image datasets, the placements of treatment cells that contributed to their

tumour coverage (’reachable’ treatment cells), and the region of tumour volume

covered (the latter two were derived from tumour coverage assessment, using

the target-first method described in Chapter 7). For each patient dataset, the

deepest (most anterior) and shallowest (most posterior) reachable treatment cells

centered within the tumour were identified, with anterior and posterior defined as

shown in Figures 3.1 and 9.2. In Step 1, the region of expected acoustic propa-

gation was identified from the transducer position and angle required to reach the

deepest or shallowest reachable treatment cells, and extracted from the image

dataset in order to reduce the grid size for the upcoming simulations and there-

fore improve computational speed. In Step 2, each voxel of the simulation grid

was assigned values for relevant mechanical (density), acoustic (speed of sound,

attenuation coefficient) and thermal (thermal conductivity, specific heat capacity)
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properties. In Step 3, acoustic simulation was performed using a pseudo-spectral

method (source acoustic power 300 W, source frequency 1.22 MHz) to calculate

the acoustic pressure fields resulting from sonication of a 4 mm treatment cell.

The 4 mm cell was chosen because it was the treatment cell size most commonly

used for treating patients in the recurrent gynaecological tumour trial whose pa-

tient data is used here [18]. In Step 4, a thermal simulation was performed using

a pseudo-spectral method to identify the temperature history, and thermal dose

received, in the tissue as a result of acoustic energy absorption over the duration

of cell heating and cooling. The ablated tissue volume, defined as tissue which

had received a cytotoxic thermal dose ≥240 CEM43, was identified for both the

deepest and shallowest reachable treatment cells. In Step 5, the volume of ab-

lated tissue along the line between the deepest and shallowest ablated tissue

centroids was estimated by linear interpolation. The ’cell-equivalent’ position on

this line, i.e. that at which the volume of ablated tissue matches the treatment cell

volume, was identified. The maximum treatable depth was defined, arbitrarily, as

half a treatment cell length deeper into the patient than this cell-equivalent posi-

tion. The treatable tumour volume was identified as the covered tumour volume

that lay closer to the skin than this depth.
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9.2.2 Inputs

Five patient treatment images were acquired as described in Section 3.3.3. Treat-

ment images were assessed because the shape deformation of the gel-pad and

human body was unknown for the registered-referral images. It is known that ge-

ometry of the medium is important to determining the acoustic energy deposited

at the target, and hence, the ablated tissue volume [64, 83]. In the literature it

has been reported that nonlinear acoustic simulation in three patients with and

without refraction resulted in the spatial-peak time-average intensity decreasing

by 92% and 77% on average compared to a simulation in water, respectively [83].

Further work could be done to simulate human body deformation. From the Fat

and Water Dixon image datasets, the simulation grid was extracted. The deepest

and shallowest reachable treatment cells, which lay within the tumour surface,

were identified from the set of ’reachable’ treatment cells which had been identi-

fied in the tumour coverage assessment (Section 7.2.2.3). Where multiple treat-

ment cell centres had the same depth, the one closest to the isocentre line (a

line going through the positions of the magnetic isocentre and transducer home

position) was used as the deepest and shallowest reachable treatment cell cen-

tres. The transducer positions and angulations required to reach the deepest and

shallowest treatment cells, obtained as a result of tumour coverage assessment,

were used to extract the simulation grids from the dataset. The tumour coverage,

determined previously, was used to provide an upper bound to the estimated pro-

portion of tumour treatable. This is because, if a region of the tumour could not

be reached and covered because it was blocked by an organ at risk or acoustic

obstruction, it was assumed to be untreatable.

9.2.3 Simulation Grid Extraction

To reduce the computational time requirements for acousto-thermal simulation, a

simulation grid (140 x 180 x 140 mm in X, Y and Z, axes defined in Figure 9.2)

was identified from the larger Dixon image datasets (dimensions of 250.0 x 250.0

x 199.5 mm in Left-Right, Anterior-Posterior, and Inferior-Superior, axes defined

in Figure 9.2). The simulation grid was extracted such that the transducer was
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situated at one end of it, with the beam axis centred in the X-Y plane and parallel

to the 180 mm-long Y-axis. The Z axis was perpendicular to the X and Y axes, as

shown in Figure 9.2, and positive towards the patient head. If, in order to reach

the deepest or shallowest treatment cell, the transducer position was outside of

the field-of-view of the original image dataset (i.e. as seen in Figure 9.2(a)), then

the region outside the dataset field-of-view around the transducer was assumed

to be the oil bath within which the transducer sits in the MRgHIFU system. The

simulation grid was selected to ensure that the entire Sonalleve® transducer was

included, so the acoustic source could be accurately described during simulations

in Step 3.

Figure 9.2: Extraction of the simulation grid from a patient image dataset, using the
known transducer position and angulation required to target the intended
treatment cell. (a): An example cross-section of the original image dataset is
shown, with the tumour (red), covered tumour (yellow), shallowest reachable
treatment cell (magenta) and associated transducer position and angulation
(blue beam, orange beam axis) overlaid. (b): The original image dataset is
rotated such that the transducer beam axis is made vertical, and the Y-axis
is defined as parallel to that. (c): The simulation grid is extracted from the
rotated dataset. The coordinate systems used to refer to directions within
(a) the original image dataset (patient orientation-based directions), (b) the
rotated and (c) the extracted grid are shown below the images.
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9.2.4 Medium Generation

Each voxel within the extracted simulation grid had to be associated with appro-

priate material properties (density, sound-speed, attenuation coefficient, thermal

conductivity, specific heat capacity) for muscle, fat, bone, gel-pad, oil and extra-

corporeal air [69, 176] for modelling acoustic propagation and the thermal bioef-

fects. Because of the way k-Wave models the power-law frequency-dependent

attenuation within its governing equations [81, 96], the power-law frequency-

dependent attenuation exponent γ (see Section 2.2 equation 2.3) was fixed for

all medium voxels, and here, it was set to 1.1 [83].

A simple automatic method was used to assign different voxels their material

properties. The patient Dixon Water (W) and Fat (F) images were combined

into water-fraction (WF) and fat-fraction (FF) images: WF = W
W+F and FF = F

W+F .

Bone voxels had already been identified by a manual segmentation (see Section

5.2.3), and were assigned appropriate material properties. A non-bone voxel

within the body mask that had the value of 0.75 in the FF image necessarily

had the value of 0.25 in the WF image. This was interpreted as a voxel having

75% adipose tissue and 25% aqueous tissue. This appeared plausible due to

the partial volume effect in digitised images. Under this assumption, the sound

speed, density and attenuation coefficients for each voxel were derived as the

weighted average of the material properties of fat and muscle, respectively. The

fluid within filled bladders was therefore given the material properties of muscle,

but because the bladder was in the post-focal region of all patients tested, this

was not expected to influence the acoustic energy absorption at the focus and

pre-focal region. For simplification, tumour voxels were also modelled as muscle.

In previous studies, the acoustic sound-speed of tumours has been measured to

range from 1532 m/s at 22°C to 1581 m/s at in-vivo temperatures [69], and the

attenuation coefficient for metastatic livers has been measured to be 0.26-0.70

dB/(MHzγ ) [69], similar to that of muscle.

A voxel outside the body mask represents either extracorporeal air, gel-pad or

oil bath. Extracorporeal air had already been segmented for patients (see Section
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5.2.3 and Figure 5.5). Discussions with Profound Medical revealed that the gel-

pad consisted almost entirely of water. The weighted average voxel labelling

scheme described above was used to assign material properties to the gel-pad

and oil-bath voxels that came from the original image dataset. As mentioned

previously, for some patients, the transducer was positioned outside the image

dataset field-of-view, and hence the voxels in the region beyond the image dataset

field-of-view were assigned the acousto-thermal properties of oil.

Since the transducer was manipulated in order that its focus reached a geo-

metric focal point that is known to be reachable, organs at risk and acoustic ob-

structions, such as bone and extracorporeal air, were expected to be at or beyond

the periphery of the acoustic beam. However, extracorporeal air voxels had to be

handled carefully, because for some methods, the simulation can become nu-

merically unstable if the medium contains interfaces between materials with large

impedance mismatches [177], such as that between gel-pad and extracorporeal

air (on the order of 104). In one study, an impedance ratio of 16-to-1 resulted

in up to 6% error in transmission [178]. The acoustic impedance ratio between

bone and soft tissue was approximately 5-to-1, suggestive of an error of approxi-

mately 2% [178]. Therefore, all extracorporeal air voxels were assigned the same

sound-speed and density as water, and in order to model the acoustic opacity of

air, an artificial attenuation coefficient of 20 dB/(MHzγ cm) was assigned to air

voxels where diffracted acoustic waves intersected an air boundary. The reflec-

tion of diffracted waves from the air interface was expected to be negligible. In

order to reduce reflection from the grid boundaries, perfectly matched layers [93]

surrounded the computational grid.

The material properties of the materials that were used in the simulation are

shown in Table 9.1. The gel-pad is expected to warm to patient skin tempera-

ture (33.5°C[179]) over the course of treatment. At this temperature, the gel-pad

sound speed was calculated from the Bilaniuk and Wong equation for the sound

speed of water [180] to be 1517 m/s, whilst the density was 995.1 kg/m3 [38].

The acoustic properties of tissue are known to vary with temperature [37]. The

effect of thermo-acoustic lensing was expected to be minor (1 mm displacement
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in peak focus position after heating to 80°Cat the focus [73]). For simplicity, and

because k-Wave does not support coupled acousto-thermal simulations, acous-

tic and thermal properties for materials were assumed to remain constant. The

acoustic properties were measured from tissue samples at 35-37°C[69]. The

sound-speed and density of the oil used in the Sonalleve® V1 had been mea-

sured at room temperature [181], and it was assumed that the same oil was used

in the Sonalleve® V2. The thermal properties of the oil were assumed to be

those of mineral oil, measured at 40°C [182]. This temperature was chosen, be-

cause the mineral oil was assumed to be heated by ultrasound absorption over

the course of the treatment. The attenuation coefficient of oil was obtained from

measurements performed by John Civale in the ICR therapeutic ultrasound group

using a buoyancy method [183]. Acoustic energy deposition into extracorporeal

air and thermal conduction from sonicated tissue deep within the patient was ex-

pected to be negligible. Furthermore, because of the form of the bioheat equation

(Section 2.2 equation 2.4), the pseudo-spectral method used for thermal simula-

tion is affected by discontinuities in thermal conductivity. Therefore, for simplicity,

extracorporeal air voxels were assigned the thermal properties of water [83].
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Table 9.1: Acoustic and thermal properties of different tissues and materials. Sources
for these properties are referenced.

Water
(Gel-Pad)

Oil Muscle Adipose
Tissue

Bone

Sound-
speed
(m/s)

1517 1380 [181] 1575 [83] 1478 [83] 4080 [83]

Density
(kg/m3)

995.1 840 [181] 1055 [83] 950 [83] 1908 [83]

Pressure
Atten-
uation
Coefficient
(dB/(MHzγ

cm))

0.00217
[83]

0.1 0.6 [83] 0.48 [83] 20 [83]

Thermal
Conductiv-
ity (W/(m
K))

0.6045
[176]

0.130
[182]

0.49497
[176]

0.21145
[176]

0.32 [176]

Specific
Heat Ca-
pacity
(J/(kg K))

4178 [176] 1974 [182] 3421 [176] 2348 [176] 1312 [176]

9.2.5 Acoustic Simulation

Simulations were performed to obtain acoustic pressure fields, which are used to

calculate acoustic intensity and energy deposition. Acoustic simulations were per-

formed using the open-source k-Wave v1.3 [80, 81] package, which uses pseudo-

spectral methods to model acoustic wave behaviour from coupled first-order par-

tial differential equations. Simulations were performed on a regular Cartesian

spatial grid.

A linear simulation to analyse patient treatability was developed, in prefer-

ence to more extensive nonlinear simulations. Linear simulations have been used

to assess how tissue geometry affected kidney ablation treatments [64]. The com-

putational resources required to perform nonlinear simulations were prohibitive.

In preliminary work, nonlinear simulations performed at a spatial resolution of

13.5 points per minimum wavelength (the resolution at which simulations had

been validated against experimental data [84]) were estimated to require more
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than 1 week of computation on a commercially available cloud node (128 CPUs,

2 TB RAM).

Three-dimensional acoustic simulations were performed using k-Wave, with

the simulation code implemented in C++, on a 20 CPU-core node (each core

clocked at 2.60 GHz and with 12.8 GB RAM per core). The k-Wave GPU code

could not be used because each simulation required more video memory than

was available.

For all acoustic simulations performed, the acoustic pressure field emerging

from the voxelised Sonalleve® transducer described in Section 3.2 was simulated,

with source pressure corresponding to 300 W of acoustic power across its entire

surface (the maximum output allowed in the clinical uterine configuration) and

frequency of 1.22 MHz. The total number of time steps simulated was that re-

quired to travel from one corner of the simulation grid to the opposite corner at

the slowest sound-speed within the medium. Further details are provided below.

9.2.5.1 Modelling Bone with Reduced Sound Speed

9.2.5.1.1 Method

The speed of sound in bone is much higher than that in other materials of inter-

est (Table 9.1). This means that use of the correct value would require finer time

resolution than if bone were not present in order to maintain the same numerical

accuracy in acoustic simulation [184]. This would result in a longer computational

time. However, the acoustic impedance (the product of the medium’s speed of

sound and density) determines the reflection and transmission at an interface

between two materials (see Section 2.2, [35]). Therefore, changing the sound

speed of bone in the simulation to that of water, and then compensating by in-

creasing the density accordingly left the acoustic impedance unchanged. This

could provide a speedup in computational time without sacrificing accuracy with

which reflections at bone interfaces were simulated. In addition, because the

transducer was positioned and angled such that bone was only at the periphery

of, or beyond, the acoustic beam, the acoustic energy propagating towards bone

was expected to be negligible. Any erroneous refraction of transmitted acoustic
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waves in bone was ignored.

The effect of this change was tested using patient G82 (chosen arbitrarily).

Two simulations were run, one with the correct bone sound-speed and density

(the ’unmodified’ simulation) and the other with the sound-speed of water and ele-

vated density (5131.6 kg/m3) assigned to bone (the ’modified’ simulation). In both

cases, the acoustic impedance in bone was 7.78 MPa.s/m3. The chosen spatial

resolution of 2.2 grid points per minimum wavelength (1.1 mm), corresponding to

a spatial resolution of 514 µm, which is just above the Nyquist sampling limit of 2

points per shortest wavelength, was chosen to minimise the time required for the

validation study. For both simulations, the Courant–Friedrichs–Lewy (CFL) num-

ber, which defines the time resolution as a function of the spatial resolution and

the maximum medium sound-speed [184], was set to approximately 0.1 such that

each wave period would be represented by an integer number of time steps. This

corresponded to time steps of 13 ns (simulated for approximately 14900 steps)

and 33 ns (simulated for approximately 5900 steps) for the unmodified and mod-

ified simulations, respectively. This choice of CFL number ensured that the time

step in the simulation would be small enough to yield stable simulations. The

transducer’s geometric focus was centred on the tumour centroid with the beam

axis perpendicular to the MR bed surface.

In order to investigate the potential for further increase in the time step, the

CFL numbers 0.2, 0.25 and 0.3 were studied, and the peak intensity was exam-

ined. The computational times required for the simulations were compared. Dif-

ferences in the peak intensity compared to the unmodified simulation were used

to quantify the effect this modification had on simulation accuracy.

9.2.5.1.2 Results

The results of the simulations are shown in Table 9.2. At CFL = 0.2, the unmod-

ified simulation became unstable and returned meaningless results (denoted by

N/A in the table). The same was also observed at CFL = 0.3 for the modified

simulation. At CFL = 0.1, the difference in the peak intensity when modifying
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the bone sound speed was 1%, resulting in a speedup of 2.5 times. A greater

speedup of 6.7 times was achieved by increasing the CFL number to 0.25 for the

modified simulation without adverse effects on accuracy (effect on peak intensity

was 1.2%).

Table 9.2: Results for the simulations involving the modification, or lack thereof, of bone
sound speed.

CFL Number Simulation
Type

Peak Inten-
sity (W/cm2)

% Differ-
ence from
Unmodified
CFL=0.1

Simulation
Time
Elapsed
(mins)

0.1 Unmodified 2399 0 240
0.1 Modified 2422 1.0 96
0.2 Unmodified N/A N/A N/A
0.2 Modified 2429 1.3 48
0.25 Unmodified N/A N/A N/A
0.25 Modified 2427 1.2 36
0.3 Unmodified N/A N/A N/A
0.3 Modified N/A N/A N/A

9.2.5.1.3 Discussion

Changing the bone sound speed to that of water and increasing the density

such that the acoustic impedance of bone remains the same was done with the

goal of reducing computational time without affecting simulation accuracy. Re-

sults showed an acceptably small (1%) increase in peak acoustic intensity and a

speedup of 2.5 times (from 240 minutes to 96 minutes). The speedup was im-

proved to 6.7x (from 240 minutes to 36 minutes) by additionally increasing the

CFL number from 0.1 to 0.25, with a total increase in peak acoustic intensity of

1.2% compared to the unmodified simulation. This modification was therefore

used for all subsequent acoustic simulations, including the linear model validation

and the simulation of treatment cell sonication.
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9.2.5.2 Linear Acoustic Model Validation

9.2.5.2.1 Method

In order to quantify the simulation accuracy, k-Wave’s linear model was compared

with the O’Neil solution [185] built into the k-Wave package, as had previously

been done by others [98]. In general, the higher the grid resolution, the greater

the maximum frequency that could be simulated and the better the simulation ac-

curacy. However, increasing spatial resolution increases computational resource

requirements. Thus, a compromise was sought. The relationship between the

spatial resolution, simulation accuracy and computational time was examined as

described below. The spatial resolution with the least computational time, that

resulted in the simulated pressure being within an acceptable margin of error

(±10%) of that produced by an analytical model, was chosen for subsequent sim-

ulations. This accuracy threshold was chosen as it corresponds to the accepted

experimental uncertainty for pressure measurements using hydrophones [84].

Acoustic propagation from a bowl transducer with similar specifications to the

Sonalleve® transducer (130 mm diameter, 140 mm radius of curvature, source

frequency 1.22 MHz, source pressure 350 kPa which corresponds to approxi-

mately 300 W acoustic power in water) through a homogeneous, linear, non-

attenuating medium (sound-speed 1480 m/s, density 998.2 kg/m3) was modelled.

The simulation grid (134 x 134 x 190 mm) was aligned with the transducer beam

axis, such that the longest grid axis was parallel to the beam axis. The spatial

resolutions tested corresponded to 2.2, 4.2, 6.2, 8.2 and 10.2 grid points per

minimum wavelength (1.2 mm), corresponding to spatial resolutions of 551, 289,

196, 148, 119 µm respectively. The CFL number was set to approximately 0.25

for each choice of spatial resolution, such that each wave period would be repre-

sented by an integer number of time steps. This choice was made in light of the

results of Section 9.2.5.1.2.

k-Wave and the O’Neil model, an integral equation that can describe the

pressure at every point in the field [185], were each used to generate an estimate

of the pressure amplitude along the beam axis and along a line perpendicular to
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the beam axis through the transducer focal point. The average errors between

the k-Wave and O’Neil pressures along the beam axis (’axial’) and along the line

perpendicular to the beam axis (’lateral’) were quantified using the L2 relative

error, which has been used in the literature for this purpose [98], using equation

9.1:

L2 = 100%×

√
∑x(psim(x)− pre f (x))2

∑x(pre f (x))2 (9.1)

where psim(x) is the pressure amplitude at position x simulated by k-Wave, and

pre f (x) is the reference pressure amplitude calculated by the O’Neil solution. To

identify the shape error between the k-Wave and O’Neil pressures, they were

normalised such that their peak pressures were identical, and the error between

them was then quantified by the L2 relative error. The non-normalised error be-

tween them was calculated to quantify the overall error.

9.2.5.2.2 Results

The pressure amplitudes generated along the beam axis and perpendicular to the

beam axis at the transducer focus by k-Wave were plotted with that generated by

the O’Neil solution, for the spatial resolutions of 2.2 and 10.2 grid points per min-

imum wavelength in Figures 9.3 and 9.4 respectively. At 2.2 points per minimum

wavelength, the near-field pressure generated by k-Wave disagrees with that pre-

dicted by the O’Neil model. Even at the highest spatial resolution tested (10.2

points per minimum wavelength), there is a discrepancy between the simulated

and theoretical peak pressures of approximately 2 MPa.
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Figure 9.3: Comparison of the pressure amplitude simulated by k-Wave and that calcu-
lated by O’Neil’s solution at the spatial resolution of 551 µm (2.2 grid points
per minimum wavelength) along the beam axis (top) and across the beam
axis through the transducer focus (bottom). k-Wave underestimated the max-
imum focal peak by 9 MPa (33%).
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Figure 9.4: Comparison of the pressure amplitude simulated by k-Wave and that cal-
culated by O’Neil’s solution at the spatial resolution of 119 µm (10.2 grid
points per minimum wavelength) along the beam axis (top) and across the
beam axis through the transducer focus (bottom). k-Wave underestimated
the maximum focal peak by 2 MPa (7%).
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The results of the linear acoustic model validation are summarised in Figure

9.5. Panels (a) and (b) show the overall and normalised L2 relative error. The lat-

ter indicates the error in the shape of the pressure amplitude envelope (as seen in

the near field in Figure 9.3). The red line, at 10%, is the accepted uncertainty for

pressure measured by hydrophones [84]. The spatial resolution with the fastest

computational time that falls under this threshold of error (both laterally and axi-

ally) is 6.2 grid points per wavelength, which corresponds to a spatial resolution

of 196 µm.

Figure 9.5: Validation of the linear simulation against the O’Neil analytical solution as a
function of spatial resolution. (a): the overall (solid black) and normalised
(dashed) L2 relative error between the k-Wave and O’Neil pressures along
the beam axis are shown. The red line, at 10%, is the accepted uncertainty
for pressure measured by hydrophones [84]. (b): the overall (solid black) and
normalised (dashed) L2 relative error between the k-Wave and O’Neil pres-
sures across the beam axis are shown. The red line, at 10%, is the accepted
uncertainty for pressure measured by hydrophones [84]. (c): the normali-
sation factor that the k-Wave pressures are multiplied by in order to match
the O’Neil pressure at peak pressures, at each spatial resolution. (d): the
computational time required for each simulation at each spatial resolution.
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9.2.5.2.3 Discussion

The linear model was validated at several spatial resolutions. This was done to

identify the spatial resolution at which acoustic and thermal simulation of treat-

ment cell sonication should be performed in order to balance sufficient simulation

accuracy with reasonable computation time. The chosen spatial resolution of 6.2

grid points per wavelength, corresponding to approximately 196 µm grid spacing,

required the least amount of computational time whilst satisfying the threshold

of acceptable simulation accuracy (10%, which is the accepted hydrophone er-

ror for pressure measurements in the literature [84]). That the normalised L2

relative error is lower than the overall L2 relative error (by approximately 7% at

6.2 points per wavelength) suggests that the main contribution to the error is the

amplitude and not the shape of the simulated pressure, as seen in Figure 9.4.

Underestimated pressure amplitudes at the focal peak suggest underestimated

acoustic energy deposition into the tissue, and therefore underestimated temper-

ature changes at the focus and underestimated tissue ablation volume [39]. A

proposed reason for this underestimation in amplitude by Martin, Ling and Treeby

in 2016 [98] was the discretisation of the transducer bowl in k-Wave compared

to the perfectly spherical bowl assumed in the O’Neil solution. In k-Wave, the

transducer bowl is discretised into non-zero voxels within a binary array, each of

which represents a pressure source. Martin et al. claim that due to this discreti-

sation, the density of source voxels in the grid directions (i.e. X, Y and Z) and in

the diagonal directions are different – for example, a horizontal line would consist

of
√

2 more source points than a diagonal line of the same length – and hence,

cause the underestimation in focus pressure. The discretised transducer is also

posited to focus less effectively. As the spatial resolution becomes finer, the dis-

cretisation converges closer to the ideal spherical bowl, resulting in a decrease in

overall error.

The choice to perform a linear simulation was made in light of the limited com-

putational resources. However, nonlinear modelling would have been preferable.

In nonlinear acoustics, as acoustic waves travel through a nonlinear medium, the
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amplitude of higher-frequency harmonic components is increased. These higher

harmonics tighten the beam focus. Furthermore, because attenuation in tissue

is modelled as power-law frequency-dependent, the higher harmonics transfer

acoustic energy to tissue more effectively. Published studies suggest that non-

linear simulation results in greater focal temperatures and a greater volume of

ablated tissue compared to linear simulation [39]. Preliminary investigations of

the convergence of peak focal pressure as spatial resolution increased were per-

formed for nonlinear simulations to validate a nonlinear acoustic model. Unfor-

tunately, convergence was not observed even at 10.2 grid points per minimum

wavelength, which required approximately 60 hours of computational processing

on a commercially-available computational platform, suggesting that an even finer

spatial resolution was required for accurate nonlinear simulation. In the literature,

13.5 grid points per minimum wavelength has been used to validate k-Wave sim-

ulation against experimental data on a supercomputer cluster, using custom-built

code that is not publicly available [84]. This was untenable given the available

computational resources for this PhD project.

9.2.5.3 Acoustic Simulation of a Patient Sonication

In the Sonalleve® MRgHIFU system, treatment cells are created by electronically

steering the transducer focus to ’trajectory points’ arranged in concentric circles

around the treatment cell centroid [42, 65]. The acoustic power at each trajectory

point within each concentric circle is constant, but varies between concentric cir-

cles in order to compensate for the loss in focal intensity as the focus is steered

further away from the beam axis. For a 4 mm-diameter treatment cell, the trans-

ducer focus is steered between 8 trajectory points, which are situated on a 2

mm-radius circle. In preliminary investigations, it was found that each simulation

of acoustic propagation to one of these trajectory points, at a spatial resolution of

6.2 points per minimum wavelength (chosen as a result of the validation) and a

CFL number of 0.25, required more than 24 hours to complete, suggesting that

simulations for all 8 trajectory points could be untenable.

To reduce computation time, an alternative strategy was pursued. Firstly, an
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on-axis pressure field, with no phase difference between the transducer elements,

was simulated. Secondly, to approximate the steered pressure field when soni-

cating a trajectory point, the on-axis pressure field was translated to the steered

beam focus position, such that the intended beam focus in the on-axis pressure

field is translated to the trajectory point. This was done for all eight trajectory

points. Thirdly, the translated acoustic pressure field was transformed into acous-

tic intensity using equation 2.1. Acoustic intensity was then transformed into vol-

umetric heat deposition for thermal simulation, as described below. All patient

simulations were conducted with the source acoustic power of 300 W.

The focal peak pressure was quantified for each patient, for the deepest and

shallowest reachable treatment cells. The relationship between the focal peak

pressure and the beam path length, the distance along the beam axis between

the centroid of the intended treatment cell (at the transducer geometric focus) and

the skin, was examined.

9.2.6 Thermal Simulation

The temperature change in tissue resulting from acoustic energy deposition was

modelled using the Pennes bioheat equation (Section 2.2 [40]). The thermal dose

received by tissue was calculated from the tissue’s temperature history (equation

2.6, [23]). Software within the k-Wave package was available for simulating ther-

mal diffusion, which solved the Pennes bioheat equation using a pseudo-spectral

and k-space method [127]. All thermal simulations were performed on a 14 CPU-

core node (each core clocked at 2.60 GHz and with 12.8 GB RAM per core).

Thermal properties for all tissues are listed in Table 9.1. For simplicity, the blood

perfusion rate in all tissues was assumed to be zero, as is the case in some of

the literature [64]. This was done for simplicity, as the tumour blood flow is known

to be heterogeneous [186], with the tumour core generally being underperfused

[187]. This presented a best-case scenario in terms of thermal dose accumula-

tion.

Clinical ablation using treatment cells involves electronically steering the

transducer focus to each trajectory point in a cell and sonicating it for 50 ms,
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with the time required to switch between trajectory points being <10 ms [42]. This

continues for a prescribed length of time. After this prescribed time is reached,

the Sonalleve® is forbidden from sonicating another treatment cell for a period of

time [2] in order to prevent burns in healthy tissue. This was simulated as de-

scribed. The heating part of the simulation was run for a total of 16 seconds,

the Sonalleve® configuration exposure time for a 4 mm treatment cell [2]. When

sonicating each trajectory point, the acoustic intensity at that point was trans-

formed into volumetric heat deposition (using equation 2.5 in Section 2.2, with

the absorption coefficient being defined as 75% that of the attenuation coefficient

[36]) and used as input into the Pennes bioheat equation. The simulation was

propagated in time by 50 ms. Then, to represent switching, the heat source was

set to zero and the simulation was propagated in time by 10 ms. After that, the

heat source was changed to that associated with the acoustic intensity field at

another trajectory point. When the heating part of the simulation was complete,

the cooling part of the simulation began. The heat source was set to zero. The

total cooling time to be simulated was 30 seconds with a time step of 0.1 seconds

[121]. The cooling duration of 30 seconds was chosen from clinical experience.

The thermal dose [23] resulting from this was calculated using equation 2.6.

The centroid, and volume, of the ablated tissue, defined as the tissue that

received ≥240 CEM43, was identified and recorded. The percentage overlap

between the treatment cell and the ablated tissue was quantified. Differences

between the centroid of the intended treatment cell (i.e. the geometric focus) and

that of the ablated volume were also recorded.

9.2.6.1 Software Validation

9.2.6.1.1 Methods

The thermal simulation software was validated by comparison with an analytical

solution derived from Green’s functions [129], which had been built into k-Wave

and which only worked for homogeneous data. The medium density, thermal

conductivity and specific heat capacity were set to be those of muscle (see Table

9.1). The thermal simulation grid had a field-of-view of 88 x 88 x 88 grid points
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and spatial resolution was 182 µm, which was the same as the grid spacing for

acoustic simulation. The time step was set to be 50 ms and a total of 320 time

steps, corresponding to 16 seconds, was simulated, to match the thermal simu-

lations in patients. A 8 x 8 grid point square, centered in the simulation grid, was

set as a constant heat source of 50 W/cm3. This was the approximate maximum

heat deposition observed for patient G29 (arbitrarily chosen) when sonicating the

shallowest treatment cell. The difference between the k-Wave simulated and the

analytically-derived temperature fields was quantified using the overall L2 relative

error (equation 9.1).

9.2.6.1.2 Results

The overall L2 relative error between the analytically-derived and k-Wave simu-

lated temperature fields was on the order of 10-14%.

9.2.6.1.3 Discussion

For thermal simulation validation, the difference between the analytical solution

and the simulation was on the order of 10-14 %. This was believed to arise from

finite-precision representation of real numbers in computers. These errors were

small in comparison to other errors involved in treatability analysis, e.g. the error

between simulated and analytically-derived acoustic pressure was approximately

9%. Hence the thermal simulation method was assumed to be fit for purpose. In

the future, a more robust validation could be performed in heterogeneous media

by comparing the k-Wave simulation to experimental data, or to results generated

by a finite-difference method.

9.2.7 Calculation of Tumour Treatability

Patient treatability was defined as the percentage of their tumour predicted to be

able to receive a cytotoxic thermal dose. Because calculation of ablated tissue

volumes for each treatment cell position required at least 20 hours of computa-

tional time, a simple method was developed to estimate treatability, as described

below.
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After the ablated tissue volume was calculated for both the deepest and shal-

lowest reachable treatment cells, their position was found in the coordinate space

of the original image dataset (see Figure 9.2 a). The maximum treatable depth

was estimated in one of two ways, depending on whether the deepest ablated tis-

sue volume was smaller than or greater than the 4 mm treatment cell volume, as

seen in Figure 9.6 (a) and (b) respectively. If the deepest ablated tissue volume

was smaller than the treatment cell volume, a line was drawn through the cen-

troids of the ablated tissue. If, for a particular patient, the deepest ablated tissue

volume was zero, the ablated tissue volume centroid was estimated by identifying

the average offset between the geometric focus and the ablated tissue volume

centroids for other patients and target positions, and then applying this average

offset to the deepest geometric focus. The ablated tissue volume was linearly in-

terpolated along this line. Using this patient-specific linear interpolation approach,

the ’cell-equivalent’ point, where the ablated tissue volume was equal to the treat-

ment cell volume (84 mm3 for a 4 mm cell), is identified on this line. The maximum

treatable depth was taken to be an additional half-treatment cell length anterior

to the cell-equivalent point, which would be approximately the deepest point of

the ablated tissue centered at the cell-equivalent point. If the deepest ablated

tissue volume was larger than, or equal to, the treatment cell volume, an ellipsoid

with the same volume as the deepest ablated tissue volume, and the same ratio

of diameter to length as the 4 mm treatment cell, is created and centred on the

deepest ablated tissue centroid. The maximum treatable depth was chosen to be

an additional half-length of the ellipsoid deeper than the centroid.

All covered tumour volume more superficial to the transducer than the max-

imum treatable depth was interpreted as being treatable, and the percentage of

tumour that was treatable was calculated. The estimated treatable tumour vol-

ume was compared to the covered tumour volume (calculated as described in

Chapter 7), in order to assess how well the tumour coverage prediction agreed

with predicted tumour treatability. In order to investigate how tumour treatability

depends on the tumour’s depth, the vertical distance from the tumour centroid to

the skin (’tumour-skin distance’) was recorded for each patient. To get an idea

183



Figure 9.6: Schematic diagram illustrating the calculation of the maximum treatable
depth. (a): if the deepest ablated tissue volume was less than the treat-
ment cell volume, a line was drawn between the centroids of the deepest and
shallowest ablated tissue volumes. The cell-equivalent point was found by in-
terpolating the ablated tissue volume along this line until the cell-equivalent
point, where it was the same volume as the treatment cell (84 mm3 for a 4 mm
cell), is found. The maximum treatable depth is defined to be half a treatment
cell length (5 mm for a 4 mm cell) anterior of the cell-equivalent point. (b):
if the deepest ablated tissue volume was greater than the treatment cell vol-
ume, an equivalent volume ellipsoid, with the same ratio of diameter to length
as the treatment cell was created and with the same volume as the deepest
ablated tissue volume, is centred at the deepest ablated tissue centroid. The
maximum treatable depth was defined to be half the ellipsoid length anterior
of the deepest ablated tissue centroid.

of how far the HIFU focus could reach into the tumour, the anterior-posterior dis-

tance between the deepest and shallowest ablated tissue centroids (the ’ablated

tissue separation distance’) was measured for each patient.

9.2.7.1 Clinical Treatability

With the exception of patient G82, all patients had been treated using 4 mm and 8

mm diameter treatment cells, with the source acoustic power for sonicating each
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cell being determined by the clinician. Test sonications, used for calibrating the

Sonalleve® control software, had been conducted at acoustic powers of 80 W for

patient G3 and 110 W otherwise for 16 seconds for all cell sizes. For non-test

exposures, 4 mm cells had been sonicated for 16 seconds, and 8 mm cells for

20 seconds (see Table 3.1). Patient G82 had been treated with feedback cells

[65, 106], in which the source acoustic power was selected by the treatment team

but the heating duration was determined by the Sonalleve® control software. For

each patient, the number of completed sonications, the range of acoustic powers

used per sonication and the total energy delivered were recorded. The clinicians

had estimated the clinically treated tissue volume for each patient by first esti-

mating the ablated tissue volume for each sonication, using proton resonance

frequency shift MR thermometry data to identify the 240 CEM43 dose contours.

Then, the clinically treated tissue volume was estimated by summing the ablated

tissue volumes.

9.3 Results

9.3.1 Acoustic Simulation of a Patient Sonication

Acoustic simulation was performed without electronic steering. Four representa-

tive examples of the simulated on-axis pressure fields (i.e. no electronic steering)

are shown in Figure 9.7. The acoustic pressure focus (yellow) was offset from the

intended treatment cell (magenta) both along the beam axis, and perpendicular

to it. Images are overlaid on a density map of the image, where lighter voxels

represent higher densities). Visually, absorption in the acoustic beam appears

greater in the pre-focal region than the post-focal region. It is noted that even with

a steeply angled patient (G27, angled at 33°), the lateral offset in focal pressure

is on the order of several millimetres from the intended geometric focus.

The peak pressures were calculated for all patients and for both target points

(the deepest and the shallowest reachable treatment cells), as shown in Table 9.3.

The peak focal pressure appears to decrease linearly with path length (R-squared

of 0.69), as seen in Figure 9.8.
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The time required for an acoustic simulation, averaged over all five patients

and for both the deepest and shallowest reachable treatment cells, was 40±6

hours (range: 24-44 hours). From the linear model validation, the pressure is es-

timated to be underestimated by 10%. Uncertainty in path length was estimated

to be 0.9 mm, the in-plane voxel dimension for the image dataset.

Table 9.3: Peak focal pressure and path length in tissue travelled by the acoustic beam
for each patient and target treatment cell. All acoustic simulations were per-
formed using a source acoustic power of 300 W.

Patient Target Point Maximum
Pressure
(MPa)

Path
Length
(mm)

G3 Shallowest 6.4 61.8
G82 Shallowest 6.9 64.5
G24 Shallowest 5.8 61.6
G27 Shallowest 8.4 45.0
G29 Shallowest 7.8 51.6
G3 Deepest 5.0 64.8
G82 Deepest 4.3 88.7
G24 Deepest 4.8 78.1
G27 Deepest 5.6 87.7
G29 Deepest 5.8 76.5
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Figure 9.7: Four representative examples of the acoustic pressure field (see colour bar,
only pressure values >10% of the focal peak pressure are shown for clar-
ity), generated with no electronic steering applied, targeting both deepest
and shallowest reachable treatment cells (magenta). All acoustic simulations
were performed at source acoustic power of 300 W. The acoustic field is over-
laid on the patients’ density maps (lighter means material is denser, bone is
white and oil is black). Tumour is shown in red. The cross-section is the X-Y
slice in which contains the peak focal pressure. The focal peak is offset both
axially and laterally from the intended treatment cell.
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Figure 9.8: Focal peak pressure is plotted against path length in tissue. The dotted line
is a linear regression.
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9.3.2 Thermal Simulation

The differences between the centroids of the ablated tissue and the treatment cell

are shown in Table 9.4 and Figure 9.9. The differences are defined such that Y

is the direction along the HIFU beam axis, while X and Z are perpendicular to

the beam axis, as defined in Figure 9.2. A positive X, Y and Z centroid position

difference means that the centroid of the ablated tissue is more to the patient’s

left-hand side, closer to the transducer surface, and more towards the head than

that of the treatment cell, respectively. On average, the ablated tissue was offset

from the treatment cell by -0.6±1.7 mm in X, 9.3±1.6 mm in Y and -0.5±0.4 mm

in Z, i.e. the main offset was that the ablation occurred closer to the transducer

than the geometric focus. When sonicating the deepest and shallowest reach-

able treatment cells, the mean volume of the resulting ablated tissue (60±52 and

250±100 mm3, respectively) was approximate to or exceeded the treatment cell

volume (84 mm3). As seen in Figure 9.10, the path length appears to be linearly

related to ablated tissue volume (R-squared of 0.88) and the Y-offset (R-squared

of 0.72). An error in the path length of 12 mm, as observed for the registered-

referral dataset of Volunteer 2 due to an inaccurate estimate of the soft tissue

deformation resulting from reorientation into the treatment position (see Section

6.4.2), would have resulted in an error of approximately 100 mm3 in ablated tissue

volume. Thermal simulations took, on average, 22±2 hours (range: 18-24 hours)

per patient per target point.

Uncertainty in centroid position difference was estimated to be 0.2 mm, the

simulation spatial resolution, and uncertainty in ablated tissue volume due to the

discretised nature of the simulation grid was estimated to be 1.7% (see Section

6.3.4). Uncertainty in path length was estimated to be 0.9 mm, the in-plane voxel

dimension for the image dataset.
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Figure 9.9: Cross-sections of the ablated tissue (cyan) when sonicating the deepest and
shallowest reachable treatment cell (magenta, centered at the geometric fo-
cus of the transducer but shown in images with full cross-section for scale, 4
mm at the widest diameter and 10 mm maximum length) are shown overlaid
on MR images of patient anatomy. Thermal diffusion was simulated for a total
heating time of 16 seconds (standard for 4 mm cells) and a cooling time of 30
seconds. The X-Y cross-sections shown are those with the largest ablated
tissue cross-sectional area. For all patients and both target positions, the
ablated tissue is offset from the treatment cell as quantified in Table 9.4. The
treatment cells and ablated tissue are positioned relative to the transducer
(blue) in the X-Y plane as shown in the large subfigure.
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Table 9.4: Differences between the intended treatment cell and the ablated tissue. For
context, a 4 mm treatment cell is 4 mm in diameter (across X and Z), 10 mm
in length (along Y), and 84 mm3 in volume. SD is standard deviation. Thermal
diffusion was simulated for a total heating time of 16 seconds (standard for 4
mm cells) and a cooling time of 30 seconds.

Subject Target
Point

Centroid Posi-
tion Difference
(mm)

Ablated
Tissue
Vol-
ume
(mm3)

% of
Treat-
ment
Cell
Ab-
lated

Path
Length
(mm)

X Y Z
G3 Shallowest -1.5 8.0 -0.4 201 15 61.8
G82 Shallowest -1.9 8.7 -0.3 213 8 64.5
G24 Shallowest 1.4 10.1 -0.7 126 0 61.6
G27 Shallowest -1.2 6.6 -0.0 414 62 45.0
G29 Shallowest -1.8 8.5 -0.5 318 21 51.6
Mean
± SD

Shallowest -1.0 ±
1.2

8.4 ±
1.1

-0.4 ±
0.2

250 ±
100

21 ±
22

56.9 ±
7.4

G3 Deepest -1.9 8.6 -0.7 143 1 64.8
G82 Deepest N/A N/A N/A 0 0 88.7
G24 Deepest 3.0 11.9 -0.8 27 0 78.1
G27 Deepest -2.0 11.4 -0.0 35 0 87.7
G29 Deepest 0.6 9.4 -1.3 93 0 76.5
Mean
± SD

Deepest -0.1 ±
2.0

10.3 ±
1.4

-0.7 ±
0.4

60 ±
52

0.3 ±
0.5

79.2 ±
8.7

Mean
± SD

Overall -0.6 ±
1.7

9.3 ±
1.6

-0.5 ±
0.4

160 ±
130

11 ± 9 68 ±
14
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Figure 9.10: The path length in tissue is plotted against (top) ablated tissue volume and
(bottom) the offset between the transducer geometric focus and the ablated
tissue centroid in the Y-axis, with positive offset meaning the centroid is
closer to the transducer than the geometric focus. Dotted lines are linear
regression. The Y-offset associated with G82 shallowest target point, which
was estimated from the Y-offsets of other patients and target points, is not
included in the Y-offset plot.
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9.3.3 Tumour Treatability

Details of the patients’ tumours are shown in Table 9.5. Estimated treatable tu-

mour volumes are shown qualitatively in Figure 9.11 and quantitatively in Table

9.6. On average, tumour treatability was less than tumour coverage by 32±14%

(range: 15-50%) of the tumour volume. Since the treatment cells were discov-

ered from thermal simulation results to be, on average, centred 9.3 mm closer to

the transducer surface than the geometric focus, tumour coverage and treatability

(which depends on tumour coverage) was recalculated with the offset included.

Those results are also shown in Table 9.6. On average, with the offset included,

tumour treatability was less than tumour coverage by 12±10% (range: 3-31%) of

the tumour volume. The total time required to calculate tumour treatability from

inputs was estimated to be 62±7 hours (range: 42-67 hours). Without the offset,

patients G27 and G29 have a closer agreement between the tumour treatabil-

ity and the tumour coverage (<19% difference), than patients G3, G82 and G24

(>33% difference), as seen in Figure 9.12. With the offset, the agreement be-

tween tumour treatability and tumour coverage is <15% except for patient G24,

where the difference is >30%. Tumour-skin distance (the anterior-posterior dis-

tance from tumour centroid to skin) has an uncertainty of 0.9 mm. The ablated

tissue separation distance (the anterior-posterior component of the distance be-

tween the ablated tissue centroids) has an uncertainty of 0.2 mm.

Table 9.5: Details of patient tumours.

Subject Tumour Volume
(cm3)

Tumour-Skin
Distance (mm)

Ablated Tis-
sue Separation
Distance (mm)

G3 1.20 64.6 2.4
G82 43.1 81.5 25.9
G24 13.2 85.0 12.9
G27 29.1 69.5 37.1
G29 26.3 67.5 27.3

193



Figure 9.11: Cross-sections of the treatable volumes (cyan) for each patient are shown
overlaid on MR images of patient anatomy with the tumour coverage (yel-
low) and the tumour itself (red). The treatable tumour volume is a subset
of the covered tumour volume, which is a subset of the tumour. The cross-
sections shown here are from slices in the same plane as the cell-equivalent
point (which had been interpolated or extrapolated from the centroids of the
deepest and shallowest ablated tissue volumes). The transducer (130 mm
aperture width) is shown for scale.

Table 9.6: Tumour treatability versus tumour coverage.

Subject % of Tumour
Estimated
Treatable

% of Tumour
Covered

% of Tumour
Estimated
Treatable
with offset

% of Tumour
Covered
with offset

G3 2.5 47 0.5 5
G82 19 53 15 29
G24 0.3 50 0.3 31
G27 38 56 26 34
G29 67 82 59 62
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Figure 9.12: The tumour-skin distance is plotted against the percentage difference be-
tween the tumour treatability and the tumour coverage.
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9.3.3.1 Clinical Treatability

Data from the clinical treatment is shown in Table 9.7. If the offset between the

ablated tissue and the geometric offset was not accounted for, the estimated tu-

mour volume treatable (Table 9.6) differed from the clinically treated tissue volume

by 23±25 % of the tumour volume. If the offset was accounted for, the difference

between estimated and clinically treated tissue volume reduced to 19±21 % of

the tumour volume.

Table 9.7: Clinical data on patient treatments.

Subject Clinically
Treated
Tissue
Volume
(ml)

(as % of
tumour
volume)

Energy
Deliv-
ered
(kJ)

Acoustic
Power
Range
(W)

No. Completed
Sonications with
Cell Size:

4 mm 8 mm
G3 0.08 7 36.4 140-250 4 5
G82 4.52 10 23.3 270-300 3 4
G24 0.08 1 61.7 200-270 4 11
G27 0.00 0 52.8 220-270 9 5
G29 0.63 2 97.1 250-290 22 1

9.4 Discussion

9.4.1 Acoustic Simulation of a Patient Sonication

Focal peak intensity was found to decrease linearly with increased path length in

tissue, as seen in Figure 9.8 and Table 9.3. This was probably caused by an ac-

cumulation of the effects of acoustic refraction, diffraction and attenuation as the

acoustic waves propagate deeper into the human body. The clinical implication of

this is that the deeper treatment cells would require either greater input acoustic

power or more time to ablate than those that are shallower.

In this study, the time required for each acoustic simulation was long (40±6

hours, range: 24-44 hours), so the acoustic pressure fields generated during son-

ication of the trajectory points within a 4 mm treatment cell were approximated by

translation of the on-axis pressure field. The accuracy of the pressure fields for
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each trajectory point may therefore be limited. In an experiment designed to as-

sess the simulated acoustic intensity variation with lateral beam steering, linear

acoustic propagation was simulated within a homogeneous water medium, with

the transducer focus i) on-axis without electronic steering and ii) electronically

steered laterally off-axis by 2 mm (the radius of the 4 mm treatment cell, where

the trajectory points are). The peak intensity of the steered beam was 98.5% that

of the on-axis beam, suggesting that the acoustic beam field differences should

be negligible. Within the Sonalleve system, this energy loss due to steering is

compensated for by increasing acoustic power [42, 65], with the exact compen-

sation mechanism being proprietary. Furthermore, the heating was expected to

be localised to a region within and around the intensity peak. Therefore, for this

initial study, it appears reasonable to ignore the effect of electronic steering for

such a small lateral deflection.

The effects of not using nonlinear simulations are that the focal peak temper-

ature and the volume of each ablation will be underestimated [39], because the

peak focal pressure is underestimated and the frequency-dependent absorption

of higher frequency harmonics is ignored. Studies have been performed on the

thresholds at which nonlinear effects begin to show [70]. For the settings involved

in the acoustic simulations in this study, acoustic intensity was estimated as vary-

ing by approximately 6%. Hence, the linear model provides a worst-case scenario

for acoustic energy deposition (see equation 2.3 and 2.5) and therefore, thermal

bioeffects.

9.4.2 Thermal Simulation

Thermal simulations were performed to identify whether tissue within the treat-

ment cell would receive a cytotoxic thermal dose. A parallel to this is performed

in clinical practice, where clinicians fire low acoustic power ’test shots’ at a par-

ticular depth within the patient tumour and observe the resulting temperature rise

induced. The purpose of this is i) to ensure that the position of the focus coin-

cides with the heated tissue volume, and ii) to identify the acoustic power setting

required to achieve clinically relevant heating (thermal ablation) at depth whilst
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reducing harm to healthy tissue.

On average, the ablated tissue was found to be 9.3±1.6 mm (range: 6.6

to 11.9 mm) closer to the transducer along the HIFU beam axis than the trans-

ducer’s geometric focus. There appears to be a relationship between the path

length through tissue and the offset magnitude (see Figure 9.10). This suggests

that the tumour coverage assessment methodology could be improved by center-

ing the intended 4 mm treatment cells closer to the transducer than the geometric

focus. The negative correlation between ablated tissue volume and path length

(see Figure 9.10) reflects the negative correlation between peak focal pressure

and path length (Figure 9.8), which arises from refraction and diffraction blurring

the focus and attenuation reducing the energy that reaches the focus. The differ-

ence in the ablated tissue volume between two patients with similar path lengths

(201 mm3 and 126 mm3 when targeting the shallowest reachable treatment cell

in patients G3 and G24, respectively) was probably due to the different patient

geometries. For G3, the acoustic beam path mainly travels through adipose tis-

sue before reaching the tumour (see Figure 9.11), whereas with patient G24, a

section of the acoustic beam travels through adipose tissue, muscle, and then

re-enters adipose tissue (same figure). This highlights the importance of using

patient-specific simulations to determine patient treatability.

In this study, acoustic energy deposition calculation was based on linear

acoustics, representing the worst-case scenario for tissue heating. All simula-

tions were performed with the source acoustic power at 300 W, which is the max-

imum acoustic power output of the Sonalleve® system in the clinical uterine con-

figuration. The ablated tissue volume when targeting the shallowest reachable

treatment cell (250±100 mm3) exceeded the treatment cell volume (84 mm3),

suggesting that the acoustic source power of 300 W was excessive for tissue ab-

lation at this depth. However, when targeting deeper treatment cells, the ablated

tissue volume (60±52 mm3) was less than the treatment cell volume, suggesting

that more acoustic power than 300 W is required. There are several caveats to

be noted. Thermal simulations were conducted with zero blood perfusion, which

would also imply an overestimation in thermal dose. For patient G27, when target-
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ing the shallowest reachable treatment cell, a thermal simulation including con-

stant blood perfusion (blood density 1050 kg m-3, blood specific heat 3617 J kg-1

K-1) and blood perfusion rate 0.01 s-1) was performed. The ablated tissue volume

was reduced to 261 mm3 and computational time was increased to 25 hours. Fu-

ture work could be done on developing a more accurate model of HIFU-induced

heating.

9.4.3 Tumour Treatability

Due to prohibitive computation time and resource requirements for simulations, a

method which relied on identifying the maximum treatable depth was used to esti-

mate the tumour treatability (see Figure 9.6) and then marking all covered tumour

tissues shallower than that as treatable. For each patient, the maximum treat-

able depth was estimated from a patient-specific linear relationship generated by

ablated tissue estimates at two treatment cell positions. This was done because

tissue distributions are unique to each patient, and linear interpolation required

only two acoustic simulations per patient, which is the extent of data available at

that time. Given that ablated tissue volume was discovered to have a negatively

correlated relationship with the path length of the acoustic beam through tissue

(Figure 9.10), this interpolation seems reasonable.

If the offset between the ablated tissue volume and the geometric focus was

accounted for, the difference between the tumour treatability and coverage de-

creased from an average of 32±14% to an average of 12±10% of the tumour

volume. Generally, with the offset included, the difference between tumour cov-

erage and treatability (see Figure 9.12 and Tables 9.5 and 9.6) increased with

tumour depth. The difference between tumour coverage and treatability probably

arose from the variation in ablated tissue volume with depth, and from the ablated

tissue shape being non-ellipsoidal due to acoustic wave propagation through the

intervening tissues. Nonetheless, the reduction in the difference between tumour

coverage and estimated tumour treatability suggests that incorporating the re-

sults of the simulations into the tumour coverage methodology could result in

better quality predictions of patient suitability for MRgHIFU therapy of pelvic tu-

199



mours. However, a generalised method for calculating tumour coverage, which

incorporates the effects of the intervening tissue on the position, shape and size

of the ablation region, has not yet been developed. Further development and re-

finement of the tumour coverage methodology could be pursued prior to clinical

deployment, in order to deploy .

For patient G82, the estimated treatability may have been overestimated.

This is because, even though the shallowest target point for G82 has zero ab-

lated tissue volume, it may not be the shallowest target point that has no ablation.

With the current method, a shallower zero-ablation target point implies a shal-

lower maximum treatable depth. Hence, the treatability for G82 could be overes-

timated. In future work, more target points within the tumour could be assessed

so the maximum treatable depth could be determined more accurately.

9.4.3.1 Clinical Treatability

The clinical trial in which the patients had been enrolled had set the threshold for

proceeding from screening to treatment at 50% tumour coverage [18]. All patients

mentioned in this thesis had been assessed visually for this threshold, and all had

proceeded to treatment. From quantitative tumour coverage analysis, 4/5 patients

(all except G3) would have passed screening if the offset was not accounted for,

and 1/5 patients (G29) would have passed otherwise. From the estimated treata-

bility, only 1/5 patients (G29) would have been predicted to receive a cytotoxic

thermal dose to >50% of the tumour.

In practice, the volume of tissue ablated in all patients was <10% that of their

tumour volumes. The discrepancy between the estimated and clinically treated

tissue volume was 23±25% of the tumour volume without accounting for offset,

and 19±21% of the tumour volume otherwise. An important point to note is that,

according to the clinical protocols, the volume of tissue clinically ablated may

have included tissue outside the tumour. Therefore, the difference between es-

timated treatability and the clinical treated tumour volume could be greater than

the numbers shown. The discrepancy between estimated and clinical treatability

could have arisen from several factors. Firstly, the treatment could have stopped
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early due to skin burns and subcutaneous fat damage. Secondly, because tu-

mours are clinically treated by first targeting the deepest portions of the tumour

and then progressively shallower regions [28], it is possible the clinicians could

have stopped the treatment once they realised that less than 50% of the tumour

would be treatable. Thirdly, blood perfusion into tissue had not been accounted

for in the thermal simulations performed here. According to the bioheat equation

(eq 2.4), non-zero perfusion would reduce the maximum temperatures reached

within the tissue, thus reducing the volume of ablated tissue and making the max-

imum treatable depth shallower. Fourthly, treatability had been estimated using

simulations where the source acoustic power was 300 W, whereas the maximum

acoustic powers of all patients (except G82) was less than that. Fifthly, the MR

thermometry could have been inaccurate, perhaps due to the presence of fat

surrounding or within the tumour. Lastly, the methodology for estimating tumour

treatability from linear interpolation of two points could be inaccurate.

In clinical practice, if tissue does not reach ablation temperatures or does not

receive a cytotoxic thermal dose, clinicians could select a smaller treatment cell

and pack treatment cells more closely in order to cumulatively deliver the required

treatment dose. However, the 4 mm treatment cell was the smallest cell available

clinically [2]. In clinical experience, the largest ablated tumour volume (4.5 cm3)

was observed for patient G82, with the next greatest ablated volume (0.63 cm3)

observed for G29. The predicted tumour treatability for G82 was 8.2 cm3 and

for G29, was 17.6 cm3. Clinical measurements of ablated volume were made

from MR thermometry, in which spatial resolution, temporal resolution and tem-

perature resolution were balanced against each other, leading to uncertainties.

Differences between predicted and clinical treatability suggest that the treatability

assessment method needs to be improved. The development of treatment pro-

tocols for gynaecological cancer ablation, such as increasing the sonication time

for treatment cells, should be pursued as part of future work.
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9.4.4 Limitations of this Study

There are several limitations to this study, many of which stem from the resource-

intensive acoustic and thermal simulations. A linear acoustic simulation was

used, because a nonlinear simulation required such a fine spatial resolution (13.5

grid points per wavelength [84]) to generate accurate results that simulation of

each exposure was estimated to require more than 1 week of computational time

on our current computational system, or a supercomputer with several hundred

cores, which was not available to us. This resulted in an underestimate of the

acoustic pressure at the focus [39] and thus of ablated tissue volume. Further-

more, because of the long acoustic simulation time, the tumour treatability had to

be estimated using the minimal number of simulations, instead of taking months

to assess patient treatability by exhaustive simulation of every reachable treat-

ment cell.

Acoustic simulations could be sped up by using a faster computational ap-

proach, such as the angular-spectrum methods discussed in Section 2.6.3. Sim-

plification to a two-dimensional system would speed up computation, but would

also generate inaccurate results because the source is three-dimensional and the

geometry of the body is heterogeneous and has no underlying symmetries. Fast

acoustic simulations could allow the incorporation of nonlinearity and the simula-

tion of steered acoustic beams within tissue when generating acoustic pressure

fields for the sonication of treatment cells without increasing the time require-

ments unreasonably. Thermal simulation could be sped up with improved soft-

ware engineering, such as implementation of the code in a compiled language

such as C++ or GPU implementation. The k-Wave acoustic code has already

been optimised with these methods [84]. Faster thermal simulation could allow

incorporation of the switching time, when the transducer is switched off and re-

focused to another trajectory point, into the thermal simulation without drastically

increasing computation time. Faster acousto-thermal simulations may also al-

low simulation of sonicating more regions within the tumour, thus improving the

accuracy of tumour treatability estimation without increasing computational time
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unreasonably.

Several simplifications had been made over the course of the project. First,

blood perfusion was not incorporated into thermal simulations. Blood perfusion

into tissue (healthy and malignant) is known to vary with temperature [187]. Sec-

ondly, the tumour has been assigned material properties that are interpolated

from the material properties of fat and muscle. Inclusion of more realistic infor-

mation could result in more accurate simulations.

As mentioned in previous Chapters, the limited size of the patient cohort

means that conclusions about the relationship between patient treatability and

tumour depth, or between ablated tissue volume and path length in tissue, are

not definitive. With a larger patient data set, instances of outliers, such as patient

G3, could be clearly distinguished.

9.5 Conclusions
A method for estimating patient treatability has been developed using treatment

image data and acousto-thermal simulations. Focal peak pressure, ablated tis-

sue volume, and the offset between the ablated tissue centroid and the geometric

focus, varied linearly with acoustic path length. In the future, simple models could

be built using this information to assist in the ad-hoc treatment planning process

currently employed clinically. Tumour treatability, estimated from interpolation of

ablation volumes, was less than tumour coverage as calculated in Chapter 7 by

32±14% (range: 15-50%), which reduced to 12±10% (range: 3-31%) if the off-

set between the ablated tissue centroid and the geometric focus was accounted

for. Generally, the magnitude of disagreement between tumour coverage and

treatability increased with tumour depth. The reduced difference between tumour

coverage and treatability after accounting for the offset suggests that, after incor-

porating the results of simulations into tumour coverage analysis, tumour cover-

age prediction could be developed as a rapid screening tool for clinical use. To

fully assess whether the assumptions made in estimating tumour treatability are

correct, more work is required, particularly in the development of a method to

predict the soft tissue deformation resulting from reorientation of the patient from
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supine to treatment position.

The estimated tumour treatability differs from the clinically treated tissue vol-

ume by 19±21% even after accounting for offset, suggesting that the methodol-

ogy for estimating treatability requires more development. Several hypotheses for

explaining the difference were posited, and research into the reasons behind the

difference is the subject of future work.
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Chapter 10

Overall Conclusions and Future

Work

10.1 Overall Conclusions
The overarching aim of this PhD project has been to develop aspects of a quanti-

tative screening workflow for assessing whether patients with pelvic tumours are

suitable for MRgHIFU therapy. Significant progress has been made in developing

various aspects of the workflow outlined in Chapter 1 (Figure 1.1).

Novel methods for predicting the MRgHIFU target coverage from supine MR

referral images have been developed using 10 volunteer datasets and were then

applied retrospectively to 5 patient datasets. For patients, the difference between

the target coverage computed using referral images and that using treatment im-

ages was within 12±7% on average (range: 4-21%), when one patient, in which

inadequate acoustic coupling was achieved during treatment, was excluded from

analysis. Tumour coverage assessment was refined by the development of the

target-first method, which derived possible transducer positions and angulations

from consideration of the target, and GPU acceleration, resulting in a sevenfold

increase in computational speed (from 19.7±8.8 to 2.8±2.0 hours) with minimal

(0.31±0.08% difference, range: 0.18-0.38%) effect on tumour coverage results.

This allowed tumour coverage to be assessed in a clinically relevant timeframe.

A method for identifying the ideal treatment angle in which to position the

patient, in order to maximise tumour coverage, from referral images has been
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developed and tested on patient data for future prospective use in the workflow.

The method first determines a ’starting’ treatment angle, for which the acoustic

window was maximised. The ideal treatment angle was then found, for each

patient, by exhaustively examining steeper (up to 40°) and shallower (down to

0° i.e. supine) angles than their starting angle. For the five patients studied,

the angular difference between the starting and ideal treatment angles was 4±4°

(range: 0-10°), and that between the ideal and clinical treatment angles was 5±2°

(range:2-7°). The maximum effect of patient positioning up to 5° away from the

ideal angle was estimated to be a 7% decrease in tumour coverage, suggesting

that imprecise patient positioning does not present a major limitation to the clinical

adoption of this method. Tumour coverage at the starting treatment angles was

within 5% of the maximum tumour volume covered, which occurred at the ideal

treatment angle, for all patients, suggesting that the starting treatment angle could

be used as a faster-to-calculate substitute for the ideal treatment angle.

A method for estimating patient treatability has been developed using treat-

ment image data and acousto-thermal simulations. Focal peak pressure, ablated

tissue volume, and the offset between the ablated tissue centroid and the geo-

metric focus, varied linearly with acoustic path length. Simple models could be

built using this information to assist in the ad-hoc treatment planning process

currently employed clinically. Tumour treatability, estimated from interpolation of

ablation volumes, was less than tumour coverage as calculated in Chapter 7 by

32±14% (range: 15-50%) of the tumour volume, and the difference was reduced

to 12±10% (range: 3-31%) if the offset mentioned previously was accounted for

when assessing tumour coverage. Generally, the magnitude of disagreement

between tumour coverage and treatability increased with tumour depth. The re-

duced difference between tumour coverage and treatability after accounting for

the offset suggests that, after incorporating the results of simulations into tumour

coverage analysis, tumour coverage prediction could be developed as a rapid

screening tool for clinical use. To fully assess whether the assumptions made in

estimating tumour treatability are correct, more work is required, particularly in

the development of a method to predict the soft tissue deformation resulting from
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reorientation of the patient from supine to treatment position.

As patients were treated by MRgHIFU, clinicians monitored tissue tempera-

tures within patients using MR thermometry. The estimated tumour treatability dif-

fers from the clinically treated tissue volume by 19±21% even after accounting for

offset, suggesting that the methodology for estimating treatability requires more

development. Several hypotheses for explaining the difference were posited, and

research into the reasons behind the difference is the subject of future work.

Despite the relatively small patient cohort size, the focus on pelvic tumours,

and the limited range of patient positions and MRgHIFU equipment on which the

methodology was devised and tested, results are encouraging. The development

of a quantitative screening workflow, which should obviate the need for patient

suitability to be assessed using clinical judgement based on operator experience,

should be feasible with further work.

10.2 Future Work

There is considerable opportunity for future work designed to bring the quantita-

tive screening workflow to a clinically useful state. Several areas, described in

subsections below, were identified as possible paths for future research to take.

10.2.1 Treatability Estimation

The highest priority problem for future work to tackle would be to explain why

the estimated tumour treatability differed greatly from the clinically treated tissue

volume. As discussed previously, this could have resulted from clinical factors, as

well as inaccuracies in tumour treatability estimation. Here, several strategies for

improving the treatability estimation method are proposed.

In the current methods described in the thesis, blood perfusion had not been

accounted for. Nonzero blood perfusion in tissue would reduce the temperature

rise resulting from ultrasound absorption. This could explain why the estimated

treatability is greater than the clinical treated tissue volume. Afterwards, if treata-

bility was less than the clinically treated tissue volume, nonlinear acoustic simu-

lations could be performed in order to assess whether the increased amplitudes
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and absorption resulting from nonlinearity could explain the difference.

Due to the high computational requirements of acousto-thermal simulation,

the tumour treatability assessment methodology presented here relied on some

simplifying assumptions. Future work could focus on testing whether the assump-

tions made were valid, and developing a more sophisticated tumour treatability

assessment methodology. For example, instead of the current method involving

the calculation a maximum treatable depth in the anterior-posterior direction only,

a surface representing the edge of the treatable region could be interpolated from

multiple acousto-thermal simulations and used to determine tumour treatability.

This may require the development of rapid methods for acoustic and thermal sim-

ulations.

Research performed here could also be used in applications beyond patient

screening. One benefit of MRgHIFU is the ability to perform MR thermometry,

which allows clinicians to use low-power sonications (’test shots’) in order to cal-

ibrate the control software, so that treatment cells in the software align with the

observed region of temperature increase. Furthermore, clinicians use the thermal

response of the test shots to subjectively determine the suitable source acoustic

power for each treatment cell. Currently, MR thermometry is used to control the

sonication of feedback cells [65, 106]. In the future, software could be developed

to quantitatively predict patient treatability based on test shots. For example, a

machine-learning model could be built that uses thermal response information

from test shots to predict the expected temperature increases at higher acoustic

powers. The advantage of such software would be that, if a patient was un-

treatable, the clinicians would be informed of this without sonicating at maximum

power and damaging the patient’s healthy tissues.

Tumour coverage assessment could be further improved by taking into ac-

count the variation in offset distance between the ablated tissue volume and the

geometric focus, and in the ablated tissue volume, with acoustic path length in

tissue. Through improvements in the accuracy of calculating tumour coverage,

identification of the ideal treatment position could also be improved. Furthermore,

incorporating the results of simulations into tumour coverage assessment could
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assist in the development of a rapid alternative to full simulation in determining

patient suitability for MRgHIFU.

10.2.2 Structural Deformation

After an accurate treatability estimation method is developed, the next priority

would be to develop a method to simulate the geometric deformation of the pa-

tient after reorientation from referral to treatment position. By estimating the hu-

man body shape and tissue distribution upon reorientation from referral to treat-

ment position, tumour treatability estimation from referral imaging could be made

more plausible because patient geometry is known to be important in determin-

ing the acoustic intensity at the focus [64, 83], the ablated tissue volume and

hence, tumour treatability. An accurate soft tissue deformation simulation would

allow patient treatability assessment from referral imaging, as aspired to in the

prospective patient workflow (Figure 1.1). Soft tissue deformation could be simu-

lated using finite element modelling [188–196]. Simulating the patient’s geometric

deformation could also improve tumour coverage assessment by improving esti-

mation of the MRgHIFU transducer position relative to referral images that have

been rotated into treatment orientations. Furthermore, soft tissue deformation

simulations could model how organs at risk deform and move within the body as

the patient is rotated into treatment positions.

10.2.3 Robustness

If more patient data could be obtained and accessed, a better understanding of

the robustness and quality of the methodology could be obtained. A wider variety

of patient data could also allow screening techniques to be developed for tumour

target sites outside the pelvic region. Furthermore, development of automatic

image segmentation methods, such as atlas-based or statistical shape methods,

which require many manually segmented datasets to construct automatic seg-

mentation models, could be achieved with a larger patient cohort.
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10.2.4 Clinical Translation

Clinical translation is easier if useful results could be obtained within a reasonable

timeframe. Currently, long computation times present obstacles to the adoption of

these quantitative screening techniques. The time required for each component

of the prospective patient workflow is summarised here: manual image segmen-

tation (estimated to be approximately 8-12 hours of continuous work), identifica-

tion of the ideal patient position (39±28 hours) and treatability assessment (62±7

hours). In general, computational time could be reduced with better software en-

gineering (such as writing the algorithms in a compiled language such as C++)

and taking advantage of advances in computational hardware, such as GPUs and

FPGAs.

In this thesis, image segmentation was performed manually. For patients,

organs at risk and acoustic obstructions were only segmented in the region of the

expected beam paths. Recent advances in machine learning and deep learning

could enable the automation of image segmentation [197, 198], and reducing the

time required for manual contouring and hence making the quantitative screening

workflow more practical for clinical use.

Software could be developed to allow real-time manipulation of the 3D graph-

ical models of organs at risk, bone and the tumour generated from meshing image

segments (see Section 7.2.2.1). This visualisation of the patient anatomy could

quickly and effectively inform clinicians on any overlap between the acoustic ob-

structions and organs at risk, and the proposed acoustic beam. Clinicians could

then use this anatomical information to quickly determine suitable placement of

treatment cells, and hence interactively derive tumour coverage and patient suit-

ability within the current clinical workflow. In the proposed quantitative workflow,

clinician decisions on suitable placement of treatment cells could be used to in-

form the placement of other treatment cells. Furthermore, clinicians could use

this anatomical information to propose an initial estimate for the ideal treatment

angle.

In this thesis, the methodology for identifying the ideal treatment angle was
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exhaustive, with it being identified by calculating tumour coverage for a range of

possible treatment angles between the patient lying supine and the estimated

maximum tilt achievable within the MR scanner bore. An optimisation-based

method, which would select the next treatment angle to be assessed for tumour

coverage from the previously obtained tumour coverage results, could reduce the

number of calculations, and therefore speed up the process into a more clinically

reasonable timeframe.

Improvements could be made to the acoustic simulation methodology, by

using a faster method, such as hybrid angular spectrum, to reduce the time

required to calculate treatability with the methodology introduced in this thesis.

This would require development and validation of a software package that uses

this methodology. With improvements in computational speed, nonlinearity and

temperature-dependent acoustic properties could be incorporated into acoustic

simulations without increasing computational time unreasonably. In the literature,

deep learning has been developed as a method of solving similarly complex prob-

lems (structural deformation [199], fluid dynamics [200]) that compares favourably

with simulation from first principles, suggesting that development of a fast, deep

learning-based method for acoustic and thermal simulation model is feasible. A

fast, accurate method of quantifying patient treatability could allow more suitable

patients access to MRgHIFU therapy, and reduce hospital resources spent on

patients who turn out to be unsuitable.

211



Appendix A

Volunteer and Patient Data

Representative axial slices of volunteers and patients are shown in Figures A.1

and A.2 respectively. Volunteer slices are the axial slices closest to the magnetic

isocentre. Patient slices are the axial slices closest to the tumour centroid.
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Figure A.1: Representative axial slices of volunteers, obtained at the magnetic isocen-
tre. Only the referral, steep and shallow treatment images were used in this
project.
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Figure A.2: Representative axial slices of patients, obtained at the tumour centroid. The
tumour is highlighted in red.
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Appendix B

Standard Operating Procedure for

Image Registration

The below SOP is taken from an appendix in my paper [161] (see Appendix D).

1. Open Horos on Mac OS X. Make sure the pyOsiriX plugin [144] is installed.

2. Import the in-phase MRI datasets that are to be registered. Double click

them to bring them up together.

3. Select a dataset. Then, at the top menu, select 2D Viewer → Sort By... →

Slice Location Ascending.

4. Below the menu bar, in a section titled “Mouse button function”, select the

point function. Use the point function to mark an anatomical feature on one

dataset and the same anatomical feature on the other. The same point

names, e.g. “Point 1”, must correspond to the same anatomical features

in both datasets. Repeat this for the list of anatomical features mentioned

below. If the same anatomical feature cannot be found in one or both of the

datasets, ignore that anatomical feature and continue down the list. At least

10 features should be marked by the end.

(a) Femur/pelvis landmark marks where the two bones meet in the head-

most direction (Right and Left)

(b) Ischial spine (Right and Left)
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(c) Superior-most or inferior-most of ischial tuberosity (Right and Left)

(d) Pubic arch

(e) Anterior-facing spur in axial plane where pelvis first encloses femur

head (Right and Left)

(f) Sacral nerve bundle (S1 and S2) when just-enclosed by bone (Right

and Left)

(g) Spinal nerves splitting from spinal cord (Right and Left)

(h) Sacrum/L5 disc

(i) Coccyx

5. Open the pyOsiriX console within Horos. A Python script can be used to

extract point data from a dataset in Horos and save it as a pickle, which

can then be processed in an external Python environment. Do this for both

datasets.
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Appendix C

Investigation of the Ideal Sample

Square Size

An investigation was performed to identify the ideal size of the square within which

to begin sampling the skin position, for the purposes of accounting for expected

body deformation (see Section 6.2.2).

Squares of different side lengths ranging from 5 mm to 150 mm in 5mm

increments, all with the centre at the Left-Right Inferior-Superior zero-position and

with the face normal to the Left-Right and Inferior-Superior axes. The number of

samples taken within each square was the side length in millimetres squared.

Three volunteers’ (Volunteers 1, 2, 3) data was used, in both Steep and Shallow

configurations. Rather than a time-consuming tumour coverage calculation, the

home position predicted from the registered-referral image dataset (using various

square sizes) was compared to that calculated from the treatment image dataset.

The square size with the minimum distance between these positions is the ideal

size of the square.

Results are shown in Figure C.1. The square side length with the minimum

mean absolute difference is 15 mm.
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Figure C.1: Graphs showing (a): the absolute difference between treatment and
registered-Referral virtual transducer zero-position for each volunteer and
treatment position tested and (b): the mean absolute difference in zero-
position over all tested volunteers and treatment positions. The red line de-
notes the square side length with the minimum mean absolute difference,
which is 15 mm.
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Appendix D

Paper: Prediction of pelvic tumour

coverage by magnetic

resonance-guided high-intensity

focused ultrasound (MRgHIFU) from

referral imaging
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Prediction of pelvic tumour coverage by magnetic resonance-guided
high-intensity focused ultrasound (MRgHIFU) from referral imaging
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ABSTRACT
Background: Patient suitability for magnetic resonance-guided high intensity focused ultrasound
(MRgHIFU) ablation of pelvic tumors is initially evaluated clinically for treatment feasibility using refer-
ral images, acquired using standard supine diagnostic imaging, followed by MR screening of potential
patients lying on the MRgHIFU couch in a ‘best-guess’ treatment position. Existing evaluation methods
result in �40% of referred patients being screened out because of tumor non-targetability. We
hypothesize that this process could be improved by development of a novel algorithm for predicting
tumor coverage from referral imaging.
Methods: The algorithm was developed from volunteer images and tested with patient data. MR
images were acquired for five healthy volunteers and five patients with recurrent gynaecological can-
cer. Subjects were MR imaged supine and in oblique-supine-decubitus MRgHIFU treatment positions.
Body outline and bones were segmented for all subjects, with organs-at-risk and tumors also seg-
mented for patients. Supine images were aligned with treatment images to simulate a treatment data-
set. Target coverage (of patient tumors and volunteer intra-pelvic soft tissue), i.e. the volume
reachable by the MRgHIFU focus, was quantified. Target coverage predicted from supine imaging was
compared to that from treatment imaging.
Results: Mean (±standard deviation) absolute difference between supine-predicted and treatment-pre-
dicted coverage for 5 volunteers was 9±6% (range: 2–22%) and for 4 patients, was 12± 7% (range:
4–21%), excluding a patient with poor acoustic coupling (coverage difference was 53%).
Conclusion: Prediction of MRgHIFU target coverage from referral imaging appears feasible, facilitating
further development of automated evaluation of patient suitability for MRgHIFU.

ARTICLE HISTORY
Received 1 August 2019
Revised 13 August 2020
Accepted 16 August 2020

KEYWORDS
Treatment planning;
magnetic resonance
imaging guidance; high
intensity focused
ultrasound; human body
deformation; pelvis;
referral imaging

1. Introduction

Magnetic resonance guided high-intensity focused ultra-
sound (MRgHIFU) is a noninvasive, non-ionizing treatment
modality which has a number of established clinical applica-
tions including the ablation of uterine fibroids and bone
nerves (for pain palliation) [1], and the treatment of essential
tremor [2]. In addition, MRgHIFU is being trialed in the UK
for the thermal ablation of recurrent gynaecological tumors
(NCT02714621) [3].

MRgHIFU therapy of pelvic tumors is particularly challeng-
ing because of the depth of the tumors within the body.
MRgHIFU systems can only treat targets within the focal
length constraints of their transducers, and identifying acous-
tic access which is free from obstruction by acoustically opa-
que tissues, such as gas and bone, and from organs at risk is
challenging [3]. Failure to correctly identify suitable patients
for MRgHIFU therapy could deprive them of their only treat-
ment option, while failure to identify patients who cannot be
treated wastes patient time and hospital resources on

screening sessions. Patients must therefore be carefully
assessed prior to being accepted for treatment. We hypothe-
size that an algorithm could be developed, that could accur-
ately predict target tumor coverage by HIFU from
referral imaging.

Currently, the clinical evaluation process relies heavily on
experience and opinion. The process is as follows: patients
are referred to the MRgHIFU clinic on the basis of supine
diagnostic imaging, often follow-up imaging after unsuccess-
ful prior treatment [3,4] and referred to here as the ‘referral
image dataset’. If at this point treatment appears qualita-
tively feasible, patients progress to the screening stage. At
screening, patients are imaged with treatment conditions
being mimicked as closely as possible. Patients are asked to
lie in one or two ‘best guess’ treatment positions on the
MRgHIFU couch. The ‘best guess’ positions are identified by
the treatment team using prior clinical experience and sub-
jective judgment. Suitable patients, those for whom a major-
ity of the tumor can be reached or who fulfill clinical trial
eligibility criteria, are invited back for treatment. The current
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process is challenging. In a previous metastatic bone pain
palliation trial, 16 of 37 patients (43%) initially considered for
treatment were found at screening not to satisfy eligibility
criteria because of disease that could not be targeted, for
reasons that include tumor accessibility and size [4]. In a
pilot planning study which assessed MRgHIFU for the treat-
ment of recurrent gynaecological tumors, 9 of 20 eligible
patients (45%) who underwent screening imaging were sub-
sequently assessed as untreatable because of an eligibility
criterion, namely, that >50% tumor coverage could be
achieved without risk of damage to surrounding structures
[3]. These two studies suggest that, for abdominal pelvic
tumors, the current evaluation process may overestimate the
number of patients that are suitable for MRgHIFU by more
than 40%.

Given the relatively poor results of the current subjective
method, we propose a workflow that would ultimately be
suitable for the quantitative assessment of patient suitability
for MRgHIFU therapy (Figure 1). In this paper, we focus on a
core aspect of that workflow, as explained below. If the
workflow were to be successfully implemented, the number
of patients incorrectly denied treatment could be minimized,
and the number who would benefit from a screening scan
could be maximized. In the long-term, it may even be pos-
sible to avoid the need for a screening visit, which could
mean that a sick patient will no longer need to travel to the
magnetic resonance (MR) imaging unit and undergo what
may be a lengthy session in which optimal treatment posi-
tions are investigated, only to return days to weeks later for
a treatment session. This may also reduce the load on the
resources of a busy clinical MR department.

The proposed patient workflow (Figure 1) comprises three
steps. In Step 1, key anatomical components that could pre-
vent access to targets, such as acoustic obstructions and
organs at risk, are segmented from the referral images. In
Step 2, the referral imaging dataset is orientated into plaus-
ible potential treatment positions. In Step 3, the percentage
of tumor volume that can be reached by the HIFU focus (%
target volume covered) is calculated at each orientation. In
Step 4, acoustic and thermal modeling are used to calculate
the treatable target volume, in order to facilitate a quantita-
tive clinical decision as to whether a patient should proceed
to screening.

The focus of this paper is Step 3, the calculation of tumor
coverage. As far as the authors are aware, no previous work
has been done on predicting target tumor coverage from
referral images. A novel method has been developed to
identify the tumor coverage that could be achieved in the
presence of acoustic obstructions and organs at risk, and
using this methodology, a feasibility study has been per-
formed to determine whether it is possible to accurately pre-
dict tumor coverage from referral imaging by comparison
with predictions made using subjects lying in treatment ori-
entations. For this purpose, volunteer imaging data were
obtained, and used to develop novel data processing and
analysis techniques for the calculation of tumor coverage.
Subsequently, the method was tested using patient data
obtained in a concurrently started clinical trial.

2. Methods

2.1. Overview

In order to evaluate the developed methodology for the cal-
culation of tumor coverage, estimations of target (tumor)

Figure 1. Schematic of proposed patient workflow. Workflow designed to assess
the potentially MRgHIFU-treatable percentage of a patient’s target tumor. Using a
supine referral image dataset, step 1 involves segmentation of important structures:
organs at risk, acoustic obstructions, and the target tumor. Step 2 rotates the refer-
ral imaging dataset into possible treatment positions, with the tumor centroid
lying, by idealized design, along a vertical line through the magnetic isocentre and,
by system design, the transducer’s home position. In step 3, target coverage (i.e.
percentage of target volume coverable by an 8mm treatment cell) is calculated.
Cycling through steps 2 & 3 identifies the patient orientation with the maximum
target volume coverage. In step 4, the treatable percentage of the target volume is
quantified, using acoustic and thermal modeling of MRgHIFU treatment. This allows
a clinical decision of whether to progress to treatment to be made.
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coverage from referral and treatment images obtained for
each volunteer (patient) were compared. Here, the referral
imaging dataset is the expected input into the prospective
patient workflow and is used to predict target volume cover-
age. We assume the treatment images depict the subject
positioned in a plausible (volunteer) or actual (patient) treat-
ment position, respectively, on the MRgHIFU bed. The treat-
ment imaging dataset is used to calculate the target
coverage. The workflow used in this study is shown in
Figure 2. As the treatment position is known from the treat-
ment images, the referral imaging dataset was oriented into
the known treatment position to compare the predicted tar-
get coverage with the actual target coverage. This was
achieved by an affine registration of the referral imaging
dataset to the treatment imaging dataset (Step 1 in
Figure 2). Segmentation of the acoustic obstructions and
organs at risk (Step 2 in Figure 2) from both datasets was
performed to identify tissues that could prevent target cover-
age. This was followed by calculation of the target (tumor)
coverage (Step 3 in Figure 2) and comparison of the results
for predictions from referral imaging datasets with those
from treatment imaging datasets.

At the start of the project, clinical trial data were not avail-
able. The method was therefore developed using volunteer
imaging data, with the goal of testing it on anticipated clinical
datasets. As a result of significant anatomical differences
between volunteers and patients, some adaptation was neces-
sary. Firstly, volunteers lacked target tumors. This could have
been addressed by the creation of dummy tumors, but in the
absence of an obvious method for defining the size, shape
and position of dummy tumors in an unbiased and clinically
relevant way, all the soft tissue in the pelvis was defined as
‘target tissue’. Secondly, while patients undergo dietary and
physical bowel preparation prior to treatment in order to min-
imize the risk of bowel and rectal damage, volunteers were

not required to do so. These tissues were therefore not consid-
ered to be organs-at-risk when processing volunteer data.
While these two limitations present challenges, they do not
prevent like-for-like comparison between target coverage pre-
dictions from referral and treatment imaging datasets. Datasets
from 5 volunteers, comprising pseudo-referral and pseudo-
treatment imaging datasets were available for the develop-
ment of the method. The methodology was subsequently
tested on 5 patients who had undergone ablative MRgHIFU
treatment for recurrent gynaecological tumors.

2.2. Input images

All subjects were scanned on a 3.0 T Philips AchievaVR MR
scanner (Amsterdam, Netherlands), using a multi-point Dixon
sequence [5] (TE1/TE2¼ 1.186 (out-of-phase)/2.372 (in-phase)
ms, TR ¼ 3.62ms, number of echoes ¼ 2, flip angle ¼ 10�).
This produced four 3D image sets for each referral and treat-
ment imaging dataset: in-phase (�IP’), out-of-phase (�OP’),
water-only (�Water’) and fat-only (�Fat’) image sets. Patients
were further imaged using, amongst others, a T2w Large
Field-of-View (T2wLFOV) sequence.

All referral imaging datasets were acquired with subjects
lying supine on the standard MR bed using SENSE XL torso
coils (Philips, Netherlands) wrapped around the pelvis.
Treatment imaging datasets were acquired with subjects
lying oblique supine decubitus on a gel-pad, which was
placed on top of an acoustically transparent membrane on
the top surface of the SonalleveVR V2 MRgHIFU couch
(Profound Medical, Mississauga, Canada), using two
SonalleveVR coils – one integrated into the acoustic window,
and an external pelvic coil. The subject’s body weight caused
the gel-pads to compress and the membrane to bow.
Subjects were positioned by a radiographer experienced in

Figure 2. Schematic of developmental methodology used in this study. The accuracy of the methodology to calculate target coverage from referral imaging was
assessed using this workflow. The target volume coverage by MRgHIFU was calculated from a subject’s treatment image dataset, acquired with the subject placed
in a plausible or actual treatment position (bottom row) for volunteers or patients, respectively. Comparison with the target volume coverage predicted from a
supine referral image datasetet allowed assessment of the methodology. Step 1: the referral imaging dataset is rotated into the same orientation as the treatment
imaging dataset using affine registration both to allow comparison with the treatment imaging dataset. Step 2: segmentation of acoustic obstructions (e.g. bones,
shown), organs at risk (patients only) and the target tumors (patients only) was performed to identify tissues that impede target coverage. Step 3: Target volume
coverage was calculated for the registered-referral imaging dataset and the treatment imaging dataset, and finally, the two quantities were compared to assess
the predictive capacity of the methodology.
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MRgHIFU. Cohort-specific imaging information for volunteers
is given in Section 2.2.1, and for patients, in Section 2.2.2.

Treatment angles were measured using ITK-Snap 3.6.0
software [6] (University of Pennsylvania, USA), by manually
drawing a line between the axial-plane positions of the left
and right ischial spines, and finding the angle between this
and a horizontal line.

2.2.1. Volunteers
Five female volunteers (age: 28–44years, weight: 55–72kg, body
mass index: 20.2–26.4 kg/m2), were scanned (with ethics
approval from The Royal Marsden and ICR Committee for
Clinical Research (internal protocol CCR1406)). In addition to the
supine referral imaging dataset described above, each volunteer
was scanned in two ‘treatment’ positions deemed to be plaus-
ible from experience of treating patients with pelvic bone pain
with MRgHIFU [3,4]. These positions were nominally �steep’ and
�shallow’, but were dependent on a subject’s size and shape,
which affected how they fitted into the bore of the MR scanner.
This generated two treatment imaging datasets per volunteer.
The volunteers, wearing thin trousers, were placed with their left
buttock roughly centered over the acoustic window and with
their right side elevated using angled foam pads. They were
scanned from the L5-sacrum disk to the inferior-most point of
the ischial tuberosity in the axial direction. Fields-of-view were
chosen to include the full body outline in the axial slices.
15mm-thick gel-pads were used to provide acoustic coupling
between the skin and the SonalleveVR acoustic window for all
volunteers. The voxel size for referral imaging and treatment
imaging datasets was approximately 0.78� 0.78� 1.50mm3.
Volunteer details are recorded in Table 1.

2.2.2. Patients
Five patient datasets were acquired after volunteer image
acquisition began, as part of a recurrent gynaecological

tumor clinical trial (NCT02714621, REC: 15/WM/0470) [3]. For
treatment imaging datasets, patients were oriented into a
clinically judged treatment position, with the tumor as close
to the magnetic isocentre as possible. Because pretreatment
diagnostic referral imaging was not available, the earliest
(Day-7) follow-up supine images were used as ‘referral’ imag-
ing datasets. These were chosen to minimize anatomical
changes between the two imaging datasets. 15mm-thick
gel-pads were used for patients P2 to P5. For patient P1, a
40mm-thick gel-pad was manually cut out to provide a
degassed-water-filled recess, into which the patient was low-
ered. Patient details are recorded in Table 2. Weight data
had been collected from patients as part of the trial data,
but height data (and therefore BMI data) had not.

Patient referral and treatment imaging datasets were
acquired after gadolinium contrast injection for improved
contrast, and were acquired with a Field-of-View (FoV) of
288� 288� 133 voxels and voxel size 0.87� 0.87� 1.50mm3.
As part of a separate study, patient’s tumors were seg-
mented from patient T2wLFOV datasets (TE ¼ 90ms, TR ¼
3620.4ms, number of echoes ¼ 16, flip angle ¼ 90�, FoV
672� 672� 40 voxels, voxel size 0.45� 0.45� 4.5mm3)
obtained immediately pretreatment. These segments were
used to define the target tumor volume for each patient.

2.3. Image registration

Registration of referral imaging datasets to treatment imag-
ing datasets rotated the referral imaging dataset into the
same treatment orientation as used in the treatment imaging
dataset, which allowed the target coverage predicted from
the registered-referral imaging dataset to be compared to
that calculated from the treatment imaging dataset. Each
subject’s referral imaging dataset was registered to their
treatment imaging dataset(s) by aligning 10 or more manu-
ally placed bony landmark points, distributed throughout the
pelvis, using Horos v2.4.0 (Horos Project) [7]. Registration was

Table 1. Details of volunteers participating in this study.

Volunteer 1 2 3 4 5 Mean ± Standard Deviation

Age (years) 28 44 29 27 36 33 ± 6
Body Mass Index (kg/m2) 20.2 26.4 23.5 23.8 20.9 23 ± 2
Height (cm) 165 165 170 160 168 166 ± 3
Weight (kg) 55 72 68 61 59 63 ± 6
Pelvic tilt from supine (�)
Steep, 23, 19, 17, 24, 29, 22 ± 4,
Shallow 17 12 8 13 16 13 ± 3
Gel-pad Thickness (mm)
Steep, 10.2, N/A, 9.8, 9.7, N/A, 9.8 ± 0.3
Shallow 9.8 N/A 9.8 9.3 10.0
Membrane Bowing (mm)
Steep, 10.4, N/A, 8.6, 10.9, N/A, 10.0 ± 1.3
Shallow 11.7 N/A 9.4 10.9 7.8

Table 2: Details of patients participating in this study.

Patient P1 P2 P3 P4 P5 Mean ± Standard Deviation

Age (years) 64 53 72 74 59 64 ± 8
Weight (kg) 42 76 57 61 61 59 ± 11
Treatment Angle (�) 6 33 16 9 24 18 ± 10
Gel Pad Thickness (mm, mean ± SD) 5.3 ± 0.5 10.9 ± 0.6 8.6 ± 0.4 12.3 ± 0.4 8.0 ± 0.4 10 ± 2
(Nominal) (40) (15) (15) (15) (15) (15)
Membrane Bowing (mm, mean ± SD) 4.1 ± 0.2 10.0 ± 0.5 9.0 ± 0.5 5.0 ± 0.2 10.0 ± 0.1 7.6 ± 2.8
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performed following the standard operating procedure
described in the Appendix. The software calculated the
required affine transformation and applied it to the referral
imaging dataset [8] to generate the registered-referral imag-
ing dataset.

To quantify the quality of this registration, the intra-observer
(3 volunteer datasets) error and inter-observer (3 observers, 1
volunteer dataset) error associated with the referral-to-treatment
registration was calculated. The errors were quantified as the
mean Euclidean distance between corresponding points.

2.4. Image segmentation

The presence of acoustic obstructions and organs at risk in
the beam path prevents safe sonication of the target, and
hence they were segmented in order to identify acoustic
access to the target. The tumor defined the target volume
for patients, and hence was segmented. The body outline
was segmented to assist with the other segmentation proc-
esses, and to assist in positioning the MRgHIFU system
relative to the registered-referral imaging dataset. Organs at
risk, bone (an acoustic obstruction) and the tumor were
manually segmented from the MR datasets (as shown in
Figure 2, Step 2). The body outline and extracorporeal air (an
acoustic obstruction) were segmented automatically, as
described below.

2.4.1. Body outline
The body outline delineates the skin surface, and, particularly
for treatment imaging datasets, needs to be separated from
the gel-pad the subject lies on. An automatic process involv-
ing Otsu thresholding [9] was developed to separate the
body from surrounding extracorporeal air and the gel-pad.
Connected-components labeling [10] was used to collate
segments of the body, and morphological operations [11]
and flood-filling [12] were employed to link disparate seg-
ments and fill holes within segments.

2.4.2. Acoustic obstructions
Internal acoustic obstructions, primarily bone, were seg-
mented by manual contouring of axial slices using OsiriX Lite
v10.0.4 [13] (Pixmeo, Geneva, Switzerland) and Horos. For
volunteers, pelvic bones were manually segmented from
referral imaging datasets. The registered-referral imaging
dataset pelvic bone segments were applied to the corre-
sponding treatment imaging dataset in order to reduce the
burden of manual contouring. Femora were manually seg-
mented separately from referral and treatment imaging data-
sets, because of the likelihood of different articulation
between datasets (unlike the more rigid pelvis). For patients,
the treatment region was considerably smaller and therefore
pelvic bones as well as femora close to the target (tumor)
could be manually segmented in a realistic time. However,
contouring was restricted to ±10 axial slices from the edges
of the tumor to reduce the time burden of manual segmen-
tation. The pelvic bones at the greater sciatic notch were
always segmented, because the notch defines the superior

edge of the sciatic foramen through which the acoustic
beam is expected to sonicate the tumor.

Air gaps between the patient and the gel-pad act as
acoustic obstructions. Extracorporeal air in volunteer treat-
ment imaging datasets was not segmented, because the
trousers worn by volunteers during image acquisition pre-
vented skin-to-gel-pad acoustic coupling. Instead, volunteer
acoustic coupling limits in the left-right direction were manu-
ally identified, as shown in Figure 4. For volunteers, it was
assumed that the intergluteal cleft would be filled with
acoustic-coupling gel as part of clinical preparations, and
hence, they were not treated as acoustic obstructions.
Extracorporeal air in the patient treatment imaging datasets
was segmented to define the limits of acoustic coupling,
using an automatic segmentation algorithm inspired by
Kullberg et al. [14]. In some cases, the intergluteal cleft was
seen to contain air, and was therefore manually contoured
and included as part of the extracorporeal air segment.

2.4.3. Target volume
As part of a separate study, patient tumors had been con-
toured by an experienced radiographer (SG) using in-house
software (Adept v0.2, The Institute of Cancer Research, UK)
[3] on referral and treatment imaging T2wLFOV images,
where the slice thickness was 10 times that of the in-plane
voxel dimensions. Segmented tumors were registered to
align with the Dixon imaging datasets using the same proce-
dures described above in order to obtain tumor outlines in
the Dixon images. Since healthy volunteers had no tumors,
all soft tissue within the pelvic region was designated as
the target.

2.4.4. Organs at risk
Organs at risk, namely the uterus, rectum, bladder, and intes-
tines were manually segmented for patients. Some patients
had previously undergone pelvic exenteration surgery result-
ing in the removal of most pelvic organs.

2.4.5. Evaluation of automated segmentation quality
Automatic segmentation quality for the body outline and for
extracorporeal air was assessed by comparing randomly
selected image slices with corresponding manually segmented
slices (body: five slices per dataset, from three ‘steep’ treat-
ment imaging datasets and two ‘steep’ registered-referral
imaging datasets originating from three volunteers; air: five sli-
ces per dataset from three patient treatment datasets). In order
to determine the ability of the segmentation to determine
acoustic coupling between patient and transducer, only the
extracorporeal air segments around the body/gel-pad interface
were assessed.

The assumption that the manually-segmented pelvic bone
in volunteer registered-referral datasets could be used to
automatically segment the pelvic bones in the treatment
imaging dataset was similarly tested against manual contour-
ing performed on the treatment imaging dataset (five slices
per treatment dataset, four treatment datasets originating
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from three volunteers). The segmentation quality of the vol-
unteer bony pelvis and femora was taken to be indicative of
the segmentation quality for all manually segmented tissues.
Quality metrics were Dice Similarity Coefficient (DSC) and
mean contour-to-contour distance [15,16].

2.5. Prediction of target volume coverage

2.5.1. Overview
To calculate the target volume that can be covered, an
MRgHIFU transducer was simulated. Positioning of the
MRgHIFU transducer was known for the treatment imaging
datasets, but had to be derived for the registered-referral
imaging datasets. In the process of positioning the virtual
transducer/referral imaging dataset, patient-induced com-
pression of the gel-pad and bowing of the oil-bath mem-
brane had to be taken into account. To reduce the
computational time required, additional practical and clinic-
ally-relevant restrictions were placed on transducer transla-
tion, as described in greater detail below. The target volume
covered by treatment cells was calculated for corresponding
pairs of registered-referral and treatment datasets, and then,
for each subject, the two volumes were compared. The
details of these procedures are presented below.

2.5.2. MRgHIFU system characteristics
The simulated transducer was modeled on The Royal
Marsden Hospital’s MRgHIFU system, the SonalleveVR V2. The
system replaces the imaging couch in the bore of the MR
scanner for treatment. The 256-element phased-array

transducer (130mm diameter, focal length 140mm, source
frequency 1.22MHz) is mounted on a robotic positioner with
3 linear and 2 rotational motion capabilities in an oil bath,
and faces the patient through a thin (50mm thick) acoustic-
ally transparent membrane. The transducer’s home position
(black cross in Figure 3) always lies 140mm below the mag-
netic isocentre, and the undeformed membrane-to-isocentre
distance is 72.5mm. Acoustic coupling is achieved using a
degassed-water wetted gel-pad (either 15 or 40mm thick).
When a subject is in place, the gel-pad is compressed and
the acoustic membrane bowed under their weight. From its
home position, the transducer can translate in 50mm steps
up to: 72.5 mm left or right and inferior or superior, and
34mm toward the patient (anterior) and 33mm away
(posterior). The transducer can be angled up to 10� away
from the perpendicular in the left-right and inferior-
superior directions.

The transducer was simulated in MATLAB R2018b. It con-
sisted of 256 points that represented the center of each
transducer element. Ultrasound rays traced from each elem-
ent on the transducer surface to the transducer focal point
were used to represent the acoustic beam. The transducer
was restricted to being able to tilt ±10� in 2.5� steps in the
left-right direction only, in order to avoid incomplete regis-
tered-referral dataset image slices resulting from registration,
but otherwise possessed the translational extents of the clin-
ical device as described above. The transducer is assumed to
produce a perfect 8mm treatment cell, i.e. an 8mm x
21.84mm ellipsoid [17,18] centered at the focal point with
its long-axis aligned to the beam axis.

Figure 3. Schematic of the SonalleveV
R

V2 MRgHIFU system: LEFT - a subject lying on the MR bed will compress the acoustic-coupling gel-pad and bow the acoustic
membrane, which seals the oil bath. Ideally, target tissue would be centered directly above the transducer’s home position and the center of the membrane/gel
pad and below the magnetic isocentre. RIGHT- a coronal view of the MRgHIFU couch showing the transducer’s home position below the center of the membrane.
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2.5.3. Practical and clinically-relevant restrictions on
transducer translation

In order to improve computational efficiency of target cover-
age prediction, transducer translation in the left-right and
inferior-superior axes was restricted to the left-right and
inferior-superior extents of the targets. For patients, practical
restrictions on left-right and inferior-superior translation were
calculated from the left-right and inferior-superior extents of
the tumor. For volunteers, the target is all soft tissue within
the pelvic region. Hence, practical and clinically-relevant limits
were manually identified (see Figure 4) and implemented. The
left-right limits represent the extents of acoustic coupling. The
inferior-superior limits represent the inferior-superior extents of
the registered-referral imaging dataset containing complete
body outlines and pelvic bone.

2.5.4. Estimated patient deformation resulting from
reorientation into the treatment position

In this study, the treatment position was known from the
treatment imaging dataset. In treatment imaging datasets,
the isocentre, and hence the transducer’s home position
(Section 2.5.2), was known. In the registered-referral imag-
ing dataset, because the treatment position is the same, the
transducer’s home position left-right and inferior-superior
coordinates were taken from the treatment imaging data-
set. However, to mimic the prospective workflow, the anter-
ior-posterior coordinate had to be estimated from data
within the registered-referral imaging dataset. The method
of doing so is shown in Figure 5. Briefly, it was assumed
that: i) the gel-pad would be most compressed and the
membrane most bowed at the isocentre line, and ii) after
soft tissue deformation resulting from the reorientation into
the treatment position, the isocentre-to-skin point distance
would remain the same. The membrane bowing distance
and gel-pad thickness for patients was assumed to be that
calculated for volunteers. These quantities were obtained
by determining the average gel-pad thickness and

membrane bowing distance close to the isocentre line,
using ITK-Snap, in the 7/10 volunteer treatment imaging
datasets in which measurement was possible. From this,
the position of the undeformed membrane, and hence the
transducer anterior-posterior home position, was estimated
(see Figure 3). Patient P1 had been treated on a custom-
ized gel-pad, the thickness of which was independently
measured and used for positioning. For comparison, the
actual patient gel-pad thicknesses and membrane bowing
distances were measured and compared to the volunteer-
derived averages.

2.5.5. Calculation of target coverage
For volunteers, a regular grid of target points, one per image
voxel, was created in the soft tissue (see Figure 6); for
patients, this grid was created solely within the tumor [19].
The transducer acoustic beam had been discretized into 256
rays, linking the center of a transducer element to the focus.
Each ray was discretized into regularly spaced (0.2mm)
points along its length, and each was tested for intersection
with acoustic obstructions or organs at risk. If no point inter-
sected these, an 8-mm treatment cell was drawn around the
focal point, and all grid points within this were marked as
covered (Figure 6). This was repeated as the transducer was
exhaustively translated and tilted. The number of grid points
covered, multiplied by the image voxel volume, was used to
quantify the target volume covered. For volunteers, the
transducer was translated in 4mm steps, whereas for
patients, 2mm steps were used in order to ensure coverage
of the smaller tumor volume.

For volunteers, the accuracy of the methodology was
quantified by calculating how much of the soft tissue volume
coverage calculated from the treatment imaging dataset was
predicted to be covered from the registered-referral imaging
dataset, as described in Equation (1). In effect, the treatment
imaging dataset covered soft tissue volume becomes the tar-
get volume for the registered-referral imaging dataset,

Figure 4. Transducer translation restrictions for volunteer data. Practical restrictions applied to the transducer’s translation capabilities (solid red lines) for volunteer
datasets only. (a) For a treatment imaging dataset, the left-right translation was limited by the extent of acoustic coupling between the volunteer’s skin and the
gel pad. The corresponding registered-referral imaging dataset shared these left-right restrictions. (b) For a registered-referral imaging dataset, the transducer’s
inferiorsuperior translation was restricted by the extent of pelvic bone and the requirement for a full body outline within the image. The corresponding treatment
imaging dataset shared these inferior-superior restrictions.
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Figure 5. Method used to predict the transducer’s anterior-posterior home position in a registered-referral imaging dataset. The treatment dataset magnetic iso-
centre is known because the registered-referral imaging dataset had been registered to the treatment imaging dataset. A line was drawn downwards from the
treatment dataset isocentre and intersected the skin at the skin point. From this skin point, the home position was calculated using the average compressed gel-
pad thickness, the average membrane bowing distance, and the calibrated distance between undeformed membrane and home position of 67.5mm (see
Figure 3).

Figure 6. Method for quantifying target volume covered within a dataset (volunteer treatment imaging dataset in this example). A regular 3D grid of potentially
accessible points was created (blue crosses) within the target: soft tissue (volunteers) or tumor (patients). For each transducer position and tilt identified in Section
2.5.3, the acoustic beam was checked for intersection with any acoustic obstructions (green contours) or organs at risk. If no obstruction exists, an 8mm treatment
cell was created around the focus (yellow ellipse). Grid points within a treatment cell were marked as ‘covered’ (red crosses).
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allowing calculation of the percentage target volume cov-
ered (TVCvol).

TVCvol ¼ 100%� CVRegisteredReferral \ CVTreatment

CVTreatment
(1)

where CV is the covered target volume.
For patients, the accuracy of the methodology was quan-

tified using the difference between the percentage tumor
volumes covered (TVCpat), calculated from treatment imaging
dataset and that calculated from registered-referral imaging
dataset. TVCpat is given by:

TVCpat ¼ 100%� CV
TV

(2)

where CV is the covered tumor volume and TV is the total
tumor volume.

3. Results

3.1. Subjects

Details for the volunteers involved in the study are recorded
in Table 1, and those for patients in Table 2, as are the
(pseudo-)treatment angle(s), compressed gel-pad thickness
and membrane bowing distance for each subject. For volun-
teers, 15mm gel-pads were compressed to an average of
9.8 ± 0.3 (mean± standard deviation, with range: 9.3 to 10.2)
mm, and the average membrane bowing distance close to
the isocentre line was 10.0 ± 1.3 (range: 7.8 to 11.7) mm. The
weight ranges of volunteers and patients (patients: 59 ± 11 kg
vs volunteers: 63 ± 6 kg) were similar. The range of patient
treatment angles (6-33�) slightly exceeded the range of vol-
unteer angles (8-29�).

3.2. Image registration quality

Between three observers, the mean distance between corre-
sponding points for the referral imaging dataset for one vol-
unteer, registered to one of their treatment imaging
datasets, was on average 1.2 ± 0.2mm. For one observer, the
mean distance between corresponding points for the referral
imaging datasets for three volunteers, each registered to one
of their corresponding treatment imaging datasets, was on
average 1.3 ± 0.2mm. These distances are less than the axial
slice thickness of the Dixon image datasets and less than
double the in-plane image resolution.

3.3. Segmentation quality

3.3.1. Automatic segmentation quality
Automatically segmented body outlines agreed with valid-
ation slices with a mean DSC of 0.991 ± 0.003 and an average
mean contour-to-contour distance of 0.9 ± 0.4mm. Automatic
extracorporeal air segmentation of patient data agreed with
validation slices with a mean DSC of 0.89 ± 0.06 and an aver-
age mean contour-to-contour distance of 0.25 ± 0.16mm.

3.3.2. Manual segmentation quality
Volunteer treatment image pelvic bone segmentation agreed
with the validation slices, with mean DSC of 0.93 ± 0.01 and
an average mean contour-to-contour distance of
0.76 ± 0.10mm. Volunteer femur segmentation agreed with
the validation slices with mean DSC of 0.96 ± 0.01 and an
average mean contour-to-contour distance of 0.53 ± 0.11mm.

3.4. Prediction of target volume coverage

The TVCvol for each volunteer in each of their two treatment
positions is shown in Figure 7(a). For volunteers, the regis-
tered-referral imaging dataset predicted target volume cover-
age of 91 ± 6% (range: 78 to 98%) of that calculated from
the corresponding treatment imaging dataset. The TVCpat for
each patient’s treatment imaging and referral imaging are
shown in Figure 7(b). Patient P4 appears to be an outlier.
Excluding their data, for patients, registered-referral TVCpat
predicted the treatment TVCpat to within an average of
12 ± 7% (range: 4 to 21%). Representative images of the tar-
get (tumor) volumes covered for volunteers and patients are
shown in Figure 7(c) and (d), respectively.

4. Discussion

The aim of this study was to develop a novel method to cal-
culate tumor coverage and assess the feasibility of predicting
tumor coverage from (supine) referral imaging, as part of a
wider study into automating the evaluation of patient suit-
ability for MRgHIFU therapy.

4.1. Subjects

Although patient mean age was nearly double that of the
volunteers, their weights were similar. Compressed gel-pad
thickness and membrane bowing for volunteers varied min-
imally (mean± standard deviation being 9.8 ± 0.3mm and
10.0 ± 1.3mm respectively), suggesting that use of mean val-
ues for the prediction of patient tumor coverage should be
acceptable. Minimum and maximum patient tilt angles
exceeded those of volunteers by at most 4� despite acquir-
ing the volunteer imaging before the patient data
was available.

4.2. Image registration

Mean post-registration misalignment between referral and
treatment images was found to be less than the axial slice
thickness of the Dixon MR imaging, in line with results from
literature [20].

4.3. Image segmentation

Automatic and manual segmentation of acoustic obstruc-
tions, organs at risk and the body outline resulted in mean
DSCs � 0.89 and mean contour-to-contour distances that
were less than the axial slice thickness (1.5mm). A mean
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contour-to-contour distance of 2.81mm has been deemed
acceptable for breast-air boundary segmentation from MR
imaging (voxel size: isotropic 2.5mm) [21]. The DSC for extra-
corporeal air segmentation (patient treatment imaging data-
sets only) was less than that for body outline segmentation
(volunteers and patients, treatment and registered-referral
datasets) while the mean contour-to-contour distance was
better than that for body outline segmentation. This was
probably due to the smaller size of the air segments around
the patient/gel-pad interface, causing a misidentified voxel
to have a greater effect than for the larger body outline.
From the DSC (0.96) and mean contour-to-contour distance
(0.53mm) values, the assumption that pelvic bone seg-
ments identified on treatment images were identical to
post-registration, manually outlined referral image seg-
ments appears to be valid (Section 3.3.2).

Since tumors were manually segmented by an expert, any
segmentation imprecision or inaccuracy was ignored. Tumors
were segmented on datasets with slice thickness (4.5mm) 10
times the in-plane resolution (0.45mm), and thus rotation
during registration could introduce relatively large discrepan-
cies between the interpolated and actual tumor outlines,

thus increasing uncertainty in the TVCpat predicted from
referral imaging datasets.

4.4. Target coverage

4.4.1. Volunteer study
The volunteer’s results show an average target coverage
agreement between treatment and registered-referral imag-
ing datasets of 91% (range: 78–98%), corresponding to a
mean difference of 9%. This suggests that the techniques
used for positioning the transducer in the registered-referral
imaging datasets were sufficient to proceed to testing with
patient data. The worst agreement (78%, for Volunteer 2
tilted at a 12� treatment angle) was attributed to inaccurate
placement of the transducer’s home position, caused by the
skin point directly below the isocentre (see Figure 5) not
remaining at constant position between the registered-referral
and treatment datasets, as had been assumed. Consequently,
the HIFU focus was predicted to reach 12mm deeper into the
volunteer than it could. The next worst agreements, (88% for
Volunteer 2 tilted at 19� and Volunteer 3 tilted at 17� and 8�)

Figure 7. Percentage of target volume covered. (a) For volunteers, the agreement between the referral and treatment covered volumes is shown, where the treat-
ment covered volume is the ground-truth. (b) For patients, the percentage of the registeredreferral tumor (red) and the treatment tumor (blue) that was covered is
shown. The numbers on top of each set of bars represent the difference in % Tumor Volume Covered predicted from the registered-referral dataset, and that calcu-
lated from treatment dataset. Representative examples of target coverage for volunteers (c) and tumor coverage for patients (d) are shown, with a scale bar in (d).
The anatomy is shaded purple in the registered-referral dataset, and green in the treatment dataset.
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were due to the same cause, resulting in overestimation of the
focal depth by 6mm.

For a single volunteer, the difference between target
coverage predicted from registered-referral datasets and that
from treatment datasets results from differing femur seg-
ments and differing transducer home positions. Since angula-
tion was restricted to tilting left-right only, and the
transducer was restricted to prevent translation beyond the
inferior-superior extents of the pelvis, differences in femur
segmentations were judged to have only a small effect.
Refinement of the transducer positioning technique, by sam-
pling within a 15� 15mm region around the isocentre line
(see Figure 5) instead of using a single skin position to pre-
dict the anterior-posterior position, provided no statistically
significant improvement (data not presented).

4.4.2. Patient study
The goal of this study was to develop and test a method for
quantitatively assessing tumor coverage from referral imag-
ing, as opposed to the current clinical practice of qualitative
assessment, and to assess the feasibility of the new method-
ology. From the results, quantitative prediction of tumor
coverage from referral imaging appears feasible. Despite the
simplicity of the technique used to account for the expected
body deformation resulting from reorientation from supine
into a treatment position, the TVCpat predicted from the reg-
istered referral and the treatment imaging datasets had a
mean difference of 12% (range: 4–21%), excluding an outlier
for whom the difference was 53% (see below). In the litera-
ture, a median difference of 21% in automatic segmentation
had been judged as acceptable [22]. In the context of the
current clinical practice, where �40% of referred patients fail
screening, these results are encouraging [3,4]. The small
cohort involved in this study (5 volunteers, 5 patients) repre-
sents lower than expected patient recruitment for the clinical
trial. However, other published studies have also involved
small patient cohorts, e.g. a transcranial simulation study
involved 5 patients [23], a simulation study for kidney abla-
tion examined 4 patients [24], and in various therapeutic
feasibility studies, between 10 and 13 patients were consid-
ered [25–27]. In addition, an automatic geometric optimiza-
tion technique for the packing of HIFU treatment cells
demonstrated its capabilities using test objects and the pub-
licly available dataset of a single volunteer [28]. Results from
these small-cohort feasibility studies also demonstrate high
variance in results. For example, in the transcranial simula-
tion study, simulation results differed from measured data by
up to 40 ± 13% [23]. The results here indicate a step toward
the long-term objective of widespread quantitative analysis
of patient suitability for MRgHIFU therapy, with the aim of
improving clinical decision-making and minimizing the
impact on patient and hospital time and resources.

The outlier referred to above was patient P4, whose poor
results were due to the assumption of perfect acoustic cou-
pling between patient and gel-pad when calculating TVCpat
for the registered-referral imaging dataset. In practice, treat-
ment imaging showed that the tumor periphery was
obstructed by air between the patient and gel-pad. This

highlights a possible advantage of the proposed workflow.
Having established that a greater tumor coverage could have
been achieved at the referral stage, clinicians may have been
able to improve the clinical preparations, and increase
tumor coverage.

In general, the marginally poorer results for patients com-
pared to volunteers (excluding the outlier patient) may be
partially due to volunteer target volumes being over 10
times larger (�300,000 ± 100,000mm3) than patient targets
(�20,000 ± 10,000mm3). A missed voxel has a larger propor-
tional effect for smaller target volumes.

A source of error for the patient cohort may arise from
the differences in the actual gel-pad thickness and mem-
brane bowing (Table 2) compared to the mean values deter-
mined from the volunteer cohort which were used in the
predictive calculations. Membrane bowing differences from
the average of 10.0mm ranged from 0.9mm to 4.7mm for
patients, and from 0.4mm to 2.2mm for volunteers. Gel-pad
thickness differences from the average of 9.8mm ranged
from 1.1 to 2.5mm for patients who were treated on 15mm
gel-pads, and from 0.0 to 0.7mm for volunteers. To evaluate
the effect of this, the TVC was recalculated with the actual
gel-pad thickness and membrane bowing distance for all
patients. The maximum difference in TVCpat Registered-Referral

that resulted from using the average membrane bowing and
gel-pad thickness, rather than the actual measured values,
was 0.3% (patient P1). As more data from clinical studies
becomes available, modeling the relationship between mem-
brane bowing distance, or compressed gel-pad thickness,
and patient weight and orientation may generate more
accurate predictions of the transducer home position from
referral imaging.

Deformation and translation of organs at risk, due to
reorientation from referral to treatment position, clinical prep-
aration such as pretreatment dieting and bowel-preparation,
and the time between referral and treatment (1week), may
explain why the patient results show worse agreement overall
than the volunteer results. In clinical experience, organs at risk
such as the rectum are known to vary substantially and unpre-
dictably in shape, position and volume [29,30]. The overall
accuracy of the proposed patient workflow is expected to be
limited by the patient-specific soft tissue deformation and cou-
pling to the gel-pad. At the very least, the methodology pre-
sented here allows quantitative assessment of tumor coverage
prior to the screening stage, reducing the need for clinical
experience, and the influence of subjective opinion, on the
assessment of patient suitability for progression through the
treatment pathway.

4.5. Limitations of the study

One of the major limitations is the small volunteer and
patient cohort, which restricts the statistical certainty of the
results. This study is also limited to predicting pelvic tumor
coverage. However, the proposed patient workflow may be
adaptable for other tumor sites. Assessment of the tumor
volume that can be successfully ablated will require acoustic
propagation and thermal bioeffects modeling. This is the
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subject of extensive ongoing work. Patient deformation
resulting from orientation into the treatment position was
only accounted for using the simple assumption that the iso-
centre-to-skin point distance would remain constant. This
produced acceptable results for tumor coverage. However,
accurate acousto-thermal modeling requires an accurate
description of the medium of propagation, which may
require simulation of soft tissues deformation between the
gel-pad and the target.

Only reorientations from supine to oblique supine decubi-
tus positions were tested in this study. While the results of
this study are only applicable to the specific diagnostic MR
bed and MRgHIFU couch used, the core principles are
expected to be applicable to other HIFU devices, and referral
datasets obtained from X-ray tomographic imaging.
Furthermore, since the patient mean age was almost twice
that of the volunteers, patient soft tissue could have differ-
ent elastic properties than that of volunteers and therefore
exhibit different deformation behavior. This could have
affected the developed methodology.

5. Conclusion

Novel methodology for predicting the MRgHIFU target cover-
age from supine (MR) referral imaging was developed using
10 volunteer datasets and was retrospectively applied to 5
patient datasets. The difference between the target coverage
computed using referral and treatment image datasets was
within 12% on average (range: 4–21%), after one patient,
with inadequate acoustic coupling during treatment, was
excluded from analysis. Despite the relatively small cohort
size, the focus on pelvic tumors, and the limited range of
patient positions and MRgHIFU equipment on which the
methodology was devised and tested, these results suggest
quantitative, automated screening and treatment planning
should be feasible, eventually obviating the need for patient
suitability to be assessed using qualitative clinical judgment
based on operator experience.
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Appendix: Registration standard
operating procedure

1. Open HorosTM on Mac OS X. Make sure the pyOsiriX plugin
is installed.

2. Import the in-phase MRI datasets that are to be registered. Double
click them to bring them up together.

3. Select a dataset. Then, at the top menu 2D Viewer ! Sort By…!
Slice Location Ascending.

4. Below the menu bar, in a section titled ‘Mouse button function’,
select the point function. Use the point function to mark an ana-
tomical feature on one dataset and the same anatomical feature on
the other. The same point names, e.g. ‘Point 1’, must correspond
to the same anatomical features in both datasets. Repeat this for
the list of anatomical features mentioned below. If the same ana-
tomical feature cannot be found in one or both of the datasets,
ignore that anatomical feature and continue down the list. At least
10 features should be marked by the end.
Anatomical Features:
a. Femur/pelvis landmark marks where the two bones meet in

the head-most direction (Right and Left)
b. ischial spine (Right and Left)
c. Superior-most or inferior-most of ischial tuberosity (Right

and Left)
d. Pubic arch/top of pubic arch connection
e. Anterior-facing spur in axial plane where pelvis first encloses

femur head (Right and Left)
f. Sacral nerve bundle (S1 and S2) when just-enclosed by bone

(Right and Left)
g. Spinal nerves splitting from spinal cord (Right and Left)
h. Sacrum/L5 disk border
i. Coccyx

5. Open the pyOsiriX console within Horos. A Python script can be
used to extract point data from a dataset in Horos and save it in a
format that can be processed in an external Python environment.
Do this for both datasets.
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