The combined effect of a polygenic risk score and rare genetic variants on prostate cancer risk

Burcu F. Darsta, Xin Sheng ${ }^{\text {a }}$, Rosalind A. Eeles ${ }^{\text {b,c, }, ~ Z s o f i a ~ K o t e-J a r a i b, ~ D a v i d ~ V . ~ C o n t i a, ~}$ Christopher A. Haiman ${ }^{\text {a }}$
${ }^{\text {a }}$ Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, USA
${ }^{\mathrm{b}}$ The Institute of Cancer Research, London, UK
c The Royal Marsden NHS Foundation Trust, London, UK

Corresponding Author
Burcu F. Darst
1450 Biggy Street
Los Angeles, CA 90033 USA
1-232-442-0078
bdarst@usc.edu

Keywords (3-10): Biobank; Common variants; Exome sequencing; Genetics; Genomics;
HOXB13; Polygenic risk score; Prostate cancer; Rare variants
Word count of text (including abstract): 1,673
Word count of abstract: 200

Abstract (200 word limit)
Although prostate cancer is known to have a strong genetic basis and is influenced by both common and rare variants, the ability to investigate the combined effect of such genetic risk factors has been limited to date. We conducted an investigation of 81,094 men from the UK Biobank, including 3,568 prostate cancer cases, to examine the combined effect of rare pathogenic/likely pathogenic/deleterious (P/LP/D) germline variants and common prostate cancer risk variants, measured using a polygenic risk score (PRS), on prostate cancer risk. Absolute risk of prostate cancer for HOXB13, BRCA2, ATM, and CHEK2 P/LP/D carriers ranged from 9% to 56%, whereas absolute risk in non-carriers ranged from 2% to 31%, by age 85 for men in the lowest and highest PRS deciles, respectively. The high-penetrant HOXB13 G84E prostate cancer risk variant was most common in cases in the lowest PRS quintile (4.4\%) and least common in cases in the highest PRS quintile (0.5%; $P=0.005$), whereas there was no statistically significant difference in frequencies by PRS in controls. While rare and common variants strongly and distinctly influence prostate cancer onset, considering rare and common variants in conjunction will lead to more precise estimates of a man's lifetime risk of prostate cancer.

Patient summary: We found that the risk of prostate cancer conveyed by rare variants could vary depending on an individual's genetic profile of common risk variants. This implies that in order to comprehensively assess genetic risk of prostate cancer, it is important to consider both rare and common variants.

Prostate cancer (PCa) is a leading cause of death, with high heritability and risk among family members suggesting a strong genetic basis of this disease[1, 2]. Rare germline genetic variants have been shown to increase PCa risk[3, 4], as have common variants in aggregate as measured by polygenic risk scores (PRS), with men in the highest PRS decile having approximately 4 -fold increased odds of PCa than men in the average $40-60 \%$ PRS category[5]. Until recently, the ability to investigate the combined influence of rare and common variants has been limited. Recent studies have shown that common variants modify the influence of rare variants on breast cancer, colorectal cancer, and coronary artery disease risk[6, 7], and the influence of rare BRCA2 and HOXB13 variants on PCa risk has been shown to vary by common variants[8-10]. Here, we investigated the combined effect of rare and common germline variants on PCa risk using whole-exome sequencing and genome-wide genotype data in a large sample of 81,094 European ancestry men from the UK Biobank (October 2020 release of 200 K whole-exome sequences), including 3,568 PCa cases and 77,526 controls.

We first performed exome-wide gene-based analyses to determine whether novel PCa risk genes could be identified from rare pathogenic/likely pathogenic/deleterious (P/LP/D) variants. Across 14,905 tested genes, only HOXB13 ($\mathrm{OR}=4.63,95 \% \mathrm{Cl}=3.26-6.59, \mathrm{P}=1.4 \times 10^{-17}$) and CHEK2 ($\mathrm{OR}=2.06,95 \% \mathrm{Cl}=1.51-2.80$, $\mathrm{P}=4.9 \times 10^{-6}$) reached genome-wide significance (Supplementary Figure 1). Limiting to 151 DNA repair genes, which have been implicated in PCa risk[4, 11], only CHEK2 (see above) and BRCA2 ($\mathrm{OR}=2.15,95 \% \mathrm{Cl}=1.40-3.28, \mathrm{P}=4.2 \times 10^{-4}$) were significantly associated with PCa risk after multiple testing adjustment (Supplementary Figure 2).

Testing individual exome-wide P/LP/D variants, two significant associations were
identified: known rs138213197 (G84E) in HOXB13 (control carrier frequency $=0.31 \%$, case carrier frequency $=1.29 \%, \mathrm{P}=6.9 \times 10^{-18}$) and novel rs 769540160 in MYO3A (control carrier frequency $=0.004 \%$, case carrier frequency $=0.11 \%, P=1.1 \times 10^{-7}$) (Supplementary

Figure 3). Although MYO3A was not genome-wide significant in gene-based tests, results were suggestive of carriers having 1.67 -fold increased odds of PCa (95% $\mathrm{Cl}=1.06-2.65, \mathrm{P}=0.027$). The carrier frequency of rs 769540160 in 32,330 cancer-free European ancestry individuals in gnomAD was 0.009% [12], while it was 4 -fold more common in a whole-exome sequencing study of 5,545 European ancestry men with aggressive and non-aggressive PCa, with a carrier frequency of 0.04% (carried by two men who both died due to PCa and had Gleason scores $\geq 8)[4]$. Given the extreme rarity of this variant, additional large-scale PCa sequencing studies are necessary to further validate this novel association.

Combined rare and common variant analyses focused on carrier status of P/LP/D variants in known PCa risk genes (HOXB13 and DNA repair genes BRCA2, BRCA1, PALB2, ATM, CHEK2, NBN, and MSH2)[4, 11, 13] and our recently developed multiancestry PRS[5]. HOXB13, BRCA2, ATM, and CHEK2 had sufficient numbers of P/LP/D carriers for analyses and were consequently the focus of our investigation. Analyses jointly evaluating the PRS and carrier status excluded HOXB13 G84E and/or CHEK2 1100delC from the PRS when carrier status included either of these variants. Of the total 1,576 carriers of P/LP/D alleles in these four genes, 19 men carried two P/LP/D alleles (including two cases) and the remaining 1,557 men carried one P/LP/D allele (including 143 cases). As expected, these four genes showed strong associations with PCa risk, as did the multi-ancestry PRS, which had stronger effects than a previously
developed European ancestry PRS[14] (Supplementary Tables 1-2). In aggregate, P/LP/D carriers had 2.52 -fold increased odds of $\mathrm{PCa}\left(2.10-3.04, \mathrm{P}=1.40 \times 10^{-22}\right)$ and 4.73-fold increased odds of dying due to $\mathrm{PCa}\left(95 \% \mathrm{Cl}=2.82-7.94, \mathrm{P}=4.1 \times 10^{-9}\right)$. Although we had insufficient clinical data to further evaluate aggressive or lethal disease (220 men died due to PCa, of which 16 carried P/LP/D alleles in these genes), we previously reported that P/LP/D variants in ATM and BRCA2 were more common in men with aggressive (and lethal) disease compared to men with non-aggressive PCa[4].

Aggregate effects of P/LP/D variants in these genes did not significantly differ in men with and without a first-degree family history of prostate cancer or in men ≤ 60 or >60 years of age (Supplementary Tables 3-4). PRS effects also did not significantly differ by family history; however, the PRS had significantly larger effects in younger compared to older men (Supplementary Tables 5-6), consistent with previous findings[5].

Relative to non-carriers in the average $40-60 \%$ PRS category, odds ratios ranged from 0.28 ($95 \% \mathrm{Cl}=0.22-0.36$) to 4.34 ($95 \% \mathrm{Cl}=3.87-4.87$) for non-carriers and 1.06 ($95 \% \mathrm{Cl}=0.43-2.64$) to 10.21 ($95 \% \mathrm{Cl}=6.53-15.96$) for carriers in the lowest and highest PRS decile, respectively (Figure 1a). Absolute risk of PCa by age 85 ranged from 2% to 31% for non-carriers and 9% to 56% for carriers in the lowest and highest PRS decile, respectively (Figure 1b). Absolute risk for carriers in the $90-100 \%$ PRS category (56\%) was similar to the 55% absolute risk for men in the $99-100 \%$ PRS category (independent of carrier status) and two-fold higher than the 26% absolute risk for carriers (independent of PRS). Absolute risk for carriers in the 0-10\% PRS category (9\%) was similar to the 11% absolute risk for non-carriers (independent of PRS; Figure 1c). Effects and absolute risks were slightly weaker when excluding HOXB13 G84E
from carrier status (Supplementary Figure 4). Evaluating the four genes separately revealed similar findings (Supplementary Figures 5-8), with HOXB13 G84E carriers having notably increased PCa risk compared to non-carriers across PRS quintiles (used instead of deciles given smaller numbers of carriers within individual genes). Across PRS quintiles, odds ratios for HOXB13 G84E carriers ranged from 2.96 ($95 \% \mathrm{Cl}=1.19-$ 7.34) to 10.10 ($95 \% \mathrm{Cl}=5.03-20.28$) (relative to HOXB13 G84E non-carriers in the average $40-60 \%$ PRS category), while absolute risks for HOXB13 G84E carriers ranged from 23% to 56% by age 85 (Supplementary Figure 5). We observed a statistically significant interaction between the continuous PRS and carrier status for HOXB13 ($P=0.041$), but not for the other genes separately or in aggregate ($P \geq 0.14$;

Supplementary Table 1).

Interestingly, among cases, HOXB13 G84E was most common in the lowest PRS quintile (4.4%) and least common in the highest PRS quintile (0.5%), whereas control carrier frequencies across PRS quintiles were consistently 0.3% (Figure 2a). Accordingly, the average PRS was higher in HOXB13 G84E non-carriers than carriers among cases ($\mathrm{P}=0.005$) and did not significantly differ by carrier status among controls ($\mathrm{P}=0.3$; Figure 2c). The frequency of CHEK2 P/LP/D carriers was also most common in cases in the lowest PRS quintile (2.3\%) and least common in the highest PRS quintile (1.3\%; Supplementary Figure 9); however, PRS did not significantly differ by carrier status ($\mathrm{P}=0.3$; Supplementary Figure 10). The HOXB13 G84E finding was validated using GWAS data in an independent sample of 5,197 cases and 115,796 controls in the UK Biobank, with cases having a carrier frequency of 3.2% in the lowest PRS quintile and 1.2% in the highest PRS quintile (Supplementary Figure 11). Similar results were
observed in the full UK Biobank sample (8,765 cases and 193,322 controls;
Supplementary Figure 12). This finding suggests that HOXB13 G84E may account for more PCa in men with low versus high PRS. While carrying rare or common risk variants could serve as independent pathways to PCa onset, our results suggest that carrying rare variants in these genes and having high PRS compound PCa risk.

Findings from this investigation suggest that PCa risk may vary depending on an individual's genetic profile of common risk variants, measured by PRS, and carrier status for rare P/LP/D variants in HOXB13 and BRCA2, with novel evidence for variants in CHEK2 and ATM. In particular, men in the top PRS decile had higher absolute risk of PCa than carriers (31% vs 25%); however, considering the PRS and carrier status jointly, absolute risk for non-carriers in the top PRS decile was 31%, while it increased to 56% for carriers in the top PRS decile. This is supported by previous findings of rare and common variants collectively improving discriminative ability of PCa risk models[15] and could have important clinical implications, such as informing decisions regarding PCa screening, with P/LP/D carriers and/or men with a high PRS potentially benefiting from earlier and more frequent screening. Further studies are underway and needed to evaluate the impact of such clinical implementations. Consistent with studies of other diseases[16], our findings also suggest that rare and common variants could independently lead to PCa onset, with low PRS cases being more likely to carry HOXB13 G84E, for example. Whole-genome sequencing efforts could have improved power to identify additional moderate- to high-penetrant rare PCa risk variants by prioritizing low PRS cases, as extreme sampling has been shown to improve power to detect rare variants[17]. It will be important to extend this to clinical investigations to
determine whether PRS in conjunction with carrier status for rare P/LP/D variants could better discern aggressive PCa, which we were unable to investigate in this study. Further, similar investigations in non-European ancestry men will be critical, particularly in men of African ancestry given the established genetic contribution to high PCa incidence rates in this population[5].

Acknowledgements

This work was supported by the National Cancer Institute at the National Institutes of Health grant (K99 CA246063, BFD and R01 CA196931, CAH) and an award from the Achievement Rewards for College Scientists Foundation Los Angeles Founder Chapter (BFD). This research has been conducted using the UK Biobank Resource under application number 42195.

Author Contributions
Study conception/design: BFD, DVC, CAH; Data analysis: BFD; Bioinformatics support:
XS; Interpretation of data: BFD, RAE, ZK-J, DVC, CAH; Drafted the manuscript: BFD; Contributed to manuscript revisions: BFD, XS, RAE, ZK-J, DVC, CAH; All authors approved of the final manuscript.

Competing Interests Statement
The authors have no conflicts of interest to disclose.

References

[1] Hjelmborg JB, Scheike T, Holst K, Skytthe A, Penney KL, Graff RE, et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev. 2014;23:2303-10.
[2] Hemminki K. Familial risk and familial survival in prostate cancer. World J Urol. 2012;30:143-8.
[3] Mancuso N, Rohland N, Rand KA, Tandon A, Allen A, Quinque D, et al. The contribution of rare variation to prostate cancer heritability. Nat Genet. 2016;48:30-5. [4] Darst BF, Dadaev T, Saunders E, Sheng X, Wan P, Pooler L, et al. Germline sequencing DNA repair genes in 5,545 men with aggressive and non-aggressive prostate cancer. J Natl Cancer Inst. 2020.
[5] Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet. 2021;53:65-75.
[6] Fahed AC, Wang M, Homburger JR, Patel AP, Bick AG, Neben CL, et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat Commun. 2020;11:3635.
[7] Gallagher S, Hughes E, Wagner S, Tshiaba P, Rosenthal E, Roa BB, et al. Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw Open. 2020;3:e208501. [8] Karlsson R, Aly M, Clements M, Zheng L, Adolfsson J, Xu J, et al. A populationbased assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol. 2014;65:169-76.
[9] Kote-Jarai Z, Mikropoulos C, Leongamornlert DA, Dadaev T, Tymrakiewicz M, Saunders EJ, et al. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol. 2015;26:756-61.
[10] Lecarpentier J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J, McGuffog L, et al. Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores. J Clin Oncol. 2017;35:2240-50.
[11] Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016;375:443-53.
[12] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434-43.
[13] Matejcic M, Patel Y, Lilyquist J, Hu C, Lee KY, Gnanaolivu RD, et al. Pathogenic Variants in Cancer Predisposition Genes and Prostate Cancer Risk in Men of African Ancestry. JCO Precis Oncol. 2020;4:32-43.
[14] Schumacher FR, AI Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50:928-36.
[15] Shi Z, Platz EA, Wei J, Na R, Fantus RJ, Wang CH, et al. Performance of Three Inherited Risk Measures for Predicting Prostate Cancer Incidence and Mortality: A Population-based Prospective Analysis. Eur Urol. 2020.
[16] Lu T, Zhou S, Wu H, Forgetta V, Greenwood CMT, Richards JB. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening. Genet Med. 2020.
[17] Li D, Lewinger JP, Gauderman WJ, Murcray CE, Conti D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet Epidemiol. 2011;35:790-9.

Figure Legends

Figure 1. Aggregate effect of P/LP/D variants in ATM, BRCA2, CHEK2, and HOXB13 and a polygenic risk score (PRS) on prostate cancer risk. A) Odds of prostate cancer by PRS category and carrier status. Odds ratios are calculated with respect to the referent non-carrier $40-60 \%$ PRS category. Percentage of total cases are annotated for each effect estimate, and sample sizes of carriers and non-carriers by case status and PRS category are indicated below the figure. In the 40-60\% PRS category, 0.76% and 14.15% of total cases are carriers and non-carriers, respectively. OR are plotted on a log-scale. B) Absolute risk (AR) of prostate cancer by age and the combination of carrier status and PRS category. The 40-60\% PRS non-carrier line estimates baseline AR by age (8.4% lifetime AR). C) Absolute risk of prostate cancer by age and carrier status (independent of PRS) and PRS category (independent of carrier status). The 40-60\% PRS line (8.1\% lifetime AR) and non-carrier line (11.3\% lifetime AR) estimates baseline AR by age.

Figure 2. Polygenic risk score (PRS) distribution of HOXB13 G84E carriers. A) HOXB13 G84E carrier frequency by PRS category and prostate cancer status. C) PRS distribution by HOXB13 G84E carrier status and prostate cancer status. PRS differences between carriers and non-carriers are calculated using a two-sided t-test.

Figure 1.

A. Odds by PRS \& carrier status combined

Figures
C. AR by PRS \& carrier status separately

B. AR by PRS \& carrier status combined

Figure 2.

