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Abstract

Colorectal cancer is one of the most frequent malignancies in the world and contributes

significantly to cancer-related death. While previous studies of the genomic alterations in

colorectal cancers (CRCs) have significantly contributed to our understanding of this dis-

ease, somatic mutations do not seem to fully explain the evolution of malignant phenotypes.

Epigenetic alterations have been suggested to play a crucial role in this context, but they

remain insufficiently characterised in CRCs. It is also widely recognised that significant

genetic diversity exists in all tumours, but how to interpret this heterogeneity functionally

is the subject of significant debate. Even less is known about the role of epigenetic hetero-

geneity in CRCs.

Here I will present an analysis of the genomic and epigenomic heterogeneity in 30 col-

orectal carcinoma using a novel multi-omics profiling method. This multi-omics profiling

method allows for profiling of somatic mutations with whole-genome sequencing, chro-

matin accessibility with ATAC-seq and gene expression using RNA-seq concomitantly in

single CRC glands. Using data from 1,377 samples from 30 primary cancers and ten ade-

nomas, consisting of 1,212 chromatin accessibility profiles and 527 whole-genomes, I will

provide a comprehensive map of genetic and epigenetic heterogeneity in these tumours.

Using an ABC-SMC inference framework based on a spatial tumour growth model, I

will also demonstrate how measurements of somatic mutations in multiple single glands can

be used to identify subclonal driver mutations undergoing selection. This analysis also sug-

gests that individual CRCs might evolve under different degrees of spatial constrain and that

this can be inferred from genomic measurements. Both, the presence of selected subclones

and the amount of spatial constraint, might constitute a novel ‘evolutionary biomarker’.
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Chapter 1

General Introduction

1.1 A Historical Perspective

A tumour is composed of billions of cells that grow out of control and do not comply with

the normal organisation of a tissue (DeVita, Young, and Canellos 1975; Del Monte 2009).

Tumours can therefore arise in virtually all multicellular organisms, including the most

basic forms of life. Indeed, tumour-like growth have been observed in Porifera1 (Robert

2010) and Cnidaria2 (Squires 1965; Millane et al. 2011; Domazet-Loso and Tautz 2010).

Historical accounts of tumours as pathology in humans date back as far as 3000 BC, and

methods of treatment were already described by Hippocrates 400 BC (Hajdu 2011).

Explanations for why tumours arise in some people varied over the centuries, ranging

from a contagious disease to imbalances of body humors. One of the first correct identi-

fications of an environmental factor causing the development of cancer was the discovery

that the exposure to soot increases the risk to develop scrotal cancer by Pott (1775). Today

we know that this is due to the ability of chemicals in the soot to cause mutations of the

deoxyribonucleic acid (DNA) — a long polymeric molecule composed of a sequence of the

four nucleobases adenine (A), cytosine (C), guanine (G) and thymine (T) — that contains

the genomic information. Shortly after the discovery that all living organisms are composed

of cells (Schwann and Schleyden 1847), Virchow, maybe inspired by others (Tan and Brown

2006; Wright and Poulsom 2012), established that tumours arise as a disease of cells from

a single ancestral cell (Virchow 1860).

Based on the observation of abnormal chromosomes in the nuclei of cancer cells

(Hansemann 1890), Boveri suggested that tumours develop due to particular abnormal com-

1Sponges
2Jellyfish and corals.
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binations of stainable particles, the chromosomes3, that are passed during the division of a

cell to the daughter cells (Boveri 1914). While this theory was not universally praised at the

time, it is from a modern perspective surprisingly accurate. Almost 50 years later, Nowell

and Hungerford (1960) discovered the ‘Philadelphia chromosome’, a chromosomal rear-

rangement of chromosome 9 and 22 that causes the fusion of the genes BCR and ABL1. It is

the only chromosomal alteration required for the development of chronic myeloid leukaemia

and occurs in almost all cases of this disease (Quintás-Cardama and Cortes 2009).

Other research conducted during this period of time had, for example, discovered the

cancer-causing effect of x-rays (Marie 1910), tar (Yamagiwa 1915) and various chemical

compounds (Friedewald and Rous 1944). Francis Peyton Rous had instead identified a

filterable transmissible agent, that was able to induce cancer in birds (Rous 1910; Rous

1911) and it would later be discovered that this effect was caused by a tumour-inducing

virus (Claude, Porter, and Pickels 1947). All of these observations lead to the formulation

of two, each other apparently contradicting, theories i) that cancer arise due to external

factors inducing the growth of cells or ii) that cancer arises due to the spontaneous ‘somatic

mutation’ of inherent properties of the genomic information.

After the identification of the DNA as the molecule containing the genomic informa-

tion (Watson and Crick 1953), it was discovered that the ribonucleic acid (RNA) of the

Rous sarcoma virus could also be translated into DNA (Temin and Mizutani 1970; Bal-

timore 1970). This provided an explanation of how the oncogenic information from the

virus would become accessible in infected cells (Huebner and Todaro 1969). Shortly later,

research of this genomic information identified almost identical versions of the oncogenic

parts of the viral genome in the chicken genome itself (Varmus et al. 1972). This implied

that the oncogene of the Rous sarcoma virus was of cellular origin and that a corresponding

cellular ‘proto-oncogene’ with a normal physiological function existed. Together with the

discovery that many of the previously identified carcinogens were indeed able to change the

genomic information (i.e., mutagenic) (Ames et al. 1973), it became clear that cancers did

primarily occur because of somatic mutations accumulating in cells and that arguments to

the contrary by Rous (1967) and others were erroneous.

3It would later be discovered that chromosomes contain the DNA and hence all genomic information.
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1.2 Cancer as Evolutionary Process

This somatic mutation theory of cancer was also consistent with statistical observations of

cancer incident rates (Nordling 1953; Armitage and Doll 1954) and known familiar predis-

positions to some cancer types (Knudson 1971). Based on the scaling of incident rates with

age, Armitage and Doll (1954) deduced that tumour development could be a multi-stage

process requiring around six independent mutations.

Armitage and Doll also derived an alternative explanation for the observed incidence

rates (Armitage and Doll 1957). They suggested a two-step process in which a first alter-

ation causes a subset of cells to clonally expand (initiation) with an independent second step

causing the transition to malignancy (progression). Further analysis of these two theories

concluded that tissue-specific effects and a combination of both might explain the incident

rates observed in other tumour entities better (Ashley 1969).

Similarly, Knudson (1971) concluded from the observed number of retinoblastomas

in patients with and without familial predisposition that two independent mutations were

required for the development of this tumour type. This observation was consistent with

the loss of both copies (i.e., alleles) of a single gene, which Knudson suspected to be the

explanation for his observation. His prediction would later be proven by the discovery of

the gene RB that, if lost, causes the formation of retinoblastomas (Friend et al. 1986).

The somatic mutation theory of cancer also implied that — just like for species (Darwin

1859) — evolutionary principles applied (Cairns 1975). In a seminal paper Nowell (1976)

outlined the principles of the clonal evolution of cancer, highlighting its equivalence to an

asexually reproducing species. In this evolutionary framework, the selection of lineages

with advantageous variations, arising due to random mutation, causes the cell population

to grow faster than others and hence rise to a higher frequency in the population (Nowell

1976). It also explains why the proliferative capacity of tumours generally increases over

time or the ability to grow into the underlying tissue and metastasise arise (Figure 1.1).

1.3 Tumour Biology

The perspective of cancer as a genetic disorder arising due to somatic mutation of the normal

cells provided the motivation for the identification of responsible genes. These efforts led

to the discovery of p53, as a protein-bound by a viral protein in cells transformed by the

tumour inducing virus SV40 (Kress et al. 1979; Chang et al. 1979; Linzer and Levine 1979;
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Figure 1.1: Cancer evolution. a) Cancer clones evolve in their micro-environment through an evo-
lutionary process. Vertical lines represent selective pressure and differently coloured circles repre-
sent subclones with different phenotypes (i.e., mutations). As already suggested by Nowell (1976)
stepwise selection of adapted subclones, might ultimately cause the development of clones able to
diffusely infiltrate into the underlying tissue or to metastasis (i.e., to grow in a different ecosystem).
Treatment (Tx) introduces a new selective pressure that can cause resistant subclones to arise, hence
causing recurrence (dark red clone). b) Darwin’s branching evolutionary tree of speciation from his
1837 notebook. (Figure from Greaves and Maley, 2012).

Lane and Crawford 1979) and independently due to its abnormally high expression4 in some

tumours (DeLeo et al. 1979).

The gene TP53, which encodes for the protein p53, would later be cloned in mice

(Chumakov, Iotsova, and Georgiev 1982) and humans (Matlashewski et al. 1984; Zakut-

Houri et al. 1985). Decades of research of the molecular function of this single gene would

ultimately lead to the characterisation of its various roles in normal cells and tumours (May

and May 1999). Similar research of other tumour-associated genes lead to the discovery

of ERBB2 (King, Kraus, and Aaronson 1985), the RAS gene family (Tsuchida, Ryder, and

Ohtsubo 1982; Wong-Staal et al. 1981; Marshall, Hall, and Weiss 1982; Shih and Weinberg

1982) or APC (Nishisho et al. 1991).

It was observed that for some of these genes, the mutation of both alleles — equiv-

alent to the ‘two-hit’ hypothesis proposed by Knudson (1971) for RB in glioblastoma —

was required. In contrast, other genes only required a single mutation to cause the trans-

4The high p53 expression in many tumours (Bártek et al. 1991; Yue et al. 2017), is in contrast to normal cells,
in which p53 expression is usually kept at low levels. Non-truncating mutations of p53 are strongly associated
with increased expression (Bartek et al. 1990; Alsner et al. 2008), suggesting the change of expression directly
arises from higher stability of mutated p53 (Yue et al. 2017). However, the introduction of mutant p53 into mice
(i.e., knock-in) does not cause an increase of p53 levels (Lang et al. 2004; Olive et al. 2004), thus suggesting
that additional mechanisms are involved (Yue et al. 2017). The negative-dominant phenotype of many p53
mutations would indeed explain why these additional alterations are adaptive and selected for.
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formation of cells. These contrasting effects could be explained by the activity these genes

have. For genes involved in the active suppression of tumorigenic properties, called tumour

suppressor gene (TSG), the second unmutated allele can still perform this activity. Such

TSG hence tended to require the loss of both alleles (i.e., they are recessive). In contrast,

genes that actively promote tumour-associated traits, like an increased growth rate, typi-

cally only required one mutant allele to be present (i.e., they are dominant). These types of

cancer-associated genes are also called ‘oncogenes’ and examples include constitutively ac-

tive mutants of K-Ras, the most commonly found oncogenes in colorectal cancers (CRCs).

Still, exceptions from this general pattern do exist. An example of this is the previously

mentioned p53. While p53 acts primarily as a TSG (Levine and Oren 2009; Vousden and

Prives 2009), many of the mutant alleles found in tumours are sufficient to cause a dominant

phenotype. This ‘dominant-negative’ effect is thought to arise from the ability of mutant p53

to disrupt the function of tetrameric p53 complexes. These tetramers are the actual active

protein structure able to bind to the DNA and regulate the transcription of target genes. The

activity is lost if a single mutant p53 protein is integrated into the complex (Goh, Coffill,

and Lane 2011). Since a higher expression of the mutant allele will disrupt an even larger

fraction of the p53 complexes (Yue et al. 2017), the ‘dominant-negative’ phenotype is also

able to explain why a high expression of mutant p53 alleles might be advantageous in a

tumour.

Early
Adenoma

APC/ -catenin

Normal
Epithelium

Intermediate
Adenoma

KRAS

Late
Adenoma

DCC
SMAD4
SMAD2

Carcinoma

p53

Metastasis

Other

Figure 1.2: Genetic model of colorectal tumorigenesis by Fearon and Vogelstein (1990).

The study of the relative frequency with which tumour-associated genes (i.e., driver

genes) were mutated, quickly led to the formulation of sequences able to explain the multi-

step nature of cancer. In the context of CRC, the adenoma-carcinoma sequence was de-

scribed by Fearon and Vogelstein (1990). This simple model of colorectal tumorigenesis

suggests that early alterations of APC induce the formation of adenomatous tumours and

that the subsequent mutation of K-Ras and the loss of p53 cause the progression to a carci-

noma (see Figure 1.2). While simplistic in nature, this model still shapes our understanding

of CRC as a disease (e.g., Vogelstein and Kinzler 2015; Lote et al. 2017) and remains at the
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heart of statistical models (e.g., Paterson, Clevers, and Bozic 2020).

The detailed study of the functional effects mutation of different cancer driver genes

had in cells, led to the identification of common characteristics. These ‘Hallmarks of Can-

cer’ that are acquired during the tumorigenesis, provide a rationale for the interpretation of

mutations occurring in individual cancer genomes (Hanahan and Weinberg 2000).

1.4 The Human Genome Project & NGS

The hope that the identification of other cancer-associated genes might reveal a cure for

the disease partially motivated large international efforts to sequence the human genome in

its entirety. Fierce competition between ‘The Human Genome Project’ (Sinsheimer 1989)

and the Celera Corporation lead to the completion of initial drafts of the human genome at

the beginning of the 21st century (Venter et al. 2001; Lander et al. 2001). This reference

genome provided the basis for the identification of new human genes (e.g., Hubbard et al.

2002) and allowed the study of their evolution in more detail.

Parallel to the sequencing of the human genome, the development of new sequenc-

ing techniques allowing high-throughput sequencing took place. These methods are today

collectively referred to as next-generation sequencing (NGS). A full description of the var-

ious approaches and technologies would certainly be outside of the scope of this simple

introduction, but good reviews of NGS methods can be found in Shendure and Ji (2008) or

Mardis (2008). The currently most widely used NGS method is Illumina’s sequencing-by-

synthesis. Sequencing-by-synthesis allows the parallel sequencing of pools of fragmented

DNA with attached primer pairs, so-called libraries.

These libraries are then added onto a glass surface to which complementary primers are

covalently bound (Adessi et al. 2000; Fedurco et al. 2006). This causes individual fragments

of DNA from the library to bind to the complementary primers. After this, polymerase

chain reaction (PCR) based amplification of the bound DNA fragments is performed. At

each step of this PCR, the free ends of the DNA fragments form a bridge that binds to a new

free primer pair attached to the glass surface. After several rounds, small clusters of nearly5

identical DNA fragments are formed (see Figure 1.3).

These clusters are then sequenced in a base-by-base fashion using fluorescent nu-

cleotides (Turcatti et al. 2008). At each sequencing step, images of the glass surface are

5Errors during the copying of the DNA can arise and are one source of noise that complicates the detection
of bona fide mutations from the obtained DNA sequences.
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taken. Through the analysis of the images, the sequence of each non-overlapping cluster

can be determined. This approach results in the generation of millions of reads, contain-

ing the sequence of the DNA in a single cluster and hence the sequence of a single DNA

fragment of the library.

In principle, partial matches between reads from overlapping genomic regions can be

used to assemble an entire reference genome de novo. Alternatively, reads can be aligned to

a known reference genome like the one produced by the Human Genome Project (Schneider

et al. 2016). This alignment-based analysis requires far fewer reads and is computationally

cheaper. By detecting differences between the reference genome and the sequenced reads,

variants present in the library can then be identified. For a variant m at a given locus i the

observed variant allele frequency (VAF) fm of such a variant is given by fm = Nm/Ni, where

Ni is the total number of reads covering i and Nm the number of these reads that support the

variant m. The observed VAF provides an estimate of the true frequency of the allele in the

sequenced sample.

In the absence of a genuine variant, one also expects to see some sporadic mismatches

between the reference genome and the generated reads. These mismatches are due to errors

that are introduced during the amplification of DNA molecules with PCR or due to random

misread bases during the sequencing process itself. The rate at which these errors arise

can be locus, library, and sequencing run specific and many different algorithms, so-called

mutation or variant callers, have been designed to distinguish bona fide variants from this

background noise (see for example Pabinger et al. 2014). With such algorithms, one can

readily identify most germline variants a person inherited from their parents.

In order to detect the somatic mutations that are present in a tumour one needs to dis-

tinguish these somatic mutations from the millions of germline variants present in all cells

of a person. For this, a second normal tissue sample, a so-called reference, is required.

Somatic variant callers were developed for the specific purpose of identifying somatic mu-

tations from such paired tumour-normal data. Extensive reviews of the performance of these

algorithms have been performed (see for example Wang et al. 2013b; Xu et al. 2014; Xu

2018).

Some variant calling algorithms for both, somatic and germline mutations, are also

able to detect mutations that delete or insert a sequence into the DNA. The analysis of these

so-called insertion or deletions (InDels), is limited by the length of the available reads. For
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the sequencing-by-synthesis method, the length of reads that can be obtained is limited to

≈ 150bp from either end of the fragment. Beyond this, the degradation of the base quality

makes sequencing impractical. For this reason, only relatively small alterations can be fully

resolved by most currently available NGS data.

Figure 1.3: llumina sequencing-by-synthesis. Clusters of identical fragments are created through
‘Bridge amplification’ on the surface of the flow cell (top row). The sequence of these clusters
(bottom left) of reads is then sequenced base-by-base using reversible terminator bases (bottom).
During this process, a single base binds to the DNA. The fluorescent signal is picked up using image
sensors (bottom right). At this point, the reversible terminator is removed from the base and the
process is repeated with the next base (bottom row). (Figure from Mardis, 2008)

A known reference genome and NGS methods now allow to re-sequence the entire

human genome within hours. This has provided the technological basis for the comprehen-

sive characterisation of mutations in thousands of cancer genomes as done by The Cancer
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Genome Atlas (TCGA, Bailey et al., 2018) or the Pan-Cancer Analysis of Whole Genomes

(PCAWG, Campbell and Giocomo, 2019) project. Both studies have also used NGS meth-

ods to analyse the transcription of genes in the entire genome or the presence of non-genetic

modifications of the genome, which will be explained later.

1.5 Modern Cancer Genomics

1.5.1 Cancer Driver Genes

Large-scale pan-cancer genomic studies have significantly advanced our understanding of

the genomic changes underlying carcinogenesis. The analysis of somatic mutations present

in individual cancer types has allowed the identification of novel cancer driver genes and

the characterisation of the frequency with which these occur in different tumour entities

(Kandoth et al. 2013). Similar studies of somatic copy-number alterations (CNAs) of genes

have provided significant insight into the recurrence and putative causes of CNAs (Zack

et al. 2013).

Due to the complexity of the processes underlying the accumulation of point mutations

and their selection, statistical models are required for their analysis. Many approaches to

the detection of such recurrently mutated genes exist. Examples of these include methods

that analyse an excess of non-synonymous mutations compared to an expected background

(Weghorn and Sunyaev 2017; Martincorena 2019; Dietlein et al. 2020), clustering of muta-

tion within protein structures (Arnedo-Pac et al. 2019; Tokheim et al. 2016), the predicted

impact of mutations (Mularoni et al. 2016) or a combination of such methods (Lawrence

et al. 2014). Dedicated projects for the analysis and curation of such cancer-specific driver

genes across datasets and discovery methods have been developed (e.g., Sondka et al. 2018;

Martı́nez-Jiménez et al. 2020).

Despite these efforts little is known about the functional impact the large majority of

these driver mutations have in vivo. Where such experimental data exist, they often involve

mouse models that do not necessarily resemble the effect these have in humans. The longi-

tudinal observation of driver mutations in primary lesions is rarely possible. Longitudinal

tracking of somatic driver mutations using liquid biopsies can instead provide a window

into disease evolution, but it integrates information over tumour cells from the primary as

well as potentially existing metastatic sites (Khan et al. 2018).

Cells in a tumour also do not necessarily shed DNA at a uniform rate from all locations

of a tumour. Instead, the rate at which DNA is shed depends on the rate at which tumour
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cells die, which itself depends on factors like the degree of vascularisation. For this reason,

the frequency of mutations in the circulating tumour DNA might not be identical to the

frequency of the mutations in all tumour cells. Despite the limited knowledge of the fitness

effects of driver mutations in vivo, the pan-cancer identification and analyses of driver genes

have provided crucial insights into their role in the development of human malignancies and

provides the very basis for today’s precision oncology and genomic medicine (Vander Velde

et al. 2020).

1.5.2 Mutational Signatures

The analysis of somatic mutations across cancer types has also allowed to gain insight

into the processes that contribute to their accumulation. In a seminal study Alexandrov et

al. (2013b) showed that different mutational processes can be identified based on unique

‘fingerprints’ from information on the somatic mutations across different tumour entities.

It has in principle been known for a long time that various mutagens affect the DNA in

different ways. An example of a well characterised mutational process is the effect of ultra-

violet light with a wavelength between 280–315 nm (UV-B). The ability of UV-B to induce

nucleotide changes and double-strand breaks explains why the exposure to ultraviolet light

is a major risk factor for the development of the most common types of skin cancer (Arm-

strong and Kricker 2001; Narayanan, Saladi, and Fox 2010). The permanent changes of the

DNA sequence by ultraviolet light mainly result from the formation of covalent bonds be-

tween adjacent pyrimidine bases (i.e., C and T) in the DNA upon exposure to UV-B, causing

the formation of cyclobutane-type pyrimidine dimers (Setlow 1966). The incorrect repair

of these DNA lesions can then lead to alterations of the DNA sequence itself (Pfeifer, You,

and Besaratinia 2005). Depending on which strand of the DNA one considers, this incorrect

repair primarily leads to the accumulation of CC>TT/GG>AA and CC>TC/GG>GA (i.e.,

C>T) mutations.

In line with this, the majority of somatic mutations identified in early sequencing data

obtained from a skin-cancer cell line were found to be CC>TT/GG>AA and C>T muta-

tions (Pleasance et al. 2010a). In a small-cell lung cancer cell line sequenced by the same

authors, such somatic mutations were in contrast found to be very rare (Pleasance et al.

2010b). This cell line instead mostly showed G>T/C>A, G>A/C>T and A>G/T>C mu-

tations (Pleasance et al. 2010b). This was consistent with earlier observations of mutations

in TP53 obtained through targeted sequencing (Pfeifer et al. 2002) and the mechanism of
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mutation induction by polycyclic aromatic hydrocarbons, the main mutagenic compounds

present in tobacco smoke (Deutsch-Wenzel et al. 1983; Denissenko et al. 1996). Overall,

these early studies demonstrated that somatic mutations obtained from sequencing data of

individual tumours are a powerful method to characterise the effects of dominant mutational

processes.

Alexandrov et al. (2013a) used a similar approach to systematically identify muta-

tional processes based on their induced mutation across patients by using a dimensionality

reduction method called non-negative matrix factorization (NNMF) non-negative matrix

factorization (Lee and Seung 1999). For the analysis Alexandrov et al. extended the six

possible substitutions — i.e., C>A, C>G, C>T, T>A, T>C, and T>G using the opposite

strand for sites with a reference G or A base — by the two bases flanking the mutated site

(i.e., their 5′ and 3′ context). Since there are four possible bases for the 5′ base, four bases

for the 3′ and six substitutions this results in a total of 4 ·4 ·3 = 96 substitution types. The

number m of each of these K = 96 substitution types across G patients can be summarised

as a matrix

M =


m1

1 m1
2 . . . m1

G
m2

1 m2
2 . . . m2

G
...

...
. . .

...
mK

1 mK
2 . . . mK

G

 .
Alexandrov et al. then used NNMF to factorize this matrix M into a K×N matrix P and

a N×G matrix E for which M ≈ P×E. This approach results in a reduced representation

of the data as a linear combination of N ‘mutational signatures’ stored in the columns of P

and the ‘exposure’ of a patient to each of these stored in the rows of E. They found that the

minimum number of N required to factorize the data from total of 7,042 patients from 30

was 21, suggesting that around 21 different mutational process might have been active in

various tumours.

It was indeed possible to identify known aetiologies for many of the identified mu-

tational signatures. An example is a signature they primarily identified in lung cancers of

smokers, that could be attributed to the mutagenic effects of substances contained in tobacco

smoke (Alexandrov et al. 2013b). Another mutational signature, which was only found in

sun-exposed skin, matched the known profile of mutations induced by ultraviolet light. A

more surprising discovery was that cytidine deaminase from the APOBEC family appeared

to contribute substantially to the accumulation of somatic mutations in a subset of tumours

from various entities (Nik-Zainal et al. 2012b). Today, similar analyses of ‘mutational sig-
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natures’ in various cancer types have contributed significantly to our understanding of how

the exposure to and the activity of mutational processes — that ultimately provide the nec-

essary variation for tumour evolution — change over time and in different disease stages

(Alexandrov et al. 2020).

1.6 Intratumor Heterogeneity

As outlined in the above paragraphs, many pan-cancer sequencing studies focused on the

analysis of somatic mutations across patients. Doing so, they revealed an extensive pattern

of inter-tumour heterogeneity and gained insight into the events involved in the development

of the corresponding malignancies. Still, each tumour is composed of 108–109 cells per

gram of tissue (Del Monte 2009) and the dividing cells continue to accumulate mutations

as a tumour growths. Since these mutations cause the phenotypic variability that selection

can act on, a better understanding of this intratumor heterogeneity (ITH) of mutations is

important for the understanding of cancer as a disease (Greaves and Maley 2012; Greaves

2015).

Some mutations can cause subgroups of cells to be better adapted and grow faster, thus

causing a positive selection of the corresponding subpopulation. Other mutations might

not directly provide a growth advantage, but instead confer resistance to drugs used for

the treatment of cancer, these pre-existing resistant subpopulations can then cause the rapid

failure of these therapies (Roche-Lestienne et al. 2002; Khan et al. 2018; Shah et al. 2002).

Irrespective of their effect on the phenotype, all genetic mutations can serve as naturally

arising markers of genetically related cells (i.e., lineage markers) that allow to trace them

through time and space. Easily observable markers, like the previously mentioned Philadel-

phia chromosome, have indeed been used very early to prove that most tumours are clonal

and thus arise from a single ancestral cell (Fialkow 1976).

The single cellular nature of cancer makes the observation of most genetic mutations

hard (Cairns 1975; Kinzler and Vogelstein 1996), but with technological advancement the

detection of other genetic variants became possible.

Examples of this include the usage of microsatellite mutations by Tsao et al. (1998) or

gains and losses of chromosomal regions for phylogenetic inference by (Desper et al. 1999).

Thanks to the vast improvement of methods over the last decades various other studies (e.g.,

Siegmund et al. 2009b; Navin et al. 2011; Anderson et al. 2011; Gerlinger et al. 2012; Nik-

Zainal et al. 2012a; Sottoriva et al. 2015; Lawson et al. 2020) have enabled similar analyses
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at ever-increasing level of detail.

The first comprehensive study of the extend of ITH was provided by a seminal study

by Gerlinger et al. (2012). In this study, the authors used whole-exome sequencing (WES)

— a method that allows the detection of mutations in the majority of the coding genome —

of samples from multiple regions obtained from four renal-cell carcinomas. Through this

approach, the extensive mutational heterogeneity existing within each tumour was revealed.

Similar multi-region sampling combined with NGS based sequencing was applied to many

malignancies and, maybe surprisingly, revealed that complex branching patterns and spatial

segregation defined the internal clonal structures of all tumours. Likewise, studies of metas-

tasis revealed complex branching patterns that suggested reseeding between sites (Gundem

et al. 2015; Yates et al. 2015; Yates et al. 2017; Noorani et al. 2020). While some of

these studies identified mutations in previously identified driver genes, how and if these

contributed to disease evolution often remained elusive. A notable exception were cases in

which multiple independent mutations of the same gene were observed in an independent

lineage (e.g., Gerlinger et al. 2012; Gerlinger et al. 2014). This convergent evolution indeed

provided strong evidence of context-dependent selection of specific mutations. Neverthe-

less, convergent evolution of subclonal mutations is fairly rare and the question of whether

the observable ITH arises due to pervasive selection of subclones or if it is instead explain-

able by genetic drift remains unclear.

1.6.1 Phylogenetic Reconstruction

Since the realisation that all existing species arose through the process of evolution from a

common ancestor (Darwin and Wallace 1858; Darwin 1859), reconstruction of these ances-

tral relationships, became a fundamental part of biological research (Haeckel 1866) and is

today the subject of the field of phylogenetics. Various methods have been used to recon-

struct the relationships between species and between individuals of the same species.

One of the most frequently used methods to reconstruct phylogenetic relationships of

N individuals or species is the identification of a tree that requires the smallest number of

character changes, a maximum-parsimony (MP) tree. This problem can be split into two

sub-problems i) the calculation of the parsimony score S of a given tree T and ii) the explo-

ration of all possible trees. For the calculation of S Fitch’s algorithm can be used. Fitch’s

algorithm labels each internal node with the intersection of the labels of the descendant

nodes or if this set is empty, with the union of the labels. The number of changes in sets
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in the tree are then equal to the minimum number of character changes required. This ap-

proach can then be repeated for all analysed characters. The identification of the best tree

T is in theory NP-hard and requires to explore the entire tree space. In practice, other ap-

proaches, like hill climbing, are often used to reduce the complexity of the problem. Various

heuristics, like the parsimony ratchet (Nixon 1999), can be used to ensure that the tree space

is explored sufficiently (Felsenstein and Felenstein 2004).

In line with these approaches, many studies of cancer evolution have used methods

from phylogenetics to reconstruct phylogenetic trees from mutation data observed in sam-

ples. A vast number of algorithms exist for the inference of trees from sequence data and

indeed most of these have been used to infer phylogenetic relationships from cancer genome

data as well. The options range from simple distance-based methods like unweighted pair-

group methods (e.g., Bruin et al. 2014) or neighbour-joining (e.g., Navin et al. 2011; Xu

et al. 2012) to maximum parsimony methods (e.g., Bruin et al. 2014; Zhang et al. 2014b).

and maximum-likelihood methods (e.g., Jahn, Kuipers, and Beerenwinkel 2016).

The phylogenetic trees reconstructed by these methods are directed and rooted graphs

that consist of nodes and edges connecting nodes. In a phylogram, a particular type of

phylogenetic tree, each edge has a length proportional to the amount of character change

occurring between the two nodes (Santamarı́a and Therón 2009). Unless otherwise men-

tioned, phylogenetic trees shown in the following will always be phylograms. Figure 1.4

shows an example of a phylogram and various terms used to describe elements of it are

highlighted in it.

Figure 1.4: Example of a phylogenetic tree. Terms generally used in phylogenomics are shown in
blue and those specifically used in cancer evolution are shown in black. Edges associated with the
clade formed by the samples S1 and S2 are shown in red.

The tree’s root node represents the germline, which can be estimated from appropriate

normal tissue (i.e., blood or normal colon bulks). As mentioned before, the length of each
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edge represents the number of character changes (i.e., mutations) occurring between two

nodes. Nodes can either be internal nodes that are connected to two other nodes or a tip node

that is only connected to one other node. Tip nodes represent observed samples or clonal

entities. Internal nodes instead represent the common ancestor of a set of samples/clones

and are unobserved. The subset of a tree containing such a common ancestor and all its

descendants are also referred to as a clade (shown in red in Figure 1.4).

Mutations associated with the edge that connects the root of the tree with the most re-

cent common ancestor (MRCA) of the entire tumour are frequently referred to as ‘truncal’

or ‘clonal’ mutations and the rest as ‘subclonal’ mutations. In some contexts, subclonal mu-

tations on terminal edges will also be referred to as ‘private’ mutations and all the remaining

ones as ‘shared’ mutations.

1.6.2 Subclonal Deconvolution

Sample trees are not phylogenies One aspect of cancer genomics data that complicates the

application of the described phylogenetic reconstruction methods to multi-region sampling

data has to be considered. Each obtained sample consists of an admixture of cells or cell

populations that, due to extensive ITH, contain different mutations. When all mutations of

each sample are combined, the ‘sample trees’ reconstructed from these data are not true

‘phylogenies’ (Alves, Prieto, and Posada 2017).

The reason for this discrepancy is summarised in Figure 1.5A&B. For a tumour with

three subpopulations of cells distributed in space (see left of Figure 1.5A), the clonal struc-

ture of the tumour can be represented by their three mutation profiles (see middle of Figure

1.5A). Phylogenetic reconstruction methods can be applied to these mutational profiles to

infer the ancestral relationships of the subpopulations (see right of Figure 1.5A).

If instead all mutations observed in a spatial sample (see left of Figure 1.5B) are com-

bined and phylogenetic reconstruction conducted on the resulting mutational profiles of the

samples (see middle of Figure 1.5B), then a wrong phylogenetic tree might be inferred (see

right of Figure 1.5B). This problem can in theory be mitigated through the identification

of the ‘clonal variants’ of each sample, this essentially estimates the mutation state of the

MRCA of all cells, but this approach disregards much of the genetic information and can

still be problematic if a subclone is present at a high frequency.

Subclonal deconvolution Instead, one should reconstruct the mutational profiles of the

present subclonal populations (i.e., clones) from information contained in the VAF of each
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Figure 1.5: Phylogenetic Analysis of Bulk Tumour Samples. (A) Left panel: clonal composition of
a hypothetical primary tumour. Coloured circles represent the three clones present (Clones A–C).
Mid panel: true clonal sequences for five different genomic sites, where the dashed square indicates
a somatic mutation. Right panel: true clonal history with red dots depicting the chronological order
of mutations. Tumour most recent common ancestor (MRCA) highlighted as an internal node. (B)
Left panel: bulk regional samples (I–III), with intermixed clones at different proportions. Mid panel:
mutational profile (presence/absence) inferred; dashed square indicates the presence of mutations.
Right panel: inferred sample history using maximum parsimony. Red dots depict the chronological
order of mutations. (C) Left panel: bulk regional samples (I–III), with intermixed clones at different
proportions. Mid panel: variant allele frequency (VAF) estimates for mutation at each sample, and
inferred clonal sequences using the Clomial algorithm. (Figure from Alves, Prieto, and Posada,
2017, reproduced under a Creative Commons CC-BY-NC-ND licence. )
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of the observed alleles. From the reconstructed mutation profiles, one can in principle infer

the correct ancestral relationships (Figure 1.5C). Still, in this approach, the noise associated

with NGS becomes a problem.

As described before, NGS generates a set of short reads that can be aligned against

the genome. The number of reads Ni covering a genomic site i then defines the ability

to resolve the true frequency fi of the mutation in the population. Ignoring potentially

overdispersion, the observed number of mutated alleles yi follows a Binomial distribution

with Xi ∼ B(ni, fi). This means that if we, for example, assume that two equally sized sets

of mutation with f1 = 0.4 and f2 = 0.5 are present in the population and that we sequence

this at N̄ = 50 for only≈ 10% of the mutations, one can determine to which set they belong

at a confidence level of 5%. At n̄ = 100 this increases to ≈ 31% and at n̄ = 1000 > 90% of

mutations could be confidently assigned to either of the two components.

Since sequencing at such high coverage is infeasible in most contexts, statistical meth-

ods are often used to instead infer the mixture distributions. Applying these methods

to multi-region or single-sample NGS mutation data is called ‘subclonal deconvolution’.

These methods have in common that they try to infer the number of mixture components

or ‘clones’ and the mixture weight of each. The statistical methods and details surrounding

the model vary for any of these, but many are based on Dirichlet Process clustering.

A representative example of these is DPClust, which models the VAF distribution as a

mixture of n subpopulations of cells, each making up an unknown fraction of tumour cells

πh and contributi ng an unknown fraction of all mutations ωh. The distribution P of all πh is

modelled as a Dirichlet Process and the number of mutated reads yi obtained from a variant

allele i supported by Ni are then assumed to follow a Binomial distribution. The full model

can thus be described as
yi ∼ Bin(Ni,ζi(πi)), πi ∼ DP(P0,α),

where ζi is a function that gives the expected VAF of the mutation i if it is present in a

fraction πi of tumour cells. DPClust uses the stick-breaking view of the Dirichlet Process

P =
∞

∑
h=1

ωhδπh , ωh =Vh

h−1

∏
l=1

(1−Vl), with πh ∼ P0, Vh ∼ Beta(1,α),

where δπh represents the indicator function evaluating to one at πh and ωh is the weight of

cluster h in its implementation.

To obtain samples from the posterior distribution of the model Gibbs sampling is used.

The base distribution P0 is assumed to be P0 ∼U(0,1), the total number of clusters limited
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to k and a prior distribution is put on the concentration parameter α ∼ Γ(1,α0)) with the

hyperparameter α0.

A similar method is used by PyClone, which fits a mixture of binomial or overdis-

persed beta-binomial distributions to cluster mutations (Roth et al. 2014). The Markov

chain Monte Carlo (MCMC) step of DPclust and PyClone is associated with a significant

computational cost, which motivated the development of variational Bayesian methods like

SciClone. SciClone can use mixtures of beta, gaussian or binomial distributions to cluster

mutation data (Miller et al. 2014). Both PyClone and SciClone allow the analysis of mul-

tiple samples and PyClone also allows to conduct the clustering analysis across different

copy-number states.

In all cases, the number of reconstructed clusters depends on the available data and

importantly is not necessarily equal to the true number of subclonal populations. Mutation

clusters present in a very similar fraction of cancer cells, the cancer cell fractions (CCF),

are inherently hard to resolve as independent clusters. Low sequencing depth and low tu-

mour purity are other factors that can limit the ability to resolve clusters and can thus cause

the underestimation of the number of present subpopulations and their clonal composition.

These factors are especially important for single sample sequencing studies. In a multi-

variate setting, the spatial segregation of mutations often allows to resolve the subclonal

structures much better, but the same issues can arise in this context as well.

Reconstruction of phylogenetic relationships Based on inferred subclonal mutation sets

identified by clustering methods clone trees — i.e., proper phylogenies — can be recon-

structed (Alves, Prieto, and Posada 2017; Dentro, Wedge, and Van Loo 2017; Tarabichi et

al. 2018). The methods used for this rely on the ‘pigeonhole principle’, which says that the

cellular-prevalence (i.e., the estimated fraction of mutated cells) of a mutation cluster nested

into another ancestral cluster must be smaller than the cellular prevalence of the ancestral

cluster.

With perfect information on the subclonal structure of a tumour, all trees compatible

with the ‘pigeonhole principle’ can be identified. It is important to note that more than

one tree can be compatible with the observed subclonal mutation clusters. In this case,

the identification of the true tree is then obviously not possible. In principle phasing of

mutations located on the same DNA molecule can allow drawing additional inference on

the ordering of clusters in a tree, but due to the short read length of readily available NGS,
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such phasing is often not possible.

Furthermore, the available data themself often do not allow to perfectly reconstruct the

subclonal composition of the tumour. Instead, due to the limited sequencing depth, a low

number of samples and confounding factors like tumour purity, the subclonal structure can

only be resolved imperfectly. This can cause actually separated clusters to be merged and

their cellular prevalence to be estimated wrongly. Furthermore, the estimated frequency of

mutation clusters is subject to a considerable degree of uncertainty, even if their structure is

perfectly resolved.

Due to the imperfect information on the subclonal composition of a tumour, statistical

methods that are able to take these errors into account are required. One method that allows

the automatic reconstruction of clone trees from the results of subclonal deconvolution has

been suggested by Niknafs et al. (2015) Their inference framework combines a fitness func-

tion to evaluate the compatibility of a given tree of the inferred subclonal composition with

a genetic algorithm to heuristically explore the tree space. An alternative approach that

combines both, the subclonal deconvolution and the identification of the clone tree, was

suggested by Jiao et al. (2014). This method applies a stick-breaking process that is tree-

structured and hence results in tree-compatible cellularity values for mutation clusters.

1.6.3 Definition of a ‘Subclone’

After explaining how statistical deconvolution of NGS data and multi-region sequencing

can be used to reconstruct ‘clone trees’, a definition of a subclone is certainly needed. Sur-

prisingly, despite being essential for the interpretation of their results, many publications

doing such reconstruction do not define this explicitly (e.g., Dentro et al. 2021). In the fol-

lowing, three possible definitions — all of which are used in cancer genomics studies —

will be provided. A more detailed discussion of these and other definitions can be found in

Sottoriva, Barnes, and Graham (2017).

The mutation centred perspective When speaking of the results of mutation clustering

methods, reconstructed clusters are often referred to as subclones. These can be defined

as ‘a set of mutations present in a set of cells due to their shared ancestry’. This mutation

centred perspective provides little information on the property of actual tumour cells since

mutations from more than one such ‘mutation subclones’ can co-occur in one tumour cell.

Given the size of the human genome and the relatively large mutation rates observed in

human malignancies, a new mutation cluster is expected to be produced during each cell
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division of which both created lineages survive. For this reason, there are expected to be

more mutation subclones than cells.

The genotype centred perspective When the results of a mutation clustering are instead

used to reconstruct a compatible ‘clone tree’ this tree contains a set of genetic subclones

as tip nodes. These can be defined as ‘a set of genetically identical cells with common

ancestry’. Again, given the size of the human genome and the relatively large mutation

rate observed in human malignancies, most cells are expected to accumulate at least one

additional mutation during each division. Therefore, the number of such subclones would

be almost identical to the total number of cells in the tumour.

The ability to resolve all of these would then primarily be limited by the amount and

quality of data obtained. Still, the ancestral relationships of these clones might provide

valuable insight into the life history of a tumour. However, the interpretation of these trees

is at present still challenging.

Phenotype centred perspective Ultimately, one might be able to use the information con-

tained in reconstructed trees to infer properties of subclones that constitute ‘a set of cells

with common ancestry with a common phenotype’. This definition allows for the pres-

ence of different mutations in cells, but these or other factors must not alter the phenotypic

properties of the cells.

The growth dynamics of a tumour containing billions of cells are too complicated

to allow an easy interpretation of a reconstructed phylogenetic tree and for this reason,

statistical models or simulations that can capture the relevant properties of the process are

necessary. Currently, statistical models that allow such inference are lacking. In a tumour

significant spatial crowding occurs (Schreck et al. 2019) and how phenotypic properties are

altered is not fully understood.

In the following, this definition of a subclone, with the considered phenotype being the

replicative potential of cells (i.e., a selected subclone), will be used. How to reliably identify

selected subclones from tumour sequencing data is indeed subject of current research and

the subject of considerable debate that will be outlined in much more detail in Chapter 2.

It is important to note that all of these possible definitions are fundamentally different

in their meaning. This is especially problematic since they are often, at least implicitly, used

interchangeably. In the following, a subclone will, unless mentioned otherwise, refer to a

subclone that has a selective advantage compared to other cells in the tumour.
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1.7 Epigenomics

While the genome provides the ‘blueprint’ for all phenotypes that can be generated by cells

in the body, other mechanisms to regulate the expression of these phenotypes must exist.

This is obvious as almost all6 cells of the body contain identical genomic information but

express vastly different and stable phenotypes.

Initially introduced as abstract ‘higher level’ or epigenetic control (Waddington 1942),

decades of research have revealed a plethora of mechanisms by which this regulation of the

expression is archived. By definition, these epigenetic modifications are, like the genome,

heritable. Still, unlike the genome, they exhibit much larger flexibility and are controlled

by a complex network of regulatory mechanisms. Modification of the epigenome can also

occur as a reaction to environmental or cell-intrinsic cues, thus allowing the modification of

gene expression (Allis and Jenuwein 2016; Cavalli and Heard 2019; Jung et al. 2020).

1.7.1 Epigenetic Modifications

Various modifications of the chromatin structure — the combination of the DNA and asso-

ciated proteins — have been identified. Many of these have at some point been implicated

in the development of cancer. In the following, the most important epigenetic modifications

will be explained in detail.

DNA methylation The most extensively studied epigenetic modification is the methylation

of cytosines at the C5 position of CpG dinucleotides (see left of Figure 1.6). Indeed, most

CpG dinucleotides are methylated within the genome, and only a small fraction of CpGs

in the genome are unmethylated. These are often located in short, 200− 2,000bp long,

clusters of CpG rich intervals called ‘CpG islands’ (Suzuki et al. 2007). Such CpG islands

frequently occur around the promoter region of genes, and their methylation is associated

with reduced expression of the associated genes (Ng and Yu 2015). Similarly, methylation

of regulatory elements is associated with a reduction of their activity (Luo et al. 2010). Loss

of methylation around retrotransposons — small sequences of DNA that can be removed

and inserted in different regions of the genome by special enzymes — is associated with

their reactivation and can contribute to genomic instability in CRC (Antelo et al. 2012;

Baba et al. 2018).

6Physiological somatic recombination is known to occur as part of V(D)J recombination (Market and Pa-
pavasiliou 2003), isotype switching of immune cells (Market and Papavasiliou 2003) and brain neurons (Lee
et al. 2018).



42 Chapter 1. General Introduction

Figure 1.6: Fundamentals of epigenetic modifications. DNA is generally organised in nucleosomes,
small segments of DNA wrapped around histones (right inset). These histones are composed of four
subunits with tails that can be modified. These histone modifications occur at specific positions of
the peptides (e.g., H3K27, meaning histone protein 3, lysine 27). The figure shows the two main
chromatin states and their associated chromatin modifications. The first, so-called heterochromatin,
is generally compact and less accessible. Heterochromatin is associated with 5-C methylation of
CpG dinucleotides transferred by DNA methyltransferases (DNMTs) and methylation (filled blue
squares) of histone tails. This type of chromatin is found in the majority of the genome, especially
in the promoters of non-expressed genes and transposable elements in the DNA. The second type
of chromatin, so-called euchromatin, is less compact and more accessible to protein binding to the
DNA. It is associated with low levels of CpG methylation, acetylation of histone tails (filled red
squares) and methylation of different peptides in the histone tails (see right inset). Euchromatin
can be found around expressed genes, specifically around their promoter regions. Loss of chromatin
compaction can lead to the reactivation of transposons in cancer; this can cause them to be reinserted
in different genomic regions and contribute to tumorigenesis. In CRC, genome-wide hypomethyla-
tion is frequently observed. In a subset of cases, promoter hypermethylation occurs, causing aberrant
gene expression. (Figure from Jung et al., 2020)

Histone modifications In normal physiological conditions, the DNA is wrapped around

histone proteins, forming the so-called nucleosomes (see right of Figure 1.6). Histones are

small proteins composed of eight subunits, which each possess a tail (Chi, Allis, and Wang

2010). A second large group of epigenetic modifications are marks left on peptides at vari-

ous positions of the histone tails. Common modifications of the histone tails are the addition

of methyl and acetyl groups to arginine and lysine peptides in the histone tails (Kouzarides

2007). The absence or presence of these modifications can alter the relative compactness

of the chromatin (Struhl 1998), and other proteins can specifically recognise specific his-

tone marks. These DNA binding proteins can cause further modifications of the chromatin

structure. Multiple proteins recruited to regions of the chromatin (Jung et al. 2020) can also

interact with each other. Together chromatin modifications and proteins binding specific

elements of the DNA give rise to a complex and poorly understood regulatory network that

ultimately determines how genes are expressed.

Nevertheless, two general histone modification states have been identified. The first
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one is a generally repressed and compacted state of the chromatin that is associated with

H3K27 and H3K9 and H4K20 trimethylation (Peters et al. 2003; Wiles and Selker 2017;

Shoaib et al. 2018). Another, generally activated and less compact, chromatin state is in-

stead associated with H3K4, H3K36, and H3K79 trimethylation and the acetylation of his-

tone tails (Kouzarides 2007).

Measurement of chromatin accessibility The presence of histone modifications can be

measured using chromatin immunoprecipitation assays with sequencing (ChIP-seq). ChIP-

seq isolates small fragments of DNA with modification specific antibodies that can then be

profiled through sequencing. Still, ChIP-seq is a very time consuming and complex method.

Alternative approaches directly measure the accessibility of the chromatin as a surrogate of

the general chromatin states. One such method is called assay for transposase-accessible

chromatin using sequencing (ATAC-seq) (Buenrostro et al. 2013; Buenrostro et al. 2015).

ATAC-seq uses the activity of a modified Tn5 transposase that can nick the DNA and insert

short adapter sequences into the flanking regions. The activity of Tn5 occurs primarily in

regions of open chromatin and regions deprived of nucleosomes (Figure 1.7a). For this rea-

son, the Tn5 can be used to obtain a high-level surrogate of the general chromatin state. In

ATAC-seq promoter regions of actively transcribed genes or active enhancers tend to accu-

mulate many insertions, whereas non-transcript genes do not show an increased number of

insertions relative to the background (Figure 1.7c). When two nicks by the Tn5 occur close

to each other in the same DNA molecule a barcoded DNA fragment that can be sequenced

will be generated. When the NGS reads obtained from these fragments are aligned to the

genome, they will reveal characteristic peaks that can be used to profile regions of open-

chromatin in a genome-wide fashion. Another important advantage of ATAC-seq compared

to ChIP-seq is that it requires very little input material and that it can be conducted with as

few as 500 cells (Figure 1.7b).

1.7.2 Epigenetics in Cancer

It is widely recognised that epigenetic alterations play an important role in the development

of cancer (Akhtar-Zaidi et al. 2012; Jones and Baylin 2007; Biswas and Rao 2017; Nebbioso

et al. 2018). While recurrent genetic alterations detected in tumours clearly demonstrate that

they are a major factor contributing to malignant phenotypes, our general understanding of

epigenetics and especially its role in human malignancies is still rather limited (Baylin 2011;

Lao and Grady 2011; Corces et al. 2018). Much past research of epigenetic alterations in
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Figure 1.7: The ATAC-seq assay. a) ATAC-seq relies on the activity Tn5 transposon (green) loaded
with sequencing adaptors (red and blue). These nick and insert these adaptors preferentially into
regions of open chromatin (e.g., between nucleosomes shown in grey). This generates fragments that
can be sequenced by conventional NGS. b) Unlike alternative methods ATAC-seq is fast and requires
very little input material. c) ATAC-seq generates tracks similar to other chromatin accessibility
assays and shows a signal in regions associated with active enhancers and promoters. (Figure from
Buenrostro et al., 2015)

CRC has focused on methylation, which is only one of the many known epigenetic mod-

ifications (Lao and Grady 2011; Okugawa, Grady, and Goel 2015). This research led to

the identification of a CpG island methylator phenotype (Ogino et al. 2008), microsatel-

lite instability (MSI) caused by hypermethylation of DNA mismatch repair (MMR) genes

(Herman et al. 1998), a genome-wide hypomethylation phenotype (Suter, Martin, and Ward

2004), and various methylation biomarkers (Okugawa, Grady, and Goel 2015). Studies

assessing other epigenetic alterations in CRC are relatively rare, but some have identified

recurrent CRC specific alterations of histone modifications (Akhtar-Zaidi et al. 2012). The

so-far largest profiling of general chromatin accessibility using ATAC-seq was conducted
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as part of the TCGA project (Corces et al. 2018) and demonstrated general tissue-specific

chromatin states that are able to explain much of the variation in gene expression across

tumour types. Still, due to the lack of normal controls, the TCGA study was not able to

determine whether the observed chromatin states were a consequence of the tissue of origin

or bona fide somatic changes.

Still, very little is known about the ITH of epigenetic alterations and its relation-

ship with the genetic heterogeneity (Black and McGranahan 2021). One seminal study

by Roerink et al. characterised the relationship of genomic (WGS), epigenomic (Illumina

450K methylation array) and transcriptomic (RNA-seq) ITH in CRCs (Roerink et al. 2018).

For this Roerink et al. analysed single cell-derived organoids from a total of three colorectal

cancers along with normal cells from adjacent tissues and showed that heritable and stable

subclonal changes occurred in parallel during the expansion of the tumour. Still, clock-like

changes of DNA methylation are known to exist (Field et al. 2018; Shibata 2009; Shibata

2011) and a parallel drift of the epigenome and genome seems to be a reasonable assump-

tion. It is of course possible that a subset of the subclonal chromatin state changes observed

by Roerink et al. were subject to subclonal selection, but more research is required to eluci-

date this.

Furthermore, phenotypic changes can also be induced by the microenvironment

through pre-existing cellular mechanisms, rather than drift or selection of specific pheno-

types (Via and Lande 1985; Price, Qvarnström, and Irwin 2003). This phenotypic plasticity

might play a role in the adaptation of cancers to various microenvironments (Anderson et al.

2006; Xue and Leibler 2018; Jolly et al. 2018; Ardaševa et al. 2020). Unfortunately, such

microenvironmentally induced differences can be reduced or altered by the in vitro cultiva-

tion of cells required for the methods used by Roerink et al. For this reason, the concomitant

profiling of epigenetic and genetic alterations in primary CRC is required to gain conclusive

insight into the prevalence of these.

1.8 Thesis Objective and Outline

The objective of this thesis was to characterise this ITH existing in colorectal carcinoma on

the genetic and epigenetic level, as well as the relationship between these. This was done

with the goal to derive ‘evolutionary biomarkers’ that characterise the growth dynamics of

individual tumours and to evaluate if they are predictive of the clinical outcome.

In the first two chapters of this thesis, I will illustrate the difficulties of understanding
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genetic diversity using bulk sequencing of tumour samples. Here, using simulated sequenc-

ing data from a stochastic branching-process model of cancer evolution and by reanalysing

several large-scale genomic profiling studies, I will show the limitations of simple summary

statistics of neutral dynamics, clustering-based methods, and cohort-wide measurements of

selection like dN/dS ratios to provide insight into subclonal dynamics from such data.

Following this, I will present results from a novel study on the co-evolution of the

genome and epigenome in 30 CRCs at a single-gland level that was motivated by the limita-

tions of bulk whole-genome sequencing (WGS). Here, I will use the multi-omics profiling

of individual glands sampled from different regions of the tumours. Using measurements

from more than 1,300 glands of 30 primary cancers and ten concomitant adenomas, consist-

ing of over 1,000 chromatin accessibility profiles and 500 whole-genomes, I will provide a

comprehensive map of genetic and epigenetic heterogeneity in CRCs. I will use these data

to identify recurrently altered promoter and enhancer accessibilities and global changes of

transcription factor activities.

Finally, I will discuss the observed subclonal architectures of somatic mutations in

light of the limited evidence for subclonal selection in most cases. In this context, I will

suggest a maximum-likelihood (ML) method to integrate samples subject to WGS and low-

pass whole-genome sequencing (LP-WGS) into a single phylogenetic tree. To these trees, I

will apply an Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) in-

ference framework based on a spatial tumour model that I developed. This provided insight

into how competition for space limits expansions on a case-by-case basis and identified sub-

regions likely under selection from driver mutations. The ability to identify such selected

driver mutations with this method in vivo was also supported by orthogonal dN/dS based

methods.



Chapter 2

Neutral Tumour Evolution

2.1 Introduction

Following the previous general introduction into the field of tumour genomics and tumour

evolution, I will now provide a more detailed introduction to the current debate on the role

and prevalence of selected subclones in tumours. In this context, I will primarily focus on

the discussion that followed a seminal paper by Williams et al. (2016), in which the authors

suggested that sub-clonal structures observed in a substantial fraction of tumours might also

arise in the absence of selection, i.e., under neutral evolution.

Williams et al. based their conclusion on data from the then largest comprehensive

study of cancer-genomes, the TCGA project (Bailey et al. 2018). While neutral evolution

had been long debated in species evolution, little thought was given to this idea in the

context of the somatic evolution of tumours. Maybe curiously, the publication by Williams

et al. (2016) was subject to heavy criticism (Tarabichi et al. 2018; Balaparya and De 2018;

Noorbakhsh and Chuang 2017; Wu et al. 2016; McDonald, Chakrabarti, and Michor 2018,

i.e., ). Others criticised that the test statistic used by Williams et al. (2016) lacked sufficient

power to reject the null-hypothesis (i.e., neutrality) and that some models of selection might

be practically indistinguishable from the neutral model considered by them.

Interestingly, the general debate of these ideas in the field of cancer genomics (e.g.,

Bozic, Gerold, and Nowak 2016; Davis, Gao, and Navin 2017; Sun et al. 2017; Turajlic

et al. 2019; Williams, Sottoriva, and Graham 2019; Lakatos et al. 2020; Li et al. 2020),

resembled the general discussion of idea of neutrality in the field of population genetics and

other fields. This eventual even lead some to suggest that there exists a ‘neutral syndrome’

(Leroi et al. 2020), a fascination with the ability of neutral models to give rise to observable

patterns. It is certainly true that abundance distributions, like the VAF distribution of alleles
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obtained from bulk tumour sequencing data, contain only little information on the presence

of selection.

Still, this is an important point in itself, given that relatively little attention was given

to mechanistic models like the one used by Williams et al. (2016). In the end, two fun-

damental questions that were raised by Williams et al. and which remain unanswered are:

‘How frequent is subclonal selection within established tumours?’ and ‘Can one use the

distribution of somatic variants in a tumour to identify selected subclones’? It is thus not

surprising, that the discussion of how to integrate neutral evolution it into the interpretation

of cancer genomic data is still on-going (e.g., Caravagna et al. 2020; Edwards, Marusyk,

and Basanta 2020; Diamond et al. 2021; Dentro et al. 2021; Black and McGranahan 2021).

In the following a more detailed introduction into the ‘neutral theory’ of Kimura

(1968b) in the field of population genetics and dN/dS based methods that can be used

to deduce that a population was subject to selection will be provided. After this general in-

troduction of these two relevant topics, I will outline the debate surrounding neutral tumour

evolution in the field of tumour evolution. In this context I will present a detailed analysis

of the criticism by Tarabichi et al. (2018) that motivated some of the work presented in the

following chapters. These were published as reply to Tarabichi et al. (Heide et al. 2018),

and in the presentation of them, I will follow the general structure of it. Some of the results

were also used in reply to criticism by Balaparya and De (2018) and published separately

(Williams et al. 2018a).

2.1.1 Neutral Evolution

In a study in which he tried to reconcile the apparent excess of mutation arising in species

evolution (e.g., Zuckerkandl and Pauling 1965; Buettner-Janusch, Buettner-Janusch, and

Mason 1969) when compared to the rates expected under theoretical models (Haldane

1957), Kimura (1968b) suggested that a substantial fraction of occurring mutations might

be selectively neutral or nearly-neutral. Essentially the same idea was also brought forward

by King and Jukes (1969) a year later. While Kimura as well as King and Jukes never

questioned the fundamental importance of selection as driving force of evolution, their the-

ories did question whether most variants that fixed in a population — i.e., become present

in each individual — did so due to Darwinian selection. Instead they proposed that these

fixations could occur due to chance — that is, genetic drift — alone (Kimura 1983; Kimura

1989). Other researcher had also considered dynamics of neutral mutations in populations
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(i.e., Fisher 1923; Fisher 1958; Wright 1931; Kimura 1955), but by assuming this process

to be ubiquitous and studying the implications of this neutral theory, Kimura was able to

gain significant insight into the evolution of neutral alleles in a population (Leigh 2007). In

this context, Kimura introduced the concept of the infinite sites model in which only unique

and novel mutations that are not subject to recombination arise. This model can, for exam-

ple, be used to make predictions about the number and distribution of alleles present in a

population of finite size (Kimura 1969).

Maybe because the theory of neutral evolution was in a stark contrast to the predom-

inant concept of evolution as described by Darwin, the idea of neutral evolution caused

immediate criticism and a heated debate (Smith 1968; Langley and Fitch 1974; Gillespie

1984; Kreitman 1996). Today, more and better data as well as improved statistical tests for

the detection of selection in sequence data (Tajima 1989; Macdonald and Long 2005) have

led to the discovery of striking examples for the selection of adaptive variants in species

evolution (Macdonald and Long 2005; Boyko et al. 2008; Halligan et al. 2010; Carneiro

et al. 2012; Enard et al. 2016). Discoveries like these have led some to suggest that the

neutral theory in itself has outlasted its usefulness and should not be used as a universal

basis for hypothesis testing (Kern and Hahn 2018). Nevertheless, doing so still provoked a

harsh reaction (Jensen et al. 2019). As reiterated by Jensen et al. (2019) the neutral theory

is fundamentally important as most of the genome is not conserved (e.g., many non-coding

regions of the genome) and hence only subject to drift. Further signals arising from de-

mographic dynamics, negative selection and hitchhiking of alleles due to genetic linkage

can complicate the analysis of genomic data in light of selection (Jensen et al. 2019). Here

neutral evolution can serve as a reasonable null model to compare observations again.

While a fascinating debate in itself, there is a key difference in the concept of neutral

evolution used in population genetics and its application to cancer genomics. The former is

mostly concerned with the evolution of variant alleles in a given, finite or constant, popula-

tion and the dynamics of such new alleles in the population (e.g., Kimura and Crow 1964;

Kimura 1968a; Kimura and Ohta 1969). Opposed to this, cancer is a disease in which one

cell expands clonally to an extremely large number (i.e., ≥ 108 cells, Del Monte 2009) of

cells through repeated division. In such an expanding population of cell these principles

identified by Kimura and others do not apply.

Instead, the allele distribution one expects to observe under neutrality in cancer, is that
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of the famous Luria–Delbrück (LD) model, which Luria and Delbrück used to demonstrate

experimentally that the evolution of resistance to bacteriophages in bacteria arises due to

random mutation of sensitive bacteria (Luria and Delbrück 1943). The LD model describes

a population of bacteria arising from initially sensitive bacteria through exponential growth

and in the absence of any selective pressure. During each division mutation from a sensitive

to resistant type are assumed to occur with a given probability. The mutation is assumed to

not have any effect on the growth rate in the absence of bacteriophages and mutation back

to a resistant state is assumed to never occur.

To distinguish this model from the alternative model, which assumed that a resistant

state was only acquired in the presence of the bacteriophages (i.e., induced), Luria and

Delbrück (1943) plated solutions of bacteria onto multiple plates. After the bacteria grew to

a confluent layer in these, bacteriophages were added and the number of resistant colonies

was determined. Luria and Delbrück (1943) showed that the high variability of the number

of resistant individuals in the plates was insufficiently explained by the expectation of the

alternative model (i.e., a Poisson distribution) and that the LD model provided a better ex-

planation for their observations. Under the LD many resistant individuals arise if a random

mutation occurs early in an individual that ultimately gives rise to a large population of

daughter cells, thus greatly increasing the variability of the number of resistant individuals

per plate.

The elegant experiment they conducted showed that the expected number of pre-

existing resistant bacteria in a population grown from a single sensitive bacterium was

equivalent to the number they observed in experiments. The mathematical analysis of

the birth-death process underlying the LD model has proven challenging, but solutions of

the probability distribution of the process have been derived (Antal and Krapivsky 2011;

Kessler and Levine 2013). Due to its applicability to cancer, variations of this model have

been used to study the evolution of drug resistance (e.g., Coldman and Goldie 1986; Ko-

marova 2006; Iwasa, Nowak, and Michor 2006; Tomasetti and Levy 2010; Kessler, Austin,

and Levine 2014), metastasis (e.g., Michor, Nowak, and Iwasa 2006; Dingli et al. 2007;

Yachida et al. 2010; Haeno and Michor 2010), and carcinogenesis in general (e.g., Kendall

1960; Moolgavkar 1986; Bozic et al. 2010; Bozic, Gerold, and Nowak 2016; Durrett et al.

2010; Diaz Jr et al. 2012).
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2.1.2 dN/dS Ratios

A number of statistics were developed to detect deviations from neutral evolution based

on the site frequency spectrum (SFS), the distribution of the allele frequency fi = Ni/N of

alleles i present in Ni individuals of a population of N individuals (Weir and Cockerham

1984; Tajima 1989; Fu and Li 1993; Fay and Wu 2000). Probably the most well know of

these statistics is Tajima’s D (Tajima 1989). Tajima’s D compares the average observed

number of pairwise sequence differences between individuals π from a constant effective

population size N and given mutation rate µ , against the expected number of divergent sites

in a population of effective size N at equilibrium under neutrality (E[π] = 4Nµ). Still, the

power of these statistical tests can be limited (Neuhauser and Krone 1997; Nielsen n.d.).

They can also be sensitive to non-selective population dynamics, like temporal changes

of the population size (Sano and Tachida 2005; Jensen et al. 2005; Haddrill et al. 2005;

Ramı́rez-Soriano et al. 2008; Simonsen, Churchill, and Aquadro 1995) or spatial dynamics

(Ray, Currat, and Excoffier 2003) that are often hard to identify themself.

Here dN/dS methods, which are instead based on the analysis of the effect mutations

in protein-coding genes have on the peptide sequence of proteins, provide a valuable orthog-

onal alternative. dN/dS methods are not based on a specific model explaining the SFS. In-

stead, dN/dS methods exploit the general property of the genome that only some mutations

change the encoded peptide sequence of proteins. This is a property arises from the univer-

sal genetic code (Hinegardner and Engelberg 1963; Woese 1964) that translates information

from DNA into a sequence of peptides. The genetic code is based on a sequence of trin-

ucleotides, called codons, which each encode for a specific amino acid (Crick et al. 1961;

Nirenberg and Matthaei 1961). All possible codons could theoretically translate 43 = 64

amino acids, but only 20 canonical proteinogenic amino acids exist. While three codons

cause the termination of the translation into protein sequences (stop codons), the remain-

ing 41 codons encode an amino acid for which at least one other codon exists. From this

redundancy of the code, follows that only some mutations, the so-called non-synonymous

mutations (N), can change the protein encoded by a gene and that the majority of mutations

do not cause a change of protein sequences, hence called synonymous mutations (S).

Since natural selection can only act on the phenotypic differences that arise from struc-

tural changes of proteins, S mutations are expected to be selectively neutral. N variants

might instead also be under negative or positive selection. The information of non-selected
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S variants can hence be used to construct a background model of mutation rates at different

sites of the genome. A depletion or an excess of N variants compared to this background

model — that is a difference in the rate dN and dS at which these arise — can provide ev-

idence for the selection of a subset of N mutations. Due to their relative simplicity, dN/dS

ratios1 have a long history in population genetics for the detection of selection in sequence

data (reviewed in Yang and Bielawski 2000).

Many different methods for calculating dN/dS ratios have been suggested, but in gen-

eral, these can be grouped based on two properties. First, based on whether they calculate

average dN/dS ratios across genomic regions or if they calculate site-specific estimates

(Kosakovsky Pond and Frost 2005). Secondly, based on the statistical approach used to

calculate the estimates (Yang and Bielawski 2000; Kosakovsky Pond and Frost 2005). sim-

ple count-based methods just determine the number of N & S sites, calculate the ratio of

the two and then apply a correction factor for biases affecting the ratio in the absence of

selective forces. For the analysis of sequence data obtained in the field of population ge-

netics these factors are usually differences in the mutation rate of transitions (i.e., A↔G

and C↔T mutations) compared to transversion (i.e., A↔C, A↔T, C↔G, and G↔T mu-

tations) and the codon usage. Some adaptations make the simplistic assumption of equal

transition/transversion rates and uniform codon usage (Miyata and Yasunaga 1980; Nei and

Gojobori 1986), while others take into account differences of the former (Li, Wu, and Luo

1985; Comeron 1995; Pamilo and Bianchi 1993) or both (Yang and Nielsen 2000). For the

analysis of somatic variants detected in tumours, a similar method has been used by Zapata

et al. (2018) to assess the prevalence of negative selection. A second class of methods are

likelihood-based and directly infer parameters of a substitution model, one of which is the

dN/dS ratio (i.e., as a single parameter, often denoted ω) itself (Goldman and Yang 1994;

Muse and Gaut 1994; Muse 1996). Both CBaSE (Weghorn and Sunyaev 2017) and dndscv

(Martincorena et al. 2017) are examples of such methods in the context of cancer genomics.

While the various statistical approaches (e.g., summary statistics or likelihood-based

methods) tend to obtain similar dN/dS estimates, the assumptions underlying the mod-

els themself (e.g., regarding transition/transversion rates or codon usage) tend to have a

large influence on the results they obtain (Yang and Bielawski 2000; Kosakovsky Pond

and Frost 2005). In the context of somatic mutations and especially in cancer genomes,

1Especially in the field of population genetics, the synonymous term Ka/Ks ratio is often used.
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several additional factors further complicate the correct estimation of dN/dS-ratios. One

major reason for concern are variations of mutation rates across the genome, potentially

invalidating models that do not account for these. Regions of closed chromatin, for exam-

ple, tend to accumulate mutation at a higher rate than those in open chromatin (Polak et al.

2015; Schuster-Böckler and Lehner 2012). Similar effects are caused by differences in gene

expression (Fousteri and Mullenders 2008; Pleasance et al. 2010a) and replication timing

(Stamatoyannopoulos et al. 2009). Furthermore, complex mutational processes with activ-

ity in specific mutational contexts tend to be active in human tumours (Nik-Zainal et al.

2012b; Roberts et al. 2012; Alexandrov et al. 2020). The knowledge of these biases has

motivated the development of statistical methods that are able to correct for these sources

of variation (Lawrence et al. 2013b).

Martincorena et al. (2017) used such a model to adapt the classic dN/dS methods for

somatic variants. Applied to sequence data from cancer genomes, the dN/dS estimates of

their model suggested that negative selection, which would be indicated by dN/dS < 1,

was absent at most genomic sites and that positive selection, indicated by dN/dS > 1, acted

on sites in known cancer driver genes. This observation was in stark contrast to species

evolution, where the majority of variants have a deleterious effect and are quickly removed

by purifying selection, thus resulting in global dN/dS ratios� 1 (Yang et al. 2000).

2.1.3 Neutral Tumour Evolution

In a seminal study Williams et al. (2016) suggested that the observable subclonal structures

of many tumours could also arise under neutral evolutionary dynamics. In their publication

Williams et al. demonstrate that under the assumption of exponential growth, the cumulative

number of subclonal mutations in the VAF spectrum is expected to follow a simple power-

law distribution. They showed that the expected number of mutations M in the VAF interval

[ f , fmax] of a tumour with mutation rate µ and a fraction of ‘effective divisions’ β is then

given by

M( f , fmax) =
µ

β

(
1
f
− 1

fmax

)
.

Here µ is the number of mutations introduced into the genome of the sister cells during

each division and β the fraction of division for which both resulting lineages survive, which

might not be the case due to random cell death.

The model analysed by Williams et al. (2016) is equivalent to the previously mentioned

LD model and a general solution of the stochastic problem has been derived by Kessler and
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Levine (2013), who showed that the number of mutants follows a one-sided Levy α-stable

distribution with α = 1 in the very large population limit. At high frequencies assessable

by currently used next-generation sequencing data the tail of this Landau distribution can

be approximated by 1/ f 2 as done by Williams et al. (2016) and others before (e.g., Griffiths

and Tavaré 1998; Durrett 2013; Nicholson and Antal 2016).

Williams et al. specifically used the resulting linear relationship between the inverse

of the VAF 1/ f and the cumulative number M( f ) of mutations in the interval [ f , fmax], to

determine if the observed VAF data obtained from real tumours followed the distribution

expected under neutrality. For this, they fitted a linear model with a fixed intercept to the

observed VAF data of each tumour and calculated the coefficient of determination R2 to

measure the obtained goodness-of-fit. Cases with a R2≥ 0.98 were assumed to be consistent

with the neutral model. Williams et al. limited this analysis to mutations with a VAF in the

interval [0.12,0.24] and in diploid regions. The lower bound of this interval was motivated

by the general limit of detection of ≈ 10% of the algorithm used for the variant calling

(Cibulskis et al. 2013). Since one can typically observe a large number of clonal mutations

present in all tumour cells, an upper bound of 0.24 was chosen so that these would not affect

M( f ).

The expected VAF of clonal mutations at a diploid locus is f̄ = 0.5. For a mutation at

a triploid locus only one out of three alleles are mutated hence resulting in a lower expected

VAF of f̄ ≈ 0.33. Another factor that influences the expected VAF is the fraction of normal

cells that contaminate the analysed tumour tissue. It is not unusual to see a purity of less

than 70% and in this case f̄ ≈ 0.35 for a diploid site. Since the noise associated with NGS

can be described by a Binomial distribution, it follows that for a diploid tumour with a purity

of 70% less than 1.2% of truly clonal variants are expected to be observed at a VAF≤ 0.24.

The scaling behaviour of the subclonal VAF and the described influence of clonal vari-

ants can easily be seen in simulated sequencing data obtained from a stochastic branching

process like the one used in Williams et al. (2018b). Figure 2.1A shows an example of such

simulated sequencing data of a neutral tumour obtained from the model used in Heide et al.

2018 (see Methods 2.2.2 for details). In this model a tumour is grown from a single trans-

formed cell with Nclonal mutations in an asymmetric branching process using the Gillespie

algorithm (Gillespie 1977). Cells are assumed to randomly give birth to two daughter cells

with the rate λ and during the division the daughter cells are assumed to die randomly with



2.1. Introduction 55

L
im

it
o

f 
d

e
te

c
tio

n
 ~

0
.0

5

0

100

200

300

0.0 0.2 0.4 0.6

VAF

N
u

m
b

e
r 

o
f 
m

u
ta

tio
n

s

Clonal

Clone 1

629457 cells (100% C1)

Neutral simulation

λ = (1), µ = (0.2), m = (50), t = (0); tend = 1048576, C = 100, Nclonal = 2500

A

µ β = 73.9

R2 = 1

0

300

600

900

1200

1/0.25 1/0.051/0.05

Inverse allelic frequency 1/f

C
u

m
u

la
tiv

e
 n

u
m

b
e

r 
o

f 
m

u
ta

tio
n

s
 M

(f
)

Best fit line

Data

1/f Fit − Neutral

B

L
im

it 
o

f 
d

e
te

c
tio

n
 ~

0
.0

5

0

50

100

150

200

250

0.0 0.2 0.4 0.6

VAF

N
u

m
b

e
r 

o
f 
m

u
ta

tio
n

s

Clonal

Hitchhiker

Clone 1

Clone 2

629241 cells (48% C1, 52% C2)

Non−neutral simulation

λ = (1,1.4), µ = (0.2,0.2), m = (50,50), t = (0,100); tend = 1048576, C = 100, Nclonal = 2500

C

µ β = 73.7

R2 = 0.97

0

300

600

900

1200

1/0.25 1/0.051/0.05

Inverse allelic frequency 1/f

C
u

m
u

la
tiv

e
 n

u
m

b
e

r 
o

f 
m

u
ta

tio
n

s
 M

(f
)

Best fit line

Data

1/f Fit − Non Neutral

D

1/f2 Tail

Subclonal

Cluster

Figure 2.1: VAF spectrum in simulated neutral and non-neutral tumours. Both tumours have 2500
clonal mutations, a mutation rate of 50 mutations per division and a death rate of µ = 0.2. A) The
SFS of a simulated neutral tumour. Two structures are visible i) the clonal cluster (green) and a
subclonal tail (orange). B) A plot of the cumulative number of mutation against the inverse allelic
frequency shows the expected 1/ f scaling behaviour. C) A simulated sequencing of a tumour with a
subclone (xsc = 51%) , showing a subclonal peak at f ≈ 32%. Notably, at a higher VAF than ‘driver
mutations’ with f ≈ 26%, due to the hitchhiking effect of alleles present in both, the selected and
unselected subpopulation. Low-frequency variants are a mixture of two lineages (pink and purple).
D) The 1/ f fit shows a clear deviation from the expected linear scaling between the number of
variants with a VAF in the interval [ f ,0.24] given by M( f ) and the inverse allelic frequency 1/ f .
The shown simulations were generated with the simulator used in Heide et al. (2018).

a probability µ . From the generated phylogenetic structure, bulk WGS sequencing data

were generated. It was assumed that the number of passenger mutation during each division

followed a Poisson distribution with a rate of m.

As expected from the theoretical population genetic model described above, the VAF

spectrum of subclonal variants in these neutral simulations tends to follow the expected

1/ f 2 distribution. This can be seen from the linear relationship between the inverse allelic

frequency 1/ f and the cumulative number of mutation M( f ) in the interval [ f ,0.24] shown



56 Chapter 2. Neutral Tumour Evolution

in Figure 2.1B. The introduction of a transformed cell with a fitness advantage over the

ancestral population (i.e., λsc > 1) can instead cause alleles present in the selected subclone

to move to a higher frequency. This in turn leads to the presence of a subclonal peak, that

causes a clear deviation from the expected 1/ f scaling behaviour of the VAF spectrum. The

VAF distribution of a representative simulated non-neutral tumour, with a selected subclone

at a frequency of 52%, is shown in Figure 2.1C. In this simulation, the birth rate of a random

cell was increased by 40% when the tumour reached a size of 100 cells. This subclonal

cluster causes a clear deviation of the linear 1/ f scaling as shown in Figure 2.1D.

Since the subclonal structure observed in a substantial fraction of tumours from the

TCGA study (Muzny et al. 2012) as well as other bulk-sequencing studies (Wang et al.

2014; Sottoriva et al. 2015) closely resemble that of the neutral theoretical model (i.e.,

VAF distribution similar to 2.1A), Williams et al. concluded that many tumours evolved

effectively neutral. Specifically, by using a high goodness-of-fit as indicated by a R2 value

≥ 0.982 they identify a subset of 32% of tumours in the pan-cancer TCGA cohort that

might be evolving neutrally. Still, for the majority of cases (i.e., 68%) the authors identified

R2 ≤ 0.98 indicating the presence of subclonal selection, or more specifically the deviation

from neutral exponential growth.

2.1.4 Criticism of Williams et al. (2016)

Curiously, following the publication of Williams et al. (2016), which brought attention to

the concept of neutral evolution in the field of cancer genomics, several authors heavily

criticised the methods and conclusions made by them. These followed two main lines of

argument i) that alternative models of selection could show patterns identical to neutrality,

i.e., questions of identifiability (Balaparya and De 2018; McDonald, Chakrabarti, and Mi-

chor 2018) and ii) that the power of the 1/f test is insufficient to reject the null (Tarabichi

et al. 2018; Wang et al. 2018a; Noorbakhsh and Chuang 2017).

Unidentifiability of selection in bulk WGS Specifically, McDonald, Chakrabarti, and Mi-

chor (2018) argued, using stochastic simulations with a random introduction of subclones,

that multiple coexisting subclones could create subclonal structures for which the VAF dis-

tribution looks similar to the 1/ f 2 power-law distribution expected under neutrality and that

for this reason, the conclusions made by Williams et al. (2016) were logically flawed. Sim-

ilarly, Balaparya and De (2018) showed that if a significant degree of overdispersion of the
2This value was motivated by the observation that none of the simulated neutral tumours showed a 1/ f fit

with a R2 < 0.98 (Williams et al. 2016; Williams 2019).
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VAF exists, a single subclone present at a frequency of ≈ 0.15 could cause the right tail of

a beta-binomially distributed VAF spectrum to scale very similar to the power-law expected

under neutrality. Further Balaparya and De (2018) argued that multiple clones coexisting

(i.e., a mixture of binomials) at frequencies between [0.1,0.25] could likewise cause the

mixture distribution to look like neutral 1/ f tails.

Lack of power of the ‘1/ f test’ The remaining criticism primarily focused on the general

lack of power to reject neutrality based on observations of the VAF distribution. In this

context, Wang et al. (2018a) argued that the narrow window of observability in single bulk-

sequencing data severely limits the ability to identify subclonal selection in general. Instead,

they suggest that extensive multi-region sequencing methods similar to those conducted by

Ling et al. (2015) should be used. The criticism of Noorbakhsh and Chuang (2017) instead

focused on the noise of the observational process — reads obtained by NGS methods are

approximately binomially distributed — and the consequently limited ability to resolve fi of

individual mutations. They specifically showed that uncertainties in the observed VAF mean

that alternative scaling patterns (i.e., 1/ f , 1/
√

f and 1/ f 2) of the subclonal VAF cannot be

distinguished at coverage values of n ≈ 100 available in the TCGA cohort (Muzny et al.

2012).

Critic by Tarabichi et al. (2018) While the criticism by Tarabichi et al. (2018) contained

arguments similar to those made by others (i.e., unidentifiability and lack of power), they

also provided concrete evidence for the presence of subclonal selection in the tumours

Williams et al. (2016) classified as ‘neutral’. For this, the authors used a dN/dS based

method (Martincorena et al. 2017) that is similar to those commonly used to analyse se-

quence data in population genetics. As described above, these methods analyse if an excess

or depletion of non-synonymous variants relative to synonymous mutations exists.

A depletion of non-synonymous variants (i.e., dN/dS< 1) would suggest their removal

through negative selection and an excess of non-synonymous (i.e., dN/dS > 1) would in-

stead suggest that these were positively selected. In their letter Tarabichi et al. showed

dN/dS estimates > 1 for subclonal mutation in TCGA cases for which the ‘1/ f test’ did not

reject neutrality, demonstrating the presence of selection in these ‘neutral’ tumours.

They further used simulations across a wide range of subclonal selection rates λ and

subclonal mutation rates µ to suggest that the ‘1/ f ’ classifier used by Williams et al. (2016)

performs worse than random. Tarabichi et al. based this argument on the receiver operating
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characteristics (ROC) of the 1/ f statistic for various thresholds of the R2 value. The ROC

is the curve that shows the relationship between the false positive rate (i.e., neutral tumours

classified as non-neutral) and the false negative rate (i.e., non-neutral tumours classified as

neutral). A point on the ROC curve below the diagonal of the plot represents a classification

that is worse than random for a given discrimination threshold. The area under the ROC

curve (AUC) can be used as a summary statistic of a classifier.

For the 1/ f statistic Tarabichi et al. report a AUC of 42% and a behaviour that is worse

than random across a wide range of classification thresholds. While certainly a curious

suggestion, this seems to contradict previous theoretical work (see above for details). As

Tarabichi et al. provided no explanation for these observations and to address their criticism

in general, a detailed analysis of a similar setup was performed. The results of this work,

which will be presented below, showed that Tarabichi et al. nonexplicitly made arguments

similar to that of other authors: i) some models without selection can lead to (consistent)

rejection of neutrality and other models with selection can look like neutral simulations

(i.e., unidentifiability) and ii) that the 1/ f test lacks power in some areas of the parameter

space. While these arguments are undoubtedly valid, they certainly apply, as shown below,

to other methods as well.

In addition to this analysis, the behaviour of a commonly used Dirichlet Process based

clustering method DPclust was analysed. This analysis showed that such clustering methods

were unable to accurately cluster the mutations of the selected subclones.

2.2 Methods

2.2.1 Analysis of TCGA Data

The dN/dS analysis Tarabichi et al. (2018) used to assess the discriminatory power of the

1/ f test statistic, was based on CAVEMAN (Jones et al. 2016) variant calls from the anal-

ysis of TCGA samples by Martincorena and Campbell (2015) . These variant calls were

unfortunately not publicly available and Mutect2 (Cibulskis et al. 2013) variant calls from

the Cancer Genomic Data database (GDC) were used instead (Grossman et al. 2016).

2.2.1.1 Pan-Cancer Classification

In order to reproduce the results of the analysis conducted by Tarabichi et al. (2018), so-

matic variant calls and copy-number array data (log-R ratios) of 8,455 TCGA tumours were

downloaded through the GDC data portal (https://portal.gdc.cancer.gov/).

https://portal.gdc.cancer.gov/
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Annotations of sample purities were obtained from a separate study of pan-cancer purities

in the TCGA cohort (Aran, Sirota, and Butte 2015). Next, diploid regions in the log-R ra-

tios obtained through GDC were identified and the VAF of somatic mutations adjusted for

purity estimates.

As in the original publication by Williams et al. (2016) samples with a purity below

70% or less than 12 diploid subclonal variants with a purity adjusted VAF f within the

integration range [0.12,0.24] were removed from the analysis3.

The 1/ f test statistic — i.e., the R2 value of a linear model with a fixed intercept fitted

to 1/ f and M( f ) in the VAF interval [0.12,0.24] — was calculated for each case on the

mutations in diploid regions. In line with the previous analysis by Williams (2018) cases

with a R2 < 0.98 were classified as ‘non-neutral’ and those with R2 ≥ 0.98 as ‘neutral’. Of

the total of 8,455 tumours analysed 724 satisfied all the filtering criteria (see Figure 2.2A).

Of these cases, 1,021 were already available during the original analysis conducted by

Williams et al. (2016) and 117 of them passed the filtering criteria in the analysis presented

here (see Figure 2.2B).

A B

Figure 2.2: Reason for exclusion of samples from reanalysis of TCGA data. All samples were
required to have purity data available (‘with purity data’), a sample purity > 70% (‘high purity’),
matched copy-number data (‘with cna data’), any diploid regions (‘any diploid’) and at least 12
variants in the interval [0.12,0.24] (‘sufficient power’). A) Annotation of all 8,455 TCGA samples
obtained from GDC. B) Annotation of the subset of TCGA samples analysed by Williams et al.
(2016).

3No specific reason for the value of 12 subclonal variants, apart from the need to remove cases with too few
subclonal variants, was given by Williams et al. (2016), but for the sake of consistency this value was also used
here.
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2.2.1.2 dN/dS Analysis

For the dN/dS analysis, variants of each case were split — in line with the 1/ f -test integra-

tion range of [0.12,0.24] — into a set of clonal variants with a purity adjusted VAF f > 0.24

and a set of subclonal variants with f ≤ 0.24. The clonal and subclonal mutations of cases

were then grouped based on the classification of the 1/ f test statistic. This resulted in a total

of four sets of somatic variants (neutral clonal, non-neutral clonal, neutral subclonal and

non-neutral subclonal) on which dN/dS estimates were calculated.

The estimation of these dN/dS values was done with the dndscv model developed by

Martincorena et al. (2017). To increase the power of this analysis to detect positive dN/dS

values, only coding regions of previously identified cancer driver genes were considered.

For the pan-cancer analysis of the TCGA cohort a set of 198 previously identified genes

reported Martincorena et al. (2017) was used. For the analysis of the 169 colorectal cancers

previously analysed in Williams et al. (2016) a set of 369 driver genes from (Martincorena

et al. 2017) was used instead. Default parameters were used for the model, this especially

uses the included covariate model and the ‘192r 3w’ substitution model.

After the estimation of dN/dS values for cancer driver genes, dN/dS values of genes

that are likely not under selection were calculated as reference. For this, a gene set com-

posed of all ≈ 19,000 genes used by Martincorena et al. (2017) excluding the 198 driver

genes, a set of genes that were identified as neutral (i.e., top 25% of the highest p-values)

by an orthogonal dN/dS method (Zapata et al. 2018), and third a set of genes reported as

neutral by (Martincorena et al. 2017) was used.

To each of these sets of genes, a bootstrap procedure (Efron 1992) was applied to

calculate null distributions of dN/dS values to which the point estimates of cancer driver

genes could be compared. For this, a random set of genes with a size equivalent to that

of the driver genes (i.e., 198) was sampled 1,000 times with repetition from all genes and

dN/dS estimates in each of the four variant sets were calculated for these. For subclonal

variants, p-values were calculated by comparing the dN/dS points estimates against the

distribution of the three neutral-background sets. For subclonal nonsense variants, dN/dS

and p-values were recalculated after the removal of 1/57 (1.7%) and 11/290 (3.8%) cases

with ≥ 3 subclonal nonsense variants from the gastric and pan-cancer cohort respectively.
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Table 2.1: 1/ f classification results of the TCGA cohort per tumour type.

Tumour type R2 ≥ 0.98 R2 < 0.98 Fraction R2 < 0.98

Adrenocortical carcinoma 1 2 67%
Bladder Urothelial Carcinoma 7 13 65%
Breast invasive carcinoma 21 33 61%
Cervical squamous cell carcinoma 6 20 77%
Colon adenocarcinoma 24 48 67%
Glioblastoma multiforme 30 15 33%
Head and Neck squamous cell carcinoma 6 30 83%
Kidney renal clear cell carcinoma 3 5 62%
Brain Lower Grade Glioma 8 14 64%
Liver hepatocellular carcinoma 4 11 73%
Lung adenocarcinoma 5 31 86%
Lung squamous cell carcinoma 12 41 77%
Ovarian serous cystadenocarcinoma 41 21 34%
Prostate adenocarcinoma 17 30 64%
Rectum adenocarcinoma 11 2 15%
Skin Cutaneous Melanoma 0 18 100%
Thyroid carcinoma 8 10 56%
Uterine Corpus Endometrial Carcinoma 85 89 51%
Uterine Carcinosarcoma 1 1 50%

2.2.2 Stochastic Simulations

An in-depth analysis of the stochastic simulations performed by Tarabichi et al. (2018) was

conducted to explain the apparent mismatch between the deterministic model (see Figure

1a, Tarabichi et al., 2018) and the stochastic simulations (see Figure 1b, Tarabichi et al.,

2018).

Generation of simulations I assumed that the parameter space explored by Tarabichi et al.

(2018) was indeed realistic and explored the behaviour of the model under these parameters

in more detail. A stochastic branching process model using the Gillespie algorithm (Gille-

spie 1976), equivalent to the one used by Tarabichi et al. (2018) implemented in C++ was

used for this purpose.

The tumour model was initiated with a single cell of the ancestral cell type. This

cell was assumed to carry no mutations (i.e., Nclonal = 0). The birthrate of all cells of the

ancestral cell type were assumed to be λ = 1 and the doubling of cells in the tumour were

simulated using the Gillespie algorithm. During each division either daughter cells was

assumed to die with a probability determined by the deathrate µ . At a given population size

tsc a random cell of the ancestral type was selected and converted to a subclone with altered

birthrate λsc = 1+ asc, where asc is the relative growth advantage of these cells over the

ancestral type. The simulation was terminated once the tumour reached a given size tend .

To prevent an entire cell type from dying out the last member of a cell type was assumed
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to never die.4 Synthetic sequencing data were then generated from the recorded ancestral

history of cells. For each mutation Poisson distributed coverage Ni ∼ Pois(λ = N̄) and

a Binomial distributed number of mutated reads n ∼ Bin(N, pi) with success probability

pi = fi/2 being determined by the fraction of cells fi carrying the mutation i.

A number of parameters were set to fixed values identical to the ones used by Tarabichi

et al. (2018). The deathrate was fixed at µ = 0.2 per division and the mutation rate of

the ancestral clone was assumed to be µ = 16 mutations per division. All simulations

were terminated at a tumour size of tend = 220 = 1,048,576 cells. Subclones were always

introduced at a population size of tsc = 28 = 256 cells. Simulated sequencing data were

generated with an average sequencing coverage of N̄ = 100.

For each combination of the subclones selective advantages a ∈ {0,0.01,0.02, ...,1}

and mutation rates µsc ∈ {12,1.52, ...,102} a total of 200 realisations were generated. This

resulted in 17×101×200 = 383,800 simulation for further analysis (Figure 2.3).
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Figure 2.3: Examples of 1/ f plots in simulated sequencing data. A) Random realisations of neutral
simulations (tsc = 28, a = 0). B) Random realisations of simulations with selection (tsc = 28, a =
0.75). The ‘normalised M( f )’ is the cumulative number of alleles M( f ) in the interval [0.25, f ]
divided by the maximum of M( f ).

1/ f classification Equivalent to the analysis of the TCGA dataset the 1/ f test statistic

(Williams 2018) with the integration range [0.12,0.24] was applied to the simulated se-

quencing data. Cases with a R2 < 0.98 were classified as ‘non-neutral’ and those with

R2 ≥ 0.98 as ‘neutral’.

4It should be noted that the choice to not let cell types to die out introduces some biases. Specifically, this
leads to a prolonged duration of drift around a low number of cells. For the ancestral clone this would lead to
the presence of additional clonal mutations. For a subclone this would likewise cause presence of additional
mutations in the clonal peak and a more variable clone size for a given set of parameters. A better approach
would be to reject simulations in which either population did die out. Still, the amount of simulated death was
low and for this reason differences between both approaches should be relatively small.
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Cluster analysis of simulated data Clustering of the simulated sequencing data was done

with the Bayesian Dirichlet Process (Dunson 2010) based clustering method implemented

in the DPClust package for R (Nik-Zainal et al. 2012a; Dentro, Wedge, and Van Loo 2017).

DPClust and similar methods are commonly used to interpret the VAF spectrum observed

in tumour sequencing data (Tarabichi et al. 2021) and to better understand the behaviour

of these methods when applied to data from the considered branching-process model was

considered to be important.

Bayesian dirichlet process model of DPClust DPClust models the VAF distribution as a

mixture of n subpopulations of cells, each making up an unknown fraction of tumour cells

πh and contributing an unknown fraction of all mutations ωh. The distribution P of all πh is

modelled as a Dirichlet Process and the number of mutated reads yi obtained from a variant

allele i supported by Ni are assumed to follow a Binomial distribution. The full model is

hence described by
yi ∼ Bin(Ni,ζiπi), πi ∼ DP(P0,α),

where ζi is the expected VAF of the site if the mutation is present in all tumour cells and πi

the fraction of tumour cells containing i. DPClust uses Gibbs sampling to obtain samples

from the posterior distribution with priors of P0 ∼U(0,1) and α ∼ Γ(1,α0)), where α0 is a

hyper-parameter. The total number of clusters is unusually limited to k.

To characterise the behaviour of DPClust on the simulated WGS data, a subset of

3,780 tumours consisting of 20 simulations in which the subclone made up more than 5%

of the total number of cells were selected for each combination of a ∈ {0,0.05,0.1, ...,1}

and µsc ∈{21,22, ...,29}. DPClust was then run with the default parameters k = 20 and α0 =

0.01 for a total of 10,000 iterations. Since samples from the beginning of a MCMC chain

may not accurately represent the posterior distribution, the first 5,000 samples were treated

as burn-in period and discarded. DPClust uses the samples from the posterior distribution

to determine the position πh and weight ωh of clusters to which mutations can be assigned.

Posterior clusters with no assigned mutations were discarded.

2.3 Results

2.3.1 Insights From Simulated Tumours

In their letter, Tarabichi et al. (2018) used an analytical solution of the tumour growth model

(their Figure 1a) and a small number of stochastic simulations (their Figure 1b) to argue

that the 1/ f test used by Williams et al. (2016) leads to the arbitrary classification of tu-
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mours (their Figure 1c). As an explanation for this Tarabichi et al. (2018) suggested that

the biological noise caused by the stochasticity of the process (i.e., genetic drift) lead to the

arbitrary classifications by the 1/ f test. This seems at odds with previous theoretical work

on this (Williams et al. 2016; Bozic, Gerold, and Nowak 2016; Kessler and Levine 2013;

Durrett 2013). It is worth noting, that subclones were introduced at fixed time points in all

simulations and instead of testing the classification at different time points of subclone in-

troduction tsc and selective advantages asc, the effect of subclonal selection asc and changes

of mutation rate µsc were assessed.

More specifically it was assumed that the change of µsc co-occurred with a change of

asc. Whether such a change of the properties of a subclone in a tumour is realistic might

be questionable in itself. Further the relative changes considered by Tarabichi et al. (2018)

seem rather extreme. The change of the mutation rate per division Tarabichi et al. (2018)

they tested ranged from a decrease from 16 mutations per division to ≈ 1 mutation per

division — a decrease by a factor of 16 — to an increase to ≈ 2,000 mutations per division

— a decrease by a factor of more than 100 (x-axis of Figure 1a, in Tarabichi et al.). Indeed,

such a substantial increase of mutation rate can likely only be explained by cases with

a subclonal defect of the DNA mismatch repair machinery or a POLE/POLD alteration

(Billingsley et al. 2015). Studies of subclonal MMR gene defects indicate that these are

very rare in endometrial cancer (Stelloo et al. 2017) or colorectal cancer (Joost et al. 2014).

An analysis of POLE mutated subclones arising within a POLE wild-type background also

indicated that these are very infrequent events (Temko et al. 2018). Together these initial

observations indeed suggest that the extremities of the parameters considered by Tarabichi

et al. should be interpreted with caution.

To address their criticism and explain the observed results, I tried to reproduce the

analysis shown in Tarabichi et al. Figure 1b. For this I generated multiple realisations of

simulations for parameter sets across the range considered by them (Figure 2.3 and Meth-

ods). This analysis showed that when the selected subclone was present at fsc ≥ 10% (i.e.,

when asc ≥ 0.2), the 1/ f test correctly rejected neutrality in the majority of cases if no si-

multaneous increase of the mutation rate occurred (top left quadrant of Figure 2.4A). An

example of such a simulation is shown in Figure 2.4B. Here the presence of a subclone at a

frequency of ≈ 0.5 (i.e., 0.25 in the VAF spectrum) leads to a clear deviation from the 1/ f

distribution (R2 = 0.94) similar to some realisation shown in Figure 2.3B.
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Figure 2.4: Insights from stochastic simulations of cancer growth. A) Heat map recapitulating Tara-
bichi et al.’s 2018 Figure 1b with the same parameter set and showing the proportion of simulations
in which neutrality was rejected (200 cases per parameter combination).
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Figure 2.4: (Continued) B) Example VAF distribution with a detectable subclonal cluster (dashed
line indicates subclone frequency). The 1/ f test rejects neutrality in favour of selection (R2
reported). C) Example VAF distribution with a weakly selected subclone that remains below
the limit of detection (100x depth). D) Subclone cell fraction in the final tumour as a func-
tion of fitness advantage; for a < 0.5, the subclone rarely reaches a detectable size of ≈ 10%
cell fraction (assuming 100× depth). LOD, the limit of detectability. E) Example VAF distri-
bution for a subclone with a selective advantage and, at the same time, a high mutation rate.
F) Example VAF distribution for a selected and extreme mutator subclone. G) Sensitivity of
the 1/ f test applied to subclonal mutations in the extended range of VAF f = [0.025,0.45] from
the simulations in a. Numbers report the proportion of cases in which neutrality was rejected
(R2 < 0.98). H) AUC values of the 1/ f test in various regions of the tested parameter space.
(Modified version of the figure presented in Heide et al. 2018)

As expected a relationship between the selective advantage asc and the subclone cell

fraction fsc in the final tumour was observed (Figure 2.4D). Notably, subclones in simula-

tions with asc ≤ 0.3 rarely reached a size fsc ≥ 0.1. Variants at such a low VAF are basically

undetectable at a depth of ≈ 100x commonly used for sequencing. This highlighted again

the issue of the limit of detectability in currently used methods (Williams et al. 2018b), a

point that was later confirmed by a more rigours analysis (Caravagna et al. 2020). Since

selected clones at such a low f do not significantly change the observable clonal composi-

tion of the tumour, the signature of neutral growth (i.e., the ‘1/ f tail’) does still dominate

the detectable VAF spectrum (Figure 2.4C) and neutrality was not rejected (bottom part of

Figure 2.4A). Importantly, this is not an issue of the test statistic itself, but rather seen as a

general limitation of NGS.

Notably, for hypermutant subclones with strong selective advantage (i.e., µsc ≥ 64 and

asc≥ 0.4, top right of Figure 2.4A), the analysis indicated that the method consistently failed

to reject neutrality. Examination of realisations of these simulations showed that a massive

1/ f tail containing thousands of the subclone’s private mutations was frequently observed.

These effectively masked the comparatively small cluster of mutations that were present

in the selected subpopulation of cells and hence overrepresented at a high VAF (example

in Figure 2.4E). These mutations dominated the entire VAF distribution and obscure the

underlying subclonal structure. Unsurprisingly, the 1/ f test and likely any other similar test

would struggle to detect any subclonal cluster or deviation from the expected power-law

distribution in these cases.

Curiously, for moderate values of selection asc ≈ 0.5 and very high mutation rates

µsc ≥ 28, a change in mutation rate from normal to hypermutant was detected, thus leading

to consistent rejection of neutrality (mid-right area in Figure 2.4A; example in 2.4F). A
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similar example was indeed shown in Supplementary Figure 11h of the original paper in

Williams et al. (2016). In cases with weak selection and hypermutation, subclones did not

reach a detectable size, and therefore neutrality was not rejected (bottom right of Figure

2.4A)

As discussed in the original paper (Williams et al. 2016) and the reply (Heide et al.

2018), the main motivation for the narrow integration range of 0.12 ≤ f ≤ 0.24 were con-

cerns of mutations from triploid sites or impure samples affecting the power-law tail and

for this reason an upper threshold of f ≈ 0.25 was used by them. A larger integration range

would potentially allow to detect the presence of subclones outside of this fairly narrow

window. Since the simulated tumours were all diploid and did not contain such subclonal

mutations, it was possible to test this hypothesis. For this reason, the 1/ f test was used

with an extended integration range and this did indeed demonstrate that the 1/ f test is more

accurate when applied to the entire VAF spectrum (Figure 2.4G). Under these conditions,

neutrality was consistently rejected (i.e.,≥ 75%) for non-neutral simulations at background

mutation rates and sufficiently large subclones.

I further suspected that the lack of discriminatory power in the peculiar scenarios con-

sidered by Tarabichi et al. did not depend on the method per se but was largely due to

minimal signal in the data. To demonstrate this, the 1/ f test using the extended integra-

tion range (Figure 2.4G) was compared to results from DPclust (Nik-Zainal et al. 2012a), a

method often used to detect subclones on the basis of Dirichlet Process clustering. Indeed,

the sensitivity of DPclust was suboptimal in most cases (Figure 2.4H), even in the presence

of strong selection. This despite the fairly consistent number of 3–5 clusters inferred to be

present from the simulated VAF data (see Figure S.4, page 263). The clusters inferred by

DPclust were often located at similar positions of the VAF distribution and independent of

the true subclone frequency (see Figure S.4, page 263). Importantly, the positions of the

cluster also implied that mutations in them occurred in independent lineages, thus raising

question on how one should interpret the result from such clustering methods in general.

Still, this observation did still not explain why the 1/ f classifier might have performed

for than random, as Tarabichi et al. (2018) reported. For this reason, I calculated conducted

a similar analysis on the stochastic simulations generated as described above. For these

additional neutral simulations with asc = 0 and µsc = 16 were generated and used as a

comparison for the classifier. ROC curved and the AUC of these were calculated for each
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parameter combination. This analysis confirmed that the AUC was substantially larger than

0.5 in some areas and at least 0.5 across the entire parameter space (Figure S.3A, page 263).

In light of the observed ROC across the entire parameter range for cases with a putatively

detectable subclone (0.25 < fsc < 0.75) shown in Figure S.3B (page 263), it seems likely

that Tarabichi et al. (2018) swapped the false-positive and false-negative rates when they

conducted a similar analysis. In summary the 1/ f statistic is an imperfect interpretation of

the VAF spectrum, but certainly not worse than a random classifier.

In summary, the detailed analysis of stochastic simulations described above confirmed

the initial concern that Tarabichi et al. (2018) failed to perform a fair test of the 1/ f statistic.

Instead of considering the behaviour of simulations in the parameter range considered (Fig-

ure 2.4), the authors appeared to instead integrate over a wide range of parameters. This

likely lead them to underestimate the strength of the test under more realistic scenarios of

subclonal selection. Further, the analysis of a commonly used clustering approach (Figure

2.4H) demonstrated that applying these methods to data of somatic mutations detected from

cancer bulks might be problematic.

2.3.2 Analysis of Subclonal Selection Using dN/dS Ratios

In the second part of their letter Tarabichi et al. used a test inspired by the classical dN/dS

method to demonstrate evidence for the presence of selected subclonal variants in tumours

classified as neutral. Specifically, the authors pooled subclonal mutations in known cancer

genes from multiple patients and calculated dN/dS ratios for the neutral and non-neutral

groups. Tarabichi et al. argue that for cases in which the 1/ f test failed to reject the null

hypothesis, subclonal mutations should lack evidence of selection (i.e., dN/dS≈ 1). While

this is a sound argument if one assumes that there is no classification error whatsoever,

it is incorrect to draw conclusions about individual samples from such a population-level

statistic. Instead, the observation of dN/dS > 1 for mutations from the subclonal mutations

of all samples might simply indicate that the 1/ f test misclassified one or more patients.

To investigate this possibility, I repeated the dN/dS analysis conducted by Tarabichi

et al. with the same method. Summarised, global dN/dS estimates for 369 the driver genes

reported by Martincorena et al. (2017) were calculated for the colorectal and gastric cancers

analysed in the original publication (Williams et al. 2016). Since the TCGA CAVEMAN

calls Tarabichi et al. (2018) used were not available publicly, I instead reanalysed the pan-

cancer TCGA variant calls that were available through GDC. Due to the criticism by Tara-
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bichi et al. regarding the presence of tetraploid tumours in the original analysis conducted

by Williams et al., which could cause the false rejection of the null hypothesis, I restricted

the analysis to diploid regions and samples with high purity (see Methods for details). The

usage of the newly published ploidy and purity estimates for the TCGA samples should

generally have improved the classification. Curiously, this new analysis found that 290/724

(40%) of cases compared to the 31% in the original analysis were consistent with neutrality

(Table 2.1), thus confirming the findings by Williams et al. (2016).

Consistent with the results by Tarabichi et al. (2018) the dN/dS estimates of missense5

and nonsense6 mutations were significantly above one for the clonal variants of the pan-

cancer TCGA cases classified as neutral and non-neutral (Figure 2.5C). Equivalent results

were also observed for the 101 CRCs that were also analysed by Williams et al. (2016). As

shown in Figure 2.5A, dN/dS > 1 was observed for clonal missense and nonsense mutation

of cases classified as neutral (34/101) and non-neutral (67/101). For the 68 gastric tumours

Williams et al. (2016) analysed only the clonal nonsense mutations showed a dN/dS > 1

(Figure 2.5B).

In contrast to clonal mutations, which should have a dN/dS > 1, subclonal muta-

tions might in principle only have dN/dS > 1 in cases classified as non-neutral, but not in

those classified as neutral. Consistent with this expectation the dN/dS ratios of subclonal

missense mutations of tumours from all three cohorts were found to not be significantly

different from 1 (Figure 2.5A–C, missense mutations at left, blue bars). Likewise, dN/dS

estimates of subclonal nonsense mutations from the colorectal and gastric cohort were not

significantly above one either Figure 2.5A–C, missense mutations at right, blue bars).

In contrast the analysis of subclonal nonsense mutations for neutral cases of the TCGA

cohort suggested dN/dS > 1. This observation is of course in conflict with the classification

of these cases as ‘neutral’. Still, a more detailed analysis of the cases showed that a small

subset of patients classified as neutral showed a high number of subclonal nonsense mu-

tations in putative driver genes. Specifically, 1/57 cases (1.7%) of the gastric cancers and

11/290 (3.8%) cases of the pan-cancer cohort classified as neutral contained ≥ 3 subclonal

nonsense mutations.

Manual examination of these patients (Figure S.5-S.14, page 263-266) suggested that

5Non-synonymous mutation of the DNA that cause the replace of one encode amino acid by another.
6Non-synonymous mutations of the DNA that cause the premature termination of the translation and hence

the expression of a shorter, unfinished protein product.
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Figure 2.5: dN/dS analysis with the method of Martincorena et al. (2017) applied to colorec-
tal cancers. A) Gastric cancers from Wang et al. (2014) analysed in Williams et al. (2016)
B) TCGA pan-cancer cases analysed by using newly available GDC calls to reproduce Tara-
bichi et al.’s 2018 dN/dS analysis. C) Cancers were classified as neutral or non-neutral with
the 1/ f test, and the dN/dS values of were calculated over pooled variants from each group
(split between clonal/subclonal and missense/nonsense). D) Comparison of the dN/dS esti-
mates obtained for the 198 driver genes (black dots, point estimates; error bars, 95% confidence-
intervals) with the distribution of 1,000 random subsets from three control sets of non-driver
genes, demonstrating a general positive bias of estimated dN/dS values (white dots, median;
box, interquartile range; whiskers, 90% prediction interval). After removal of 3.8% of pan-
cancer cases with three or more subclonal nonsense mutations in driver genes, both missense
and nonsense dN/dS in neutral cancers were not significantly different from the neutral expecta-
tion. ‘Martincorena’ refers to Martincorena et al. (2017), ‘Zapata’ refers to Zapata et al. (2018).
(Figure as presented in Heide et al. 2018)

some clonal mutations were ‘bleeding’ into the subclonal integration range. Since clonal

mutations are expected to have a dN/dS > 1, this would explain the elevated dN/dS value

of subclonal mutations in ‘neutral’ cases. In other cases, a misclassification caused by er-

roneous ploidy estimates or the presence of a selected subclones underneath a power-law

tail seemed possible. Regardless of the exact reason, after the removal of the 3.8% of cases

with ≥ 3 subclonal nonsense mutations from the analysis, the dN/dS values of subclonal

nonsense mutations were found to not be significantly different from that of the neutral

background (Figure 2.5C; dN/dS = 1.44, p= 0.32). For the calculation of this background,

dN/dS values of known passenger genes was generated using a bootstrap method of 1,000

random sets of 198 non-drivers as described in the Methods (Figure 2.5D). This showed
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a systematic positive bias for the estimation of dN/dS, possibly due to publicly available

somatic GDC calls being filtered for common human germline variants present in dbSNP.

Since germline mutations are composed of more synonymous than non-synonymous vari-

ants, estimates of dN/dS ratios generated from such data are skewed upward (Martincorena

et al. 2017). While not significant, dN/dS values were consistently higher in non-neutral

versus neutral cases (Figure 2.5D).

2.4 Discussion

Summarised, the analysis of the simulations conducted by Tarabichi et al. (2018) explained

the apparent mismatch between the stochastic simulations conducted by the authors and the

previous mathematical theory on the convergent solution of the continuous-time stochas-

tic branching process (Durrett 2013; Kessler and Levine 2013; Kessler and Levine 2015;

Williams et al. 2016; Bozic, Gerold, and Nowak 2016). Simulations based on the Gillespie

algorithm, which explicitly model asynchronous cell divisions, did agree with the solutions

of the stochastic branching process and, as shown by others such stochastic neutral models

(Durrett 2013; Kessler and Levine 2013; Kessler and Levine 2015) do generally scale ac-

cording to the expected 1/ f 2. This general scaling behaviour even holds in the presence of

stochastic cell death (Kessler and Levine 2013).

While Tarabichi et al. (2018) appear to, at least implicitly, acknowledge that simula-

tions of tumour expansion as a branching process (i.e., Bozic, Gerold, and Nowak 2016)

provide a reasonable model of tumour evolution, they seem to have missed why the ob-

served structures (i.e., the 1/ f 2 distribution) arise. They instead allude to classic studies of

neutral evolution in population genetics like that of Kimura and Ohta (1969) by suggesting

that ‘drift can drive novel variants to high frequencies’. These studies are concerned with

the drift of novel variants arising in 1/N individuals within a population of constant size.

However, the argument by Williams et al. (2016) was on the site frequency spectrum arising

in an exponentially expanding population, which also arise in the absence of selection and

drift. At least at sufficiently high mutation rates, neutral tails, similar to those observable

in the cancer genomic data analysed by Williams et al. (2016), are simply a consequence

of the mutations that arise with each cell division during the clonal expansion of a tumour

(Williams et al. 2016; Williams et al. 2018b). Drift can obviously also arise due to the

stochastic events in exponentially expanding tumours, but this would emulate the properties

of selection revealed by the 1/ f test. Importantly, the presence of such subclonal structures
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is also not taken into account by the clustering-based methods some of these authors suggest

to use for the analysis of subclonal mutations observed in bulk sequencing data (Tarabichi

et al. 2021).

Tarabichi et al. (2018) also seem to ignore that the limitations they highlight for the

1/ f test, namely that it is ‘neither a necessary nor a sufficient’ method to detect selection,

apply in the same way to commonly used clustering methods (e.g., Dentro, Wedge, and

Van Loo 2017). The analysis of one such clustering method (Figure 2.4H) showed that

the application of these to data of somatic mutations detected from cancer bulks might be

problematic in general. Most importantly, if the assertions made by Williams et al. are

correct, variants at a subclonal frequency would often be present in different lineages (e.g.,

Sottoriva, Barnes, and Graham 2017). The way in which some of the authors suggest to

interpret results from clustering methods would then be inherently flawed (Tarabichi et al.

2021; Dentro et al. 2021).

Curiously, the application of the dN/dS methods Tarabichi et al. (2018) used to crit-

icise the 1/ f test statistic has demonstrated that most mutations detected in individual tu-

mours are selectively neutral (Martincorena et al. 2017). This observation is entirely con-

sistent with the premise of neutral tumour evolution, which is that the majority of genetic

variation arising through mutation are selectively neutral (Kimura 1968b; Kimura 1991).

The presence of a positive dN/dS ratio for subclonal mutations in known cancer genes, as

described by Dentro et al. (2021) in a recent pan-cancer analysis of subclonal drivers, is not

at odds with this. The detection of a positive dN/dS ratio in a set of patients does not imply

that all of these are non-neutral, but only means that at least some have a subclone arising

through selection. Indeed, the analysis of dN/dS ratios in the pan-cancer TCGA cohort

shown above identified a subset of tumours with multiple subclonal non-synonymous vari-

ants. The removal of this small subset (3.8%) of cases reduced the dN/dS ratio to a level at

which it was not significantly above one. In theory, a single misclassified patient carrying

multiple nonsense mutations in driver genes could significantly alter the dN/dS value of an

entire cohort. This highlights that, since dN/dS analysis at the cohort level combines mu-

tations from different patients, it cannot easily evaluate the performance of statistical tests

that aim to detect neutrality at the patient level.

Last but not least, the point that the ‘failure to reject the null hypothesis is not the same

as proving it true; made by Tarabichi et al. (2018) is certainly correct. Still, it somewhat



2.4. Discussion 73

misses the main point made by Williams et al. in the original 2016 paper. Here neutrality

is explicitly formulated as the null model for a frequentist approach. This null hypothesis

is rejected by the proposed test statistic in most cases, suggesting the widespread presence

of subclonal selection. The fact that the remaining cases are referred to as ‘neutral’ in the

publication does not change the setup of the test itself.

Summarised, the critique by Tarabichi et al. (2018), did not invalidate the conclusions

made by Williams et al. (2016). Neutral evolution provides an adequate null model for the

pattern of ITH that can be observed in many tumours. Ignoring this risks to misinterpret

existing cancer genomic data or, even worse, to conduct ill-equipped experiments. This

will, in turn, delay potential clinical improvements that could be archived from a better

understanding of the dynamics driving late-stage cancer evolution.





Chapter 3

Modelling Cancer Evolution in Space

The simple 1/ f summary statistic described in Williams et al. (2016) and the Approximate

Bayesian Computation (ABC) inference able to detect selection using the entire VAF spec-

trum Williams et al. (2018b) developed later use single bulk WGS sequencing data as the

basis for statistical inference. Due to the abundance of such datasets, generated as part of

several large-scale cancer sequencing projects like TCGA (Bailey et al. 2018) or PCAWG

(Campbell and Giocomo 2019), the development of such methods was crucial. Despite this,

the methods were heavily criticised for their lack of discriminatory power. One example of

this is the criticism by Tarabichi et al. (2018) and in the previous chapter, I have presented

results from the reply to this criticism. While the analysis showed that Tarabichi et al. over-

stated the severity of these problems, detection of selected subclones from bulk sequencing

data is inherently challenging.

One of the most significant drawbacks of bulk WGS is that information on which alle-

les co-occur in individual cells is lost. Especially, at the commonly used sequencing depth,

it is thus not possible to confidently demine if mutations with a similar VAF occur in the

same lineage or not. A number of studies assume that only a few genetically identical

subpopulations of cells are present at frequencies that are detectable by NGS. These pop-

ulations are assumed to be co-existing subclones that have expanded to a significant size.

Clustering methods, like the previously mentioned DPclust, could in this case be applied to

reconstruct phylogenetic relationships among subclones (see Section 1.6 for details).

If instead, as suggested by Williams et al. (2016), subclonal structures primarily arise

as a consequence of the clonal expansion itself, then these assumptions do not hold. In this

case, one would instead expect that many clusters of mutations are identifiable at a CCFs

between 10% and 100%. Many of these would be present at such similar frequencies that
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they could not be resolved by currently used sequencing approaches.

This issue, was already demonstrated in the previous chapter, where I applied DPclust

to simulated sequencing data of neutral and non-neutral tumours that were obtained from

a branching process-based tumour model. The results of this analysis showed that DPclust

was often unable to identify the ‘peak’ of mutations that the selected subclone carried to

a higher frequency. Instead, the clustering results often appeared to be dominated by the

power-law tail, which is itself composed of many mutation clusters generated by multiple

parallelly expanding lineages. As expected DPclust was also unable to resolve the mutations

of these parallel lineages as independent clusters and instead suggested the presence of a

small number of large clusters. Still, tumours usually expand as a mass of cells and different

lineages are thus expected to variegate in space. For this reason, one can in principle use

multiple WGS samples obtained from different areas of a tumour to resolve lineages much

better. This formed the basic motivation for multi-region sequencing studies like the one

conducted by Gerlinger et al. (2012).

Multi-region sequencing experiments do allow a much more accurate reconstruction

of ancestral relationships for the dominant cell populations (Tarabichi et al. 2021). Still, it

is not entirely clear if the detection of subclonal selection in such phylogenies would easily

be possible or not. Similar to the previous interpretation of single bulk samples, various

issues arising from neutral dynamics might exist. Specifically with regard to biases arising

from spatial sampling in a tumour relatively little is known. The behaviour of commonly

applied multivariate clustering methods, when applied to simulated multi-region sequencing

data arising under neutrality, was previously also uncharacterised. To better understand

these key questions and to gain insight into if bulk sequencing can easily be used gain

insight into tumour growth dynamics and especially the presence of subclonal selection,

a model that could generate artificial multi-region sequencing data was required. For this

reason, I developed a spatial tumour simulator together with Ketevan Chkhaidze.1 Given

the general interest in the field, I aimed to make this method as easily accessible to others

as possible. The code was implemented in C++ and then integrated into a package for

the R programming language (R Core Team 2020). R is very commonly used in the field,

and as an interpreted language, it is a suitable option for this purpose. We also integrate

1Details of the model will be provided below. Ketevan Chkhaidze implemented a first version of the model in
Python. This first version assumed random ‘pushing’ in space and non-boundary driven growth. I implemented
a version in C++ of this model and integrated it into an R package. I also modified the model to consider
boundary driven growth and let cells in the tumour ‘push’ to the closest edge.
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additional code into the package, allowing the simulation of various sampling schemas and

plotting of simulated datasets. Our method allows the simulation of exponentially growing

and boundary-driven tumours. This simulator was used to describe the general properties of

spatially growing tumours and demonstrate that ABC inference can infer model parameters

from genomic measurements. The results of this were published in Chkhaidze et al. (2019).

I also expanded on some of the work presented in the previous chapter. Especially, I

tried to characterise the behaviour of commonly used clustering methods (e.g., Roth et al.

2014) when applied to simulated sequencing data of spatial and non-spatial tumours. The

ability of these methods to distinguish mutations present in individual ‘mutation clones’

was, as expected, very poor for all commonly used coverage values. This provided some

important insight into the results expected from real experiments, especially with regard

to the effect of purity and coverage. They also provided some important insights into the

usability of multi-region bulk WGS sequencing data for statistical inference of selection.

The results suggest that some of the identified issues might be hard to mitigate in practice.

These results were added to the publication of a statistical method MOBSTER developed by

Giulio Caravagna (Caravagna et al. 2020).

Combined, these extended analysis of simulated spatial and non-spatial WGS datasets

showed that sequencing of individual clonal units (i.e., cells or glands) might be better suited

for the inference of selection from sequencing data and that great care has to be taken in

the interpretation of results obtained from clustering of mutation calls. Even extreme diver-

gence of samples obtained very closely in space can arise from neutral dynamics. Overall,

this provided a rationale for the multi-region single-gland sequencing study of CRCs called

EPICC, which I will present in the next chapter.

3.1 Methods

3.1.1 Spatial simulator

Due to the limitations of single bulk WGS data, I decided to explore how commonly con-

ducted multi-region sequencing data could be used for improved detection of selected sub-

clones in individual tumours. For this purpose, we developed a simple spatial tumour

simulator with which spatial dynamics could be simulated and to which different spatial

sampling strategies could be applied. The spatial simulator we developed for this purpose,

models tumour growth using a stochastic spatial model of cells that incorporates cell divi-

sion, cell death, random mutations, clonal selection and effects of spatial crowding. This
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simple model is described in detail below.

Figure 3.1: Schema of the spatial simulator. Simulations involve two steps: A) The spatial simula-
tion of the tumour using the Gillespie algorithm. B) The simulation of WGS sequencing data. For
this, a subset of cells is selected in space. Then active lineages — that is, edges that connect any
of the sequenced cells to the root of the tree – were annotated with the number of sequenced cells
below them. Finally, the active part of the tree was traversed from the root to simulate WGS data.

3.1.1.1 Simulation of the Tumours

The birth-death process The growth of a tumour is simulated on a 2D or 3D lattice with

Moore neighbourhood (see left panel in Figure 3.1A). Each simulation is initialised with a

single cell placed at the centre of the space at the time point tg = 0. All cells A are assumed

to be able to undergo two reactions, birth and death. A cell that undergoes death is removed

from the simulation and frees up the occupied space (A
µ−→�A). This reaction is assumed to

occur with the birth rate µ . A cell that undergoes a birth event is assumed to give rise to a

second, identical daughter cell A′ that it tries to place into a location in its neighbourhood

(A λ−→ A+A′). This reaction occurs with the birth rate λ .

Pushing of cells If during a birth event empty grid points (i.e., in the Moore neighbourhood)

exist next to A, then A′ is simply placed into one of these at random. If instead all neigh-

bouring grid points are occupied by other cells, then the cell A tries to ‘make room’ for the

cell A′ by trying to ‘push’ other cells away. This pushing in space is done along a vector v

up to maximum distance dpush and if it is possible all cells along this vector are moved one

position forward. If instead, the pushing was unsuccessful, then the division is considered
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to have failed and the cell A′ dies. For the choice of v two options were considered: i)

pushing into a random direction of the space and ii) pushing towards the closest edge of the

tumour.2

Gillespie Algorithm As outlined above, cells are assumed to be able to undergo two re-

actions, birth according to the birth rate λ and death according to the death rate µ . The

actual rate with which cells undergo these two reactions is determined by their ‘cell type’ i.

As daughter cells are assumed to be identical copies of their parents, their cell type is also

identical to that of the parent. This means that for any cell type i a set of member cells Mi

exists.

Since each cell type is assumed to undergo the same reaction types (i.e., birth and

death) with a different birth and death rate λi and µi respectively, one can consider these

to be different reactions. For this reason, the total number of reactions is twice the number

of cells types. To simulate a trajectory of reactions one can use to the Gillespie algorithm

(Gillespie 1977; Gillespie 1977). The Gillespie algorithm allows sampling of both, the time

to the next reaction τ and the index of the corresponding reaction j. Several variations of

the Gillespie algorithm exist, of which the so-called ‘first-reaction method’ (Gillespie 2007)

was used. For a set of uni-molecular, like the one considered here, one can sample

τ j =
1

α jN j
log(

1
r j
), with r j ∼U(0,1),

where N j = |Mi| are the number of cells of the species i taking part in the reaction and α j is

the rate of the reaction. The next reaction j and the time to it τ is then given by

τ = min
j′

τ j′ , j = argmin
j′

τ j′ .

From the species i taking part in the reaction j, a random element k was chosen. The reaction

j was then executed on k as described above and the Gillespie time updated: tg = tg + τ .

Introduction of subclones & Termination The transformation of one cell of type A to

another one B was assumed to take place at a specific population size tsc. For this, a random

member of A was chosen and its reaction rates were updated with those of B. To prevent

the random disappearance of the cell type A, transformations were delayed until A had

more than one member. All simulations were stopped once the simulated tumour reached a

predetermined size.

2I will later comment on the effects of these two choices in more detail (see Section 3.2.1).
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3.1.1.2 Generation of Simulated Sequencing Data

During simulations, the ancestral relationship of all cells was recorded in form of a phylo-

genetic tree to allow the generation of simulated sequencing data (Figure 3.1B). Different

ways to simulate such datasets were considered. These can be distinguished by how cells

were sampled in space and by the parameters that described the model used to simulate the

sequencing data (see Table 3.1).

In all cases, simulated sequencing data were obtained through a traversal of the

recorded phylogeny (Figure 3.1B). The generation of simulated sequencing data for a set of

cells C can be done by applying the following three steps to recorded ancestors of any of

the cells: i) determine the number of passenger mutations that occurred during the ances-

tors’ division, ii) determine the expected frequency of these passenger mutations, and iii)

generate simulated sequencing data for each of these passenger mutations.

Number of mutation per division The number of mutations that occurred during each di-

vision were assumed to be Poisson distributed with ∆m∼Pois(mi), where mi is the mutation

rate of the ancestors’ cell type i. For divisions that failed due to lack of space, mutations

were still assumed to have occurred in the corresponding ancestral cell. This behaviour

makes sense if one assumes that one of the two cells resulting from such a division into

insufficient space immediately dies from overcrowding. Other options were separately con-

sidered. Specifically, a setup in which mutations are only accumulated during ‘successful’

divisions and where a second process, simulated as a reaction in the Gillespie algorithm,

causes the continuous accumulation of mutations.

Determination of the frequency of mutations The expected frequency fN of mutations

that occurred in a ancestor N depends on the number of descendants of N that are in C. The

frequency of mutated cells is

fi =
1
|C| ∑c∈C

Ic∈desc(N),

where Ic∈desc(N) indicates if the cell c is a descendant of N.

Generation of simulated sequencing data The generation of simulated sequencing data

for each mutation i can be broken down into the simulation of the coverage ni and the simu-

lation of mutant reads yi. Three model Mseq for the simulation of ni under a given average se-

quencing depth n̄ were considered: i) Poisson distributed sequencing depth: ni∼Pois(n̄), ii)

overdispersed sequencing depth with ni ∼ Bin( n̄
0.6 ,π), where π ∼ Beta(0.6

d −1, (0.6−1)(d−1)
d )

and d is a constant dispersion parameter d = 0.08, and iii) constant sequencing depth ni = n̄.
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Table 3.1: Sequencing model parameters of the spatial simulator. Variables with a subclone index
i are set individually for each subclone. All other variables are assumed the be constant for the
whole tumour. The default values were chosen to represent an ideal sample (i.e., 100% purity) with
a coverage similar to sequencing data from the TCGA project that was filtered with commonly used
filters.

Symbol Description Values Default

n̄ Average sequencing depth [0,∞] 100
Mseq Sequencing depth model3 {1,2,3} 1
ρ Sample purity (0,1] 1.0
fmin Minimum VAF for detection [0,1) 0.05
ymin Minimum reads for detection [0,∞) 2

The number of mutated alleles yi was in all cases assumed to follow a Binomial dis-

tribution yi ∼ Bin(ni, pi) with the expected VAF being pi =
f ρmi

ρci+2−2ρs
, where ci = 2 is the

copy-number of the mutated site in the tumour, mi = 1 the multiplicity of the mutated allele

in the tumour and fN the fraction of mutated cells in the sample.

The generated mutation data were then filtered to only retain those with a minimum

number of mutated reads yi ≥ ymin and a minimum VAF yi/ni ≥ fmin. Unless otherwise

mentioned values of fmin = 0.05 and ymin = 2 were used. The filtering based on yi and yi/ni

was motivated by their common use as filtering criteria for the reduction of spurious false-

positive mutations in NGS experiments (e.g., Williams et al. 2016; Cross et al. 2018). An

overview of all parameters of the model used for the generation of sequencing data can be

found in Table 3.1.

3.1.1.3 R Package - CHESS

The spatial simulator described above was implemented in the C++ general-purpose pro-

gramming language and integrated into a package for the R statistical programming lan-

guage (R Core Team 2020). For this, methods from the Rcpp package (Eddelbuettel

and Francois 2011; Eddelbuettel 2013), which allows seamless integration of R and C++,

were used. The code of the package is available on GitHub: https://github.com/

T-Heide/CHESS.cpp. This package also contains the code for the ABC-SMC algo-

rithm described in Chapter 6. Some additional notes on the implementation of the model

can be found in Section S.2.1 (page 267).

3.1.2 Tree Statistics

Three tree balancing methods and one statistic that describes the distribution of the rela-

tive branching times were used to assess deviations in the tree shapes introduced by the

https://github.com/T-Heide/CHESS.cpp
https://github.com/T-Heide/CHESS.cpp
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subclonal selection.

Sackin Index The first and probably the most commonly used statistic to describe the

balance of a tree is the so-called Sackin Index S (Shao 1990). This is a modification of

a similar index proposed by Sackin (1972) and used for the first time by Shao (1990).

While there are several definitions of the Sackin index, these can be shown to be equivalent

(Fischer 2020). Here S was calculated as

S(T ) ∑
t∈V 1(T )

δρ,t ,

where δρ, j denotes the number of edges that have to be traversed to reach the node j from

the root ρ of the tree (i.e., the depth of j) and V 1(T ) is the set of all leave nodes in T .

Colless’ index The second one, another commonly used index, is the so-called Colless’

index C (Colless 1982; Mir, Rotger, and Rosselló 2018; Coronado et al. 2020) and defined

as
C(T ) = ∑

t∈V 2,3

balT (t) = ∑
t∈V 2,3

|K(c1)−K(c2)|,

where c1 and c2 are the two children of the node t and K(s) is the number of leaves that are

part of the descendants of s.

Total Cophenetic Index Third, the Total Cophenetic Index Φ proposed by Mir, Rosselló,

and Rotger (2013) was assessed. The statistic is given by

Φ(T ) = ∑
s∈V 1

∑
t∈V 1\{s}

δρ(LCA(s, t)),

where LCA(s, t) denotes the last common ancestor of s and t.

The γ statistic Most of these classic indices disregard information about branch lengths

(Mooers and Heard 1997). I hence also calculated Pybus and Harvey (2000) γ statistic.

This statistic has well defined properties extensively described in the literature (Pybus and

Harvey 2000) and defined as

γ(T ) =

(
1

|V |−2 ∑
|V |−1
i=2

(
∑

i
k=2 k(δρ,i−δρ,i−1)

))
− T

2

T
√

1
12(|V |−2)

, with T =
|V |

∑
j=2

j(δρ,i−δρ,i−1),

where nodes are ordered by their distance from the node δρ,i and |V | denotes the number of

nodes.

Intermixing statistic Another summary statistic I was used to calculate the degree of inter-

mixing within a simulated tree. For this, a number of cells were sampled from the tumour
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and labelled by a lineage marker mi to create a set of cells C. The intermixing within the

reconstructed tree was then measured as

I(T ) =
1
|C| ∑s∈C

(
1
|Ds| ∑

t∈Ds

1ms 6=mt

)
, Ds = {t ∈V 1|t ∈ desc(pa(s))},

where V 1 are all tip nodes of the tree, desc(s) the descendants of s, pa(s) the parent node

of s and 1ms 6=mt an indicator function that indicates if s and t had different labels m.

3.2 Results

3.2.1 Artefacts Arising From ‘Random Pushing’

One of the main aspects of the spatial simulator described here was to consider the effect of

spatial crowding on tumour growth dynamics. This aspect of the simulator was controlled

by the dpush parameter, which describes up to which distance cells can push other cells away

to make room for a daughter cell. In the initial implementation of the simulator, if no empty

grid point in the Moore neighbour existed, a random vector v was generated, and a push

was initialised along this vector. Upon reaching the maximum allowed distance, the tried

push was aborted, and the division skipped.

While this heuristic might appeared to be a reasonable and computationally cheap

approach, upon closer inspection artefacts arising from it were identified. Considering a

mass of N cells, only a subset at a distance rg = dpush from the outer edge should be able to

grow in a spatially constrained tumour. By simply assuming that growth occurs in form of

a disc or sphere, the expected growth dynamics in 2-3 dimensions can be described by the

following ordinary differential equations (ODEs):

2D :
dN
dt

= N−π max(0,r− rg)
2;r =

√
N/π,

3D :
dN
dt

= N− 4
3

π max(0,r− rg)
3; r =

(
3πN

4

) 1
3

.

Comparison of the growth curves expected from these ODEs to those obtained from

the spatial simulator revealed an obvious discrepancy between the two (compare red and

black lines in Figure 3.2). For both extreme parametrisations of the model (i.e., dpush = 1

and dpush = ∞), no deviations from the expected behaviour existed, but for intermediate

degrees of constraint, the simulations started to deviate from the expectation at some point.

To show that this resulted from the pushing of cells into a random direction, an alter-

native ODE model that would take the effects of this into account was constructed. In two
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Figure 3.2: Simulated vs expected growth curves using random pushing. The black lines show 50
random realisations obtained from the simulator.

dimensions the pushing distance forms a radius rg around the location of the dividing cell

located at a distance ri from the centre of the tumour (Figure S.17B, page 269). Given the

size of the tumour N, its radius can be assumed to be r =
√

N/π . If r < ri + rg, then the

pushing radius rg around the position ri and the outer edge of the tumour r will intersect in

two points (x,±a) given by

x =
r2

i − r2
g + r2

2ri
, a =

1
2ri

√
(−ri + rg− r)(−ri− rg + r)(−ri + rg + r)(ri + rg + r).

The angle between these points is proportional to the likelihood that a random push

is successful. Taking the special cases of a cell being on the edge and those in which no

intersection with the edge exists into account, we have:

ppush(ri|r,rg) =


0, if rg + ri ≤ r,
1, if rg− ri > r∨ r− ri ≤ 1,
1
π

cos−2
(

x−ri
rg

)
, otherwise.

Using this likelihood, the effective population size Ne f f can be calculated and used in

the ODE model instead of N to factor in random pushing, thus giving:

dN
dt

= Ne f f −π(
√

N/pi− rg)
2,Ne f f =

∫ r

0
2πri ppush(ri|r,rg)dri.

Indeed, this ODE explained the observed behaviour of the simulator better for higher

values of dpush (see blue lines in Figure 3.2). Upon inspection of the function ppush(ri|r,rg)

for different parameter values, it also became apparent that the random pushing leads to
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unwanted behaviour if the radius of the tumour is r ≤ dpush. In this case, cells at the centre

of the tumour are more likely to divide than cells on the outer edge (Figure S.17A, page

269). This behaviour arises since cells in the centre will be able to push in all directions,

whereas cells on the periphery can only push towards the edge of the tumour, although with

a lower likelihood (Figure S.17B, page 269). Due to this and the increased intermixing

arising as a consequence of this method, an alternative heuristic that identifies the closest

edge was added to the simulator (see Section 3.1.1.1 of Methods, page 78). With this

alternative method, the simulated growth curves (Figure 3.3A or Figure S.18A, page 269)

and the number of generations required to reach a specific tumour size for different values

of dpush (Figure 3.3B) matched the expected ones almost exactly.

A
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Figure 3.3: Expected vs simulated generation times for different degrees of boundary-driven growth.
A) Random realisations of growth curves obtained from the spatial simulator for different diameters
of the outer growing edge (dpush) when cells ‘push’ to the closest edge. The red line shows the
expected distribution obtained from a set of ODEs. B) The time required for a neutrally growing
tumour to reach a radius of rend = 175 in two dimensions. The red line shows the expected growth
dynamics according to a simple ODE model, and the blue line shows the same for a set of ODEs that
accounted for the effect of pushing into a random direction instead of to the closest edge during cell
divisions. The black and grey dots show random realisations obtained from the stochastic simulator,
where cells push approximately to the closest edge or into a random direction respectively. It is
evident that the random pushing causes artefacts leading to a deviation from the expected behaviour
(grey dots vs red line). No such deviation is visible for the simulations in which pushing occurs
approximately towards the closest edge (black dots vs the red line).

3.2.2 General Insights Into Spatial Tumour Growth

In Figure 3.4A-C, three examples of neutral and non-neutral spatial simulations, obtained

using a small degree of boundary-driven growth (dpush = 20), are shown. It is important to

note that the results significantly depend on this parameter. Staining Ki67, a marker for the

replicative activity of cells, in tumours have shown a higher replication rate on the edge of

tumours, thus supporting that tumour growth is primarily driven by cells on the outer edge
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of a tumour. For this reason, boundary driven growth was assumed to be the most realistic

model in the following. In the following the behaviour of the model under various degrees

of boundary-driven growth will be described and in Chapter 6 I will apply an ABC-SMC

algorithm to fit this parameter to the trees of individual patients.

The first example shown in Figure 3.4A is an entirely neutral simulation. At a tu-

mour size of 10 cells, each existing cell was ‘marked’. In reality this might correspond to

a random passenger mutation or a lentiviral barcode (Lamprecht et al. 2017). Following

this, the simulated tumour was grown to a final size of 105 cells under neutral dynamics.

The top of Figure 3.4A shows the distribution of the marked lineages in space, and at the

bottom, each clone (i.e., cells with identical fitness due to common ancestry) are marked in

different colours. Equivalent plots for a tumour with one selected subclone and two selected

subclones (branching) are shown in Figure 3.4B and 3.4C respectively.

From the neutral simulation, it can be seen that the relative size of each marked sub-

lineage (i.e., the descendants of the marked single cells) differ substantially. This effect

arises from drift, which is amplified due to the competition for space under boundary-driven

growth. Under sufficiently significant selective advantages, deviations of the relative clone

sizes can, of course, be observed (yellow lineage in Figure 3.4B&C). Still, due to the poten-

tial effect of strong drift, deviations of relative sub-lineage sizes observed under selective

advantages can be hard to distinguish from neutrality (e.g., the dark blue lineage in Figure

3.4C).

Single-cell sequencing can be used to detect selection Single-cell sequencing provides in-

formation on which mutations co-occure in groups of cells. The information encoded in the

somatic mutations can easily be used to reconstruct the ancestral history of cells. In Figure

3.4D, two simulated neutral phylograms are shown. As seen here, relatively balanced trees

are obtained under both boundary-driven (top) and non-boundary-driven (bottom) growth.

Since mutations were also assumed to be accumulated in non-dividing cells in the simula-

tions, most cells have a relatively similar mutation burden. Still, one difference that can be

seen between boundary-driven and non-boundary-driven growth, which will be discussed in

more detail below, is that the relative branching-times (i.e., the relative position of internal

nodes between the root and the tip) differ. This effect arises due to cells going ‘practically

extinct’ once they fall behind the growing edge.

In a case of relatively late arising selection, phylogenetic trees reconstructed from ran-
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Figure 3.4: Examples of spatial simulations and single-cell trees. A) Representative simulations of
a neutral tumour. B) A tumour with one subclone. C) A tumour with two subclones. The top plots
show lineages of cells marked at a tumour size of 10 cells. D) Two representative single-cell trees
of random cells from a neutral tumour under boundary-drive (top) and exponential growth(bottom).
E) Equivalent single-cell trees from tumours with a late arsing subclone with a strong selective
advantage, similar to the ones in B. Here a clear deviation from the balanced tree in D is visible,
indicating the presence of a selected subclone. F) If a subclone arises early with only moderate
selective advantage and hence does not sweep through the whole population, deviations are less
clear and again hard to distinguish from selection.

domly taken single-cell samples revealed elongated internal edges and a subset of cells with

a higher mutation burden than others (Figure 3.4E). From these data, an obvious deviation

from neutrality is evident. This is something that would have been hard to resolve from the

size of randomly marked lineages alone. Still, if a selected subclone arises very early —
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i.e., under weak selection so that the subclone ultimately coexist with the ancestral clone —

these patterns are less pronounced and again, especially from relatively sparsely sampled

data, hard to distinguish from neutrality (Figure 3.4E).

3.2.2.1 Neutral Boundary-Driven Growth

I next assessed the effect of boundary-driven growth on the growth dynamics of individual

tumours. For this, spatial simulations with marked lineages, similar to the ones described

above, were generated and used to quantify the amount of spatial intermixing of different

lineages. Examples of these simulations are shown in Figure 3.5A.

From this figure, it can be seen that more intermixing of lineages occurs for lower

degrees of boundary-driven growth (left to right). In the case of fully exponential growth,

scattering is widespread. Increased death (top to bottom) only has a relatively minor influ-

ence on the amount of intermixing observed. These observations are also summarised by

the statistics shown in Figure 3.5B&C. Variable strength of boundary-driven growth in indi-

vidual tumours might explain the different rates of spatial variegation observed by Sottoriva

et al. (2015) between carcinomas and adenomas.

Phylogenies can be used to resolve boundary-driven growth The differences in the

growth dynamics implied by the different intermixing and scattering of cells in space im-

plied by the data summarised in Figure 3.5 should also be encoded within genomic mea-

surements obtained from single-cells. To test this hypothesis, a spatial sampling layout

similar to the one used by Sottoriva et al. (2015) was used. In brief, random single-cells

were obtained from four regions with diameters of ≈ 50× 50 grid located on the outer

edges of the tumour (350x350 grid points) with a 90◦ offset from each other (i.e., at a 12,

3, 6, and 9 o’clock position) were subjected to simulated sequencing and phylogenies were

reconstructed from these data using a maximum-parsimony method. Similar to the example

using random sampling of single-cells mentioned previously (top tree in Figure 3.4D), a

clear difference in the relative distribution of branching-times could be seen in these sim-

ulated trees (Figure 3.6A). Under strict boundary-driven growth (left side of Figure 3.6B),

‘palm-tree’ shaped phylogenies can be observed, and the strength of this effect is only mod-

erately reduced if the death rate is high (left bottom left of Figure 3.6B). Each clade in the

corresponding trees was formed by samples from one region, which are indicated by the

colour of the added labels (left site of Figure 3.6B).

For purely exponential growth, branching occurs instead at a relatively early position
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Figure 3.5: Illustration of mixing effects due to boundary and non-boundary-driven growth. A)
Neutral simulations obtain for combinations of the push distance (dpush) and death rate (mu) param-
eters. Cells and their descendants were marked as distinct lineages after reaching a population size
of ten cells. Red box: Stochastic out-competition of a lineage on the growing edge by surrounding
cells. This occurs more frequent under boundary-driven growth. Red arrows: Spatial segregation
arising due to early intermixing of lineages commonly observed under non-boundary-driven growth.
B-C) Summary statistics of the intermixing rate show how intermixing rates increase with a larger
width of the growing edge (dpush) and slightly with increasing death rates µ . The intermixing rates
were calculated with the tree statistic I (see Methods section) on 100 randomly samples cells from a
tumour with a diameter of 350 points.

in the trees (right side of Figure 3.6B). Within the tree, samples from the same region were

frequently less distant to each other than those from different regions, but the formation of

clades by all samples obtained from one single region of the tumour occurred very rarely. At

the intermediate parametrisations of dpush, a transition between the patterns seen in the two

extreme cases became apparent (middle of Figure 3.6B). These observations suggest that

through the analysis of the shape of single-cell phylogenetic trees, an accurate estimation

of the strength of boundary-driven growth might be possible.
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Figure 3.6: Relative branching-time and structured sampling should allow the recovery of growth
laws. A) Relative branching-times of trees obtained from spatial sampling in four regions from the
outer edge of a tumour. Black lines show estimates of random realisations of trees containing 20
single cells each. Little difference with regard to the death rate µ is visible, but changes in the width
of the growing edge dpush cause clear deviations. B) Examples for different parameter values from
A.

These patterns were also evident in the distribution of the lineages-through-time plots

shown in Figure 3.6A. In this context, it is important to note that a combination of two

effects is at play i) the effect of the boundary-driven growth itself and ii) biases introduced

due to non-random spatially sampling. If the latter effect did not exist, one would expect to

see a uniform branching across lineages under exponential growth, but due to the effect of

non-random sampling, we instead have to compare the relative distribution of branch times

for different values of dpush to assess its effect. However, the analysis showed that branching

in reconstructed phylogenies consistently occurred later (concave up) in boundary-driven

growth. For non-boundary-driven growth, branching occurred instead earlier (convex up).

Mutational processes can reveal boundary-driven growth Another possible way to dis-

tinguish boundary and non-boundary-driven growth might be the activity of different muta-

tional processes. In this context, two simple mutation processes can be conceived i) those
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that are continuously active and cause damage to the DNA (i.e., a ‘non-mitotic’ process)

and ii) those that are only active during cell division when a second copy of the DNA is

created (i.e., a ‘mitotic’ process). Given that cells within the centre of a boundary-driven

tumour have a reduced mitotic turnover and assuming that these two mutation types can

be distinguished from each other, differences in the mutation rate of these might reveal a

pattern that is indicative of the growth law in bulk WGS data.

To explore this hypothesis, I integrated both of these mutational processes into the

spatial simulator and generated simulated bulk WGS datasets from the tumour as a whole.

For the implementation of the two different processes, the default behaviour of the model

was slightly modified. Cells that did not manage to divide successfully were assumed to

not accumulate mutations to represent the ‘mitotic’ mutational process. The ‘non-mitotic’

mutation process was included as an additional reaction, which added one mutation to a

random cell, in the Gillespie algorithm. The rate of this process was set to the mutation

rate per division of the ‘mitotic’ process to ensure that mutations from both processes were

present at equal proportions under exponential growth.

The results of a representative simulated boundary-driven tumour are shown in Figure

3.7. These data revealed, as hypothesised, a pattern that could potentially distinguish the

presence of boundary-driven growth, namely an excess of mitotic mutations compared to

non-mitotic ones at a low VAF .

It might, in principle, be possible to distinguish such processes based on the analysis of

mutational signatures. Indeed, a previous study found that the number of mutations assigned

to individual mutational signatures was only weakly correlated with the age of a person at

the time of tumour diagnosis (Alexandrov et al. 2015). Only a single mutational signature

(S1) showed a strong correlation with age across tumour entities. S1 is associated with the

spontaneous deamination of methylated CpG dinucleotides (Alexandrov et al. 2013b) and is

therefore also expected to occur in non-dividing tissue (i.e., non-mitotic). Other mutational

signatures with a known aetiology are in contrast associated with defects introduced during

the duplication of the DNA (i.e., mitotic). One example of this would be signature S10

from COSMIC, which is associated with mutations of POLE, causing error-prone DNA

replication during division (Heitzer and Tomlinson 2014). Depending on how widespread

such mitotic signatures are, the observations made here might partially explain why shifts

in the activity of different mutational processes occur so frequently between clonal and
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Figure 3.7: Mutational processes can reveal boundary-driven growth. The histograms show the
global VAF distribution of mutations generated by two different mutational processes (colours): i)
mutations generated by a continuously active non-mitotic process (red) and ii) a mutational process
that is only active during division (i.e., mitotic). A clear difference in the VAF distribution of muta-
tions generated from these two processes can be seen between boundary-driven tumours (i.e., cells
growing only on the outer edge, dpush = 1) and exponentially growing tumours (dpush = ∞) can be
seen. Tumours with boundary-driven growth show an excess of low-frequency mutations generated
by the mitotic process compared to exponentially growing tumours. Identification of such processes
from WGS data might allow discriminating between these two modes of growth in tumours.

subclonal mutations observable in tumour sequencing data.

3.2.2.2 Non-Neutral Boundary-Driven Growth

Boundary-driven growth dampens selection Similar to the previous analysis, an assess-

ment of what effects selected subclones have on the structure of reconstructed phylogenetic

trees in combination with boundary and non-boundary-driven growth was conducted. For

this subclones with a given selective advantage λsc were introduced into the simulation at

a given population size tsc. The simulated tumours (2D) were grown to a total popula-

tion size of Nend = 105 and the relative size of the subclone fsc was determined. A range

of parameter combinations, were tested with this setup, specifically all combinations of

tsc = {b2(n/2)e | n ∈ {0, ...,30}}, λsc = {1+ x/4 | n ∈ {0, ...,36}} and dpush ∈ {1,5,20,∞}

with 25 realisations each. A mutation rate of m = 50 and a death rate of µ = 0 was used in

all cases.

For the introduction of the selected subclone, a random cell was chosen from the pop-

ulation and modified. Given that for some of the parameter simulations, a large number of

cells were already present at this point, it is expected that some of the transformed cells

were located behind the growing edge. For this reason, simulations in which the introduced

subclone did not expand were rejected. The rate of this rejection is shown in Figure S.20

(page 270). On simulations in which the subclone was able to expand (i.e., the non-rejected
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ones), the average size of the subclone after reaching a total size of 105 cells was calcu-

lated. These numbers are summarised in Figure 3.8A. From the same setup of simulations,

the fraction of simulations in which the subclone made up between 10% and 90% of cells

in the simulation were also calculated. These are shown in Figure 3.8B.

The observations under boundary-driven growth, shown in the bottom right corner of

the two figures, can be used as a reference. As seen here, in the majority of the tested

parameter combinations the subclone effectively swept through the population (yellow in

Figure 3.8A and grey in Figure 3.8B). In this parameter range, it would be relatively unlikely

to sample from the ancestral clone. Likewise, for a number of parameter combinations the

subclone did not have enough time to grow to a sufficient size (dark blue in Figure 3.8A and

grey in Figure 3.8B). In these, it would be unlikely to sample from the subclone. In neither

of these two sets, we would expect to ever observe any evidence for selection in the global

VAF spectrum if we were to sequence the tumour as a whole. The issue of this relatively

narrow range in which subclones could potentially be detected in such data, the ‘wedge of

selection’, was also described in Williams et al. (2016).
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Figure 3.8: Effect of boundary-driven growth on subclone sizes reached for different values of
the pushing distance dpush, the subclone start time tsc and the selective advantage of the subclone
∆λsc = λsc−λac, where λac = 1 and λsc are the birthrates of the ancestral clone and the subclone
respectively.

Comparison of the observations under fully exponential growth to those observed un-

der various degrees of boundary-driven growth showed that the efficiency of selection (i.e.,

the ability of the subclone to grow to a very large size) was reduced under boundary-driven

growth. Given that the growth of subclonal cells is restricted to the growing surface, this is

certainly expected. Still, depending on the actual growth law applying to human malignan-

cies (i.e., boundary vs non-boundary-driven growth), this effect would have to be considered
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to estimate correct parameters from bulk or multi-region WGS.

Boundary-driven growth is detectable in single-cell WGS data After the characterisa-

tion of the parameter range in which subclones in spatial simulations could potentially be

observed, random spatial sampling of single-cells, followed by simulated sequencing of

these, was conducted to determine the ability to detect subclonal selection from single-cell

sequencing data. For this, three tree balancing metrics and a metric that describes the distri-

bution of branching within the trees were assessed (see Methods for details). A simulation

setup identical to the one used to analyse clone sizes under selection, fully described in

the previous paragraph, was used. In each case, 20 random cells were obtained from the

simulated tumour, subjected to simulated sequencing and maximum-parsimony phyloge-

netic reconstruction. From the reconstructed phylogenies, the four summary statistics were

calculated. These statistics are summarised in Figure 3.9. From the results shown here,

it is evident that in those intervals in which samples from both subclones can in principle

be obtained (see Figure 3.8), an apparent deviation from the typical tree balance expected

under neutrality can be observed (dark blue colours in Figure 3.9). This suggests that even a

moderate amount of single-cells subjected to WGS sequencing should be sufficient to detect

subclonal selection. A larger number of cells should in principle even allow the detection of

selected subclones at a frequency far below the limit of detection in bulk WGS sequencing

data (i.e., < 10%).

3.3 Contributions to MOBSTER
In the previous chapter, some issues of commonly used clustering methods, when applied to

bulk simulated WGS sequencing data obtained from a neutral branching process model of

cancer evolution, were described (see Figure 2.3H, page 62). In short, these methods were

found unable to explain the expected power-law distribution of subclonal variants expected

under neutrality (see Figure 2.1A-B, page 55), causing these clustering methods to include

several subclonal clusters, almost irrespective of the true number and position of subclones

(Figure S.4, page 263 and Figure S.2, page 262). Importantly these subclonal clusters are,

as they are expected to be composed of multiple lineages present at a similar VAF, almost

uninterpretable.

These observations motivated Giulio Caravagna, a colleague in Andrea Sottoriva’s

group, to create an alternative clustering method called ‘model-based tumour subclonal

reconstruction’ (MOBSTER). MOBSTER can fit a mixture of a Pareto distribution (i.e., the
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Figure 3.9: Detection of subclonal selection in single-cell sequencing data. The presence of selected
subclones arising under various parametrisations causes detectable deviations in tree balances.

power-law ‘1/ f ’ tail) and multiple Beta distributions to the sequencing data and is hence a

method that should in principle be able to account for the structures expected to arise under

neutrality (Figure 3.10).

For the validation of the MOBSTER clustering method, two reference datasets com-

posed of simulated non-spatial (univariate) and spatial (multivariate) sequencing datasets

were generated. Each of these was composed of neutral simulations and multiple non-

neutral simulations with subclones present at different frequencies. Both of these datasets

were used to characterise the ability of MOBSTER to detect selected subclonal clusters in

comparison to other commonly used methods.

3.3.1 Non-Spatial simulations (Univariate dataset)

Generation of simulations The first dataset was composed of simulated sequencing data

obtained from a non-spatial (i.e., univariate) tumour model. For this, the simulator described

in Chapter 2 (see Section 2.2.2 on page 61 for details) was used. Instead of a Poisson
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distributed coverage C of mutant alleles xi, an over-dispersed Beta-Binomial distribution

was added to the model (see Section 3.1.1.2 on page 80). For each simulation, one ancestral

population and a single mutant subclone, introduced at a fixed time-step ts, were generated.

Constant parameter values were used for the mutation rate m = 16 (mutations per dou-

bling), the death rate µ = 0.2, the total number of reactions tend = 179,782,830 4, and the

total number of clonal mutations Nc = 500. For the initial dataset, an average sequencing

depth of C̄ = 120 and sample purity a = 1 were used. Nine random realisations for each

combination of subclone birthrates λs ∈ {1+0.1i | i∈N∧1≤ i≤ 13} and number reactions

prior to initiation of a subclonal expansion ts ∈ {2i | i ∈ N∧4≤ i≤ 14} were simulated.

Selection of 150 datasets for testing All simulations in which the subclone accumulated

less than 50 mutations before its transformation (i.e., less than 4-5 divisions) were removed,

and three datasets with a specific fraction of mutated cells in the population (xs, the CCF

of the subclone) were generated by randomly selecting from the remaining simulations as

follows: i) 20 effectively neutral cases where xs < 5%, ii) 20 effectively neutral cases with

xs > 90%, and iii) 110 cases with a potentially detectable subclone, with 20% < xs < 80%.

These cases represent tumours with minor, almost undetectable subclones (e.g., Figure

3.10C), tumours where the subclone has swept through the entire population and cases

where the subclone is detectable within the VAF spectrum (e.g., Figure 3.10D).

Analysis Mutations from each of these 150 WGS sequencing datasets were clustered with

DPclust (Nik-Zainal et al. 2012a), PyClone (Roth et al. 2014) and SciClone (Miller et al.

2014) before and after the removal of subclonal tails with MOBSTER (Figure 3.10B). The

number of inferred clusters relative to the true number of ‘clone cluster’ (i.e., k = 1 for neu-

tral and k = 2 for non-neutral cases) is summarised in Figure 3.10E. These data demonstrate

that for all of the four tested methods a similar number of additional clusters were inserted

due to subclonal 1/ f tail present in the simulated data (yellow colour in Figure 3.10E). This

was the case in the same way for both, neutral, and non-neutral WGS data. After removal

of the subclonal tail with MOBSTER the number of additional clusters was significantly

reduced (green colour in Figure 3.10E).

Representative fits for a simulated tumour with one subclone and an effectively neutral

case are shown in Figure S.22A (page 271) and Figure S.22B (page 271) respectively. Still,

4It is not entirely clear to me why I chose this somewhat arbitrary value, but ultimately one obtains very
similar data for a weakly selected subclone in a tumour grown to a larger size and a strongly selected subclone in
tumour grown to a smaller size (Williams et al. 2018b) . The size of the simulated tumours was≈ 107,800,000
cells.
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Figure 3.10: Validation of MOBSTER using synthetic tumour bulk sequencing data. A) Principle of
the MOBSTER method. Details can be found in Caravagna et al. (2020). B) Various clustering meth-
ods were either applied directly to simulated sequencing data or after the removal of the subclonal
power-law tails with MOBSTER. C) A representative neutral simulation. D) A representative non-
neutral simulation with a subclonal cluster present at a VAF of ≈ 0.25. E) Summary of the number
of clusters inferred by DPclust, PyClone and SciClone before (yellow) and after (green) removal of
the subclonal tails with MOBSTER. F) The effect of reduced purity on the mixture weight of the tail
component.

as seen in Figure 3.10E misclassification did occur by MOBSTER. Analysis of these cases

identified three modes of failure.

Failure modes First, in ≈ 70% of misclassified cases, the subclone was present at a very

high frequency (Figure S.22C, page 271). Here the additional variability of the beta com-

ponents fitted the mixture of two Binomial distributions sufficiently well. In these cases, an

approach that removed mutations assigned to the tail and clustered the remaining ones with

a method that fits a mixture of binomials on the raw count data (e.g., BMix) was typically
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able to identify the subclone correctly. The BMix package for R was used to fit maximum

likelihood Binomial mixtures to the data since the clustering of mutations was not the ob-

jective of this analysis. Still, in principle Dirichlet Process based clustering using Binomial

distributions like DPClust, would be expected to obtain similar results if clustering of muta-

tions would be required. Secondly, ≈ 17% of misclassified cases the subclone was ‘hidden’

below the power-law tail (Figure S.22D, page 271). This problem especially arose when the

subclonal cluster was small (i.e., small tsc). While this is a genuine error of the method, it is

inherently hard to resolve. The remaining≈ 13% of misclassified cases had a low frequency

subclone with no fitted tail (Figure S.22E, page 271). In these cases, the low-frequency mu-

tations of the tail were assigned to the subclonal cluster instead. While incorrect, this might,

in practice, be irrelevant.

Notably, relatively high coverage is required to detect the subclonal tails (Figure

3.10F). At C ≤ 100, reliably detecting variants at a low frequency is compromised, and

subclonal tails are often not detected in these data. This can, in turn, lead to over-calling of

subclonal selection in low-coverage WGS data. More extensive tests of this behaviour are

shown in Caravagna et al. (2020), but generally, a minimum of 100x sequencing coverage

appears to be required for subclonal reconstruction from single-bulk WGS data. A con-

clusion that was also supported by the simulated synthetic tumour datasets obtained from

non-spatial simulations.

3.3.2 Spatial Simulations (Multivariate dataset)

Generation of synthetic datasets A second multivariate dataset composed of tumours with

one (n = 50), two (n = 10) and three (n = 10) selected subclones at a detectable frequency

were created. Between two to nine simulated biopsies were obtained from these synthetic

tumours. Each tumour was grown on a 800×800 2D lattice until one of the cells reached the

edge of the space. This results in tumours containing roughly≈ 5 ·105 cells. New subclones

with a birth rate λ = [1,1.6,2.4] were introduced at time points [0,4,6.7] respectively. These

were chosen to allow coexistence of each subpopulation at approximately equal abundance

at the termination of the simulation. The remaining parameters, equivalent to the non-

spatial simulations, were kept constant: m = 10, Nc = 100, C̄ = 100, µ = 0, a = 1, and

d = 100 (see methods above). Biopsies of 10,000 cells (i.e., 100× 100 grid points) were

taken along the outer perimeter with an equal angular distance relative to the centre between

them. Representative examples of a simulated neutral tumour with two biopsies are shown
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in Figure 3.11A&B. Figure 3.12A&B shows a representative example of a tumour with two

subclones and a total of three biopsies.

Fitting of multivariate datasets The multivariate datasets were fitted with the multivariate

variational Binomial clustering method VIBER5 on the raw read counts. The same analysis

was run after removal on tail variants with MOBSTER along the marginals of samples (e.g.,

Figure 3.11B and Figure 3.12B).

Observations on neutral tumours In order to show how the reconstructed subclonal clus-

ters after and before the removal of tails with MOBSTER were related to the spatial distribu-

tion of variants within the tumour, a virtual in situ staining was applied to the simulations.

The results of this method for the neutral case shown as example above before and after

removal of tails with MOBSTER are shown in Figure 3.11C and Figure 3.11D respectively.

In these plots, a perfectly resolved ‘mutation cluster’ will have non-transparent colours in

the entire tumour (i.e., all mutations are present or absent). Imperfectly resolved ‘muta-

tion cluster’ will, in contrast, have a variable amount of staining within the tumour. This

means that all mutations are present in some cells, whereas others only contain a subset of

the mutations from the cluster. These imperfectly resolved clusters could still be identified

through more extensive sampling in space but should be removed for subclonal reconstruc-

tion. Comparing Figure 3.11C and Figure 3.11D shows that removing tails with MOBSTER

can help to reduce the amount of spurious unresolved subclonal clusters. This was sup-

ported by the observations in the remaining case (see Figure S.21, page 270).

Observations on non-neutral tumours Equivalent in situ staining data for a non-neutral

tumour with two subclones are shown in Figure 3.12C. Here staining of all clusters de-

tected after the removal of tails along the marginals is shown. First, the clonal cluster (C1)

was identified correctly, and these mutations are present in the entire tumour (dark green

staining). A second large cluster (C3) were those mutations that formed the MRCA of

the subclones #2 and #3. While this cluster also contains a small number of non-neutral

mutations present in some, notably unsampled, cells of the background clone #1 (note the

red cells in purple staining), this cluster would also be expected to contain the first ‘driver’

mutation(s) responsible for the selection of the first subclone #2.

Similarly, cluster C5 contains the simulated ‘driver’ mutations responsible for the se-
5In principle, any other mixture model or clustering method could be used instead of VIBER in the same way.

Due to the absence of overdispersion in the simulated data, the choice of a Binomial mixture was considered
to be reasonable. If a significant degree of overdispersion might be present, another distribution, like a Beta
distribution, able to capture this should be fitted instead.
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Figure 3.11: Example of a spatial simulation with no subclone. A) Spatial layout of cells coloured
by the clone they belong to within the tumour. The location of two 100× 100 bulk samples (S1
and S2) are shown as black boxes. B) Histograms of simulated NGS mutation data obtained from
the two bulk samples. Colours highlight the cluster mutations were assigned to during a univariate
clustering, i.e., along the marginals, with MOBSTER. C) Result of multivariate cluster analysis with
VIBER, a variational Bayesian able to fit multi-variate Binomial mixtures, after mutations assigned
to ‘1/ f tails’ identified by MOBSTER (highlighted in grey in B) in all samples were removed. The
scatter plot shows the VAF of mutations in both samples, and mutations (dots) are coloured by the
cluster they were assigned to. A ‘virtual staining’ of these mutations within the tumour is shown in
insets. D) Like C without the removal of mutations in tails identified by MOBSTER.
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Figure 3.12: Example of a spatial simulation with two subclones. A) Spatial layout of cells coloured
by the clone they belong to within the tumour. The location of three 100× 100 bulk samples (S1,
S2 and S3) are shown as black boxes. B) Histograms of simulated NGS mutation data obtained
from the three bulk samples. Colours highlight the cluster mutations were assigned to during a
univariate clustering, i.e., along the marginals, with MOBSTER. C) Result of a multivariate cluster
analysis with VIBER, a variational Bayesian model able to fit multi-variate Binomial mixtures, after
mutations assigned to ‘1/ f tails’ identified by MOBSTER (highlighted in grey in B) in all samples
were removed. The scatter plot shows the VAF of mutations in both samples, and mutations (dots)
are coloured by the cluster they were assigned to. A ‘virtual staining’ of these mutations within the
tumour is shown in insets.

lection of the subclone #3. All remaining identified subclonal clusters contained mutations

that formed (unselected) MRCAs of subpopulations of cells present in the biopsies. Taken

together, these results show how MOBSTER can be used to simplify the reconstruction of

‘clone trees’ by removing a large number of clones otherwise added to subclonal tails arising

in the marginals (compare Figure S.21, page 270). Still, inferred clusters and ‘clone trees’

reconstructed from these have to be interpreted carefully. Not all detected clusters arise due

to subclonal selection, and additional spatial effects, two of which will be described in more

detail in the following, can heavily influence the shape of reconstructed trees.
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3.3.3 Spatial Effects in Bulk WGS

Based on the spatial simulations generated for the validation of MOBSTER several issues

that can arise from the usage of bulk WGS sequencing samples taken in space were identi-

fied. Two of these with particular importance for the usage of multi-region bulk samples for

the detection of selection in such data were identified. As described in Section 3.2.2 one of

the ‘hallmarks’ of a selected subclone in multi-region sequencing data is the presence of an

elongated edge in reconstructed phylogenies (see Figure 3.4E).

Spatial structures in neutral tumours Now, the question is whether this property is suf-

ficient to identify subclonal selection in such a reconstructed phylogenetic tree. Here two

relevant spatial effects that can complicate such an analysis were identified. Both of these

can easily be demonstrated on simulated sequencing data taken from a simulated spatial

tumour. In Figure 3.13A, the growth curve of a neutral tumour simulation is shown. Once

the tumour reached a size of 6 cells, each of these was ‘marked’ as an individual lineage.

This is similar to what one would expect a real tumour to look like if lentiviral barcoding of

individual cells was conducted in vivo (Heijden et al. 2019; Lamprecht et al. 2017).

In Figure 3.13A two general properties of spatial simulations can be seen: i) impris-

onment of one lineage of the tumour (lineage #4) and ii) strong spatial drift on the edge

(lineage #5). Both of these result from the ‘competition for space’ on the growing edge of

the tumour. In the case of lineage, #4 this competition was unsuccessful, and in the case

of lineage #5 descendants of the cell were ultimately able to survive. These behaviours are

ultimately driven by a small number of cells that are able to ‘surf’ on the growing edge

(Schreck et al. 2019).

This effect of gene surfing can also be seen in the radial patterns in the spatial staining

shown in Figure 3.13B. The resulting distribution of clones within the tumour are mainly

confined to specific regions of the tumour. By sampling and sequencing single cells within

the tumour, we can see that the majority of these contain a roughly similar number of mu-

tations (Figure 3.13C). From the global VAF spectrum shown in Figure 3.13D, it becomes

obvious that some drift, seen by subclonal mutations at a high frequency (light grey colour),

did occur, but generally, the distribution is consistent with the expected 1/ f tails.

Admixture effect If now a sample is taken in space at a position at which it overlaps a

lineage boundary, of which some a marked by colours in the spatial plot, a curious effect

might arise (Figure 3.13E). The simulated sequencing data of the bulk sample B4, taken
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Figure 3.13: Spatial effects that arise in bulk samples. A) Growth dynamics of lineages over time.
An example of imprisonment arising from the weak boundary-driven growth, lineage #4 and random
drift on the growing edge restricting the expansion of lineage #5 are visible. B) From the spatial
staining, radial lineage boundaries arising from gene surfing are visible. C) Simulated single gland
sequencing reveals a very balanced subclonal structure indicative of neutral evolution. D) Similarly,
a single clonal cluster and a 1/ f tail are visible. Nested lineages within the tail and excess clonal
mutations arising from drift (see A) are visible. E) Demonstrates the admixture effect in bulk samples
crossing a lineage boundary (here red & blue). F) Sequencing and combination with an adjacent
sample can reveal clusters that might be interpreted to indicate the selection of two subclones (i.e.,
branching). A single cell was used as a second sample, but the same effect can arise with bulks. It is
important to note that spatial distance does not necessarily relate to genetic distance. G) The MRCA
effect arising from different sizes of bulk samples.
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across the boundary of the tumour, are shown on the right side of the scatter plot in Figure

3.13F, the single-cell sample from the blue sample is shown on top of the plot. In the

case that a separate sample taken from the blue or red lineage is available, the mutations

would reveal the presence of three clusters Cl1-3, as shown in the scatter plot. From this,

one would be able to reconstruct a ‘clone tree’ similar to the one shown on the right-hand

side of the plot. While technically correct, this clear ‘branching pattern’ would still not

imply the presence of subclonal selection. It has instead to be considered that cells close in

space can be genetically extremely distant. An even more concerning problem arises when

we do not happen to sample either of the two lineages separately (i.e., in the absence of

C4). Then subclonal mutations from both lineages (red and blue) are present at identical

frequencies in the VAF spectrum. Using standard subclonal or MOBSTER would likely split

these into a subset, leaving a very small subset of mutations considered clonal and altering

the reconstructed trees.

MRCA effect A related effect arises when the size of individual bulk samples is varied

(Figure 3.13G). This effect arises from the fact that only mutations of the MRCA of all cells

in the sample will be present at a clonal frequency. All other mutations will instead be at a

subclonal frequency. As the number of cells within the sample increases, more mutations

of the 1/ f tail of these subclonal mutations will fall below the level at which they will be

detectable. In a small sample (e.g., B1), a relatively large number of clonal mutations and

an additional number of subclonal mutations can be detected. As the size of the sample

increases (e.g., B2 or B3), fewer variants will be found to be clonal or within the tail.

Therefore, no matter whether the subclonal mutations are removed (e.g., using MOBSTER)

or kept, various tree shapes can be obtained from the roughly same region of a tumour, just

by altering the size of the bulk samples taken.

Clinical samples used for large-scale WGS studies like TCGA (Bailey et al. 2018) or

PCAWG (Dentro et al. 2021) are normally obtained as part of diagnostic or therapeutic

procedures. Normally, little control over how samples are obtained from the tumour is

possible. Even if the obtained specimens are very large, these are not representative of the

whole tumour. Therefore, bulk sequencing done on such samples can suffer from the spatial

effects described here without the ability to resolve these through the extensive sampling

of other regions. It is important to note that these patterns can emulate the hallmarks of

selection, that is, the elongation of individual edges, making the interpretation of clustering
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results obtained from such bulk WGS sequencing data more challenging. Especially, the

relative length of edges from single bulk samples has little meaning.

3.4 Summary
Through the use of a spatial tumour simulator, which includes effects from spatial crowding

and boundary-driven growth, some general insights into the ability to detect i) the strength of

boundary-driven growth and ii) subclonal selection was obtained. These data suggested that

a relatively small number of sequenced single-cells should be sufficient to detect reasonable

large subclones arising under selection and that single-cell phylogenies should in principle

reveal whether tumours grew exponentially or under boundary-driven growth.

The spatial simulator was also used to characterise the behaviour of commonly used

clustering methods in a univariate and multivariate setting. Specifically, it was possible to

show that the new method MOBSTER (Caravagna et al. 2020), which Giulio Caravagna

created, was able to resolve the issues arising from the ‘1/ f tail’ in single-bulk WGS data.

The method can remove subclonal tails expected under neutrality, which would otherwise be

fitted by many binomial clusters. However, here issues remain and using simulation-based

methods like ABC might, at least for the time being, be the best option for the interpretation

of such data.

Last but not least, two general issues with bulk WGS data were identified: first that

even small changes in the size of the tissue pieces used for the generation of libraries can

significantly alter the length of edges in reconstructed phylogenies. Secondly, sampling

across ‘lineage boundaries’ can also cause a miss-ordering of somatic variants when com-

monly used clustering methods are applied. Together these results highlight the importance

of single-gland or single-cell sampling methods.





Chapter 4

Analysis of the EPICC Cohort

4.1 Introduction
Motivated by the results of previous studies that inferred the strength of subclonal selec-

tion from single-bulk WGS samples (Williams et al. 2016; Williams et al. 2018b) and the

identification of general issues arising from spatial sampling effects in bulk WGS datasets

(Caravagna et al. 2020), a multi-region single-gland sequencing study, called ‘Evolutionary

Predictions in Colorectal Cancer’ (EPICC), was set up. The ultimate goal of this study was

to obtain measurements that would allow inference and prediction of evolutionary dynam-

ics in individual CRCs. The secondary aims of the project were i) to study the relationship

of genomic and epigenetic intra-tumour heterogeneity, ii) to identify somatic epigenetic al-

terations with a potential role in CRC development, iii) and characterise the prevalence of

subclonal driver alterations in this disease.

4.1.1 Clonal Architecture of Colorectal Cancers

For this, the property of colorectal adenomas and well to moderately differentiated carci-

nomas to contain tumour glands was exploited (Hamilton, Aaltonen, et al. 2000). These

tumour glands are a structure that resembles colorectal crypts, small finger-like invagina-

tions into the underlying tissue that normally form the epithelium of the colon (Humphries

and Wright 2008). Normal crypts typically contain five to six stem cells located at the bot-

tom of the crypt (Lopez-Garcia et al. 2010; Snippert et al. 2010; Baker et al. 2014). The

stem cells continuously give rise to transient cells, which migrate to the top of the crypt

and are shed after several days into the colon lumen (Wright, Alison, et al. 1984). As men-

tioned before, CRCs are composed of glands and are believed to contain the same structure

(Merlos-Suárez et al. 2011). The clonal expansion of CRCs is thought to take place due

to bifurcation or fission of crypts/glands (Garcia et al. 1999; Humphries et al. 2013; Baker



108 Chapter 4. Analysis of the EPICC Cohort

et al. 2014; Bruens et al. 2017). Experiments have further shown that the lineages within a

gland undergo frequent sweeps (Graham et al. 2011; Baker et al. 2014). This implies that

all cells within a gland share a recent common ancestor and that they are only a few cell

divisions apart. Taken together, these properties make glands the fundamental ‘clonal unit’

of CRCs.

While the full genomic profiling of individual cells would in principle be optimal, due

to errors and artefacts arising from the necessary whole-genome amplification, the direct

measurement of mutations in single-cells remains elusive (Leung et al. 2017). Alternative

approaches use the ability of cells to copy their genome with high fidelity in vitro. This abil-

ity has been used in immortalised cell-lines (Meyer et al. 2015) or patient-derived organoids

(Sato et al. 2011; Wetering et al. 2015; Blokzijl et al. 2016; Roerink et al. 2018). Still,

these techniques are time consuming, expensive, and might introduce a selection bias for a

subpopulation of cells. Further, the specific micro-environment required for the in vitro cul-

tivation might not reflect the one encountered in the primary tissue and could consequently

introduce artefacts in assays (e.g., gene expression, methylation or chromatin accessibility

assays).

Conveniently, the tissue architecture and replication machinery of cells produces ex-

actly what these in vitro methods do — i.e., the creation of a large number of genetically

similar cells from a recent common ancestor — in the micro-environment of the analysed

tumour in vivo. As each colorectal cancer gland contains between 2,000 to 10,000 individ-

ual cells (Siegmund et al. 2009a), a sufficient amount of genetic-material for various assays

can be obtained from these. Indeed, the ability to conduct genomic profiling at essentially

single clone resolution has been exploited in previous studies to elucidate clonal dynamics

in normal colorectal epithelium (e.g., Yatabe, Tavaré, and Shibata 2001; Nicolas et al. 2007;

Shibata 2009) as well as in cancer (e.g., Tsao, Grisham, and Nelson 1985; Tsao et al. 1998;

Tsao et al. 2000; Siegmund et al. 2009b; Humphries et al. 2013; Sottoriva et al. 2015; Cross

et al. 2018; Baker et al. 2019; Cross et al. 2020).

4.1.2 Multi-Omics Profiling

For the EPICC project a novel multi-omics profiling method was developed1, which com-

bines the single-crypt isolation methods described by Martinez et al. (2018) with three ge-

nomic assays i) mutation profiling using WGS, expression profiling with RNA sequencing

1This work was primarily done by Inmaculada Spiteri.
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Figure 4.1: Sample collection scheme and sample numbers. A) A total of 30 cancers and 9 adeno-
mas obtained from colectomy specimens from 30 patients were obtained. B) For each case normal
reference and cancer glands and bulks were taken from different regions. C) Cells of each sample
were lysed and split into a cytosolic and nucleic fraction. D) RNA-seq data were generated from the
cytosolic fractions. ATAC-seq and WGS data from the nucleic fraction. E) A macroscopic image of
a tumour with the layout of the four tumour regions (A-D) An adjacent normal sample region (E) An
adenoma (F). F) Microscopic images of individual glands obtained from the four regions. G) The
overlap of the different assays. H) The total number of samples obtained for each data and sample
type.
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(RNA-seq) (Schuierer 2017) and chromatin accessibility measurements using ATAC-seq

(Buenrostro et al. 2013; Buenrostro et al. 2015).

The multi-omics profiling method was applied to a total of 30 stage I–III primary col-

orectal carcinoma and nine concomitant adenomas from a total of 30 patients that underwent

a colectomy at the University College London Hospital (Figure 4.1A and Table S.1).

From these primary specimens, individual crypts as well as tiny bulk samples — in the

following referred to as ‘minibulks’ — were obtained from normal and tumour tissue (Fig-

ure 4.1B). The cells obtained from each of these tissue samples were then lysed and, split

into a cytosolic fraction and nucleic fraction through centrifugation (Figure 4.1C). ATAC-

seq and WGS libraries were then created from the nuclei fraction and RNA-seq libraries

were created from the cytosolic fraction2 (Figure 4.1D).

Some of the generated libraries were then sequenced on an Illumina sequencer and

the total number of samples for which sequencing data were generated are shown in Fig-

ure 4.1H. Overall WGS data at sequencing coverage of ≈ 30× were obtained for a total of

214 samples (tissues pieces and single-glands) from carcinomas and for 16 samples from

adenomas. A large number of additional LP-WGS sequencing was conducted on 260 and

7 samples obtained from cancers and adenomas respectively. For most of the tissue sam-

ples — i.e., 1082 obtained from carcinomas, 27 from adenomas and 103 healthy normal

tissue — ATAC-seq data were generated. Additionally, RNA-seq was obtained for a subset

of samples3. The overlap of the different measurements is summarised in Figure 4.1G. As

shown here, matched WGS (including LP-WGS) and ATAC-seq was available for 268 sam-

ples. In a total of 114 samples, all three measurements (i.e., WGS, ATAC-seq and RNA-seq)

were available.

In this chapter, I will present an analysis of the WGS and ATAC-seq datasets gener-

ated as part of this project. Using these, I will provide a comprehensive overview of the

subclonal architecture of the analysed CRCs. Furthermore, I will present an analysis of the

somatic chromatin accessibility profiles and identify a number of functional recurrent focal

alterations of the chromatin accessibility as well as the general deregulation of TF activity

as putative non-genetic drivers of CRCs.

Sample barcodes Each obtained sample was given a unique identifier that allowed to iden-

tify its specific properties. The barcodes are a series of alphanumeric identifiers like the

2Tissue collection and sample preparation were done by Inmaculada Spiteri and Chris Kimberley.
3These RNA-seq data were analysed by Jacob Househam.



4.2. Methods 111

following: ‘EPICC C501 A1 B1 D1’. The elements of these labels separated by ‘ ’ consist

of i) the project code (i.e., EPICC), ii) the patient identifier (e.g., C501), iii) the region iden-

tifier (i.e., A-G followed by a number), iv) the sample type (i.e., B — bulk or G — gland

followed by a number), v) the analyte type (i.e., D — WGS, C — ATAC-seq, R — RNA-

seq or L — LP-WGS) followed by a number. Especially the case identifier (e.g., C516) will

frequently be referenced in the following.

4.2 Methods

ATAC-seq and WGS data were generated on an Illumina NextSeq 500 (ATAC-seq of C516)

and an Illumina NovaSeq sequencer. The primary analysis pipeline for WGS, LP-WGS and

ATAC-seq sequencing datasets described below was implemented using the Snakemake

workflow engine (Köster and Rahmann 2012).

4.2.1 Alignment

4.2.1.1 WGS

Contaminating adapter sequences were first removed with Skewer version 0.2.2 (Jiang et al.

2014) using the adapter sequences ‘AGATCGGAAGAGC’ and ‘ACGCTCTTCCGATCT’,

a maximum error rate of 0.1, minimum mean quality value of 10, and a minimum read

length of 35bp after trimming using options ‘-l 35 -r 0.1 -Q 10 -n’. The trimmed and

filtered reads from each sequencing run and library were separately aligned to the GRCh38

reference assembly of the human genome (Schneider et al. 2016) with version 0.7.17 of the

BWA-MEM algorithm (Li 2013).

Using the GATK version 4.1.4.1 and following GATKs best practices (McKenna et

al. 2010; DePristo et al. 2011; Van der Auwera et al. 2013) reads were then sorted by

coordinates with GATK SortSam, merged across independent sequencing runs, and libraries

generated from the same tissue and duplicated reads marked using GATK MarkDuplicates.

The structure of the final BAM files was verified using GATK ValidateSamFile.

4.2.1.2 ATAC-seq

Adapter sequences were removed with Skewer version 0.2.2 (Jiang et al. 2014) using the

full-length adapter sequences (see Table 4.1) with the option ‘-m any’ set.

The reads of each sequencing run and library were aligned to the GRCh38 refer-

ence genome using Bowtie2 (Langmead and Salzberg 2012; Langmead et al. 2019, version

2.3.4.3) with the options ‘–very-sensitive -X 2000’ set. After sorting the reads with sam-
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Table 4.1: ATAC-seq adapter sequences.

Adapter Sequence

Pair 1 CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTCTTCTGCTTG
Pair 2 CTGTCTCTTATACACATCTGACGCTGCCGACGANNNNGTGTAGATCTCGGTGGTCGCCGTATCATT

tools sort version 1.9 (Li et al. 2009), reads mapping to non-canonical chromosomes and

mitochondria (i.e., chrM) were removed (GATK PrintReads followed by GATK RevertSam

and GATK SortSam). After merging the independent libraries of each sample, duplicated

reads were removed using GATK MarkDuplicates. Likewise, all reads mapping to multiple

locations (i.e., multi-mappers) were excluded using samtools view. The final bam files were

validated with GATK ValidateSamFile.

4.2.2 Detection of Germline Variants

The GATK HaplotypeCaller (Poplin et al. 2018) was used to identify germline variants

from the reference normal samples in each patient (buffycoats or adjacent normal tissue).

In short, candidate germline variants were identified using the HaplotypeCaller with known

germline variant annotations from the build 146 of the dbSNP database (Sherry, Ward, and

Sirotkin 1999; Sherry et al. 2001). This was conducted separately for each chromosome and

VCF files were merged later using GATKs MergeVcfs. Following the methods by Poplin

et al. (2018) variant recalibration data were then calculated for single-nucleotide variants

(SNVs) using GATK VariantRecalibrator with the options:

--resource hapmap,known=false,training=true,truth=true,prior=15.0:hapmap_3.3.hg38.vcf.gz

--resource omni,known=false,training=true,truth=true,prior=12.0:1000G_omni2.5.hg38.vcf.gz

--resource 1000G,known=false,training=true,truth=false,\

prior=10.0:1000G_phase1.snps.high_confidence.hg38.vcf.gz}

--resource dbsnp,known=true,training=false,truth=false,prior=2.0:dbsnp_146.hg38.vcf.gz

--max-gaussians 6 -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0

-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum -mode SNP

and for InDels with the options

--resource mills,known=false,training=true,truth=true,\

prior=12.0:Mills_and_1000G_gold_standard.indels.hg38.vcf.gz

--resource dbsnp,known=true,training=false,truth=false,prior=2.0:dbsnp_146.hg38.vcf.gz

-mode INDEL --max-gaussians 4 -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0

-an DP -an QD -an FS -an SOR -an MQRankSum -an ReadPosRankSum

following suggestions by Frazer et al. (2007), Auton et al. (2015), Sherry et al. (2001),

and Mills et al. (2006). Recalibration data were then applied to the VCF files using GATK
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ApplyVQSR with the options ‘-mode SNP -ts-filter-level 99.0’ and ‘-mode INDEL -ts-filter-

level 99.0’ respectively. Only germline variants with the filter flag ‘PASS’ were retained.

4.2.3 Verification of Sample-Patient Matches

It was verified for each sample that they matched the expected patient identity by using

the germline variants identified in normal tissue samples of patients. Reads of each read-

group were extracted from bam files with ‘samtools view’ using options ‘-bh {input bam} -r

{read group id}’ and then used GATK CheckFingerprint tool to extract statistics on sample-

patient matches (Javed et al. 2020).

For all but a couple of high-purity samples with extensive loss of heterozygosity, this

analysis confirmed that the samples were obtained from the expected patient. For the lat-

ter group, copy-number profiles were manually reviewed to confirm that they matched the

remaining samples.

4.2.4 Copy-Number Analysis

4.2.4.1 WGS

For the analysis of CNA from deep WGS samples, coverage of genomic loci relative to

matched normal tissue samples (buffycoats or adjacent normal) were extracted and binned in

non-overlapping windows of 106 bp B-allele frequencies of germline mutations determined

as outlined above for each patient were added to these binned files.

Joined segmentation on all samples obtained from a given tumour was performed us-

ing the heterozygous B-allele frequencies to determine a set of breakpoints for subsequent

analysis. Biases introduced by differences in guanine-cytosine content (GC-content) as well

as mappability were corrected, and piecewise constant curves fitted to data from all samples

using the multipcf function from the copynumber package version 1.22.0 for R (Nilsen et al.

2012).

Using the per-patient set of breakpoints, binned depth-ratio and B-allele frequency

data, the sequenza algorithm (version 2.1.2) was used to determine allele-specific copy-

numbers, ploidy (Ψ), and purity (ρ) estimates from these data (Favero et al. 2015). The

initial parameter space searched was restricted to 0.1≤ ρ ≤ 1 and 1≤Ψ≤ 7. After review-

ing the results, several samples with unrealistic fits (e.g., extremely variable ploidy values

across samples) were identified. For these samples, alternative solutions consistent with the

other samples of a patient and somatic variant calls were manually selected.
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4.2.4.2 LP-WGS

Reads from LP-WGS samples were extracted from bam files with methods from QDNAseq

(Scheinin et al. 2014), binned in windows of 500kb across the autosomes and converted

to log2-ratios. The log2-ratios were normalised according to the workflow described by

Scheinin et al. (2014) apart from the outlier smoothing steps. Next, log2-ratios were nor-

malised by subtraction of the median log2 ratio in a given sample, segmented with the

multipcf method from the copynumber package for R (Nilsen et al. 2012) using γ = 10 and

summarised by the average log2-ratio across identified segments.

For the estimation of absolute copy-number values from the average log2-ratios of

each segment a tool, similar to ASCAT (Loo et al. 2010), which was developed by George

C. Cresswell and is briefly described in the following was used4. As described by Loo et al.

(2010) the expected log2-ratio ri of a genomic locus i present at a copy-number of ci in a

sample with purity ρ is given by

ri = γ log2

(
2−2ρ +ρci

2−2ρ +ρΨt

)
,

where Ψt is the average copy-number across the entire genome in the tumour population

(i.e., the tumour ploidy) and γ a correction factor accounting for dampening of the signal

resulting from a specific assay. For sequencing data γ = 1 is used. The average ploidy was

calculated from the WGS copy-number analysis described and used as a plug-in estimate

for Ψt .

Expected log2-ratios for a range of purity values {ρ ∈R | 0.1≤ ρ ≤ 1}were calculated

and compared to the observed log2-ratios using the L2-norm as described in the ASCAT

paper (Loo et al. 2010) to identify a value for ρ minimising this distance. The closest

absolute copy number {ci ∈ N | 0 ≤ ci ≤ 20} of each segment for this value of ρ was then

calculated for each segment.

4.2.4.3 ATAC-seq

For ATAC-seq data, reads in the vicinity of peaks (open-chromatin) and those in regions of

closed-chromatin were analysed separately. The former was defined as reads mapping to

intervals of the filtered, extended (100bp) and merged (distance of 2000bp) peak set (see

above). The latter were defined as intervals in a distance of 1000bp from the open region

with a minimal size of 10000bp. Coverage for all intervals relative to normal colorectal

4R functions for the estimation of allele-specific copy-numbers from the log2-ratios were provided by
George C. Cresswell.
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ATAC-seq datasets was determined, normalised for GC-content as well as genomic repeats

(Talevich et al. 2016), averaged in windows of 106 bp, and segmented with a circular binary

segmentation algorithm (Olshen et al. 2004; Seshan, Olshen, et al. 2015).

4.2.5 Somatic Variant Detection

4.2.5.1 Calling

Somatic mutations were called for each tumour sample separately against matched blood-

derived or adjacent normal tissue samples with Mutect2 version 4.1.4.1 using the options ‘–

af-of-alleles-not-in-resource 0.0000025 –germline-resource af-only-gnomad.hg38.vcf.gz’

(Cibulskis et al. 2013; Poplin et al. 2018). Variants detected in any tumour sample marked

PASS, coverage AD 10 in both normal and tumour, ≥ 3 variant reads in the tumour, 0

variant reads in the normal, reference genotype in normal, and non-reference genotype in

cancer) were jointly summarised with Platypus version 0.8.1.1 (Rimmer et al. 2014) in all

samples of a patient.

This set of joined variant calls was then filtered to keep high-quality variants with

flags ‘PASS’, ‘alleleBias’, ‘QD’ or ‘Q20’, in canonical chromosomes (i.e., not in a decoy),

a minimum number of reads NR ≥ 5 in all samples, a genotyping quality GQ ≥ 10 in

all samples, a reference genotype (i.e., 0/0) in the matched normal reference, and a non-

reference genotype (i.e., 0/1 or 1/1) in at least one tumour sample. Due to concerns to filter

out important driver mutations, a second set of variant calls to which the second filtering

step was not applied was generated to identify mutations in known driver genes and the

dN/dS analysis (see details below).

4.2.5.2 Annotation

Somatic variants were annotated and candidate driver genes of colorectal cancers reported

by TCGA (Muzny et al. 2012), Cross et al. (2018) and IntOGen (Gonzalez-Perez et al. 2013;

Martı́nez-Jiménez et al. 2020) as well as pan-cancer driver genes reported by Martincorena

et al. (2017) and Tarabichi et al. (2018) filtered with the Variant Effect Predictor toolkit

version 93.2 (McLaren et al. 2016).

4.2.5.3 MSI Status Detection

The identification of MSI colorectal cancers was performed with version v0.2 of the

MSIsensor C++ program developed by Niu et al. (2014). The position of microsatellites

sites was first determined by applying the msisensor scan command to the GRCh38 refer-

ence assembly. These were then subset to the first chromosome to speed up the subsequent
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analysis. In a second step, the fraction of mutated microsatellites in each sample were de-

termined with the msisensor msi command using default options. Generally, in known MSI

affected cases, more than 30% of microsatellites were mutated and this was used as a critical

value to classify cases as with microsatellite stability (MSS) and MSI.

4.2.5.4 Extraction of Reads Supporting Variants

Using the VCF files from both somatic and germline variant calling (see above), the number

of reads supporting the reference and alternate alleles as well as the total number of reads

covering the sites from WGS, LP-WGS and ATAC-seq samples were extracted using python

and the version 0.15.2 of pysam library with samtools version 1.9 (Li et al. 2009; Andreas

Heger et al. 2021).

4.2.5.5 dN/dS Analysis

The dN/dS analysis was conducted using the dndscv package for R (Martincorena et al.

2017). Per-patient variant calls were obtained from the VCF files (Obenchain et al. 2014)

and lifted to the hg19 reference genome using the rtracklayer package for R (Lawrence,

Gentleman, and Carey 2009). Variants were split into clonal (i.e., present in all samples)

and subclonal mutations (i.e., present in a subset of samples) present in the cancers as well

as a set of mutations present in any of the adenomas. Patients were further split into MSI

and MSS cases and the dndscv model was fitted for each of the four sets (MSI/MSS &

clonal/subclonal) separately. For this default parameters apart from deactivated removal

of cases due to the number of variants were used. Global dN/dS values for a set of 167

chromatin modifier genes and the previously described CRC driver genes were obtained.

4.2.5.6 Mutational Signature Analysis

The analysis of mutational signatures5 was conducted with the deconstructSigs package

for R (Rosenthal 2016) based on the mutational signatures reported in version 2 of the

COSMIC database (Tate et al. 2019). For a given set of mutations, the trinucleotide

contexts were obtained with methods from the GRanges (Lawrence et al. 2013a) and

BSgenome (Pagès 2021) package for R. All substitutions were annotated with their spe-

cific context (e.g., A[C>A]A) and those with a central A or G base were replaced by

their reverse complements. The number of mutation types were tabulated as vectors

5The results presented here are from an initial analysis of the mutational signature activity in normal col-
orectal crypts as well as colorectal cancer glands. For the purpose of this analysis, the activity of previously
identified mutational signatures with an activity in CRC reported in the COSMIC database was assessed. A
de novo determination and analysis of mutational signatures using SparseSignatures (Lal et al. 2021) was con-
ducted by Daniele Ramazzotti as part of the EPICC project, which corroborated the results reported here.
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m = [m[A[C>A]A, ...,mT[T>G]T], where mi are the number of mutations of type i. Selected

mutational signatures si = [sA[C>A]A, ...,sT[T>G]T], with ∑ j si, j = 1 were then obtained from

the COSMIC database and arranged as a matrix S with the signatures as column vectors.

Next, deconstructSigs was used to estimate vectors of exposures to each selected signature

e = [e1,e2, ...,en] of each sample. The default option of deconstructSigs to remove signa-

tures with a relative contribution of < 6% was set deactivated by setting the corresponding

option ‘signature.cutoff=1’ to 0% to ensure that all selected signatures were considered.

Residuals were calculated as r = m−Se for each sample. The results of the analysis were

plotted with methods from the deconstructSigs package.

In order to determine the stability of the obtained results — this is especially important

in cases where few variant loci are used for the analysis — a non-parametric bootstrap was

used. For this, a number of mutations equal to the actual number in the sample were sampled

with replacement from the entire set and analysed as described above. The procedure was

repeated 100 times and the average exposure was calculated as the arithmetic means across

all replicates. The results were plotted with basic R methods (R Core Team 2020) as shown

in Figure S.159 (page 337). The panels in Figure S.159 (page 337) show from top to bottom

i) the mutation spectrum m, ii) the estimated mutation spectrum Se, iii) the exposure e

and iv) the residuals r across replicates, with the error bars indicating the 95% confidence

interval estimated from the bootstrap.

4.2.6 ATAC-seq Peak Analysis

4.2.6.1 Peak Calling

Extraction of cut-sites To detect peaks, bed files of ATAC-seq cut-sites were extracted.

These were obtained from the bam files by first sorting the reads by their read names using

‘samtools sort -n {bam}’, isolating all proper reads pairs (i.e., reads mapped to the same

chromosome and with correct read orientation) using ‘samtools view -bf 0x2’, and finally

converting these paired reads to the bed format using ‘bedtools bamtobed -bedpe -mate1 -i

{input}’ (Li et al. 2009; Quinlan and Hall 2010).

Equivalent to Buenrostro et al. (2013) the start site of reads aligned to the forward

strand were shifted by four bases and those aligned to the reverse strand by five bases to

obtain positions of cut-sites during transposition.

ATAC-seq reads spanning nucleosomes have an insertion size periodicity of multiples

of≈ 200bp, and reads in regions of open-chromatin have insertion sizes smaller than 100bp
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Figure 4.2: Number of peaks called by MACS2 in samples from the TCGA, ENCODE and EPICC
cohort at an FDR of 0.1%.

(Buenrostro et al. 2013). For this reason and in line with previous studies, the ATAC-seq

reads were split into a set of nucleosome-free reads (insertion size ≤ 100) and nucleosome

associated reads (180≤ insertion size ≤ 620).

Peak detection Likely due to the low library complexity of the single-gland ATAC-seq

libraries, exhaustive identification of regions of open chromatin (i.e., peaks) with data from

individual glands at a high level of confidence was problematic (see Figure 4.2). While an

imperfect substitute, when pooling reads from single-glands obtained from a single region

of a tumour, statistical power was sufficient to call a number of peaks similar to high-quality

large bulk samples from the TCGA and ENCODE cohort (Figure 4.2).

For this reason, peaks were called per tumour region using MACS2 (Zhang et al.

2008, version 2.12) with ‘macs2 callpeak -f BED -g hs –shift -75 –extsize 150 –nomodel

–call-summits –keep-dup all -p 0.01’ with the concatenated and sorted bed read files of

nucleosome-free cut-sites of all samples as input. A set of normal peaks (pan-patient) was

called separately on the concatenated normal sample bed files (i.e., region E) and per ade-

noma peak calls using all adenoma bulk samples as input.

Filtering and concatenation of peaks Strict filtering of per-region peak calls extended by

250bp was applied. Only variants with a minimum q-value of≤ 0.1%, enrichment of≥ 4.0

and a maximum number of peaks 20,000 were kept. Iterative merging, equivalent to that
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Figure 4.3: Distribution of filtered peak calls in the genome. Shown the peak call sets from vari-
ous cancer types in the TCGA cohort and the merged peak calls from samples in the EPICC cohort
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features (see legend at the bottom). B) Fraction of peaks overlapping with the genomic features. The
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ements reported in the GenHancer database and Promoters are shown in dark, those without overlap
in light colours.

used by Corces et al. (2018), was then performed on per-region peak calls of patients (per-

tumour peaks set) as well as across all cancer samples, and pan-patient normal peak calls

(pan-patient peak set). This procedure resulted in a total of N = 343,240 peaks, of which

N = 67,215 peaks were called in ≥ 2 tumour regions or in the panel of normal samples.

The ChIPseeker package for R (Yu, Wang, and He 2015, version 1.24.0) was used

to annotate peaks based on their genomic location. For peaks that were not proximal to

known promoter regions (±1000bp), overlaps with known enhancer elements reported in

the double-elite annotations of the GeneHancer database (Fishilevich et al. 2017) were de-

termined. The overlaps for both of these with the pan-patient peak set is shown in Figure 4.3

in comparison to the distribution of annotations from Corces et al. (2018) and the general

distribution of these features in the genome.
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Extraction of reads in peaks For the final set of peaks, the number of shifted cut-sites over-

lapping each peak were counted separately for individual samples using bedtools (Quinlan

and Hall 2010) as follows: ‘bedtools coverage -a bed peaks -b bed cut sites -split -counts

-sorted’.

Purity estimation for ATAC-seq samples To obtain purity estimates for the ATAC-seq

samples of the study, clonal variants identified as part of the WGS sequencing (i.e., those

present in all samples from cancer) were used. It was assumed that these variants would

also be clonal in the ATAC-seq samples obtained from the same regions of cases and were

hence used to obtain purity estimation of ATAC-seq samples. First variants in intervals

with identical copy-number states (i.e., A/B states) in all WGS samples were identified.

From these variants within regions of open chromatin (i.e., peaks) and copy-number values

> 4 were then excluded. For each variant i, allele copy-number values ci and mutation

multiplicity mi were estimated using the WGS data. An example of these estimates in one

case, C539, are shown in Figure S.27 (page 274).

For a mutation at site i covered by ns,i reads in sample s the number of reads ki con-

taining the alternate allele is expected to follow a binomial distribution with the likelihood

B(ki|ps,i,ns,i) =

(
ns,i

ki

)
pki

s,i(1− ps,i)
ns,i−ki ,

where the expected success probability ps,i is a function of the samples purity as, the number

of mutated alleles in the tumour cells ms,i, the total copy-number of the mutated site in the

tumour cells cs,i and the copy-number in contaminating normal cells cn = 2 is

ps,i =
ρsms,i

ρscs,i +(1−ρs)cn
=

ρsms,i

ρscs,i +2−2ρs
.

The negative-log-likelihood across N mutated sites is then

l(ρs) =
N

∑
i=0
−log(B(ki|ps,i,ns,i)) ,

which was minimised to obtain a ML estimate of the sample purity ρs:

ρ̂s = argmin
ρs: 0≤ρs≤1

l(ρs).

Identification of recurrently altered peaks across patients Next, events for which data

indicated general chromatin structure changes within a given cancer were identified. For

this, samples with purity ρ ≥ 0.4 were determined, data merged, and the counts of reads

per peak were obtained as described above. Based on the assumption that peaks proxi-

mal (≤ 1000bp) to a transcription start site (i.e., promoters) and those more distant to a
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transcription-factor start site (i.e., putative enhancers) might have a different amount of dis-

persion, peaks were split into these two groups.

An overdispersed Poisson model was then split to each of these datasets using edgeR

version 3.30.3 (Robinson, McCarthy, and Smyth 2010; McCarthy, Chen, and Smyth 2012).

Per sample set normalisation factors were calculated using the TMMwsp method (Robinson

and Oshlack 2010; Robinson, McCarthy, and Smyth 2010) and a global dispersion estimate

were estimated across all ‘cancer’ samples.

In order to identify somatic chromatin accessibility alterations, each ‘cancer pool’ of

pure glands was compared against a large ‘pool-of-normal’ composed of normal tissue

ATAC-seq samples. These were independently filtered for events with a minimum counts

per million reads mapped (CPM) of 15 in the tumour or normal and a minimum fold change

of 2. From the remaining tests, peaks significantly altered at a level of p ≤ 0.01 in at least

5/25 (i.e., 20%) of cases were identified.

Identification of associated gene expression changes A subset of 27,731 peaks that were

either adjacent to a known transcription-factor start site (TSS) of a gene (Team and Main-

tainer 2019; Haeussler et al. 2019) or overlapped a previously characterised enhancer el-

ement described in the GenHancer database (Fishilevich et al. 2017) were identified. Of

these, 944/27731(≈ 3.40%) were recurrently altered. To test whether any of these alter-

ations were associated with changes in gene expression, the results method from DESeq2

(Love, Huber, and Anders 2014) was used to compare coefficients of the fitted beta-binomial

regression model (design: ∼ Patient, with all normal samples as ‘Normal’) with the con-

trast argument being a list of vectors containing the significant and non-significant patient

sets.

For promoters, a one-tailed hypothesis test was conducted by setting the altHypoth-

esis argument to ‘less’ (for closed peaks) or ‘greater’ (for opened peaks). For enhancers,

a two-tailed hypothesis test was instead conducted on all associated genes by setting the

altHypothesis argument to ‘greaterAbs’. All p-values were adjusted for multiple hypothesis

testing using the false-discovery rate (FDR) method (Benjamini and Hochberg 1995) and

reported if the FDR < 0.1%. For the visualisation of gene-expression values, the average

gene expression was calculated on variance stabilised (log-transformed) CPM values across

all samples from a given cancer or across all normal samples.
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Identification of subclonal changes is recurrently altered peaks To explore putatively

subclonal epigenetic events, a subset including recurrent events affecting known drivers of

CRC, and the top 20 most recurrent events in each of the following four categories were

selected: i) gained promoter, ii) lost promoter, iii) gained enhancer and iv) lost enhancer.

To determine the significance of the spatial region whilst controlling for purity, a log-ratio

test from DESeq2 (Love, Huber, and Anders 2014) was used to compare the full model

∼ purity+ region to a reduced model ∼ purity. Samples from the same region of a patient

were used as biological replicates. Events were considered to be putatively subclonal if

the adjusted p-value was ≤ 0.05 and if the direction of log fold change from bulk analysis

matched the expected change. In the case of gained events, subclonal events were filtered

out if no peaks were called within 500bp. Log ratio tests for the effects of region and purity

were also performed with single parameter models. For visualisation of peaks, coverage

per region was calculated 1kb upstream and 1kb downstream from the centre of the peak.

Coverage was normalised per million reads in peaks and was plotted using functions from

GenomicRanges (Lawrence et al. 2013a) and Gviz (Hahne and Ivanek 2016).

4.2.7 TF Binding Site Analysis

Binding site prediction The motifmatchr package for R (Schep 2020), a reimplementation

of the C++ library MOODS (Korhonen et al. 2009; Pizzi, Rastas, and Ukkonen 2011),

was used to identify binding sites for all human transcription factor (TF) motifs defined in a

curated version of the CIS-BP database (Weirauch et al. 2014). The list of predicted binding

sites was filtered using a minimum significance value of p≤ 1×10−6, followed by removal

of binding sites in centromeric regions (Schneider et al. 2016) and non-autosomal (i.e., sex

and non-canonical) chromosomes.

After this initial filtering, predicted binding sites were split into six distinct groups

based on their distance to the next TSS (proximal: d ≤ 2000bp, close: 2000bp < d ≤

10,000bp, distal d > 10,000bp) and ii) whether they overlapped with a peak observed in

the ATAC-seq data. For a number of TF, clustering of binding sites of the same TF motif in

specific genomic regions was observed. For this reason, binding sites that were closer than

d ≤ 1000bp to the next predicted binding site of the same TF were removed.

Extraction of signal values For each of the TF sets described above, the counts of insertions

around the centre of the TF binding site (±1000bp) as well as the insertion size of the read

pair (i.e., the distance to the second nick) for each sample (Lawrence et al. 2013a) were
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tabulated. The insertion sizes (rows) were binned into intervals of 5bp and divided by total

count of reads with an equivalent size in the entire genome. After this, the background signal

was estimated to be the average number of insertions 1000−750bp from the centre of TF

binding site per insertion size and subtracted from the counts. The difference between these

‘normalised and background corrected TF signals’ in each sample and a pool of normal

samples was calculated and integrated across the central region of the TF binding sites —

specifically, insertion sizes in [25,120] and distances in [−100bp,100bp] — as a summary

statistic.

Regression analysis Linear regression was used to identify associations with purity esti-

mates and in this context, signals were found to correlate with transcription-factor start

site enrichment (TSSe) for both nucleosome-free and all reads. For this reason, an ad-

ditional term was added to the regression model of each TF to correct for this effect:

signal ∼ tsse∗tsse n f + purity : patient, where tsse and tsse n f are the TSSe differences of

the sample and the pooled-normal samples. Each observation was weighted by the square

root of the number of reads in the sample. A second linear model in which a region-specific

effect of the purity: signal ∼ tsse ∗ tsse n f + purity : tumour region was also fitted to the

data. For both models, the significance of the ‘purity’ coefficient was determined and esti-

mates of the coefficients were used as a patient specific summary for subsequent analysis.

Cluster analysis The analysis was focused on the 150 TF for which a significant associ-

ation with the tumour cell content and TF signal was most frequently observed. With the

aim to identify general patterns in these data, a clustering analysis was conducted using hi-

erarchical clustering with Euclidean distance and complete linkage. This method identified

three major groups of TFs. Each of these were analysed with String-DB (Szklarczyk et al.

2019) to identify significantly overrepresented pathways.

4.2.8 Reconstruction of Phylogenetic Trees

An MP method was used to reconstruct phylogenetic trees from the mutation data. This

method requires the definition of a set of mutations that are present in a given sample. Due

to the various purity values and copy-number states of mutations, estimates of CCFs were

calculated from the VAF as

CCFs =
VAFs(ρs ci +2−2ρs)

ρs VAFs mi
,

where mi is the multiplicity of the variant assumed to be m = 1, ρ the purity of the sample

s, and ci the copy-number of the variant estimated from the WGS data as described above.
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Variants with an estimated CCF ≥ 0.25 were assumed to be present in a given sample. With

this set of sequence data, MP trees were then inferred with the Parsimony Ratchet method

(Nixon 1999) implemented in the phangorn package for R (Schliep 2011). A minimum of

100 iterations, a maximum of 106 iterations, and termination of the ratchet after 100 rounds

without improvement were used.

4.3 Results

4.3.1 Sample Purity and Coverage

All sequencing data from all obtained samples (see Figure 4.1H) were aligned as described

in the Method section above. CNA profiles of samples were manually reviewed and curated

where necessary. For this curation, CNA fits of other samples from the same patient and the

VAF distribution of SNVs were taken into account. The latter was especially helpful for the

identification of nearly tetraploid tumours (e.g., Figure S.25, page 273). After this, somatic

mutations were identified in all samples as outlined above.

Identification of normal crypts Initial inspection of the called SNVs revealed the presence

of a small number of samples that showed private mutations at a high VAF and did not

contain any of the variants present in the majority of other samples (e.g., A1 G3 and A1 G6

in Figure S.26, page 274). The analysis of their CNA profiles showed that these samples

were diploid and an analysis of their mutational signatures revealed a strikingly different

signature profile. Instead of MMR associated signatures in cases with MSI, these samples

primarily showed the presence of S1, associated with ageing and S5, a general background

process. These observations suggested that these spurious ‘odd samples’ were most likely

healthy normal crypts that were interspersed with or at least closely adjacent to the tumour.

A manual review of the obtained H&E slides confirmed this initial suspicion. Samples that

were suspected to be normal samples were removed from the subsequent analysis of cancer

samples, but below, a separate analysis of these healthy normal crypts will be presented.

Sample coverage After the exclusion of normal crypts, the coverage of all samples was

determined. The archived median coverage of each sample type is summarised in Figure

4.4 and split by cases in Figure S.30 (page 276).

As shown in these two plots, the target coverage of ≥ 30 for deep WGS was archived

for the majority (89.1%) of tumour samples (adenoma & cancer), with the median coverage

being 35.0×. Later conducted LP-WGS archived a relatively variable coverage with a me-
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Figure 4.4: Mean coverage of whole-genome (WGS) and low-pass WGS (LP-WGS) samples from
the EPICC cohort.

dian of 1.15× in samples from cancers. More than 86.9% of LP-WGS samples had average

coverage of 0.5×.

WGS sample purities As part of the CNA analysis, purity estimates of each WGS and LP-

WGS sample were obtained. As shown in Figure 4.5A, purity values depended on the type

of sample they were obtained from. Generally, single-gland WGS and LP-WGS samples

had a median purity of 81%, with a subset of these showing much lower values. Bulk WGS

samples had in contrast significantly lower (median of 73%) and more variable purities.

This is overall consistent with the expectation of single CRC glands being composed of a

small set of genetically closely related tumour cells.
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Figure 4.5: WGS and ATAC-seq purity estimates in the EPICC cohort. A) Distribution of estimated
purities of deeply whole-genome sequenced (WGS) and low-pass whole-genome sequenced samples
(LP). B) ML purity estimates for ATAC-seq samples (ATAC).

Some ploidy states can be hard to distinguish from each other (e.g., fully diploid vs

tetraploid). In these cases, a higher ploidy can often fit the data if the purity of the sample

is reduced. No association of purity and ploidy values was identified, thus confirming the
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overall correctness of the estimates ploidy values (Figure S.28, page 274).

The purity estimates obtained from the analysis of LP-WGS sequenced samples were

confirmed by purity estimates derived from clonal somatic SNVs (see methods section for

details). A scatter plot showing the correlation of CNA and SNV derived purity estimates

can be found in Figure S.32A (page 277).

ATAC-seq sample purities Estimates of ATAC-seq sample purities were obtained using a

simple ML method based on the information of clonal SNVs in the samples (see methods

for details). As shown in Figure 4.5 these purity estimates were, similar to WGS data,

significantly higher in single-glands compared to bulk samples. Oddly, purity estimates

were much lower than those of WGS samples. This was also the case for samples in which

matched WGS and ATAC-seq samples were available (Figure S.31, page 276). Still, a sig-

nificant correlation between both measurements did exist (r = 0.551, p≤ 10−8), suggesting

that the estimates obtained for ATAC-seq samples might indeed be correct.

To rule out the possibility that the ML method itself produced biased estimates, it was

also applied to all deep WGS samples. This approach confirmed that the estimates were

accurate for the WGS samples themself (Figure S.32B, page 277) and the matched LP-

WGS samples (Figure S.32C, page 277), hence ruling out issues with the method per se.

Further, the analysis of the local chromatin accessibility measurements obtained from the

ATAC-seq data (i.e., using principle-component analysis) and the analysis of CNA obtained

using the ATAC-seq ‘background signal’ confirmed this low ‘apparent purity’.

While the exact reason for this lower ATAC-seq purity is unclear, the most likely expla-

nation appears to be a bias in the speed of tissue/chromatin degradation following ischemia

or a difference in the nuclear stability between tumour and normal cells.

In the following, the ML estimates of ATAC-seq samples will be used to identify sam-

ples with low amounts of tumour-associated signals.

4.3.2 Analysis of SNVs

4.3.2.1 MSI Status Detection

I next assessed the somatic mutations identified through WGS sequencing. In 6/30 pa-

tients (C516, C518, C536, C548, C552, and C562), DNA mismatch repair deficiency

(MMRd) was identified clinically through immunohistochemical staining and reported in

the pathology report. For the case C516 loss of MSH2 expression and for the remaining

four cases loss of MLH1, PMS2 expression was reported. MMRd arises from defects of
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a group of enzymes that orchestrate the repair of mismatched nucleotides in the genome

(Peltomäki 2003). Loss of these proteins, MLH1, PMS2, MSH2, and MSH6 in specific,

is frequently tested as part of routine cancer diagnostics since MMRd is associated with

a more favourable diagnosis (Popat, Hubner, and Houlston 2005) and Lynch syndrome, a

hereditary condition causing susceptibility to some cancer types (Evrard et al. 2019).

The separate evaluation of the number of unstable microsatellites with msisensor ap-

plied to the WGS data showed a variable degree of MSI in the cohort (Figure 4.6A). As

expected, cases with clinically identified MMRd showed a clear increase in the fraction of

mutated microsatellites (i.e., ≥ 30% of all microsatellites). This value is consistent with

previous studies (Dietmaier et al. 1997; Jass, Young, and Leggett 2001). While no evidence

of MSI was identified in case C562, this was likely due to the low purity of the obtained

samples.

4.3.2.2 Clonal Mutation Burden

Consistent with previous findings (Sia et al. 1997; Fujimoto et al. 2020), a substantial

increase in the mutational burden in cases with MSI was identified. The average muta-

tion burden was 200,250 (range: 31,047− 357,160, median 197,092) and 7,570 (range:

2,154− 11,907, median 7,967) in MSI and MSS cases respectively (Figure 4.6B). Like-

wise, an increased insertion or deletion to single-nucleotide variant ratio (InDel/SNV ratio)

was identified for MSI cases, with an average of 1.82 (range: 1.56− 2.18, median: 1.79)

and 0.13 (0.06−0.22, median: 0.13) in MSI and MSS cases respectively (Figure 4.6B).

As expected in light of the clinically detected MMRd, an increased InDel/SNV ratio of

1.56 was also observed in case C562. Overall, the observed mutational burden was similar

to those reported in other studies of CRCs (Muzny et al. 2012; Liu et al. 2018), hence

corroborating the ability to detect variants in this study.

4.3.2.3 Mitochondrial Variants

Curiously, it is still debated if MMR activity exists in mitochondria (MT) and whether it

is independent of the nuclear MMR pathways (Mason et al. 2003; Alexeyev et al. 2013;

Fontana and Gahlon 2020). Reports of mitochondrial MSI in MMRd colorectal cancers

do exist (Habano, Nakamura, and Sugai 1998). However, experimental data indicate that

crucial proteins (i.e., MSH2, MSH3, MSH6 and MLH1) of the nuclear MMR pathways are

either not present or do not contribute to MMR repair activity in MTs (Souza-Pinto et al.

2009). It seems that an independent MMR system, potentially involving the protein YB-
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Figure 4.6: Driver events and recurrent copy-number alterations. A) Percentage of altered mi-
crosatellites in MSS and MSI samples. The shape and colour of points show the tissue type (legend
on the right). B) Total number of somatic mutations of different types (legend on the right) identi-
fied in the tumours. C) Number of somatic mitochondrial mutations with a VAF > 0.1% in different
tissue types of cases with MSI and MSS (legend on the right).

1 (YBX1), might be responsible for the experimentally detectable MMR activity in MTs

(Souza-Pinto et al. 2009). Other studies described a protective effect of MLH1 — this

protein is part of the nuclear MMR pathway and often lost in MSI colorectal cancers — on

the genomic integrity of MT in retinal endothelial cells (Mishra and Kowluru 2014).

Absence of increased number of MT variants in MSI CRC Since the single-gland WGS

sequenced samples provided excellent coverage of the MT genome (average coverage:

11,300 in cancers with MSI, 13,600 cancers with MSS, 9,790 in normal and 5,900 in

adenoma glands), the data were used to test if a significant increase in SNVs in the MSI

cases existed. Variants were called against a beta-binomial background model with deep-

SNV (Gerstung et al. 2012). To exclude non-somatic variants, any variants detected at a

posterior probability of being mutated PP ≤ 0.1 in the normal reference samples of a pa-



4.3. Results 129

tient were removed from all other samples of this case. Variants present at a minimum VAF

of f ≥ 0.1% with a PP ≤ 0.05 were considered to be present in a given sample (Figure

4.6C). As seen in Figure 4.6C, no difference in the average number of point mutations in

single glands of MSS and MSI cases were evident and statistical testing using a permutation

method did show that the small observed difference of 4.9 in MSS versus 6.4 in MSI cancer

glands was not statistically significant (p = 0.16).

Significant increase in MT variants in normal crypts Interestingly, normal crypts ap-

peared to contain a much larger number of MT SNVs than cancer glands, with an average

of 33.3 vs 5.2 variants respectively (Figure 4.6C). For these, the permutation test did indeed

indicate a highly significant p-value ≤ 10−5. Curiously, no significant differences were

observed when only variants present at a VAF f ≥ 1% were considered. A potential expla-

nation for this observation could be the presence of a more divergent stem-cell population in

the normal colorectal crypts in general. Variants detected in the tumour often had at a high

VAF (e.g., Figure S.29, page 275) and for this reason, the more suitable explanation appears

to be that an equivalently diverse set of MT variants was lost when a subset of MT moved

to a higher frequency (i.e., swept within cells). These sweeps could either be explained by

selection acting on a subset of MTs or alternatively by a reduction of the number of MT in

the ancestor of the tumour causing higher rates of genetic drift. Unfortunately, a conclusive

answer would require more extensive analysis and modelling, which was considered outside

of the scope of this thesis.

4.3.2.4 Normal Gland Mutation Rates

As mentioned above, a relatively large number of single glands sequenced as part of the

study were later identified to be normal crypts. Some of these were located within surround-

ing tumour tissue (51 tumour ‘adjacent normal crypts’) and others even had low-frequency

tumour contamination (17 ‘mixture crypts’). While these crypts were excluded from the

analysis of the cancer’s genomes, they still provided an opportunity to gain insight into un-

derlying stem cell dynamics and the process of ageing in normal CRC epithelium. As a

control, 10 additional ‘normal crypts’ from a total of 8 patients were isolated from tumour

distant regions and subjected to WGS sequencing.

Normal crypt mutation burden For the analysis of all normal crypts, variants detected in

the matched cancers were removed to avoid the effect of tumour contamination in tumour

adjacent glands. Through WGS on average 1440, 2100 and 1620 SNVs, 66, 98 and 82
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InDels and 28, 29 and 24 multi-nucleotide variants (MNVs) were detected in the healthy

normal, tumour adjacent normal, and tumour-normal mixture glands respectively. The In-

Del/SNV ratio was with ≈ 0.06 (range: 0.02−0.11, median: 0.053) remarkably similar to

that of MSS colorectal glands (range: 0.06− 0.22). This demonstrates that no change of

the relative mutation rate of InDels compared to SNVs occurs during the early development

of MSS cancers. The numbers reported here are generally consistent with the findings by

Lee-Six et al. (2019), who were able to identify on average 2,599 somatic SNVs and 226

InDels in 2,035 single colorectal crypts isolated by laser-capture microdissection from the

colon epithelium of 42 individuals.

I hypothesised that the micro-environmental effects of the tumour might alter the type

of mutations or rate with which these are acquired in the normal crypts. Such an effect

could, for example, be explained by reactive oxygen species or local inflammation. Both

of these mechanisms were previously described to promote tumour development and cause

mutations (Waris and Ahsan 2006; Grivennikov, Greten, and Karin 2010; Costa, Scholer-

Dahirel, and Mechta-Grigoriou 2014; Canli et al. 2017; El-Kenawi and Ruffell 2017).

Analysis of mutational signatures For this reason, the burden of SNVs, InDels and MNVs,

as well as the relative burden attributed to individual mutational signatures was determined

(Alexandrov et al. 2013a; Alexandrov and Stratton 2014). For the analysis of signatures

with the deconstructSigs R package (Rosenthal 2016) four signatures Alexandrov et al.

(2013b) previously reported to be active in colorectal cancers were considered: S1 (CpG

associated de-methylation), S5 (unknown aetiology), S6 (mismatch repair defects) and S10

(POLE defects).

Examination of the residuals of deconstructSigs suggested the presence of an unex-

plained mutational signature characterised by an excess of T>C mutations (Figure S.37,

page 278). This signature resembled the pks+ E. Coli signatures described by Pleguezuelos-

Manzano et al. (2020), which was also added to the assessed signatures.

Representative examples of this analysis are shown for a normal crypt in Figure S.34

(page 277), for a cancer adjacent crypt in Figure S.35 (page 278), and for an intermixed

normal crypt in Figure S.36 (page 278). The analysis revealed a substantial contribution

≥ 25% of the pks+ associated mutational signature to the SNV burden in 2 of the 18 cases

with analysed normal crypts (C537 and C547, compare Figure 4.8A-C). Almost identical

contributions of the pks+ signature were observed in normal and cancer adjacent crypts of
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Figure 4.7: Mutation rates in normal colorectal crypts. Shown are the average mutation burden in
different types of normal crypts (y-axis panel) isolated from patients with colorectal cancer. Linear
regression (red lines and annotations) revealed an increase of the average mutational burden in crypts
of a given patient for different mutation types (y-axis panel) with age. S1, S5 and S6 (S10 not sig.)
show the mutation burden associated with the corresponding mutational signatures in the COSMIC
database estimated with deconstructSigs (Rosenthal 2016).

the same cases. This is consistent with the proposed colon wide genotoxic effect of the

pks+ E. Coli strains.

Mutation rates in normal crypts In general, a significant association of age and the muta-

tional burden attributed to each signature and the three different mutation types was found

to be present (Figure 4.7). The only exception from this rule was S10. Given the absence of

POLE mutations in any of the crypts, this is unsurprising. Especially the positive correlation

of age and S1 is consistent with findings by others.

The amount of S1 associated mutations detected in colorectal tumours was previously

reported to be associated with the age at diagnosis by Alexandrov et al. (2015). Similar

results were also obtained by Lee-Six et al. (2019) who described a positive association of

age and the number of mutations associated with the equivalent of S1 and S5 in normal

colorectal crypts isolated with laser-capture micro-dissection.

The coefficients of a conducted linear regression were relatively similar for each of

the three types of glands considered. On initial examination, no difference between the

mutation rate of crypts with a significant tumour cell contamination and healthy normal

crypts was found. A slightly larger mutation rate was estimated for tumour-adjacent crypts

compared to normal crypts (Figure 4.7). Overall, the data suggested that approximately
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24 SNVs and 1.6 InDels accumulate in normal colorectal crypts every year. The relative

contribution of S1 to the total mutation burden in normal crypts was consistently higher

compared to cancer glands (Figure 4.8), with about 16.5 of the SNVs (≈ 66%) assumed

to be caused by the associated deamination of 5-methylcytosine at CpG sites. Most of the

remaining variants (≈ 5.8, 23%) were instead attributed to S5.

In order to identify whether the observed mutation rates of tumour adjacent normal

crypts were significantly different between the types of crypts, a generalised linear mixed

model with crypt type-specific coefficients for age (y∼ age : type+(1 | patient)) was com-

pared against a reduced model (y ∼ age+(1 | patient)). Since a patient-specific variation

of signatures was evident (p≤ 10−12, Akaike information criterion (AIC) 65,011 vs 11,954

in a binomial regression on S1), the patient variables were added as a random effect to the

analysis. A significant difference between the two considered models was found for both

SNVs (p ≤ 0.0057 and AIC 985.38 vs 979.07) and InDels (p = 0.002 and AIC 609.26 vs

601.26) and the coefficients suggested that the mutation rate in tumour adjacent crypts was

≈ 50% higher than that in normal crypts.

A non-parametric test (Wilcoxon signed-rank exact test) applied to the average num-

ber of SNVs in normal and adjacent normal crypts of cases with paired data (N = 6) also

suggested a significantly higher (p = 0.0156) number of SNVs in the adjacent crypts. Ob-

viously, the specific mechanism for the observed differences remains elusive, but care was

taken to avoid tumour contamination confounding the analysis. Among others, micro-

environmental effects (Reynolds, Rockwell, and Glazer 1996) or increased mutation rates

in a surrounding field defect (Bernstein et al. 2008; Shen et al. 2005) could explain this

phenomenon.

4.3.2.5 Driver Mutations

The large number of WGS samples obtained from different regions of each profiled cancer

in this study (median: 7, range: 2−11) allowed for the accurate identification of clonal and

subclonal mutations (Werner et al. 2017; Opasic et al. 2019). I used this ability to system-

atically identify subclonal mutations in known cancer driver genes. For this analysis, previ-

ously reported cancer-related genes were considered, specifically the 369 pan-cancer driver

genes described by Martincorena et al. (2017) and 69 colorectal cancer-specific drivers
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Figure 4.8: Signature contribution in normal colorectal crypts. Relative contribution of mutational
signatures S1, S5, S6 and S10 reported in the COSMIC database and the pks+ signature described
by Pleguezuelos-Manzano et al. (2020) were estimated with deconstructSigs (Rosenthal 2016).
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genes from IntOGen6 (Martı́nez-Jiménez et al. 2020).

The analysis of all non-synonymous somatic mutations of the 69 colorectal cancer

driver genes revealed a plethora of mutations in MSI and MSS cases (Figure 4.9A). As

expected (Priestley et al. 2019; Zhang et al. 2011; Muzny et al. 2012; Campbell et al.

2020), point mutations and InDels of APC (23/30, 77%), damaging mutations of p53 (16/30,

53%) and activating hotspot mutations of K-Ras (13/30, 43%) were found to be the three

most common driver mutations observed. Other recurrently mutated genes identified were

PIK3CA (11/30, 37%), FAT4 (8/30, 27%) and SOX-9 (10/30). All of these are com-

monly observed to be mutated in CRCs, albeit at a somewhat lower frequency of≈ 17% for

PIK3CA, 6.5% for FAT4 and 5.4% for SOX-9 (Martı́nez-Jiménez et al. 2020).

In line with existing literature (Rowan et al. 2000), cases with APC mutations fre-

quently showed a loss of the unmutated allele through loss of heterozygosity (LOH)7 or

an additional truncating APC mutation8. These events were observed in 10/23 (43%) and

9/23 (39%) of the carcinomas respectively. In four cases9 only one APC mutation was

identified, potentially indicating the presence of additional undetected mutations (i.e., false

negative calls). In C560 a subclonal LOH affecting the APC locus was observed in one

sample (B1 G1 D1) (Figure S.48, page 282). Still, as both APC alleles were deleted in

either of the two states, this event was likely selectively neutral. In contrast, for TP53 LOH

events10 were the most frequent 10/16 (62%) alteration leading to the loss of the second

allele. Only one example of a secondary truncating p53 mutation was observed in C552

(6%). In the remaining four cases a single p53 mutation11 was identified. For the p.R175H

in C536 the literature suggests a negative-dominant effect (Marutani et al. 1999; Willis et al.

2004; Boettcher et al. 2019). In summary, the available data indicate the full loss of p53

function in 12/30 (54%) of the analysed cases.

While the consistency of the results obtained in this cohort with previously published

studies (e.g., Waris and Ahsan 2006; Grivennikov, Greten, and Karin 2010; Costa, Scholer-

6As part of manual curation three of the 73 reported genes, were identified as likely false positives and
removed. These were: LRP1B — which is even recognised as a potentially spurious driver by Martı́nez-Jiménez
et al. (2020) — KMT2C and PARP4. These genes contained many repetitive regions with low mappability
or passenger hotspots and had a dN/dS of ≈ 1 in the TCGA colorectal cancer cohort (L. Zapata, personal
communication).

7Observed in C561, C547, C539, C549, C538, C544, C554, C543, C530, and C516.
8Observed in C560, C542, C527, C555, C531, C524, C531, C524, C550, C537, C548, and C516.
9Observed in C519, C525, C559, and C536.

10Observed in C561, C547, C527, C539, C554, C549, C544, C560, C538, and C528.
11Observed in C519 (p.R158H), C542 (p.R213*), C536 (p.R175H), C543 (p.87Rfs*63), C516 (p.A138V).
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Figure 4.9: Driver mutations and dN/dS analysis of somatic variants in the EPICC cohort. A)
Somatic driver mutations in previously identified colorectal driver genes (Martı́nez-Jiménez et al.
2020) in adenomas and carcinomas of the EPICC cohort. B) Results from the dN/dS analysis
with dndscv demonstrate evidence of positive selection for missense and truncating mutations in
CRC driver genes from IntOGen (A) and pan-cancer drivers from Martincorena et al. (2017) for
clonal variants, but not for subclonal variants. Additionally, an excess of clonal truncating mutations
in chromatin modifier genes for MSS CRCs was apparent (C). C) Truncating chromatin modifier
mutations in MSS CRCs for which the dN/dS analysis indicated positive selection.

Dahirel, and Mechta-Grigoriou 2014; Canli et al. 2017; El-Kenawi and Ruffell 2017) is

reassuring, one of the primary objectives was to characterise the frequency of subclonal

selection. This should in principle be revealed by subclonal mutations of known cancer

driver genes. Some previously conducted analyses of single bulk sequencing data suggest

that subclonal driver mutations are very frequent (Tarabichi et al. 2018; Dentro et al. 2021).

In contrast to these studies, mutations of the three classic colorectal cancer driver genes

APC, p53 and K-Ras were only identified in one case, specifically an activating K-Ras

p.G12C mutation (Bos et al. 1987) in C539 (Figure S.40, page 279). Likewise, other less

frequently mutated colorectal driver genes like FBXW7 (Iwatsuki et al. 2010; Yeh, Bellon,
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and Nicot 2018), truncating SOX-9 mutations (Javier et al. 2016), EGFR (Barber et al.

2004), PTEN (Molinari and Frattini 2014) or TCF7L2 (Tang et al. 2008; Wenzel et al.

2020) were clonal in almost all cases (Figure 4.9A).

A notable exception from this general pattern were subclonal mutations of PIK3CA

and FAT4 which were observed in more than one case. Subclonal PIK3CA mutation were

found in 5/30 (17%) cases: C544 (Figure S.41, page 280), C531 (Figure S.42, page 280),

C525 (Figure S.43, page 280), C524 (Figure S.44, page 281) and C537 (Figure S.45, page

281). In two cases, C531 and C524, even more than one subclonal PIK3CA mutation was

present. This resembles the frequent parallel evolution of PIK3CA mutations in clear cell

renal carcinomas reported by Gerlinger et al. (2014) and has not been described in similar

studies of CRC (e.g., Uchi et al. 2016; Cross et al. 2018).

As expected for bona fide driver mutations of PIK3CA, the majority of these muta-

tions occurred in previously identified ‘hotspots’ around the RAS binding, helical or ki-

nase domain of the protein (Samuels et al. 2004). The activation of the enzymatic activity

conferred by these alterations and consequently, the downstream signalling cascades was

previously shown to promote cell growth and invasive capabilities in cell lines (Samuels

et al. 2005). It would therefore be reasonable to assume that PIK3CA could also con-

fer such a growth advantage in vivo either at primary or metastatic sites. The prognostic

value of PIK3CA mutations is still unclear (Mei et al. 2016), but increased resistance to

chemotherapy in PIK3CA mutated CRCs (Wang et al. 2018b) and an effect of non-steroidal

anti-inflammatory drugs on survival in PIK3CA mutated CRCs (Liao et al. 2012) has been

previously reported. These studies suggest that PIK3CA might play a fundamental role in

the evolution of CRCs.

Similar results were obtained by Sottoriva et al. (2015), Kim et al. (2015), Uchi et al.

(2016), and Cross et al. (2018) who observed subclonal PIK3CA mutations in 1/6, 1/5,

4/9 and 1/10 CRCs profiled by multi-region WES respectively. No subclonal PIK3CA

mutation was identified in a similar multi-region WES study of 4 CRCs by Suzuki et al.

(2017). While the used methods and the design of the studies differed substantially, taken

together they suggest that around 19% (95% CI: 10%–30%) of CRC harbour subclonal

PIK3CA mutations at a frequency at which they can be detected with multi-region WES

and WGS. A meta-analysis of all five studies is shown in Figure S.49A (page 283), showing

that the proportion of cases with a subclonal PIK3CA mutation are consistent across these.
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The observation of subclonal activating PIK3CA mutations in many different studies,

including this one, suggests that PIK3CA mutations are a genuine driver alteration in CRC

and that it is consistently acquired late. This also suggests that a substantial fraction of

tumour cells in those CRC grew in the absence of activation of the PI3K pathway. This

alone would suggest that PI3K inhibition in CRC might only elicit a partial response, at least

if the PIK3CA wild-type cells do not already rely on the activation of the PI3K pathway.

The only other CRC driver gene for which more than one MSS case with subclonal

mutations was observed in the EPICC cohort was FAT4, which was found to be mutated

in C561 (Figure S.46, page 282) and C554 (Figure S.47, page 282). A meta-analysis iden-

tical to that conducted for PIK3CA is shown in Figure S.49B (page 283), indicating that

subclonal mutation of FAT4 are relatively rare events occurring in only 3.4% (95% CI:

0.4%-11.9%) of CRCs.

In summary, the analysis of the 30 CRCs by extensive single-gland WGS from multiple

regions of the tumour revealed only a few recurrent subclonal driver alterations: a single

subclonal K-Ras mutation, seven subclonal PIK3CA mutations from five cases and two

FAT4 mutations (Table 4.2). This appears to be at odds with the results obtained by Dentro

et al. (2021) from single-bulk WGS sequencing data in the PCAWG cohort (Campbell et al.

2020). This study suggests that subclonal driver mutations are widespread in CRCs. From

Figure 6 in Dentro et al. (2021) it can be seen that subclonal driver mutations of K-Ras

were identified in ≈ 10%, of p53 in ≈ 5%, and of APC in ≈ 5% of cases. Assuming that

these alterations are independent ≈ 20% of cases were found to have evidence of subclonal

drivers in these three classic driver genes alone and additional subclonal mutations in a large

number of other putative driver genes appear to suggest pervasive subclonal selection driven

by somatic events.

4.3.2.6 dN/dS Analysis

To potentially resolve this discrepancy, I assessed if an excess of non-synonymous driver

mutations in all driver genes might indicate widespread positive selection of subclonal mu-

tations in the 30 CRC analysed by us. For this, two previously published tools for the

analysis of dN/dS ratios in cancer genomic data were applied to the data (Martincorena

et al. 2017; Zapata et al. 2018).

In line with previous studies (Martincorena et al. 2017), the cohort was stratified into

MSS and MSI cases to account for the large difference of mutation rates in these two CRC
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Table 4.2: Potential subclonal driver mutations identified in the EPICC cohort.

Case Gene Mutation Hotspot?

C539 K-Ras p.G12C (Region A & B) Yes (Bos et al. 1987)
C544 PIK3CA p.H1047Q (D1 G3) Yes (Zaidi et al. 2020)
C531 PIK3CA p.Q546K (Region C) Yes (Zaidi et al. 2020)
C531 PIK3CA p.G118D (Region D) No, but activating (Masoodi et al. 2019)
C524 PIK3CA p.C378R (Region B) No, but activating (Samuels et al. 2004)
C524 PIK3CA p.R88Q (Region C & D) No, but activating (Oda et al. 2008)
C525 PIK3CA p.Q546P (Region A & C) Yes (Zaidi et al. 2020)
C537 PIK3CA p.E545K (Region C) Yes (Bader, Kang, and Vogt 2006)
C561 FAT4 p.L2617V (Region A) -
C554 FAT4 p.M1825K (Region A) -

subgroups. The somatic mutations were then split into sets of subclonal and clonal muta-

tions. For each of these sets, dN/dS values were determined for the entire coding genome,

pan-cancer driver genes reported in Martincorena et al. (2017), all chromatin modifier genes

(Yates et al. 2020), and the IntOGen colorectal cancer driver genes shown in Figure 4.9A.

As expected, clear evidence for selection of clonal missense and truncating mutations

in MSS cancers were found (i.e., dN/dS ≥ 1) in both lists of putative cancer driver genes

(Arrow A in Figure 4.9B). Likely due to the higher fraction of CRC specific driver genes

in the IntOGen list, dN/dS estimates were slightly higher for this set of genes when com-

pared to the pan-cancer gene list. Likewise, the dN/dS analysis revealed a clear excess of

clonal truncating driver alterations in MSI cancers for both gene lists and clonal missense

mutations in the IntOGen genes. The dN/dS estimates obtained for the MSI cases were

generally lower than that of the MSS cases. This is consistent with the depletion of signal

due to the excess of non-selected variants arising due to the higher mutation rates compared

to a small set of driver mutations.

In contrast, no significant evidence for subclonal selection of truncating variants was

identified in MSI or MSS cases. The dN/dS estimates of subclonal missense mutations

for the IntOGen gene list were slightly higher than one, indicating subclonal selection of

a subset of mutation in these CRC driver genes. This is consistent with the previously

described K-Ras and PIK3CA hotspot mutations (see Table 4.2). After the removal of these

two genes from the IntOGen list (‘IntOGen (excl. subclonal drivers)’), observed dN/dS

values were indeed not significantly above one as shown in Figure 4.9B, thus supporting

the conclusions made above.

Interestingly, the dN/dS analysis of chromatin modifier genes (CMG) revealed an ex-
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cess of truncating clonal mutations in them (Figure 4.9B). The distribution of these trun-

cating SNVs, which is shown in Figure 4.9C, did not reveal any apparent genes with an

increased number of somatic variants. Due to the complex function of CMGs, it appears

plausible that mutation of different CMG might produce a similar phenotype. In analogy

to MSI, the mutation of different CMGs might for example cause ‘epigenetic hypermuta-

tion’ and the frequent selection for truncating alterations of various CMG could occur if the

resulting epigenetic mutations themself are subject to strong positive selection.

Overall, these findings, that is dN/dS≈ 1 for subclonal mutations excluding K-Ras and

PIK3CA, are consistent with the conclusions made based on the assessment of recurrently

mutated CRC driver genes. In general, subclonal selection due to somatic mutations — with

the exception of a few specific genes identified in a subset of cases — appears to be rare

in CRC. This is in agreement with conclusions from the previous analysis of single-bulk

WES data by Williams et al. (2016) and Williams et al. (2018b), which found that subclonal

mutation spectra resembled that of a neutral null model in 38/108 (35%) and 55/70 (79%)

of CRCs respectively. The ‘Big-Bang’ model of tumour growth (Sottoriva et al. 2015) might

explain this apparent lack of subclonal selection.

4.3.3 Reconstruction of Phylogenetic Relationships

I next sought to explore the ancestral relationships of glands as revealed by somatic variants

accumulated during the clonal expansion of the tumour. For this I used, like many other

studies before (e.g., Gerlinger et al. 2014; Bruin et al. 2014; Ling et al. 2015; Sottoriva et al.

2015; Cross et al. 2018), a simple maximum-parsimony reconstruction of phylogenies from

mutations detected in individual samples.

The application of such methods to bulk WGS sequencing data has been criticised by

Alves, Prieto, and Posada (2017), since mutations detected in bulk WGS sequence data (i.e.,

‘sample trees’) do not — or at least not necessarily — inform on the mutations present in

individual ‘evolutionary units’. In the context of this study, the mutation profiles were ob-

tained from single colorectal cancer glands. These are indeed assumed to be the evolution-

ary units of CRC (Humphries et al. 2013) and the direct application of classic phylogenetic

methods to mutations identified in samples seems for this reason less controversial.

The decision of using a MP method was primarily based on their simplicity and the ad-

vantage of not requiring the formulation of an explicit model with potentially questionable

applicability to cancer genomic data. For example, commonly used substitution models
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do not account for the complexity of mutational processes known to be active in cancer

(Alexandrov et al. 2013b) and readily available models of population structures might be

violated due to spatial dynamics. For this reason, MP trees were reconstructed as a simple

‘model-free summary statistic’ of the data. In Chapter 6 (page 195 ff.) I will present some

results from a simulation-based inference in which I used these trees as a data basis.

The subclonal structure of MP trees reconstructed from mutations identified by WGS

are shown in Figure S.51 (page 284). Bootstrapping of the mutation data (Figure S.50,

page 283), confirmed that the topologies of the reconstructed trees were robust. At a later

stage, LP-WGS was applied to a larger number of single-gland obtained from the same

30 cases. These additional LP-WGS samples were assigned to edges of the tree using a

maximum-likelihood method, which will be described in detail in Chapter 5 (page 171 ff.).

In the following, these LP-WGS trees will be used to discuss the general patterns observed.

As shown in Figures 4.10A, C & D, the macroscopic locations of the sampling regions

were recorded during sample collection. The macroscopic structure of most carcinomas

was similar to that of the two examples shown in Figure 4.10 C & D, i.e., a relatively flat

and round crater-like erosion that is typical for colorectal adenocarcinoma (Nagtegaal et al.

2020).

In a subset of cases12, one or more synchronous adenomatous polyps were identified.

The proportion of cases with synchronous adenomatous polyps (6/30, 20%) was consistent

with the proportion of ≈ 30% cases reported elsewhere (Kim and Park 2007). In another

case (C516) a tumour adjacent polypoid precursor lesion was found to be present. Addi-

tional WGS of samples from these lesions were obtained in three cases (C516, C551, and

C561).

As shown in Figure 4.10A&B, the concomitant polypoid lesion in C516 (region C&D)

and the carcinoma (A&B) shared a large number of variants, including a mutation of APC

(single-hit) and p53 (single-hit). This clearly demonstrates that the two cell masses arose

from a common, likely precancerous, MSI ancestor.

In contrast to this, the adenomatous polyp (region F) of C551 (Figure 4.10 C&D) and

the two sampled polyps (region F&G) of the case C561 (Figure 4.10 E&F) demonstrated

that these distant polyps arose independently from the healthy colorectal epithelium. The

109 variants shared by the main tumour and the two adenomas, as well as the 38 variants

12C530, C547, C550, C551, C552, and C561
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shared by the two adenomas with each other, could then have arisen during the embryonal

development and the formation of the colon. A similar number of mutations 154 was shared

between the tumour and the independent adenoma in C551. In all three cases, no known

non-synonymous mutations in any colorectal driver gene were identified.

I annotated the tumour phylogenies reconstructed from single-gland and small bulk

samples in the remaining 27 cases with putative driver mutation identified to assess if the

selection of these variants might have induced any obvious distortion of the general tree

structure. The 27 reconstructed sample trees, including the assigned LP-WGS samples, are

shown in Figure 4.11 and the MP trees excluding the added LP-WGS samples can be found

in Figure S.51 (page 284).

Structures in tree topologies The trees reconstructed from the majority (17/23, 74%) of

tumours in which the evaluation of such patterns was possible showed a clear formation of

clades containing samples from the same regions. This pattern is best summarised by the

example C548 shown in Figure 4.12B and a list of all cases in which this lack of intermixing

was observed can be found in Table 4.3.

Notably, in a smaller set of cases (6/23, 26%) some degree of inter-region mixing of

samples was detected. These patterns were consistent with the spatial variegation observed

by Sottoriva et al. (2015). A clear example of this was found to be present in case C559 (Fig-

ure 4.12D). For the remaining cases, summarised in Table 4.3, different sources of evidence

were available i) the WGS sequencing data, ii) the ML estimates of the LP-WGS sample po-

sitions in the tree, and iii) the CNA analysis of LP-WGS samples consistent with alteration

found to be present in the majority of samples from a different region. Considering i) or a

combination of ii) and iii) clear evidence, spatial variegation was found in ≈ 22% (5/23)

of analysed cases. This is considerably less than the 6/6 (Fisher’s Exact Test: p = 0.001,

OR: 0, 95% CI: [0−0.35]) of carcinomas with such patterns in Sottoriva et al. (2015) based

on the analysis of WES data and 9/11 (Fisher’s Exact Test: p = 0.002, OR: 0.069, 95%

CI: [0.0055−0.47]) based on CNA analysis alone, but supports the presence of this pattern

in general. As noted above, a high frequency of spatial intermixing might be explained

by nearly exponential growth and the lack of such intermixing by boundary driven growth.

Based on these observations, it appears reasonable to suggest that the presence of intermix-

ing might be a surrogate of a fast and potentially aggressively growing tumour, indicative

of a worse outcome (i.e., a potential prognostic marker).
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Figure 4.10: Spatial sampling and phylogenetic trees reconstructed for carcinomas with associated
adenomas. Arrows indicate putative driver mutations in known colorectal driver genes reported in
IntOGen (Martı́nez-Jiménez et al. 2020). A) Shows a macroscopic image of the tumour of C516.
Here a polypoid adjacent adenoma (C&D) was adjacent to the carcinoma (B%A). B) Shows the
phylogenetic tree reconstructed for somatic mutations in C516. This tree indicates that the adenoma
and the tumour evolved from a common precursor lesion. C) Shows a case (C551) in which a
synchronous adenoma (F) was located several centimetres away from the main carcinoma (A-D).
D) In this case the reconstructed phylogenetic relationships suggested that both tumours evolved
independently from the healthy colorectal epithelium. E) Shows a macroscopic image of the tumours
found in C561. A carcinoma (A-D) and several adenomas (G-F) were found to be present in this case.
F) The phylogenetic relationships suggested, like for C551, that the adenomas arose independently
from the carcinoma.
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Figure 4.11: Maximum-parsimony phylogenies reconstructed from mutations identified in samples
of 27 colorectal carcinomas. Arrows indicate putative driver mutations in known colorectal driver
genes reported in IntOGen(Martı́nez-Jiménez et al. 2020).
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Figure 4.12: Examples of observed tree structures. A) Shows a clearly ‘branching’ tree indicating
parallel evolution of distinct regions. B) Shows a tree with clear spatial segregation, indicated by the
lack of intermixing and radial nesting of lineages. C) Shows an example of a case with an elongated
internal edge. This elongation suggests the presence of a selected subclone, which in this case was
explainable by a p.G12C K-Ras mutation. D) Shows an example in which the intermixing of samples
from different regions suggested the presence of spatial variegation.

Across cases, perfectly star-shaped topologies were, except for C536 and C561 (2/19,

11%), not observed. Instead, a pattern consistent with sampling from ‘radial clones’ (com-

pare Figure 3.13B, page 103), manifesting itself as clades formed by samples from two

adjacent regions (e.g., A+B or D+A, but not A+C, compare Figure 4.10E) was found to be

present (13/19, 68%, see Table 4.3). An example of this pattern can be seen in case C548

(Figure 4.12B). Maybe surprisingly, in the remaining 4/19 (21%) cases, clades formed by

samples from opposing sites of the tumour (e.g., A&C or B&D) were found to be present.

Given that the proportion of adjacent regions is itself lower, this appears to indicate frequent

scattering or intermixing of glands during the early tumour development. While the reasons

for this might not be entirely clear, the presence of such a feature could also be associated

with a specific growth pattern of individual tumours and potentially be prognostic.

Last but not least, in a small set of cases, elongated internal branches were observable.

In a single case, C539, this pattern was obvious and indeed a subclonal activating K-Ras

mutation (p.G12C) — one of the most common colorectal driver alterations with a well-

established effect on cells growth rates (Konishi et al. 2007; Platt et al. 2014) — mapped

exactly to this branch of the tree (Figure 4.12C). In all other cases, listed in Table 4.3, the

presence of such a pattern, if existent, was more subtle. In some but not all cases, previously

identified driver mutations (e.g., PIK3CA) mapped to these edges. Examples of this can be

found in C524, in which a subclonal PIK3CA p.C378R mutation was present or C538 in
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Table 4.3: Summary of features identified in tumour phylogenies. Trees from C519, C522, C527,
C547, C555 and C562 were considered not evaluable based on the data obtained.

Case Mixing? Subclades? 1 Branch elongation?

C516 No - No
C518 No A&B No
C525 No A&C Maybe (PIK3CA p.C378R)
C528 No B&C No
C530 No A&D No
C532 No A&C No
C536 No Star shaped No
C537 No B,C,D Maybe (PIK3CA p.E545K)
C539 No C&D + A&B Yes (KRAS p.G12C)
C542 Maybe A,B,D No
C543 No - No
C544 No A,C Maybe
C548 Maybe C&D No
C549 No B&C Maybe
C552 No - No
C554 No C&D Maybe
C561 No Star shaped Maybe
C524 Yes2 C&D + B&B Maybe (PIK3CA p.C378R)
C531 Yes3 A,C,D Maybe (PIK3CA p.G118D)
C538 Yes3,4 B&C Maybe (RNF43 p.Q153∗)
C551 Yes2,3,4 - Maybe
C559 Yes2,3 C&D No
C560 Yes3,4 A&C No
1 Non-adjacent regions highlighted in bold.
2 Based on WGS samples, 3 Based on LP-WGS samples
4 LP-WGS position supported by LP-WGS CNA analysis.

which a subclonal RNF48 p.Q153∗ mutation was identified (see Figure 4.10). In other

examples, like C543 or C549, no known driver mutations were found to be present. The

analysis of the VAF spectrum suggested that contamination from individual adjacent normal

crypts, which according to the analysis presented above contain ≈ 1500 SNV each, could

have contributed to this phenomenon in some cases. However, the question remains to what

extent these patterns could be attributed to spatial drift instead of selection. Further, what

tree structure to expect in general from spatially sampled tumours is unclear.

Estimated clone size vs lineage age Disregarding these spatial effects, one could use the

information of lineages contained in the trees to derive estimates of the relative clone13

sizes, which is equivalent to the VAF in bulk samples, and the approximate time tMRCA at

which variants in these clones arose.

Under the assumption of neutral evolution and in the absence of drift, the relative

13In this context a clone refers to a set of cells with a MRCA identifiable by their shared mutations.
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Figure 4.13: Relationship of clone size and MRCA age. A) Illustration showing how estimates for
the relative clone size f = Nm

N and relative MRCA age tMRCA = t
tmax

can be obtained from the tree. B)
The distribution of f and tMRCA obtained from the trees across the entire cohort. The red line shows
a fit of the negative exponential relationship expected under neutrality. Black dots highlight lineages
with mutations of given impact (panels) in an IntOGen CRC driver gene.

clone size f = Nm/N, where Nm is the number of mutated and N total number of cells, in

an exponentially growing population, is ≈ 1/Nt , where Nt is the total population size at the

time t at which the mutation arose. The number of cells in such an exponentially growing

population at time t is given by N(t) = eλ t with the growth rate λ . For this reason, the

relationship between f and tm is expected to follow tm = −ln( f )
λ

. Positive selection should

instead increase the clone size relative to the age of the MRCA, causing a deviation from

this relationship. In other words, even mutations present in a recent MRCA could reach a

significant size due to the expansion of the selected subclone. Estimates of tm and f can be

obtained from reconstructed phylogenetic trees as illustrated in Figure 4.13A. The observed

relationship between tMRCA ≈ tm and f across all trees is shown in Figure 4.13B.

As expected, the relationship of these two measures from most resolved lineages fol-

lowed the expected exponential distribution derived above (red line in 4.13). One has to

consider that this analysis does ignore the biases introduced by the spatial sampling or other

effects arising from growth in space and for this reason, direct testing for the significance

of deviations is likely not warranted. Still, in order to gain some insight into whether sub-

clonal CRC driver mutations (IntOGen, Martı́nez-Jiménez et al. 2020) might explain any
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of the observed deviations, I added annotations of these for i) synonymous mutations and

ii) benign missense mutation, both of which are expected to have no effect as well as iii)

truncating variants and iv) pathological, missense mutation for which some might induce

selection, thus causing deviations from the expected exponential fit. In line with the conclu-

sions drawn from both the analysis of dN/dS and the general topology of trees, the majority

of mutations, including those in CRC driver genes, seemed to follow the expected fit. Es-

pecially, synonymous and CRC driver gene mutations predicted to be benign appeared to

follow the distribution of the background. A few notable exceptions of this general pattern

existed for missense mutations in CRC driver genes predicted to be pathological existed

(bottom left corner of Figure 4.13B). Again, the clearest example of this was the K-Ras

p.G12C mutation, which was also identifiable through manual examination of the tree de-

scribed above.

Assessment of the PIK3CA mutations listed in Table 4.2 provided some evidence of

subclonal selection of these in C525 and C537, but for example, not in C544. For no other

driver mutation like FAT3, FAT4 or RNF43 deviations from the exponential fit was evident,

thus suggesting that these genes might only be weak CRC drivers or only act in a specific

genetic/environmental background.

While it is entirely reasonable to assume that only the small subset of the CRC driver

gene mutations caused measurable fitness effects, the analysis disregarded spatial effects as

well as biases resulting from non-random sampling in space. For this reason, the described

findings must be considered to be anecdotal. The interpretation of the information in the

analysed single-gland multi-region sequencing data is not straightforward. To account for

these concerns, I will apply an ABC-SMC inference framework that uses a spatial tumour

simulator to these data. This approach allows to explicitly model the spatio-temporal dy-

namics (i.e., tumour phylodynamics). In contrast to the model-free maximum parsimony

method described here, it can explicitly take into account the spatial sampling performed on

a patient-specific basis and infer the populations’ dynamics (i.e., mutation, selection, death

and effects of spatial crowding), that could have created the population structure and model

the process used to obtain the trees (Stadler, Pybus, and Stumpf 2021). I will present the

results of this analysis in Chapter 6 (page 195 ff.).
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4.3.4 Analysis of Mutational Signatures in Tumour Glands

I next assessed mutational signatures, to understand if and how changes of active mutational

processes might have altered the rate at which mutations were acquired. While a de novo

reconstruction of mutational signatures from the available data themself can discover novel

signatures and might for this reason generally be the preferred approach, I instead based the

analysis on previously identified mutational signatures.14

Some mutational signatures are known to be very similar to a linear combination of

other ones and this can lead to problems of identifiability. Due to this, it is generally

advisable to instead aim to identify the contribution of a relatively small number of rele-

vant signatures. For these reasons, three signatures — S1, S6 and S10 from the COSMIC

database (Tate et al. 2019) — originally identified by Alexandrov et al. (2013b) in CRCs

and signature S5 — a mutational signature that was previously found to correlate with age

at diagnosis in many tumour types (Alexandrov et al. 2015) and suggested to represent a

general background process (Lal et al. 2021) — were included in the initial analysis. Data

on each signature were obtained from the COSMIC database (Tate et al. 2019). The analy-

sis itself was conducted with the deconstructSigs package for R (Rosenthal 2016), a simple

and frequently used tool that identifies each patients’ exposures to provided signatures by

fitting the mutation counts as a non-negative combination of these.

After the initial analysis of the four signatures (S1, S5, S6 and S10) residuals very

similar to signatures S2 and S13 (see Figure 4.15) attributed to the activity of cytidine

deaminases of the AID/APOBEC family (Nik-Zainal et al. 2012b), S17 (see Figure 4.16)

that was also identified in a similar study by Cross et al. (2018) and with proposed aetiology

of 5-Fluorouracil (5-FU) chemotherapy-related DNA damage (Christensen et al. 2019), and

a pks+ E. coli associated signature (i.e., SBS88 in COSMIC v3) described by Pleguezuelos-

Manzano et al. (2020), were observed in some cases. For this reason, I also included these

four additional signatures and repeated the analysis for all cases.

To resolve temporal changes of the active processes, the mutations of each case were

split into sets of clonal (i.e., in all samples), shared (i.e., in multiple samples), and private

(i.e., a single sample) mutations. Those present in concomitant adenomas were added as an

additional group. This analysis demonstrated that in virtually all cases, a much larger frac-

tion of clonal mutations were attributed to S1 and S5 when compared to subclonal variants

14A de novo analysis of mutational signatures with SparseSignatures (Lal et al. 2021) was later conducted in
collaboration with Daniele Ramazzotti. The results of this analysis corroborated the results described here.
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(Figure 4.14).

As such, the mutational signature activity reconstructed from clonal variants was much

more similar to that of normal crypts (compare Figure 4.8), which, given that majority of

the CRC evolution occurred in phenotypic normal crypts, is unsurprising. The differences

between ‘Shared’ and ‘Private’ mutations were generally much less pronounced. The sepa-

rately conducted analysis of the mutations of each edge of the phylogenetic trees confirmed

this observation. Overall, little variation of active mutational processes appeared to have

occurred during the clonal expansion of the tumours themself.

In MSI cases, a substantial fraction of clonal variants and virtually all subclonal vari-

ants were attributed to the MMR associated signature S6. This confirmed the clinically

reported MMR in these cases. The relative contribution of S6 to the clonal mutation bur-

den in MSI cases varied substantially. The relative contribution of S6 (i.e., S6 compared

to S1+S6) ranged from 73% (C518) to ≈ 100% (C552), suggesting that MSI arose at var-

ious time points during the evolution of the MRCA of the CRCs. Assuming the 15-fold

increase of mutation rates in MSI cases reported by Williams et al. (2016), this suggests

that MSI arose around three times earlier than the MRCA of the tumour (i.e., relatively

early). Consistent with the absence of cases with Lynch syndrome (i.e., hereditary defects

of MMR) in the cohort, none of the concomitant adenomas showed evidence of signature

S6. Instead, a signature spectrum extremely similar to that of normal crypts was generally

found to be present in the adenomas, demonstrating that abnormal mutational processes

normally contribute little to the early evolution of them. Apart from these general patterns,

two noteworthy observations were made.
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Figure 4.14: Signature contribution in individual colorectal adenocarcinoma and concomitant ade-
noma (‘Polyps’) of the EPICC cohort. Relative contribution of mutational signatures S1, S2, S5, S6,
S10, S13, S17 reported in the COSMIC database (Tate et al. 2019) and the pks+ signature described
by Pleguezuelos-Manzano et al. (2020) were estimated with deconstructSigs (Rosenthal 2016). Mu-
tations were split into groups based on the number of samples they were found to be present in:
‘Clonal’ mutations were present in all samples, ‘Shared’ mutations in more than one, but not all
samples, and ‘Private’ mutation in only one sample.
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APOBEC associated mutagenesis in a CRC First, one case (C549) was found to ex-

hibited a clear and dominant APOBEC associated mutational signature (see Figure 4.14).

APOBEC mediated mutagenesis is frequently found in other tumour types, like bladder or

cervical cancers, but not in CRCs (Roberts et al. 2013). In the case of C549 however, two

APOBEC associated signatures, S2 and S13 (Figure 4.15B), were found to be present. The

total fraction of variants attributed to these was over 40% for clonal and substantially higher

for subclonal variants. To further dissect the temporal dynamics of the observed APOBEC

mediated mutagenesis, the mutational signatures of each edge of the reconstructed phylo-

genetic tree were analysed separately. The results of this analysis are shown in Figure 4.15.

As seen here, a signature of APOBEC mediated mutagenesis was identified in the

clonal variants of this case (≈ 40%). The contribution to mutations associated with inter-

mediate and terminal edges of the tree was even higher, with > 90% of variants on some

internal edges being attributed to S2 and S13. These observations suggest that prior to the

formation of the MRCA of the observable part of the tumour, a stable activation of the

associated mutational process occurred. The precise reasons for this are elusive, and no in-

dication of a potential explanation was found in the pathology report of this case. A recent

paper by Roufas, Georgakopoulos-Soares, and Zaravinos (2021) suggested that an elevated

level of APOBEC associated substitutions can be identified in CRC with high antitumoral

Figure 4.15: Activity of APOBEC associated mutational signature identified in C549. A) The
trinucleotide distribution of mutations associated with each edge of the tree. It can be seen that the
entire subclonal mutations are dominated by the two APOBEC associated signatures S2+S13. B)
The two APOBEC associated COSMIC signatures S2+S13.
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Figure 4.16: S17 mutational signature identified in C561. A) The trinucleotide distribution of
mutations associated with each edge of the tree. It can be seen that all subclonal mutations are
associated with S17. B) COSMIC signatures S17.

immune cytolytic activity. However, the difference observed by these authors were much

less pronounced and it is unclear if an immunoreaction would provide an adequate explana-

tion for the observations made here. In summary, the analysis of the mutational processes

active in this CRC provides, to my knowledge, the first example of APOBEC mediated mu-

tagenesis in a CRC, suggesting that it might indeed occur in a very small subset of CRCs.

Subclonal activity of S17 in multiple CRCs Consistent with previous findings by Cross

et al. (2018), evidence for a subclonal increase of signature S17 activity in a subset of cases

was identified. Such a pattern was observed in 11/23 MSS cases15 (see Figure 4.14). Inter-

estingly, S17 appeared to be the dominant mutational process in two of these cases (C555

and C561) and more than 75% of variants were attributed to the activity of S17 in these.

In C555, a small but significant contribution of S17 to clonal variants was also observed,

whereas no such variants were found in C561. This suggests that a stable activation of an

underlying mutational process occurred around or shortly before the MRCA of these tu-

mours arose. The presence of S17 associated mutations in different regions and at different

time-points of the tumour evolution is demonstrated by the tree-based analysis of muta-

tional signatures for C561 shown in Figure 4.16A. Here a clear pattern of T>G substitu-

tions associated with S17 (Figure 4.16B) is dominant on various edges of the reconstructed

phylogenetic tree.

Interestingly, the aetiology of S17 is not perfectly understood. Christensen et al. (2019)

15C524, C532, C537, C539, C543, C547, C551, C552, C555, and C561
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have shown that treatment with 5-FU chemotherapy induces DNA damage similar to S17

in vitro and in vivo. However, according to the available information on the treatment of

these patients, no adjuvant or neoadjuvant chemotherapy with 5-FU or indeed any other

drug took place. For this reason, the alternative explanation that the presence of oxidised

deoxyguanosine triphosphate nucleotides in the nucleotide pool, as suggested by Tomkova

et al. (2018), seems to be a more likely explanation. Other publications have also suggested

that base excision repair (BER) might play a role in the repair of mutations caused by S17

(Pich et al. 2018). I evaluated this hypothesis but found no somatic mutations causing

defects of the BER pathway in any of the MSS cases assessed here. I further tested if

somatic mutation of K-Ras, p53 or PI3KCA were associated with the presence of subclonal

S17. This indicated a weak association with K-Ras (p = 0.036, Fisher’s Exact Test) but not

with p53 (p = 0.42, Fisher’s Exact Test) or PI3KCA mutations (p = 0.66, Fisher’s Exact

Test). Still, after adjusting these p-values for multiple hypothesis tests, no significant effects

remained.

In summary, no clear explanation for the presence of S17 in a subset of the CRC

could be found. Through the usage of extensive information contained in the multi-region

sequencing data, it was however possible to demonstrate that the presence of this process is

stable in time and space. For this reason, it appears more likely that the underlying cause

is a cell-intrinsic property and not a local or transient process (i.e., chemotherapy or local

micro-environmental effects).

4.3.5 Analysis of Chromatin Accessibility Using ATAC-seq

Alterations of the chromatin structure have been suggested to play an important role as

non-genetic drivers in carcinogenesis (Flavahan, Gaskell, and Bernstein 2017) and the de-

velopment of metastasis (McDonald et al. 2017). Nevertheless, such epigenetic driver alter-

ations have not been studied extensively in colorectal cancers. Studies of cancer cell lines

(Akhtar-Zaidi et al. 2012) and primary tissues (Johnstone et al. 2020; Corces et al. 2018)

have provided some insight into the role chromatin alterations might have. Still, little is

known about the epigenetic heterogeneity existing within human malignancies (Black and

McGranahan 2021) and its relationship with the genetic diversity that occurs during the ex-

pansion of tumours. The largest pan-cancer study of chromatin alterations in human cancers

as part of the TCGA project (Corces et al. 2018) lacked normal controls. The results of this

study are for this reason likely dominated by the signal of the ‘tissue of origin’ and unable



154 Chapter 4. Analysis of the EPICC Cohort

to unveil somatic changes of the epigenome.

As part of this project, 1,109 chromatin accessibility profiling using ATAC-seq of

single-glands and bulks obtained from 8 adenoma and 24 carcinoma was performed (Figure

4.1G–H). Additional ATAC-seq on patient-matched normal bulk tissue and normal crypts

was used to generate normal reference data to distinguish actual somatic alterations from

signals of the tissue of origin (Figure 4.1H). During the initial analysis of somatic mu-

tation detected in the 30 CRCs of the EPICC cohort, an excess of truncating mutations

of chromatin-modifier genes in MSS CRC was found (Figure 4.9B–C). These recurrent

mutations of CMG hint that epigenetic alterations might have an essential role in the evo-

lution of CRCs. A relationship between these epigenetic alterations and the selection of

somatic CMG defects might exist. Using the chromatin accessibility profiling data from

the EPICC cohort, I identified recurrent somatic alterations of chromatin-accessibility and

demonstrated that these were primarily late clonal events.

4.3.5.1 Recurrent Changes of Chromatin Accessibility

To identify these recurrent alterations of chromatin accessibility in the analysed CRCs, a

reference set of open chromatin regions (i.e., ATAC-seq peaks) was created first. In brief,

peaks were called in the ATAC-seq data of individual tumour regions using MACS2 (Zhang

et al. 2008) and merged across regions and patients using an approach similar to the one used

by Corces et al. (2018). The number of reads covering each of these peaks was obtained

for all samples. Due to the insufficient number of reads obtained from the low complexity

single-gland ATAC-seq libraries (see Figure 4.2), statistical analysis was challenging and

data from glands were combined instead. Summarised, reads obtained from all glands with

a purity ≥ 40% of each tumour were pooled to generate synthetic ‘megabulks’. Likewise,

reads from all normal reference samples were merged to create a ‘pool of normals’. A clear

association of independently measured gene expression values in normal tissue with the

promoter accessibility in this ‘pool of normals’ was evident (Figure S.54, page 285), sup-

porting that the generated reference was indeed representative of the chromatin accessibility

of healthy colorectal crypts.

Statistical analysis of the number of reads in the megabulks compared to the pool

of normals allowed the identification of peaks with significantly altered accessibility (see

Figure 4.17A, see Methods section for details). I conducted this analysis separately for

peaks overlapping putative enhancers (9,706) and promoters (17,885) across the carcino-
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Figure 4.17: Recurrent somatic chromatin accessibility changes identified in the EPICC cohort.
A) Recurrent changes were identified for each cancer and adenoma by comparing pooled reads
from pure single-glands ATAC-seq data against a pool of normal glands. Significant differences are
highlighted in red. Values shown are CPM to normalise for the total number of reads in the samples.
Comparison of these somatic chromatin accessibility alterations (CAAs) across patients identified
recurrent CAA at promoters (B) and enhancer regions (C). D) Gene expression analysis of matched
RNA-seq data from the same cases showed concordant changes in ≈ 16% of promoter CAA and
≈ 12% of enhancer CAA. E) and F) The 20 most recurrently gained and lost CAA at promoter and
enhancer regions respectively. G–N) Tracks of representative somatic CAAs.
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mas and adenomas in the cohort. I then assessed how frequent losses (e.g, closing) and

gains (opening) of chromatin accessibility (CA) occurred for each peak. Here a subset of

promoters (Figure 4.17B) and enhancers (Figure 4.17C) were identified that showed recur-

rently altered CA in the carcinomas. Notably, losses of CA were more frequently observed

than gains (p < 10−12 for promoter and enhancer), but the recurrence of these CA losses

was lower compared to CA gains. A total of 93 gained vs 8 lost promoter-associated CAs

(χ2 = 70.1, p < 10−12) and 8 vs 1 lost enhancers associated CA (χ2 = 4.00, p = 0.0455)

occurred in≥ 10 cases. The excess of promoter losses might, at least partially, be explained

by the problem of identifying rarely opened regions (i.e., peaks) in the impure ATAC-seq

signal obtained from the tumours. Despite this, the data suggested that a pattern of in-

creased chromatin accessibility in specific genomic regions exists in CRCs compared to

normal colorectal tissue.

Still, the effect such differential CA might have, are especially for distant enhancer

elements unclear. For this reason, I also explored whether changes in CA were associ-

ated with altered gene expression. In brief, matched RNA-seq data16 were used to iden-

tify concordant expression changes of promoter adjacent genes and previously identified

enhancer-gene pairs reported in the GeneHancer database (Fishilevich et al. 2017). This

analysis demonstrated that ≈ 16% (92/586) of recurrently (≥ 20%) altered promoters and

≈ 12% (29/244) of recurrently altered enhancers were accompanied by corresponding gene

expression changes at a FDR of 1%. A representative example of such a recurrent CAA

associated with differential gene expression, an opening of a LAMA5 promoter, is shown in

Figure 4.17D. Additional examples can be found in Figure S.55 (page 286).

Despite the limited power to detect changes in chromatin accessibility and gene expres-

sion, this analysis revealed a fairly large number of recurrent CAAs, many of which have

been previously identified to have a role in the development of CRC. Examples of this in-

clude LAMA5, which was suggested to be a potential biomarker with prognostic value due

to its ability to promote growth of liver metastasis and induce angiogenesis (e.g., Pyke et al.

1994; Hlubek et al. 2001; Bartolini et al. 2016; Galatenko et al. 2018; Gordon-Weeks et al.

2019) or TNNT1, which appears to be implicated in the induction of increased proliferative

and invasive capabilities of CRC cells (e.g., Chen et al. 2020; Hao et al. 2020).

Together these observations could be explained by a model of epigenome evolution in

16This part of the EPICC project was led by Jacob Househam, who shared the processed RNA-seq data with
me. I used these to identify differentially expressed genes associated with identified CAA.
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which a relaxed control of the cellular state causes a drift away from the epigenomic status

of the tissue of origin. In this case, the selection of specific alteration or changes to cell-

intrinsic regulation networks could be responsible for the recurrent changes of chromatin

accessibility. The difference between the number of gains and losses might arise due to a

small number of mechanisms that have to be lost to release cells from proliferation control.

Many more mechanisms might instead exist that modify the interaction with the cellular

environment and are ultimately beneficial to the growth of the tumour.

Validation with data from ENCODE and TCGA The ATAC-seq peaks called in the

dataset showed a clear overlap with regions of open chromatin identified in CRCs (Corces

et al. 2018) and healthy normal colon epithelium (ENCODE Project Consortium 2012).

The data from both of these projects were obtained and reprocessed with the same analysis

pipeline used here to reduce potential biases. Since no matched normal tissue samples

were available from the TCGA study (Corces et al. 2018), I instead determined whether the

average CA across cases were differenced for the peaks I identified here (see Figure S.57,

page 288).

Reassuringly, this analysis confirmed that a strong correlation between the average

CPM of peaks in the normal tissue samples from the EPICC cohort and those from the

ENCODE project existed (top left, Figure S.57, page 288). This correlation existed for

all as well as recurrently altered CAAs. This demonstrates the consistency of the single-

crypt ATAC-seq profiles analysed here with the normal bulk colon tissue CA data from

ENCODE. Likewise, a similarly strong correlation was observed between CA data from

the cancer samples of the EPICC cohort and the TCGA project (bottom right, Figure S.57,

page 288). In contrast, significant differences in the average CPM between different sample

types (i.e., between normals and tumours) did (exist bottom left, Figure S.57, page 288).

Together these observations support that the analysis described above was able to identify

genuine recurrent somatic CAAs from the EPICC ATAC-seq data alone.

Assessment of the impact of CNAs During the detection of differentially accessible ge-

nomic regions, changes of copy-number states were not taken into account. Upon review of

the CA data, a weak, but significant relationship between CNAs and the number of gained

or lost CAAs was observed. Of the recurrent CAAs reported in Figure 4.17E&F, the major-

ity of CAAs (95.5%) did not show a significant association with the relative copy-number

of the locus across patients (see Figure S.66, page 293). In light of the relative change
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in coverage ratios caused by CNAs at the given sample purities compared to the expected

change in read numbers due to CAAs, this is generally not surprising.

Identification of subclonal chromatin accessibility alterations The above analysis of

somatic CAAs in primary CRCs and the associated gene expression changes demonstrated

the general importance of epigenetic alterations in CRC. I next sought to determine if these

alterations tended to be clonal or subclonal. This analysis was significantly complicated by

the generally low complexity of the obtained ATAC-seq libraries, the very variable sample

purities, and the differences of TSSe of samples.

Only after realising that, for unknown reasons, the signal of cancer cells was under-

represented in the signal obtained from ATAC-seq samples (i.e., the ‘apparent sample pu-

rity’) the variability of signal across samples was explainable. To measure this apparent

purity of the ATAC-seq data, clonal SNVs identified during the WGS of single-glands were

determined, and their frequency in the ATAC-seq libraries was used to obtain ML estimates

of their purity. In order to estimate the amount of overdispersion associated with the mea-

surements, samples obtained from the same region of the tumour were treated as ‘biological

replicates’ in DESeq2 (Love, Huber, and Anders 2014) to fit a regression to account for

the identified confounding factors.17 Based on this regression, sites with a significantly

different ATAC-seq signal in individual tumour regions were identified. The analysis of

these subclonal variants was focussed on the 20 most recurrent CAAs of each type — i.e.,

gained and lost enhancer and promoters, shown in Figure 4.17E (promoter) and 4.17F (en-

hancer) as well as promoter and enhancers of CRC driver genes from the IntOGen database

(Martı́nez-Jiménez et al. 2020).

This analysis demonstrated that ≈ 92% (782/854) of the recurrent CAA were consis-

tently altered in all analysed regions of affected tumours. In general, this observation was

consistent with the assumption that most of these CAA are bona fide somatic alterations

arising early during tumour evolution and not, for example, alterations arising due to plas-

ticity from different local microenvironments. Very similar observations are common for

somatic driver mutations, of which the overwhelming majority are present clonally. Rep-

resentative examples of somatic CAAs are shown in Figures 4.17G–N, these specifically

show examples of clonal promoter gains (Figure 4.17G,H,L) and a loss (Figure 4.17I), a

clonal enhancer gain (Figure 4.17K) and loss (Figure 4.17J) as well as a subclonal promoter

17This regression analysis was performed by Claire Lynn. A similar approach prior to the estimation of
‘apparent sample purities’ was done by myself.
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(Figure 4.17M) and enhancer gain (Figure 4.17N).

Examples of recurrent somatic CAA Among the CAA present in ≥ 20% of cases were

multiple promoter and enhancers associated with known CRC driver genes. One such event

was the loss of CCDC6 promoter accessibility, observed in 11/24 cases, and the loss of

accessibility of the GH10J059885 enhancer also associated with CCDC6. In general, mu-

tations of CCDC6 are rare in CRC, but the loss of CCDC6 expression has previously been

suggested to play a role in the development of CRCs (Thanasopoulou et al. 2012). This

previously identified loss of CCDC6 in CRC is consistent with the loss of promoter CA at

this gene, and the loss of an associated enhancer might play a functional role in this. An

example of a CCDC6 loss in one case from the cohort is shown in Figure 4.17I.

Other examples of CAAs affecting known CRC driver genes were the loss of CA

around SMAD3 (5/24) and SMAD4 (6/24) promoters and a SMAD3 associated enhancer

(see Figure 4.17E&F). Both of these genes are involved in the regulation of the TGF-β

signalling pathway, which is known to be deregulated in many tumour entities (Fleming

et al. 2012). Consistent with this, the loss of genes from the SMAD family has previously

been associated with tumour invasiveness and poor prognosis in CRCs (Fleming et al. 2012;

Sodir et al. 2006; Xie et al. 2003; Isaksson-Mettävainio et al. 2006). Similar CAAs affecting

a CRC driver gene were alterations of enhancers involved in the regulation of ARID1A (loss

in 7/24 carcinoma and 1/8 adenoma, Figure 4.17J), MAP3K1 (loss in 6/24 carcinoma) and

NCOR2 (gain in 6/24 carcinoma). Summarised, this suggests that a subset of these CRC

drivers were also affected by CAA in addition to somatic mutations. Profiling of somatic

mutations alone will miss such important non-genetic aberrations.

Additionally, several highly recurrent and potentially interesting CAAs were identi-

fied. Among these was the increase of JAK3 promoter accessibility, a kinase thought to

play a role in CRC oncogenesis (Lin et al. 2005), which occurred in 16/24 cases (Figure

4.17G&H). Other examples were the frequent opening of two FOXQ1 promoters (21/24

and 7/21) an oncogene frequently overexpressed in CRC with angiogenic and antiapoptotic

effects (Kaneda et al. 2010; Peng et al. 2015), the opening of a LAMA5 promoter (12/24),

a gene that appears to promote the growth of liver metastasis and angiogenesis (e.g., Pyke

et al. 1994; Hlubek et al. 2001; Bartolini et al. 2016; Galatenko et al. 2018; Gordon-Weeks

et al. 2019) or gain of TBX20 a gene which could potentially play a role in angiogenesis

(Meng et al. 2018). Among the CAA present in ≥ 20% of cases, multiple promoter and
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enhancers associated with known CRC driver genes were also found to be present.

Presence of recurrent somatic CAA in adenomas To elucidate, when the identified CAAs

arise during the development of carcinomas, the presence of 235 recurrent CAAs (≥ 20%

of cases) in the 8 profiled adenomas was assessed. The hypothesis was that recurrent CAAs

found to be frequently present in adenomas as a precursor lesion of CRCs would likely arise

very early during tumorigenesis and rather be involved in the initiation of dysplastic growth.

In contrast, recurrent CAAs found to be absent in all adenomas might instead be later arising

events and more likely involved in the progression towards a malignant phenotype.

Of the 235 CAAs assessed (Figure 4.17E&F), only 32 (i.e., ≈ 14%) were found to be

present in adenomas. This suggests that most of these epigenetic alterations arise relatively

late during carcinogenesis and that some of these might play an important role in the ma-

lignant transformation of tumour cells. This has striking similarities to the observations by

Cross et al. (2018) who found that somatic driver mutations explain the adenoma-carcinoma

transition rather poorly, but that the — potentially punctuated — accumulation of CNAs

appear to mark this transition. Similarly, most of the CAAs identified here appeared to be

accrued during the transition from adenomas to carcinomas. This highlights the importance

deregulation of the transcriptional machinery might have in this context. While certainly

not all CAAs observed here are functionally important, and instead, the results of large-

scale deregulation of the transcriptional program, detailed analysis and validation of some

of these might be worthwhile.

Further, while most recurrent CAA were found to either be present in all or no region

of the carcinomas, some of these did indeed show evidence of being confined to one region

of the tumour (see Figure 4.17E-F). Still, the exact reason for why these arise and if they

confer a selective advantage to the affected cells is unclear. To draw a comparison to somatic

alterations, these could either be bona fide epigenetic driver alterations or, like most SNVs,

be acquired as passenger mutations during the tumour expansion.

Role of epigenetic drift Epigenetic alterations, including DNA methylation and chromatin

modifications, have a fundamental role in the regulation of cellular identity in complex

multi-cellular organisms (Atlasi and Stunnenberg 2017). Originally used as an abstract

concept to describe the link between the observable genotype and phenotype (Wadding-

ton 1942), the term epigenomics is now used to describe the entirety of concrete heritable

non-genetic mechanisms that control the expression of genes. It is widely recognised that
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epigenetic alterations play an essential role in tumorigenesis (Jones and Baylin 2007), but

how such alterations are related to genetic intra-tumour heterogeneity is not well understood

(Black and McGranahan 2021). The presence of many clonal highly recurrent CAA iden-

tified here (Figure 4.17E&F) suggest that these are stable alterations passed on over many

generations and maintained in distant tumour regions (i.e., several centimetres apart) with

potentially very different microenvironments. Still, it is unclear whether this is caused by

the absence of epigenomic drift, stabilising selection or cell-intrinsic regulatory programs.

Here I will use the concomitant epigenetic (ATAC-seq) and genetic (WGS) measure-

ments on single colorectal glands from different tumour regions available in the EPICC

study to characterise the relationship between epigenetic and genetic diversity. Initial ex-

ploratory analysis showed that the low number of reads, differences in purity, and TSSe

might complicate the interpretation of the obtained measurements. The application of clas-

sic phylogenetic methods (Pagel 1999; Blomberg, Garland, and Ives 2003) used to explore

the relationship between traits and genetic distances provided little insight into the ‘phy-

logenetic signal’ present in the per-loci CA measurements (e.g., Figure S.64, page 292).

Given the limitation to obtain site-specific information due to the low number of reads per

sample, this is not entirely surprising.

Still, the ‘global distance’18 between ATAC-seq measurements of samples obtained

from the same region compared to those from different regions was generally smaller, sug-

gesting the presence of general epigenetic intra-tumour heterogeneity. This signal was also

present after accounting for differences in the TSSe and the total number of reads through

regression (Figure S.56, page 287). In order to test whether these residual differences were

significantly associated with the region labels, an ANOVA was conducted. As the pairwise

comparisons between samples are not statistically independent, a Monte Carlo method was

used to estimate the expected distribution of the F-statistic under the null hypothesis of no

differences across groups. This permutation approach is equivalent to the PERMANOVA

described by Anderson (2001). The analysis showed that a significant relationship between

the type of region label pairs (i.e., between and within regions) and the ‘global epigenetic

distances’ generally existed (Figure S.58, page 288). The observed coefficients implied

that distances within regions were systematically smaller (Figure S.59, page 289). This re-

sult is compatible with both, epigenetic plasticity due to micro-environmental factors and

18Euclidian distance of coverage across all peaks.
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Figure 4.18: Relationship between global epigenetic and genomic distances. A) The distances
between and within regions (left) and correlations with the genetic distance (right). B) Cases in
which no correlation with the genetic distances existed data were often from low purity samples or
sparse.

epigenetic drift in parallel with the genome during the clonal expansion, but demonstrates

pervasive epigenetic heterogeneity within tumours.

To gain further insight into the relationship between genomic and epigenomic diver-

sity, the correlation between the two was tested explicitly. For this test an extension of the
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Mantel Test (Mantel 1967), similar to methods used by others (e.g., Legendre, Lapointe, and

Casgrain 1994; Manly 1986), was used to elucidate whether the genomic distances encoded

in the reconstructed phylogenies were significantly associated with the ‘global epigenetic

distances’. In brief, a linear regression of both measurements, the cophenetic distances be-

tween samples in the tree and their residual ‘global epigenetic distances’, was performed

separately for each patient. The same regression was performed on data from randomly

permutated trees. From these permutated datasets the significance of the observed coeffi-

cients was then determined. In a subset of cases (8/29) a significant positive association of

the genetic and epigenetic distance of sample pairs was detected (Figure 4.18A and Figure

S.61, page 290). In many of the remaining cases in which no relationship between the two

measurements was observed, the available data were either sparse, or the ‘apparent purity’

of samples was low. In these cases, the lack of power did likely not allow to uncover such

relationships in the first place (Figure 4.18B and S.65 on page 292).

While this analysis does not account for the relationship between genetic distances

and region labels, as both of these are highly correlated. It still suggests that epigenetic drift

might be a reasonable explanation for the observed ‘global epigenetic distances’ between

samples. Still, it has to be noted that the data available for this analysis were imperfect, and

future studies should be conducted to confirm these conclusions.

Conclusions Summarising, these reported findings show how information on somatic mu-

tations alone might provide an incomplete picture of the alterations driving cancer evolution.

A better understanding of this class of alterations is undoubtedly required to improve our

understanding of why these alterations arise and what their specific effects are. The pre-

liminary analysis of global differences of the CA across patients supports that these arise

through epigenetic drift, but if this also applies to recurrent CAA or whether these arise

‘punctuated’ is unclear (e.g., from an altered epigenetic program) and should be explored

in future.

4.3.5.2 Analysis of TF Binding Signatures

One mechanism that might cause such deregulation of focal chromatin accessibility are

global changes in TF activities. TFs are proteins that bind to specific sequences of DNA

and regulate the transcription rate of surrounding genes or the higher-order structure of the

chromatin. Due to their ability to reduce the accessibility of the surrounding chromatin,

the binding of TF to the DNA can leave a footprint in the signal observed from assays like
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ATAC-seq. Likewise, caused alterations of the surrounding chromatin structure can lead to

increased or decreased accessibility of the chromatin structure around a TF binding site.

In the following, I will present an analysis of these accessibility signals around pre-

dicted TF binding sites. In brief, I predicted binding sites for 870 known human TF binding

motifs (Weirauch et al. 2014) and included additional experimentally determined binding

sites from the ENCODE project (Dunham et al. 2012). I then split these predicted TF bind-

ing sites based on their distance to the closest TSS into those proximal to a TSS (‘pTSS’,

d ≤ 2,000bp), close to a TSS (‘cTSS’, 2,000 < d < 10,000bp) and distal to a TSS (‘dTSS’,

d > 10,000bp). Each set was further divided into those overlapping a called peak (‘oPeak’)

and those not overlapping a called peak (‘nPeak’).

For each of these six sets of TF binding sites, signals were calculated from the average

number of insertions across an interval of ±1000bp around the centre in all tumour or

normal samples. These were adjusted for differences in the insert-size distribution as well as

the total number of reads, followed by the subtraction of the observed ‘background signal’

(see Methods section for details). Figure 4.19A shows the average number of insertions

(CPM) in cancer samples from case C542 for different insert sizes (y-axis) and positions

relative to the centre of the TF binding site (x-axis). The resulting distribution summarises

the insertion distribution or accessibility around a given TF motif in the genome. Identical

distributions were calculated for all collected normal samples (Figure 4.19B). In order to

identify potential differences between tumour tissues and normal samples the differences of

these normalised signal of each sample and the average signal in all normal samples was

determined (Figure 4.19C).

To provide a summary of the activity of all TFs in the genome across samples, the inte-

gral over the central region of these TF fingerprints (see Methods) was calculated. On these

summary statistics of the TF activity in individual samples, linear regression with sample

purity estimates (per patient) and TSSe as potential confounding variables was performed.

Differences in the TSSe relative to the normal reference explained a large amount of the

variability in the observed signals across samples, with a smaller part explained by differ-

ences in sample purity. In Figure 4.19D, some of the coefficients of the purity variable in

different patients (columns) and TFs (rows) are shown as a heatmap. This heatmap provides

a high-level summary of the average purity associated differences of TF activity in individ-

ual tumour tissues compared to the normal tissue background. Here, positive coefficients
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Figure 4.19: Recurrent epigenetic changes. A-B) The average distribution of insertions around the
centre of the TF bindings sites in a tumour and normal samples respectively. C) The difference
between the two. D) Regression was applied to data from C in each sample to identify changes
associated with purity. Clear clusters were identified. E-F) Pathways overrepresented in the clusters.
G) Shows loss of HLA expression in multiple cases.
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mean that an increase in the number of cancer cells in the sample would be expected to

cause an increased amount of signal around the TF binding sites and vice versa. In Figure

4.19D, the top 50 TFs that showed most frequently a positive and negative correlation of the

signal with purity across patients are shown. In this context, only one TF of groups with a

largely overlapping (i.e., ≥ 50% within 100bp) set of predicted binding sites were retained

(see Figure S.60, page 289). A separate test confirmed that similar values were observed

for unique binding sites from these groups of TFs (Figure S.62, page 290). Still, given that

binding sites might co-occur in the same overall regions, but at a larger distance from each

other, this is not necessarily conclusive.

From the analysis of the accessibility signal across TF binding sites shown in Figure

4.19D, three clusters were apparent. These are shown by colours on the site of the heatmap.

The first cluster (marked in green), showed an overall loss of signal in the majority of cases

and appeared to contain several TF from the IRF family. These TFs have previously been

identified to act as TSGs and loss of various IRF gene expressions have been identified in a

variety of tumour entities (Tamura et al. 2008; Yanai, Negishi, and Taniguchi 2012). These

observations were also confirmed by a pathway analysis (Figure 4.19E), which showed

that TF involved in Interferon-γ signalling (FDR = 4.2 · 10−6), Interferon-α/β signalling

(FDR = 3 · 10−8) and cell differentiation (FDR = 5 · 10−5) were overrepresented in this

cluster. Notably, a particularly strong correlation with the purity of this cluster of TFs

was observed in MSI cancers, with the cluster of cases on the right side of the heatmap

being primarily composed of these (p = 0.012, Fisher’s Exact Test). Consistent with the

downregulation of anti-tumour immunity suggested by these observations, the analysis of

gene expression data19 from this set of patients showed a general pattern of HLA gene

expression loss in many of the patients (Figure 4.19G).

A second cluster (marked blue) was primarily composed of CTCF, CCCTC and YY1

TFs. These TFs largely bind to similar genomic regions and are involved in the regulation of

higher-order chromatin structures, insulation of enhancer-promoter interactions, and tran-

scriptional regulation (Kim et al. 2007; Ghirlando and Felsenfeld 2016; Ong and Corces

2014; Gong et al. 2018; Wendt and Peters 2009). Loss of CTCF has been suggested to

hamper the repair of double-strand-breaks (Lang et al. 2017) and cause alteration of gene

expression due to atypical enhancer-promoter interactions (Lupiáñez et al. 2015; Hnisz et al.

19Kindly provided by Jacob Househam.
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2016). A marked increase in CTCF signal was observed in a subset of cases, whereas loss

of signal appeared to be generally more common in the remaining cancers. While the rea-

sons for this CTCF loss is unclear, CTCF alterations, both losses and gains, were previously

reported in bulk CRC samples (Fang et al. 2020). CTCF binding sites appear to be muta-

tional hotspots and mutations of CTCF common in CRC (Katainen et al. 2015). Whether

this might sufficiently explain the global loss of CTCF associated signal observed here is

unclear, but this would be consistent with the findings that monoallelic CTCF loss predis-

poses to the development of cancer and acts as a putative haploinsufficient TSG (Filippova

et al. 1998; Ohlsson, Renkawitz, and Lobanenkov 2001; Kemp et al. 2014; Marshall et al.

2017). Alternative explanations include global changes of the chromatin structure that lead

to a general change of the ATAC-seq insertion distribution in the genome or inter-individual

variation of TF binding (Phillips and Corces 2009).

A third cluster (marked red) mainly contained TFs from the HOX, FOX and SOX fam-

ilies that are involved in cell differentiation and developmental processes (Figure 4.19F):

‘positive regulation of stem cell differentiation’ (GO, FDR= 2.5 ·10−4) ‘mesenchymal stem

cell differentiation’ (GO, FDR = 9 ·10−4), ‘signalling pathways regulating pluripotency of

stem cells’ (KEGG, FDR = 0.047), ‘homeobox’ (UniProt, FDR ≤ 10−12), ‘developmental

protein’ (UniProt, FDR ≤ 10−12). In the majority of cases, higher signal levels were ob-

served in the tumour cells, as indicated by the positive and significant coefficients of purity.

This suggests that the reactivation of developmental genes in colorectal cancers might be an

important step in tumorigenesis.

Fitting of the purity coefficients on samples from individual tumour regions generally

revealed similar patterns in samples from different regions, but some region-specific effects

did appear to exist. For example, a lower signal from CTCF binding sites at looping regions

was observed in all samples from C543, but a higher signal was found to exist in one region

from C543 (Figure S.63, page 291). While this might suggest a genuine difference in TF

binding, region-specific biases might also explain these observations.

In general, this analysis of the average ATAC-seq signal around TF binding sites of a

large number of human TFs suggests the presence of a general change in the global pat-

terns, potentially driven by the deregulation of larger regulatory networks. Still, whether

the observed signals are caused by large-scale changes of the chromatin surrounding indi-

vidual TF binding sites, the differential binding of the corresponding TF themself or other
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mechanisms is not clear. This might even vary for the different TFs. Likewise, the nature

of the analysis means that averages i) over different binding sites and ii) across cells were

taken. For this reason, the observations could be caused by changes of a subset of binding

sites or even temporary changes in a subset of cells.

4.4 Discussion

Here I have presented the results from a multi-region sequencing study of 30 CRCs in

which concomitant profiling of single-glands with ATAC-seq, RNA-seq, and WGS was

performed. In CRCs, this approach provides an alternative to single-cell sequencing, which

remains challenging due to the large amount of noise resulting from DNA amplification and

sequencing (Gawad, Koh, and Quake 2016). Concomitant multi-omics profiling of single-

cells is also still in its infancy.

By sequencing single-glands, which are generally assumed to be formed by a small

and closely related stem-cell population, some insight into the relationship of epigenetic

and genetic heterogeneity in the CRCs was possible. While limited by the quality of the

generated ATAC-seq libraries, epigenetic drift was found to provide a reasonable explana-

tion for global differences in CA of different glands in the same tumour. In cases with

a sufficient amount of data of reasonable quality, positive correlations of genetic and epi-

genetic distances were frequently observed.

Across patients, recurrent focal chromatin accessibility alterations were identified. De-

spite their relevance in cancer development, the role of these epigenetic events in tumour

evolution remains relatively poorly understood (Black and McGranahan 2021). Some recent

pan-cancer studies of chromatin accessibility across cancer types have primarily focused

on how these are defined by the ‘cell of origin’ and the corresponding relationships with

gene expression. A few studies that specifically focused on somatic alterations in cell lines

(Akhtar-Zaidi et al. 2012) and large-scale chromatin structures (Johnstone et al. 2020) in

CRC have been conducted. These highlighted the importance alterations of the chromatin

structure have in this disease and the identified recurrent CAAs I reported here comple-

ment these previous findings. Indeed, profiling of somatic mutations alone might miss such

important alterations in CRC and hence provide an incomplete picture of disease evolution.

This is especially important as mutations of common driver genes appear to only insuf-

ficiently explain the adenoma-to-carcinoma transition (Cross et al. 2018). Here, in addition

to the selection of copy-number alterations, changes of the epigenome might provide a bet-
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ter explanation of CRC evolution towards increased malignancy. Likewise, some of the

identified CAAs might, unlike genetic alterations, be able to predict the development of a

metastatic ability in a subset of CRCs. The association of various CAAs with the clinical

outcome of patients with be assessed as part of the follow-up of the study. Last but not

least, the presence of CAA could provide an explanation of carcinoma in which no or few

of the classic CRC driver genes (APC, K-Ras, and p53) were mutated. Indeed, cases that

only harboured mutations of one of these three genes20 showed many of the recurrent CAAs

identified here. Larger studies might help in identifying these potential alternate pathways

of CRC evolution.

I also conducted a comprehensive analysis of subclonal driver mutations in the cohort.

In line with similar studies in smaller sets of patients (Sottoriva et al. 2015; Kim et al.

2015; Uchi et al. 2016; Cross et al. 2018) and previous analyses of bulk WGS datasets

(Williams et al. 2016; Williams et al. 2018b) very few subclonal driver mutations were

found. Other, rarely clonally occurring putative driver mutations were found to be present,

but in most cases, it was unclear whether these caused a substantial fitness effect. The only

exception were subclonal PIK3CA mutations, which an analysis across cohorts suggests to

be present sub-clonally at a frequency identifiable by multi-region sequencing in ≈ 20% of

cases (Figure S.49A, page 283).

Overall, how to interpret the observed inter-tumour heterogeneity from the single-

gland sequencing study presented here was not obvious. While a dN/dS analysis suggested

the presence of some amount of subclonal selection in the cohort, only very few obviously

elongated edges, which would provide evidence of subclonal selection, were found to be

present in reconstructed phylogenetic trees. In those cases where these did exist, it was un-

clear whether these could likewise have arisen from genetic drift. While many of the issues

previously identified for single-bulk sequencing data (Caravagna et al. 2020) do not exist

with the single-gland sequencing data analysed here, interpretation was only straightfor-

ward in one case of a subclonal activating K-Ras p.G12V mutation. Nevertheless, patterns

of spatial variegation were observed in a subset of cases (Table 4.3) and if a significantly

different outcome exists for these will be tested in the follow up of the study.

Last but not least, the preliminary analysis of accidentality sequenced cancer-adjacent

and additionally sequenced normal crypts have, similarly to Lee-Six et al. (2019), revealed

20C528, C532, C551, and C562.
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the presence of pks+ E. Coli associated signature SBS88 in normal crypts. The mutation

rate in these normal crypts was found to be ≈ 25y−1 for SNVs and ≈ 1y−1 for InDels.

Further, significantly more somatic variants were found in tumour-adjacent normal crypts

compared to distant normal crypts obtained from the same patients, hence suggesting the

presence of a mutagenic effect of the tumour micro-environment, the presence of a very

early arising field-defect or some other influence of the tumour microenvironment on the

behaviour of adjacent cells.



Chapter 5

Assignment of LP-WGS Samples to Trees

5.1 Motivation

While the costs of WGS drastically decreased over the last decades and even outpaced

Moore’s law, the costs of resequencing a whole-genome at a coverage appropriate for the

analysis of somatic variants in a tumour are still substantial (Schwarze et al. 2020). LP-

WGS has proven to be a cost-efficient alternative (Rohland and Reich 2012), which can

be used for the reliable detection of CNAs (Carter et al. 2012; Oesper, Satas, and Raphael

2014; Muzny et al. 2012; Baker et al. 2019) and structural variants (Zhang et al. 2018).

Due to these low costs of LP-WGS, this method is sometimes used for the screening of

cancer libraries to derive CNA based estimation of samples purities before deep sequencing

(Lohr et al. 2014). Identical to this, several LP-WGS (coverage 0.5×−1×) datasets were

generated for the multi-region single-gland sequencing study described above to identify

glands with high tumour cell content for deep WGS sequencing at a higher coverage of

≈ 30× (Table 5.2). Of these, many high-quality LP-WGS samples were never sequenced

at a higher coverage and instead used for the analysis of copy-number alterations (Figure

S.24, page 273 and Figure S.23, page 272).

While LP-WGS and deep WGS samples obtained from similar regions of the tumour

tended to show nearly identical CNA profiles, exceptions did exist. Where samples showed

subclonal CNAs similar to those from other regions, the data supported spatial variegation

(Sottoriva et al. 2015). Still, CNA data are inherently sparse, tend to overlap (Beerenwinkel

et al. 2015) and lack independence for frequently selected alterations (Zack et al. 2013;

Cross et al. 2018). Consequently, the ability of CNAs to resolve phylogenetic relationships

is rather poor (Zeira and Raphael 2020). Specialised methods for the inference of phylo-

genies from CNAs data have been developed (e.g., Chowdhury et al. 2014; Letouzé et al.
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2010; Schwarz et al. 2014; Zaccaria and Raphael 2021), but some inherent limitations of

CNA data are hard to overcome.

Due to the significant level of noise currently used NGS methods exhibit, (Gerstung,

Papaemmanuil, and Campbell 2014; Gerstung et al. 2012) as well as the low number of

divergent sites in individual tumours (Kandoth et al. 2013), reliable detection of SNVs from

LP-WGS is impossible (Xu et al. 2014; Zaccaria and Raphael 2021).

In the context of the multi-gland sequencing study reliable SNV calls from deep WGS

data were available and used to reconstruct MP sample phylogenies (see Figure S.51, 284

and Figure S.50, page 283). While the number of informative sites in LP-WGS samples is

very low, known SNVs can provide information on the location of individual samples. In

the following, a simple and fast ML method to estimate sample properties (i.e., background

noise and purity) and the position of LP-WGS samples within the phylogeny will be de-

scribed. Simulated LP-WGS samples and subsampled deep WGS sequenced samples will

be used to assess the performance of the method. After the reconstruction of LP-WGS trees

for the EPICC cohort, these will be compared to the results from the analysis of CNAs to

demonstrate that these generally support the position of LP-WGS samples within the trees.

5.2 Method

5.2.1 Inference of Phylogenies and Ancestral Characters

A phylogenetic tree T is a directed graph that consists of a set of vertices or nodes V and

a set of edges E = {(s, t) : s, t ∈ V ∧ s 6= t} connecting nodes. Here I will use a simple MP

method for the inference of phylogenetic trees from the observed data, but in principle, any

other method that constructs a graph in which character changes (i.e., mutations) can be

mapped to edges could be used. This also applies to ‘clone trees’ reconstructed through

the use of clustering methods (e.g., Miller et al. 2014; Roth et al. 2014; Dentro, Wedge,

and Van Loo 2017) from potentially heterogeneous, bulk WGS samples (e.g, Noorani et al.

2020).

As described previously, the MP trees were inferred with the Parsimony Ratchet

method (Nixon 1999) implemented in the phangorn package for R (Schliep 2011) using

a minimum of 100, a maximum of 106 iterations and termination after 100 rounds without

improvement.

Various methods can be used to estimate ancestral character states for each internal

node (i.e., those that are not the root or a leaf node). Here the accelerated transformation
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(ACCTRAN) algorithm (Fitch 1971; Farris 1970; Swofford and Maddison 1987; Schliep

2011) was used. From the results of this method, a list of mutations that were acquired (i.e.,

state 0→ 1) or lost (i.e., state 0→ 1) on each edge of the phylogeny were obtained.

5.2.2 Likelihood

From these, the set of mutations Me for each edge e∈ E of the tree that are uniquely mutated

on it are kept. The number of variant reads ys,i observed from a mutated site i sequenced at

coverage ns,i in a sample s are expected to follow a binomial distribution:

ys,i ∼ Bin(ns,i, ps,i).

The expected success probability ps,i is then a function of the sample’s purity, ρs, the

number of mutated alleles ms,i in tumour cells, the total copy-number cs,i of the site i in

tumour cells and the copy-number in contaminating normal cells cn = 2 given by

ps,i =
ρsms,i

ρscs,i +(1−ρs)cn
=

ρsms,i

ρscs,i +2−2ρs
.

Due to a combination of different sources of noise, one might also expect to observe

variant reads with a success probability p0,s at unmutated sites. Potential reasons for this

would be a random misreading of bases during the sequencing process (Gerstung et al.

2012) or cross-contamination during the sample preparation. While the amount of noise

might differ for mutated sites i, it is expected to be fairly low (i.e., p0,s� ps,i). Due to this

and the generally low coverage n̄s, site-specific variations are ignored and only a sample-

specific value p0,s is considered.

When a set of mutation Me from a given edge e of T is considered all, none or a fraction

πm of these might be present in a given sample. The marginal likelihood of the observed

data De of this set of mutations is then given by

p(De|πm) =
|Me|

∏
i=0

(πm p(ys,i|ns,i, ps,i)+(1−πm) p(ys,i|ns,i, p0,s)) .

Assuming that mutated sites are not lost at any point in time, for a mutation from the

edge e = (s, t) to be mutated in a sample all variants on the path from the germline node r

to the ancestral node s of this edge, i.e., r s, also have to be mutated (i.e., πm = 1). All

remaining mutations, i.e., those that occur in the descendants of t or in different lineages

of the tree, have to be absent (i.e., πm = 0). For a position x = (e,πm) with e = (s, t) the

likelihood of the data D of all mutations that are part of the tree is hence:

L(D,x, p0,s,ρs) =

On edge e︷ ︸︸ ︷
p(De|πm,s)

Path from root to node s︷ ︸︸ ︷
∏

e′∈r anc(s)
p(De′ |πm = 1)

All others mutations︷ ︸︸ ︷
∏

e′ /∈r anc(t)
p(De′ |πm = 0) .
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ML estimates of the sample parameters ê ∈ E, πm,s ∈ [0,1], p̂0,s ∈ [0,0.05] and ρ̂s ∈

[0,1] were obtained, by minimising −log(L).

5.2.3 CN and Mutation Multiplicity

To simplify the analysis, only mutations in sites for which all WGS samples had identi-

cal copy-number states (i.e., identical A&B alleles) were considered. It seems reasonable

to assume that no CNAs accompanied the (subclonal) tumour evolution for these sites. It

seems worthwhile to note that it would be possible that such CNAs still occurred (e.g.,

ABB→ AB→ ABB), but given that subclonal CNAs are comparatively infrequent in col-

orectal carcinomas (Cross et al. 2018) this appears relatively unlikely.

As it was assumed that no subclonal CNAs occurred throughout the evolution of the

trees, ms,i was estimated across all samples s as

mi = argmin
ms,i∈1,...,cs,i

∑
s∈S
−log

((
ns,i

Xs,i

)
pys,i

s,i (1− ps,i)
ns,i−ys,i

)
1s,i,

with ps,i as defined above and where 1s,i indicates if the mutation i was detected in the

sample s, Xs,i is the number of mutated and ns,i the total reads in sample s. Due to potential

issues with the accuracy of estimates of ci and mi, sites with a ci = 0 or high copy-numbers

ci > 4 were excluded.

5.2.4 R Package

5.2.4.1 Code Availability

I included the code for the assignment of LP-WGS samples to a MP tree into a R package

called MLLPT (https://github.com/T-Heide/MLLPT). In addition to functions

available in base R (R Core Team 2020), methods from a number of additional R packages

were used: dplyr (Wickham et al. 2020), reshape2 (Wickham 2007) and magrittr (Bache

and Wickham 2014) for general handling of data, ggplot2 (Wickham 2016), cowplot (Wilke

2020), ggtree (Yu et al. 2017) for plotting of results, ape (Paradis and Schliep 2019), phang-

orn (Schliep 2011) and treeman (Bennett, Sutton, and Turvey 2017) for the manipulation of

tree objects.

5.2.4.2 Usage

The main function of the R package is called MLLPT::add lowpass sampled and expects

a number of different objects as input. The first one is an object of class phylo from the

ape package for R (Paradis and Schliep 2019) containing the reconstructed phylogenetic

https://github.com/T-Heide/MLLPT
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tree. The second object contains the sequence data used for the reconstruction of the phy-

logenetic trees as object of class phyDat from the phangorn package (Schliep 2011). Mu-

tation identifiers have to be added to the phyDat object as ‘id’ attribute (attr(phy data,

‘id’)). The last argument required are the actual mutation data. These have to be passed

as a named list of data frames containing the following columns: count of mutated alleles

(‘alt count’ or ‘alt’), count of reads covering the site (‘depth’ or ‘dp’), estimated copy-

number of site (‘cn total’ or ‘cn’) and mutation multiplicity of the mutated allele, defaults

to 1 (‘cn mutated’ or ‘mm’). With the above objects available the main function can be

called as follows:

tree_with_lp_added =

MLLPT::add_lowpass_sampled(

tree = tree,

phydata = phydata,

sample_data = samples

)

This function will print output similar to the one below and return a list containing the

tree with the LP-WGS samples added to it (see Figure 5.1A) and a data frame containing

the parameters estimates.

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=

Processing sample: EPICC_C518_C1_G1_L1 (1/2)

=> Optimizing estimates for purity, background.

New values:

- Background rate: 0.01 -> 0

- Purity: 1 -> 0.8314805

- MLL: -343.0637 -> -192.6926

-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=

Several optional arguments can be passed to the function in order to adjust its

behaviour. A description of these can be found in the package documentation (see

?MLLPT::add lowpass sampled).

5.2.4.3 Plotting Methods

Multiple functions that allow plotting the results of the maximum-likelihood estimation

(MLE) of the position of LP-WGS samples on the edge of the tree (see Figure 5.1A, 5.1B

and 5.1D) as well as the ML estimates of the per-sample parameters (see Figure 5.1C) were

added to the R package.
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A B C

D

Figure 5.1: Plotting methods in the MLLPT package. A) Phylogenetic tree with LP-WGS samples
(marked with stars) added to the position indicated by the ML estimates (plot tree). B) Heatmap
showing likelihood that the samples are associated with a given edge (plot lp loglik). C) Maximum-
likelihood estimate of per sample parameters. D) Plot of the likelihood along the different edges
(panels on the x-axis) of the tree for each sample. (plot lp loglik edge).

5.3 Results

5.3.1 Tests Using Simulated Data

I first applied the method to a set of simulated sequencing data generated under a wide

range of sequencing parameters. In all cases, realisations of a spatial tumour simulation

using the CHESS R package (Chkhaidze et al. 2019) were generated, and a single-gland

tree containing a total of N = 20 samples was sampled. The ML method was then applied

to these, using the true mutation tree and simulated LP-WGS samples to characterise the

performance of the method. For the simulation of LP-WGS datasets, all possible combina-

tions of the following parameters were used: sample purity values ρs ∈ {0.25,0.5,0.75,1},

average sample coverage n̄s ∈ {0.1,0.5,0.75,1}, rates of background noise at unmutated

sites p0,s ∈ {0,0.01,0.05} and tree heights height(T ) ∈ {1000}. For each of these N = 48

parameter combinations, 10 simulated LP-WGS datasets were generated, each consisting

of 20 samples, resulting in a total of 9600 tests.

In Figure 5.2A an example of a true tree (on the left) and three corresponding LP-WGS

trees are shown. From these the distance ∆xs = |xs− x̂s| between the true position xs of the

sample s and the ML estimate of the position x̂s on the tree T was obtained and the relative

error of the positions ∆xrel
s = ∆xs/height(T ) calculated. The distribution of this summary

statistic is shown for all tested parameter combinations in Figure 5.2B.
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Figure 5.2: ML estimates of LP-WGS sample locations with simulated WGS data. A) Examples of
simulated phylogenetic trees and three trees reconstructed using the ML method (marked by stars).
B) Relative difference between estimated and true positions (|xs− x̂s|/height(T )). C) Estimated vs
real purity values. D) Estimated background error rates of sequencing. Abbreviations: Est. bkgr.
- Estimated background rate, Dist. to GT - Distance to ground-truth positions, Rel. pos. error -
Relative position error
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Table 5.1: Error of sample purity estimates (∆p0,s) with simulated sequencing data.

p0,s 0% 1% 5%
ρs 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

|ρs− ρ̂s| ≤ 0.1 0.97 0.6 0.97 0.84 0.92 0.59 0.96 0.8 0.79 0.6 0.93 0.74
|ρs− ρ̂s| ≤ 0.2 0.97 0.92 0.98 0.96 0.96 0.9 0.96 0.94 0.81 0.86 0.96 0.93

Issue of high background noise & low purity From the results shown in Figure 5.2B it

is evident that all three samples parameters, n̄s, p0,s and ρs, affected the accuracy of the x̂s

estimates. Due to the low differences between the expected VAF of mutated (i.e., 0.5ρs) and

unmutated sites p0,s, a combination of high background rate and low purity did especially

affect the estimation of x̂s. For example, only 58% (116/200) and 81% (163/200) of

samples had ∆xrel
s ≤ 0.1 and ∆xrel

s ≤ 0.2 respectively at p0,s = 0.05, ρs = 0.25 and n̄s ≥

0.5. This effect was largely independent of n̄s (range: 49.5%− 68.5%, 99− 137/200 and

74%−90%, 148−181/200). In the absence of a significant background rate, the estimates

of x̂s were more reasonable at low sample purity ρs = 0.25. Here 94.5% (189/20) and

99.5% (199/20) had ∆xrel
s ≤ 0.1 for all but the lowest coverage n̄s = 0.1 tested.

Accurate estimations of position for higher purities For higher purity values (i.e., ρs ∈

{0.75,1}) and coverage n̄s = 1 almost all samples had a relative error ∆xrel
s ≤ 0.1 (≥ 98.9%)

and ∆xrel
s ≤ 0.2 (≈ 100%) respectively (Figure 5.2B). At a high background p0,s = 0.05

for purity p0,s = 0.75 and p0,s = 1 ∆xrel
s was ≤ 4.3% and ≤ 3.3% for 90% of samples

respectively. At a lower purity of ρs = 0.5 differences were larger, but ∆xrel
s ≤ 20% in

almost all cases. Here around 99% (198/200), 95.5% (191/200) and 85% (170/200) had

∆xrel
s ≤ 0.1 at a background rate p0,s of 0, 0.01 and 0.05 respectively (Figure 5.2B).

Estimation of sample purity Despite the absence of any clonal variants and the relatively

low number of mutations per lineage (height(T ) ≈ 1000), estimations of sample purities

were reasonably accurate (Figure 5.2C). In most cases, the error on the purity estimates was

below 20% across a relatively large range of sample parameters (see Table 5.1).

In this context, it has to be considered that the number of variant sites that contain in-

formation on ρs (i.e., those shared with another sample) can be much lower than height(T ).

Overall, the estimations of sample purities obtained together with the ML estimation of

LP-WGS sample positions were reasonably accurate when information on somatic variants

from WGS samples was available. The estimated background VAF values p̂0,s are shown

in Figure 5.2D. As expected, estimated values of p0,s are centre around the underlying true
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simulated value, with the variance decreasing with increasing coverage.

5.3.2 Tests Using Subsampled WGS Samples

While the ML estimates of sample positions obtained from simulated data (see above) were

generally reasonably accurate, it is of course possible that an essential aspect of the data was

not simulated accurately. For this reason, the method was further tested on sub-sampled

WGS samples, which in practice should result in data very similar to LP-WGS samples.

The exact estimates of the copy-number cs,i, mutation multiplicity mi,s, as well as the recon-

structed mutation tree T were used for this, and the actual assignment of LP-WGS samples

are described later. Due to this, the results should also, at least to some extent, reflect the in-

fluence of inaccurate inputs (T , c and m), as well as the effects copy-number states different

from AB, have on the estimates (i.e., one mutated and one unmutated allele).

A jackknife method was applied to a total of N = 188 deeply sequenced WGS

glands from the EPICC cohort (excluding case C522). These samples span a

range of purity values (see Figure 4.5, page 125,) and were grouped into bins of

(0,0.25],(0.25,0.5],(0.5,0.75],(0.75,1] containing 6, 29, 32 and 121 samples respectively.

In short, one s from the tree of a given case was removed, the WGS data of s subsampled

to a LP-WGS coverage equivalent n̄s ∈ {0.1,0.5,0.75,1,2,3} and the estimates of ci and

ms obtained from all samples were used as input for the ML method. This procedure was

repeated one sample at a time for all samples.

Summary statistics In Figure 5.3A the results of the ML estimation applied to three sam-

ples from case C532 are shown alongside the original MP tree on the left. From these data

shown in Figure 5.3A the absolute distance ∆xs = |xs− x̂s| between true xs and estimate

position x̂s of sample in T were calculated, equivalent to the simulated data before. Since

the main interest was the correctness of the subclonal structure of T , the relative error of

∆xrel
s = ∆xs/heightsc(T ) where heightsc(T ) is the height of T after keeping subclonal vari-

ants of cancer samples (i.e., those not present in all samples) was calculated.

Error of location estimates Figure 5.3B summarises these relative errors of the sample

locations ∆xrel
s for different n̄s in each of the four purity groups. The marginal distribution of

the estimated background rate p0,s is shown in Figure 5.3C. From Figure 5.3C it is obvious

that, apart from s with low purity 0 < ρs ≤ 0.25, the majority of p0,s lie between 1% and 5%

with the median and the central 90% range being 1.5% (0.89%− 3.0%), 1.5% (0.87%−

3.6%) and 1.8% (0.98%−4.8%) for the purity intervals (0.25,0.5], (0.5,0.75] and (0.75,1]
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LP assignment: Jackknife with downsample data

A1_G3
A1_G4

A1_G5

B1_B1
B1_G10

C1_G10
C1_G6

C1_G7

D1_B1
D1_G8

1736

Ground truth − C532

A1_G3*
A1_G4

A1_G5

B1_B1
B1_G10

C1_G10
C1_G6

C1_G7

D1_B1
D1_G8

1527

Purity: 0.44, Est. purity: 0.4

EPICC_C532_A1_G3_D1

Cov.: 1, Est. bkgr.: 0.013, Dist. to GT: 202

A1_G3
A1_G4

A1_G5

B1_B1
B1_G10*

C1_G10
C1_G6

C1_G7

D1_B1
D1_G8

1488

Purity: 0.58, Est. purity: 0.56

EPICC_C532_B1_G10_D1

Cov.: 1, Est. bkgr.: 0.011, Dist. to GT: 84.8

A1_G3
A1_G4

A1_G5

B1_B1
B1_G10

C1_G6
C1_G10*

C1_G7

D1_B1
D1_G8

1488

Purity: 0.69, Est. purity: 0.65

EPICC_C532_C1_G10_D1

Cov.: 1, Est. bkgr.: 0.015, Dist. to GT: 53.5

A

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Purity: (0,0.25] Purity: (0.25,0.5] Purity: (0.5,0.75] Purity: (0.75,1]

0.
1

0.
5

0.
75 1 2 3

0.
1

0.
5

0.
75 1 2 3

0.
1

0.
5

0.
75 1 2 3

0.
1

0.
5

0.
75 1 2 3

0.01
0.1

1
10
50

Average coverage

R
el

. p
os

. e
rr

or
 [%

]

B

_

_ _ _

0.01
0.02
0.03
0.04
0.05

(0
,0

.2
5]

(0
.2

5,
0.

5]

(0
.5

,0
.7

5]

(0
.7

5,
1]

Purity

B
ac

kg
ro

un
d 

V
A

F

C

R2 = 0.83

R2 = 0.97

R2 = 0.96

R2 = 0.97

R2 = 0.96

R2 = 0.98

Coverage: 1 Coverage: 2 Coverage: 3

Coverage: 0.1 Coverage: 0.5 Coverage: 0.75

0 0.5 1 0 0.5 1 0 0.5 1

0

0.5

1

0

0.5

1

Real purity

E
st

im
at

ed
 p

ur
ity

D

0.5 0.5

0 0.64 0.59

0.83 0.67 0.55

0.68 0.88 0.85

(0,0.25]

(0.25,0.5]

(0.5,0.75]

(0.75,1]

(0
,2

.5
e+

03
]

(2
.5

e+
03

,5
e+

03
]

(5
e+

03
,In

f]

Tree height (non−clonal)

P
ur

ity

0.0

0.5

1.0
Edge correct

1x coverage
E

Figure 5.3: Jackknifed ML estimates of sample locations with subsampled deep WGS data. A) An
example of a phylogenetic tree constructed from deep WGS data (left) and three trees reconstructed
using the ML method after removal and subsampling of one sample (marked by stars). B) Relative
difference between estimated and true positions (∆xrel

s = |∆xs|/heightsc(T )). C) Estimated back-
ground rate of unmutated variant sites. D) Correlation of estimated and real purity values (R2 values
in red). E) Fraction of samples assigned to the correct edge of the tree split by purity and tree height.
Abbreviations: Est. bkgr. - Estimated background rate, Dist. to GT - Distance to ground-truth posi-
tions, Rel. pos. error - Relative position error
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respectively. Possible reasons for and implications of these relatively high values of p0,s

will be discussed in more detail below (see Section 5.3.3.3).

After taking into account the estimates of p0,s the data shown in Figure 5.3B are fairly

consistent with results obtained from simulated LP-WGS data presented before (see Figure

5.2B). First, for samples with ρs ≤ 0.25 reliable estimation of xs was not possible. Instead,

the data were explained by high values of p0,s with s being put close to the root of T for

all tested values of n̄s. Secondly, for samples with ρ > 0.25, the accuracy of x̂s generally

increased for higher values of ρs. At n̄s = 1 for around 66% (19/29), 75% (24/32) and 90%

(109/121) of samples ∆xrel
s ≤ 0.1 and for around 86% (25/29), 94% (30/32) and 100%

(121/121) of samples ∆xrel
s ≤ 0.2 in each of the purity intervals (0.25,0.5], (0.5,0.75] and

(0.75,1] respectively. These results are consistent with the fraction of samples for which

the edge the sample was assigned to were correct at n̄s = 1 as shown in Figure 5.3E.

Summarised the estimates of x̂s were quite accurate despite the fairly high background

error rate of ≈ 1.7% for values of ρ > 0.25 across a wide range of n̄s ≥ 0.5 and T observed

in the cohort (e.g., height(T )).

Purity estimates Accurate purity estimates can sometimes be hard to obtain for LP-WGS

samples with no or very few CNAs or where the majority of CNAs are LOH events. Indeed,

estimation of purity and copy-number values failed for 38/347 (11%) LP-WGS samples

sequenced as part of the LP-WGS dataset described below. Accordingly, the accuracy of

the ML estimates of ρs during the sample assignment was assessed. Figure 5.3D shows a

scatter plot of ρ̂s against the independently estimated ρ̂ ′s for different coverage values. In

general, a large part of the variance of ρs was explained by the ML estimates with R2 ≥ 0.96

for coverage values n̄s ≥ 0.5. Only for the lowest tested value of n̄s = 0.5 a substantially

lower R2 = 0.83 was observed.

In summary, this indicates that, at least with the number of clonal variants present in the

WGS colorectal cancer samples of this cohort, reasonable estimates of ρs can be obtained

within the context of the ML estimation of xs.

5.3.3 Application to LP-WGS Samples From the EPICC Cohort

After evaluating the performance of the ML LP-WGS assignment method with both, simu-

lated and subsampled deeply sequenced WGS samples, it was decided that additional LP-

WGS sequencing of single-glands at n̄s ≥ 0.5 would be performed. For this target coverage,

previous results indicated that robust estimation of xs, ρs and p0,s should be possible. The
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Figure 5.4: Average coverage values of EPICC single-gland LP-WGS . The dashed horizontal line
indicates the target coverage of n̄s = 0.5.

average coverage across samples was 1.0 (median: 0.78, 90% upper range: 0.36−7.5) and

a plot summarising the per-sample coverage of single-gland samples in each case can be

found in Figure 5.4.

The method was applied to all of these LP-WGS samples initially. A subset of these

was later sequenced at a higher depth (i.e., n̄s ≈ 30), after which the analysis was repeated

with all samples. After comparing the relative position of the LP-WGS samples to the

equivalent deep WGS sample, these ‘duplicated’ LP-WGS samples were removed from the

final tree. Table 5.2 shows the total number of single-gland LP-WGS, deep WGS samples

and those for which both data types were available.

5.3.3.1 Reconstructed ML LP-WGS Trees

After applying the method to all LP-WGS samples sequenced as described in the Methods

section, a number of plots summarising the per-sample parameter estimates were created.

Results for one representative case (C532) are shown as an example in Figure 5.5. Identical

figures for the remaining 25 cases can be found in the Figures S.67-S.91 (page 294-306).

5.3.3.2 Removed Samples

As expected from the initial tests with simulated data (Section 5.3.1) and the subsampled

deep WGS data (Section 5.3.2), the reconstruction of the LP-WGS position on trees did not

succeed for some low-purity samples. Similar to previous observations, the ML estimates

indicated the absence of any somatic variants (i.e., sample location close to the root), a

high background rate and low purity (see for example case C538, Figure S.77A-B, page

299). While the analysis of these might have been potentially possible by constraining the

parameter range, these problematic samples (see Table 5.1) were instead removed from all
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Table 5.2: Number of EPICC glands per case used for ML LP-WGS sample assignment. The
column ‘WGS & LP-WGS Glands’ contains the number of glands for which both deep WGS and
LP-WGS data were generated.

Case WGS LP-WGS LP-WGS (filtered) WGS & LP-WGS
C516 7 13 8 4
C518 6 8 8 0
C524 10 6 3 3
C525 10 10 8 2
C528 6 10 10 0
C530 13 22 18 4
C531 11 15 11 4
C532 10 13 13 0
C537 7 14 8 1
C538 10 18 16 0
C539 14 19 11 5
C542 12 17 15 1
C543 6 10 7 1
C544 6 7 3 0
C548 8 18 18 0
C549 9 6 5 0
C550 7 9 5 3
C551 12 21 20 1
C552 5 5 5 0
C554 8 3 3 0
C555 5 2 2 0
C559 11 24 22 2
C560 7 16 16 0
C561 14 18 18 0
C562 4 1 1 0
Σ 240 305 254 31

Table 5.3: LP-WGS samples excluded from ML LP-WGS trees.

Case Sample Purity (SNVs) Purity (CNAs) Ploidy (CNAs)

1 C516 A1 G3 0.24 0.32 2.00
2 C537 B1 G10 0.13 0.12 3.00
3 C537 B1 G2 0.19 0.19 3.00
4 C537 B1 G6 0.24 0.26 3.00
5 C537 B1 G8 0.25 0.27 3.00
6 C537 D1 G9 0.16 0.18 3.00
7 C538 A1 G1 0.10 0.11 2.00
8 C538 A1 G6 0.19 0.19 2.00
9 C539 B1 G4 0.17 0.17 3.00

10 C539 C1 G6 0.14 0.16 3.00
11 C539 D1 G2 0.20 0.21 3.00
12 C542 C1 G3 0.19 0.24 3.00
13 C543 A1 G4 0.21 0.19 2.00
14 C543 D1 G10 0.16 0.21 2.00
15 C544 C1 G1 0.21 0.23 3.00
16 C544 C1 G5 0.25 0.16 3.00
17 C544 C1 G6 0.16 0.19 3.00
18 C549 A1 G9 0.07 0.11 3.00
19 C550 B1 G8 0.05 0.12 2.00

further analyses to reduce the potential effects from errors. Of the excluded samples, all

but one (C516 A1 G3 L1) had an estimated purity well below 25%, severely limiting the

usability of these for most commonly performed analyses.
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Figure 5.5: ML LP-WGS assignment results for case C532. A) ML tree reconstructed from WGS
data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the likelihood along the
different edges (panels on the x-axis) of the tree for each sample. D) Heatmap showing likelihood
that the samples are associated with a given edge.

5.3.3.3 Purity & Background Rates

As shown in Figure 5.6B the majority of p̂0,s were estimated to be between 0.3% and 3%

with the average value being 1.1% (median: 0.8%, central 90% range: 0.31%− 3.1%).

Notably, there exists a substantial difference in p̂0,s estimates across cases (Figure 5.6B).

Further, while the average values of p̂0,s of each case were significantly correlated with

those obtained from jackknifed deep WGS per case (r = 0.65, p = 0.00032), these were

consistently lower for LP-WGS samples compared to the deeply sequenced WGS samples

shown in Figure 5.3 (mean ratio: 2.3). The exact reason for this is elusive. The estimated

values for p̂0,s were several orders of magnitude larger than the expected error rates of NGS,

which are typically expected to be around 10−5 – 10−4.

Since p̂0,s was only estimated on sites that were mutated in other samples of the same
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Figure 5.6: ML estimates of purity and background rate. A) Scatter plot of ML estimates of the
purity (y-axis) and estimates obtained from an orthogonal analysis of copy-number alterations. B)
Estimated background rates at unmutated sites.

tumour, one explanation for the high values and differences of p̂0,s would be that the cells

surrounding individual glands contaminated these to varying degrees. This contamination

could have happened either as part of the gland structure itself or in the liquid medium

transferred together with the glands. An alternative explanation could also be provided by

some biological phenomenon that causes a heterogeneous cell population within a gland

(e.g., a stem cell population). A minor subpopulation of cells could lead to a measurable

presence of low-frequency mutations from a lineage fixed in another gland (i.e., have high

VAF), but which are present only in a subset of stem cells in the observed gland (i.e., having

low VAF).

Consistent with both of these hypotheses the background rates on sites mutated in

other samples from one tumour region (i.e., intra-region, mean: 0.025%) were significantly

higher than those from sites only mutated in samples from different regions (i.e., inter-

region, mean: 0.73%) as shown in Figure 5.7A. It was tested whether patterns in samples

that appeared intermixed within the tree1 differed and if these had a higher background at

sites mutated within the glands from the same clade (intra-clade). This could potentially

support the hypothesis of a minor subclone present due to a stem-cell structure within the

glands. In contrast, a higher frequency of mutation found in samples from the same region

(intra-region), would rather support contamination of samples by surrounding tumour cells.

1C524 C1 G5: Region D, C531 A1 G8: Region C, C538 B1 G4: Region D, C559 D1 G5, C559 D1 G9:
Region C, C560 C1 G8: Region B, C551 A1 G6, C551 B1 G7, C551 B1 G2, C551 A1 G9: C551 B1 G3)
shown in Figures S.69 (page 295), S.72 (page 296), S.77 (page 299), S.89 (page 305), S.86 (page 303) and S.87
(page 304).
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Figure 5.7: Observed background rates in data used for the ML LP-WGS sample assignment. A)
Background estimates per edge were generally larger for those present in other samples from the
same region. Due to the general structure of the tree, this does not allow to distinguish effects related
to ancestral relationships and regional properties. B) For a subset of cases, intermixed samples (red
dots) allow distinguishing these two effects, showing elevated rates for both mutations present in
samples from the same region and those in samples from the same clade. C) The per edge estimates
of the background rate for individual intermixed samples.

The results from this analysis are summarised in Figure 5.7B and 5.7C. While conclu-

sions from this small set of samples are certainly limited, the background rate of mutations

present in other samples from the same clade, but not region, where elevated in at least some

samples (e.g., C524 C1 G5, C531 A1 G8, and C559 D1 G9), suggesting that incomplete

fixation of cells in a stem-cell structure might, at least partially, contribute to the signal ob-

served. Still, mutations from samples of the same region also had an elevated background

rate in some samples (e.g., C524 C1 G2, C559 D1 G9, and C560 C1 G8), indicating that

cross-gland contaminations are also an important contributing factor.
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edge of the tree.

5.3.3.4 Model Fits

For the ML estimation of LP-WGS sample position in the tree, the trees, copy-number and

mutation multiplicity estimated from the WGS were assumed to be accurate. It was further

assumed that each sample was a monoclonal population of cells. While this appears rea-

sonable for the single-gland LP-WGS sequencing data analysed here, this is not guaranteed

to be the case. Therefore, the observed VAF data were compared to the distribution one

would expect to see under the ML estimates of the model parameter. For this purpose, plots

equivalent to the one shown in Figure 5.8 were generated.

Generally, the observed VAF data were concordant with the expected ones. Each fit

was manually reviewed and a total of 5 samples for which some deviations existed were

identified. For sample C516 A1 G3 L1 (Figure S.92, page 307) a relatively large number

of variants with a low frequency along the edge of the tree were observed and this sample

was independently identified as problematic and excluded (Table 5.3). For the remain-

ing four samples less than expected variants were observed for one edge of the phylogeny:

C524 B1 G3 L1 (Edge 13, Figure S.93, page 307), C538 B1 G1 L1 (Edge 11, Figure S.94,

page 307), C543 B1 G9 L1 (Edge 7, Figure S.95, page 308), and C548 C1 G1 L1 (Edge

14, Figure S.96, page 308). In the latter more than expect variant reads were observed from

on a different edge (Edge 13) as well. For these four cases, some degree of polyclonal-

ity might exist, explaining the observed mismatch. Nevertheless, overall, the model fitted

the single-gland LP-WGS data extremely well, supporting the initial assumptions on the
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monoclonal nature of individual glands.

5.3.3.5 Sample Intermixing

In the majority of cases, the structure of reconstructed trees indeed recapitulated the overall

structure of the original WGS trees. This meant that for the majority of cases clear segrega-

tion of samples according to their respective regions occurred in trees. Such structures can

clearly be seen in trees reconstructed for cases C516 (Figure S.67, page 294), C518 (Figure

S.68A, page 294), C532 (Figure 5.5A, page 184), C537 (Figure S.75A, page 298), C538

(Figure S.77A, page 299), C539 (Figure S.79A, page 300), C552 (Figure S.80A, page 300),

C554 (Figure S.84A, page 302), C555 (Figure S.88A, page 304), C561 (Figure S.90A, page

306) or C562 (Figure S.91A, page 306). In these cases, LP-WGS samples from regions

without deeply sequenced WGS samples were usually assigned close to the MRCA of all

samples. This can, for example, be seen in data from C518 (Figure S.68A, page 294), C538

(Figure S.77A, page 299) or C552 (Figure S.80A, page 300). This matches the assumption

that divergence in space occurred at a time point early during the tumour growth with data

obtained from a spatially sampled star-shaped phylogeny.

Trees reconstructed from a subset of cases showed some interspersed samples in clades

primarily formed by samples from different regions of the tumour. This is equivalent to the

pattern of spatial variegation of clones within space described in Sottoriva et al. (2015). One

example of a potentially variegated LP-WGS sample (i.e., A1 G8) can be seen in the tree of

C531 (Figure S.72A, page 296). In this case, no supporting CNAs were present (S.103, page

310), but the ML estimate clearly supported the position within the tree (Figure S.72C–D,

page 296).

Another example of spatial intermixing was found in case C538 (Figure S.77, page

299), here one sample from region B (i.e., B1 G4) was located outside of the clade formed

by all remaining samples of region B&C. In this case, the analysis of CNAs, specifically the

absence of a loss on chr5 in B1 G4, provided independent support for the relative position

in the tree (S.106, page 311). Similar patterns were observed for three LP-WGS samples in

C551 (Figure S.87, page 304, and S.114, page 313), one LP-WGS sample in C559 (Figure

S.89, page 305) and likewise for one sample in C560 (Figure S.86, page 303). These were

again supported by the presence of region-specific CNAs (Figure S.119, page 314).

The total number of these intermixed samples are summarised in Table 5.4. A Fisher’s

Exact Test conducted on the tabulated counts of the cases suggested variability of propor-
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tions across patients (p = 0.007). Due to the relatively low number of glands per case and

the generally low proportion of intermixed glands (i.e., 2.4% across the entire cohort), little

more than that some cases appeared to show some intermixing between regions whereas

others did not, can be said. For this reason, the most appropriate hypothesis to put forward

for testing in follow up appears to be that cases that exhibited some evidence of spatial

variegation (i.e., those in Table 5.4) might differ in their outcome compared to the rest.

Table 5.4: Number of glands in clades formed by samples from a different region.

Case Mixed WGS Mixed LP-WGS Σ Mixed N glands
C524 2 0 2 16
C531 0 1 1 26
C538 0 1 1 25
C551 0 4 4 31
C559 1 1 2 35
C560 0 1 1 22
Other 0 0 0 296

5.3.3.6 Validation Using CNAs

LP-WGS data are typically used to analyse CNAs in a large number of samples. Similar

to this, integer copy-number values were estimated from these. After the assignment of

the LP-WGS samples onto the trees — notably only using sites at which no copy-number

alterations occurred — the general pattern of CNAs was compared to the reconstructed tree

topologies. Generally, data from both were consistent.

An example showing copy-number alterations that support the overall structure of the

reconstructed trees and specifically the placement of LP-WGS samples within it is shown

in Figure 5.9. In this case, the added LP-WGS samples allowed to time some subclonal

relative to the position of the LP-WGS samples. For example, the added sample A1 G9

exhibited the chr10 gain, but not the chr3p loss observed in the other samples from the

tumour region A. This provides evidence for the relative order of these variants and could

potentially be used to improve the timing of CNAs from the number of SNVs as done for

example by Cross et al. (2018). I will refrain from a detailed analysis of these CNAs in the

individual cases, but plots equivalent to that in Figure 5.9 are shown in Figure S.97-S.121

(page 308-314) for the remaining cases.

5.3.3.7 Validation Using Matched LP-WGS & WGS

To assess the consistency of the ML estimates one last time, distances between LP-WGS

and matched WGS samples for which both data types were available were used (see Table

5.2). One example of such a set of LP-WGS samples is shown in Figure 5.10A. While



190 Chapter 5. Assignment of LP-WGS Samples to Trees

Figure 5.9: Subclonal copy-number alterations and LP-WGS tree C537. A) Subclonal structure of
the LP-WGS SNV tree. Clonal mutations are not shown. B) Copy-number states of the samples.
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Figure 5.10: Distances between matched LP-WGS and WGS samples in ML LP-WGS trees. A)
Example of a case with three LP-WGS samples with matched deep WGS data (highlighted in red).
B) Fraction of samples per case in which the LP-WGS sample was added to the correct edge (i.e.,
that of the tip of the matched sample). C) Relative distance between LP-WGS samples and the match
WGS sample.

the majority of LP-WGS samples, apart from sample B1 G3, were located close to the

matched WGS tip, 2/5 samples (i.e., B1 G3 and C1 G1) were not directly assigned on the

corresponding edge.

Similar observations were made in the cases in which matched samples existed. A

total of 24/29 (83%) samples were assigned to the correct edge (see Figure 5.10B) and

close to the tip node (see Figure 5.10C). This observation is consistent with observations

from the downsampled deep WGS samples (Figure 5.3B&E) and corroborates the previous

conclusion that the method is reasonably accurate.

5.3.4 Application to ATAC-seq Samples From the EPICC Cohort

While ATAC-seq is in principle a different assay, reads obtained from a cancer sample

should contain mutant alleles more or less identical to that of WGS. For this reason, the



5.3. Results 191
LP assignment: C532

A1_G4

A1_G3

A1_G5

A1_G5*

B1_G10

B1_G6*

B1_G1*

B1_G10*

C1_G10

C1_G10*

C1_G6

C1_G8*

C1_G7

D1_G8

D1_G10*

D1_G7*

D1_G8*

D1_G9*

D1_G2*

D1_G6*

1507

A

D1_G9_C1
D1_G8_C1
D1_G7_C1
D1_G6_C1
D1_G2_C1

D1_G10_C1
C1_G8_C1

C1_G10_C1
B1_G6_C1

B1_G10_C1
B1_G1_C1
A1_G5_C1

0.01
Error rate

Initial value

0.0 0.5 1.0
Purity

Initial value Independent estimate

0.0 0.1 0.2
Coverage

B

15 13 11 9 7 6 5 8 12 10 3 1 2 4 14 16

A1_G5_C1

B1_G1_C1

B1_G10_C1

B1_G6_C1

C1_G10_C1

C1_G8_C1

D1_G10_C1

D1_G2_C1

D1_G6_C1

D1_G7_C1

D1_G8_C1

D1_G9_C1

0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1

0.00
0.01
0.02

0.00
0.01
0.02

0.00
0.01
0.02

0.00
0.02
0.04

0.00
0.01

0.00
0.02
0.04

0.00
0.03

0.00
0.01
0.02
0.03

0.000
0.025
0.050

0.00
0.03

0.000
0.025

0.00
0.02

Position on edge

Li
ke

lih
oo

d

C

D1_G9_C1

D1_G8_C1

D1_G7_C1

D1_G6_C1

D1_G2_C1

D1_G10_C1

C1_G8_C1

C1_G10_C1

B1_G6_C1

B1_G10_C1

B1_G1_C1

A1_G5_C1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tree edge

0.001

0.010

0.100

1.000
p(Edge)

D

Figure 5.11: ML ATAC-seq assignment results for case C532. A) ML tree reconstructed from
data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the likelihood along
the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap showing the
distribution of likelihood that the samples are associated with a given edge.

same ML method I used to assign LP-WGS samples to an edge of the tree was applied to

all 1060 ATAC-seq samples (177 bulks and 883 glands). The results of one representative

example (case C532) are shown in Figure 5.11.

Similar to this example, the computed position of most samples was consistent with

the structure of the tree resolved by shallow and deep WGS samples of the same case. Due

to the relatively low average coverage of somatic sites (Figure 5.11B), little information on

the relative position was available. Consistent with this, for ATAC-seq samples the position

estimates of samples were relatively unresolved, as indicated by the wide distribution of the

position likelihoods across edges (example C531 in Figure S.124C–D, page 317). Due to

this, all samples in which the likelihood of the best edge was less than 90% of the sum of

the likelihood of all edges and samples that were assigned close to the root of the trees were

removed.
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These two filtering criteria were passed by 342/883 (39%) of glands and 79/177 (45%)

of bulks, which are 421/1060 (40%) of samples overall. Equivalent to the LP-WGS samples

for this subset of samples, the distance to any matched WGS samples (i.e., those obtained

from the identical piece of tissue) and whether the ATAC-seq samples were assigned some-

where on the edge to the tip node of this matched WGS sample was determined. Of the

61 glands for which a matched deeply sequenced WGS sample existed, the majority, i.e.,

33/61 (54%), were assigned to the correct edge and for 28/61 (46%) the relative distance

(i.e., δx/heightsc(T )) was ≤ 0.2 (Figure S.125, page 318).

While these numbers are substantially lower than those obtained with the LP-WGS

samples, given the limited coverage and the generally low purity of the samples, these data

reveal a strong sample-specific signal of somatic variants and show that the observed struc-

tures were indeed that of the matched samples. Still, even for these high-quality samples,

the apparent purity of ATAC-seq compared to matched WGS samples, while significantly

correlated, was generally substantially lower (S.126, page 318). Since the reason for this

bias was unclear, these trees were not used as the basis for any other analysis (i.e., ABC

inference and Expression quantitative trait locis (EQTLs) analysis).

5.4 Discussion

In general, the simple ML method described above enabled the identification of a reason-

able estimate for the position of individual LP-WGS sample (0.5–2 coverage) within the

MP trees inferred from deeply sequenced WGS samples. The method’s limits and over-

all accuracy were assessed on simulated and subsampled WGS data for different sample

purities, background rates, and sequencing coverages.

This analysis showed that low purity, especially in combination with a high background

rate at unmutated sites, severely limits the ability to estimate sample positions within the

tree. Despite this, the analysis of the majority of LP-WGS samples generated as part of the

EPICC study was possible. These ML LP-WGS trees, with their large number of added

samples, allowed me to find additional examples of intra-region intermixing (i.e., spatial

variegation), which might potentially be indicative of general phenotypic properties of the

associated tumours. The separate analysis of CNAs supported the general structure of the

reconstructed trees. In this context, the use of the method might potentially also guide

the identification of convergent CNAs in different parts of a phylogenetic tree, the relative

timing of CNAs or the general prioritisation of samples for deep WGS.
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Figure 5.12: Loss of subclonal structures in the ML LP-WGS trees. A) The true latent structure of
trees obtained from spatial simulations. Lineages that are expected to be loosed in the LP-WGS trees
are shown as dashed lines. B) The corresponding ML LP-WGS tree. While the overall structure of
the inferred tree is, apart from small error, correct, much of the complexity of the true tree is lost.

Nevertheless, the loss of the subclonal structure of added samples and the lack of infor-

mation on the number of private mutations present in these limits the general applicability

of the method. This problem is best exemplified by the comparison of a simulated latent

tree shown in Figure 5.12A and the corresponding ML LP-WGS tree inferred from sim-

ulated WGS data shown in Figure 5.12B. While the position samples are assigned to are,

apart from some predictable error, correct, the overall information content of the shown tree

is severely reduced. It is, for example, unclear whether the assigned samples are part of

a lineage with shared ancestry, like those in region C or not, like the samples D1 G4 and

A1 G1. Still, the added LP-WGS samples can provide useful insight into the relative age of

the MRCA of a set of samples (i.e., the relative genetic diversity within a region) or the pres-

ence of intra-regional mixing (i.e., spatial variegation). The latter was beneficial in cases

where CNA that could otherwise be used for the same purpose to quantify the frequency of

these events were absent.

While it is obviously impossible to reliably detect individual somatic point mutations in

LP-WGS samples, one might in principle be able to estimate the unseen somatic mutation

burden of a sample. This mutation burden could then provide information on the length

of the tip edge of added samples. In the same way, it might be possible to analyse the

number of mutations shared between individual LP-WGS samples added to the tree, giving

some insight into the overall structure of these. In light of the substantial background rates

observed in the dataset of the EPICC cohort (i.e., VAF ≈ 1%), these two ideas were not

explored further.

In general, the ML LP-WGS assignment method described here enabled the identifica-

tion of additional examples of ‘spatial sample variegation’ in some tumours, a pattern that
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was previously proposed to be of diagnostic value (Sottoriva et al. 2015; Ryser et al. 2018).

It is expected that these improved estimates of the prevalence of ‘spatial sample variegation’

in the cases analysed will help to assess its diagnostic value as part of the prospective follow

up of the study.

The increased number of samples with information on the position in the reconstructed

phylogenies has also allowed the inclusion of a much larger number of samples into a sep-

arately conducted analysis of EQTLs2, which was based on samples for which matched

RNA-seq, CNA and mutation data were available. Similarly, the reconstructed ML LP-

WGS trees will be used as the basis for an ABC inference of spatial dynamics that will be

described in the following. The ABC method allowed to take the unique properties of added

LP-WGS samples into account, and generally, the inclusion of additional LP-WGS samples

lead to the improvement of the results obtained.

2Done by Jacob Househam.



Chapter 6

ABC-SMC Inference

In the previous two chapters, I have described the mutational landscape of a total of 30

multi-region single-gland sequenced colorectal cancers from the EPICC cohort. In this

context, I described the rare intermixing of glands from different regions and hypothesised

that this might be a phenotypic property of some cancers. Further, I described the status of

mutations in putative driver genes previously identified in other studies (e.g., Muzny et al.

2012; Martı́nez-Jiménez et al. 2020; Martincorena et al. 2017). The vast majority of these

mutations were found to be clonal mutations present in all glands of a tumour. Such clonal

mutations were likely accumulated before the initiation of the corresponding tumour or have

been part of a subclone that effectively swept through the population. A few examples of

potential subclonal driver mutations (e.g., one KRAS p.G12C and seven PIK3CA muta-

tions) were also identified. In one of these cases, C539, the mutation was accompanied by a

clear elongation of the associated branches of the phylogenetic tree. This branch elongation

indicates that the associated glands share a most recent common ancestor that went through

many cell divisions to reach a higher frequency, the ‘hallmark’ of subclonal selection.

While the presence of a selected subclone, or more broadly speaking, changes of the

evolutionary dynamics, seemed rather obvious in this case, it was unclear how to interpret

the information contained in the trees in other cases. The same problem exists for many

previous studies of the subclonal diversification at primary sites (Yates et al. 2015) or during

metastasis (Gundem et al. 2015; Yates et al. 2017; Noorani et al. 2020). Despite being

very impressive, these studies have provided little functional insights into the evolutionary

dynamics driving these processes. Specifically, it remains unclear to what degree selection

of adaptive phenotypic properties plays a role in the later stages of cancer evolution and

what effect occasionally observed subclonal driver mutations have.
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The majority of cancer driver genes were identified based on their recurrence across

patients using statistical models like mutSigCV to determine if mutations are overrepre-

sented across patients (e.g., Lawrence et al. 2014; Martı́nez-Jiménez et al. 2020). Still,

generally recurrent mutations might have little or no effect in some genetic or environ-

mental backgrounds, and often complex analyses and tedious experiments are required to

uncover these relationships. An excellent example of such context-dependent selection can

be found for PTEN mutations in prostate cancers and leukaemia (Berger, Knudson, and

Pandolfi 2011). In these, the incomplete loss of PTEN in a TP53 wildtype background is

tumorigenic, whereas total loss of PTEN would lead to the induction of senescence and

hence no tumour formation. If the complete PTEN loss instead occurs after the prior loss of

TP53 (i.e., in a TP53 mutant context), more aggressive tumour growth is instead observed.

In order to study the effect of such driver alterations in vivo mouse models are often used,

but these are costly, time-consuming and require specific hypotheses to test.

For self-evident reasons, longitudinal observation of solid tumours in their primary site

cannot be conducted in humans.1 For this reason, the strength of the selective advantage

provided by driver mutations in actual tumours is not well studied. Here, I will apply a

spatial computational inference framework to single-gland multi-region WGS data. Doing

so, I will demonstrate how this approach can indirectly gain insight into the fitness effect

of naturally arising somatic mutations in primary CRCs. This approach allows identifying

relevant alterations occurring in primary tumours, which could be validated subsequently in

controlled in vivo experiments. As such, this allows for prioritisation of relevant alterations

observed in primary tumours for validation. Unlike other studies based on bulk sequencing

data (e.g., Dentro et al. 2021), this approach has sufficient power to infer subclonal selection

and also allows to characterise the specific genetic background that putative driver mutations

occurred in (i.e., their respective lineage).

6.1 Bayesian Statistics

In order to understand the evolutionary dynamics observed in cancer genomic data, we can-

not resort to our intuition or descriptive statistics. Instead, one optimally wants a statistical

model that captures the process underlying the measured data well enough to allow to gain

significant insight into it (Box, Launer, and Wilkinson 1979). Aspects of the model that

influence its behaviour, the model parameters, can then provide a more interpretable sum-

1Some cases of non-resectable tumours or refusal of treatment can give the rare opportunity to do this.
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mary of the data. Many methods to fit such a model to actual observations (i.e., statistical

inference) exist. In order to apply most of these, one needs to be able to calculate the likeli-

hood function p(D|θ), defining the probability of observing the data D under a given set of

parameters θ from the parameter space θ ∈Θ.

With a likelihood function available classic statistical methods can be used to iden-

tify parameters under which it would be most likely to observe the data, the MLE θ̂ =

argmaxθ∈Θ p(D|θ). This MLE is possible even if a closed-form solution of the ML is not

available or hard to obtain.

An alternative approach, so-called Bayesian inference, is to use Bayes’ theorem to

instead calculate a probability distribution over the parameter space p(θ |D) the posterior

distribution or short posterior. From Bayes’ theorem, it follows that

p(θ |D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D|θ ′)p(θ ′) dθ ′

,

where p(D|θ) is the likelihood and p(θ) is a probability distribution over the parameters

space, the prior likelihood or short prior, that encodes the prior belief on θ . The marginal

likelihood of the data p(D) can be interpreted as a normalisation constant. Dropping this

results in a distribution that is proportional to the actual posterior likelihood but does not

sum to one (i.e., p(θ |D) ∝ p(D|θ)p(θ)).

6.1.1 Approximate Bayesian Computation

Unfortunately, a likelihood function for the spatial distribution of mutations in a growing

tumour, potentially with several differently fast-growing subpopulations (i.e., neutrality vs

selection), cell death and various modes of growth (i.e., exponential growth2 vs boundary

driven growth3) is not readily available and probably intractable.

Nevertheless, since it is possible to simulate the underlying process, a class of algo-

rithms that allow performing Bayesian inference without a likelihood function can be used.

These ABC methods use a generative process to approximate the likelihood conditional on

a set of parameters θ (Karabatsos and Leisen 2018).

To do this ABC methods require a model f (·|θ) from which random realisations D∗ ∈

D can be drawn, a prior distribution p(θ) on the set of the inferred parameters θ ∈ Θ,

2By exponential growth a situation in which all cells grow at a rate proportional to their fitness throughout
the development of the tumour is meant.

3By ‘boundary driven growth’ any growth that is dominated by the expansion of cells on the outer edge is
meant. Here it will be assumed that this results from the spatial constraints and the inability of cells to push
outwards within the tumour. In principle similar consequences could also arise from limited nutritional supply
or oxygenation within the centre of the tumour.
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multiple summary statistics η : D → S, a distance function ρ : S× S→ R+, and a critical

distance ε ∈R+ below which random observations are assumed to match the observed data

D. With these we then seek to sample from the marginal posterior distribution

p(θ ,D∗|D,ε) =
p(θ) f (D∗|θ)IAε,D∫

π(θ) f (D∗|θ) dD∗dθ
,

where IAε,D(x) indicates whether x is an element of the set Aε,D of observations with

Aε,D = {z ∈D : ρ(η(D),η(D∗))≤ ε}.

ABC methods were pioneered in the field of population genetics by Tavaré et al. (1997)

to infer coalescence times from DNA sequence data and by Pritchard et al. (1999) to study

the evolution of the Y chromosome. Since then, such methods have been used extensively

(Underhill et al. 2000; Kaessmann et al. 2001; Glover et al. 2013). Examples of the applica-

tion of ABC methods in other fields include molecular biology (Woods and Barnes 2016),

pharmacology (Picchini 2014), epidemiology (McKinley, Cook, and Deardon 2009; Tanaka

et al. 2006) or indeed cancer evolution (Sottoriva et al. 2015; Williams et al. 2018b).

Various extensions of the brute-force accept-reject method used by Tavaré et al. (1997)

and Pritchard et al. (1999) exist, these seek to combine ABC with other algorithms to in-

crease the efficiency of sampling in the parameter space. Examples include MCMC (Mar-

joram et al. 2003; Wegmann, Leuenberger, and Excoffier 2009), Sequential Monte Carlo

(SMC) (Sisson, Fan, and Tanaka 2007; Del Moral, Doucet, and Jasra 2012; Filippi et al.

2013) or Population Monte Carlo (PMC) (Beaumont et al. 2008; Baragatti, Grimaud, and

Pommeret 2012; Murakami 2014). Other modifications seek to replace the rejection based

approximation of the likelihood with alternative estimators (see Karabatsos and Leisen

2018, for details). One example of this, which will later be used for the calculation of

the expectation of the posterior predictive likelihood, are synthetic likelihoods (SLs) similar

to those proposed by (Wood 2010). In the context of ABC, this method makes the assump-

tion that the distribution of summary statistics follows a specific distribution. With these

assumptions, likelihoods for a critical distance p(D≤ ε)� 1/N, that are impermissible to

be used with rejection based methods, can be approximated. More detail on SLs will be

provided below.

Here, two different algorithm will be used for the ABC inference of parameters de-

scribing the growth dynamics in individual tumours i) the rejection sampling described first

by Pritchard et al. (1999) (see Section 6.2.4.1, page 205 for details), and ii) the ABC-SMC
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algorithm proposed by Del Moral, Doucet, and Jasra (2012) (see Section 6.2.4.2, page 206

for details). In brief, the number of subclones max(i), their relative growth rate λi compared

to the ancestral clone i = 0 with λ0 = 1, the respective coalescent population sizes ti, and

a global parameter dpush describing the distance from the outer rim of the tumour at which

glands can grow and ‘push’ outwards will be inferred. I will also explore if a global increase

in death rates µ would explain the observed data better. An overview of all the inferred and

constant parameters of the model can be found in Table 6.1 (page 205). A more detailed

explanation of the simulation setup and how a simulated sampling scheme equivalent to

the one used in the actual experiments was generated will be provided in Section 6.2.1 and

Section 6.2.2 (pages 199, pages 201) respectively. A summary of the statistics and distance

metrics used to compare the observed data to simulated datasets will be provided in Section

6.2.3 (pages 203). A general overview of the implemented inference framework is shown

in Figure 6.1.

6.2 Methods

6.2.1 Spatial Simulations

As outlined above, a model f (·|θ) from which one can sample simulated observations D∗

given a set of parameters θ is required to apply ABC based inference to the whole-genome

sequencing data described in the previous chapter. For this, a slightly modified version of

the spatial tumour simulator (Chkhaidze et al. 2019) described before (Chapter 3) will be

used and generate synthetic sequencing data according to a spatial sampling scheme that

is equivalent to the one used to generate the actual data (Chapter 4). For the inference,

simulations of a two-dimensional tumour were used. This choice was made, based on the

observation that colorectal cancers grow, at least during the initial stages, primarily in a

two-dimensional plane through crypt fission (Greaves et al. 2006; Chen et al. 2005; Shen

et al. 2005; Bernstein et al. 2008). While this might be a simplification, the simulation of a

tumour in two dimensions should still give some insight into a three-dimensional tumour’s

general growth dynamics.

In well and moderately differentiated colorectal carcinomas the majority of the tumour

consists of glandular structures (Fleming et al. 2012; Nagtegaal et al. 2020). These struc-

tures are reminiscent of the crypts, small finger-like invaginations into the underlying tissue

that normally forms the colorectal epithelium (Humphries and Wright 2008). Similar to nor-

mal crypts, these glands are assumed to expand spatially through a process of gland fission
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Figure 6.1: The ABC-SMC inference framework. A) The spatial simulation is obtained from a
tumour simulator using the Gillespie algorithm. B) For the simulation of WGS data a subset of cells
is selected in space, then active lineages in the tree are marked, and finally, the active part of the tree
is traversed to simulate WGS data. C) Using an ABC-SMC algorithm (Del Moral, Doucet, and Jasra
2012) parameters of each model are inferred. D) Lastly, a model selection procedure is applied to
the fitted models obtained from C to select the most appropriate one.

(Graham et al. 2011; Garcia et al. 1999; Bruens et al. 2017), which also drives neoplastic

growth of colon tumours (Wong et al. 2002; Preston et al. 2003). In summary, individual

glands are the ‘clonal units’ of colorectal cancers (Baker et al. 2014), and for this reason,

each cell of the spatial simulation will be assumed to represent a single gland. Due to the

fast replacement of stem cell lineages compared to the rate of crypt fission, the complexity

of the population structure within each gland will also be disregarded.
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Figure 6.2: An illustrative example of simulated and observed WGS sequencing data. A and D show
the spatial layout of the tumour in space and the sampling locations for the actual and simulated
tumours respectively. B and E summarise the VAF of actual and simulated WGS sequencing data
for deep WGS samples respectively. C and F show the actual and simulated trees reconstructed from
the data respectively.
VAF: variant allele frequency.

The diameter of colonic crypts in normal colon tissue is about 60 microns, and the

colorectal epithelium contains roughly 100 crypts per square millimetre of colon (Nguyen

et al. 2010). Assuming a similar number of glands per square millimetre of tumour tissue,

a colon tumour with a diameter of ≈ 3.5cm can be represented by a grid size of 350x350

(Figure 6.2D). Such a tumour would contain ≈ 96,000 glands, of which each is consists of

≈ 2,000−10,000 cells. The number of≈ 109 cells simulated by these 350x350 simulations

are roughly similar to that present in human malignancies (Del Monte 2009) and are still

fast enough ≤ 3s to allow the generation of a sufficient number of simulations for ABC

inference.

6.2.2 Equivalent Sampling Scheme

After the generation of a simulated tumour, a set of samples that reflected the sampling

schema used (Figure 6.2A, & Figure 4.1E, page 109) to generate the actual single-gland

WGS data (Figure 6.2B) was generated as shown in Figure 6.3. First, a random angle φ

from the centre of the tumour O(xO,yO) along which the first sample region (i.e., the centre

of the region ‘A’) should be placed is generated first sampling from

φA ∼U(0,2π).

For each region A-D an offset φ ′i was added to φA. Here two different methods were

used i) a constant offset where φ ′ = (0,0.5π,π,1.5π) for the regions A-D respectively

and ii) a randomly varied sampling schema with relative angles between adjacent regions



202 Chapter 6. ABC-SMC Inference

xe,1de,1

de,1

A

B

C

DφAφ'2
φ'3 φ'4

db

Sampling in regions:

Tumour edge

AAAAA

−100

−50

0

50

100

−100 −50 0 50 100
x

y

Figure 6.3: Diagram illustrating the simulated sampling schema of the EPICC cohort. For the
simulation of the sampling first, the angular position of the region ‘A’ φA ∼U(0,2π) relative to the
centre (black dot) of the tumour (outline as a grey circle) was generated. The angular position of the
remaining regions were defined relative to this region using the offsets φ ′ (i.e., φ ′2, φ ′3 and φ ′4). The
centre of the sampling squares (grey filed boxes, with width db) was then placed at a relative position
to the edge xede, where de is the distance to the tumour edge along φ . The sampled tumour cells
(black squares in the inset) were randomly drawn from the sample squares without replacement.

sampled from a Dirichlet distribution xφ ∼ Dir(K = 4,α) with α = (0.25mφ , ...,0.25mφ ).

Here mφ denotes the prior strength of the prior and the angle offsets φ ′i are given by

φ ′i = 2π ∑
i
j=0 xφ , j.

Along each of these vectors, the distances to the most distant occupied grid point

Io(x,y) (i.e., the edge of the tumour) were searched using a half-interval search between

O and the edge of the simulated space, to identify

de,i = argmax
r∈[0,dmax]

r I(r cos(φA +φi)+ xO,r sin(φA +φi)+ yO)).

In cases with a high death rate, a high number of grid points within the centre of

the tumour are empty. Hence, positions were only assumed to be empty when grid points

along the vector defined by φ up to a distance of 10 from the evaluated position were also

unoccupied. At the most extreme values of the parameter range considered (µ ≤ 0.5 and

dpush = 1) up to ≈ 8.5% of grid points in the centre of the tumour can be empty, but even

at these values, the observation of 7 or more consecutive empty grid points is very unlikely

(� 10−7).

After the identification of the distance to the edge de,a the centre of sampling regions

were placed at a relative position xe ∈ [0,1] along the vector with the coordinates being

given by:
x = [xe de,a cos(φA +φi)+ xO],

y = [xe de,a sin(φA +φi)+ yO].
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Similar to the angle offsets φ ′i , two different methods were used to define xe i) a con-

stant fixed value of xe = 0.75 and ii) a random value sampled from a Beta distribution with

a given prior strength md and mean µd with xe ∼ B(µd md ,(1−µd)md).

After the definition of the centre of the four regions, random grid points within a rect-

angular area of edge lengths db around these were sampled randomly without replacement

until the required number of samples from the region were obtained. Sampled, but unoccu-

pied grid points were rejected. Figure 6.2A and 6.2D show an illustrative example of the

equivalent sampling scheme described above applied to a simulated tumour and the actual

macroscopic sampling locations in the real tumour respectively.

6.2.3 Distance Function
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Figure 6.4: Simulated trees with different distance ρ to the target tree (top left). On the top right,
the distribution of distances between the target and simulated trees is shown.

Due to spatial information obtained for the real data, a distance metric that is depen-

dent on the sample labels was used. Labels of samples with the same characteristics were

swapped (i.e., sequencing type and sample region) to minimise the distance metric. Since

clonal mutations do not inform on the subclonal dynamics, these were removed from the

trees T and T ′ prior to the calculation of the distance between them. Next, the patristic

distances d(i, j), that is the sum of the lengths of the edges that link two nodes i and j in the

tree, for all pairs of tip nodes, were determined and scaled by the height of the tree (i.e., the

maximum distance from the root 0 to a tip).
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For a maximum parsimony tree without any homoplasy, this is equivalent to the dis-

tance calculated from the mutation data itself as

d j,k = (|M j ∪Mk|− |M j ∩Mk|)/max{|Mi| : i ∈ 1, ...,n},

where Mi denotes the set of mutations found to be present in the sample associated with the

tip i and n is the total number of tips present in the tree.

The distance between two trees T and T ′ is then calculated from the differences of the

scaled patristic distances using the L2-norm

ρ(T,T ′) =

(
|V 1|

∑
i=0

|V 1|

∑
j=i

(
dT (i, j)
h(T )

− dT ′(i, j)
h(T ′)

)2
) 1

2

,where h(T ) = max
i∈V 1

dT (0,x).

This distance takes into account the tip labels of the tree, but samples of the same type

(i.e., WGS or LP-WGS) and region (i.e., A-D) can be considered to be equivalent. Accord-

ingly, such equivalent tip labels in the tree T ′ were swapped until the distance between both

trees could not be reduced by swapping any additional labels as outlined in Algorithm 1.

Algorithm 1: Label swapping in trees
Data: Trees T and T ∗

Result: Minimised distance between T and T ∗

Initialise list L of all label pairs in T ∗ of same type and region.;
T ∗
′ ← T ∗;

do
T ∗← T ∗

′
;

d← ∆(T,T ∗);
∆d← 0;
foreach l ∈ L do

T ∗
′

l ← T ∗ with labels l swapped;
dl ← ∆(T,T ∗

′
);

∆dl ← dl−d;
if ∆dl < ∆d then

T ∗
′ ← T ∗

′
l ;

∆d← ∆dl ;

while ∆d < 0;
return (d)

It is worth noting that this gradient descent does not necessarily result in the tree with

the smallest distance possible, which could only be found by exploring all swaps. As the

number of possible ways to label a tree is ∏
|N|
i=0 = Ni! where N are the labels in the label

group i, this would be infeasible for all but the smallest trees. For the tree shown in Figure

6.4 for example there are N = (2,2,2,2,2,3,3,5) labels per group resulting in 138,240 trees
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for which the distance ρ would have to be calculated. This is computationally infeasible

and instead, only the closest local optimum is searched.

In Figure 6.4 a couple of simulated trees with variable distances to a given target are

shown to illustrate how changes of the tree topology and branch length are reflected in the

distance metric.

6.2.4 ABC Algorithms

As mentioned before, two ABC inference algorithms were applied to the datasets to conduct

the statistical inference. In the following, the simple ABC rejection sampling algorithm

(Pritchard et al. 1999) will be described first. As this method severely suffers from the

‘curse of dimensionality’, a more complex ABC-SMC algorithm (Del Moral, Doucet, and

Jasra 2012) that is less affected by this problem will be described following this.

The parameters inferred using the ABC algorithms are summarised in Table 6.1. The

death rate µ , mutation rate m and ‘push distance’ dpush were assumed to be global properties

of the tumour, whereas the number of subclones max(i) and the associated birthrate λi and

clone start time ti are assumed to be clone specific parameters.

Table 6.1: Overview of model parameters for the spatial tumour model. Variables with a subclone
index i are set individually for each subclone. All other variables are assumed the be constant for the
whole tumour.

Symbol Name Description Limits

max(i) Subclone number Number of subclones [0,2]
λi Birthrates Rate of cells division [1,20]
ti Clone start times Population size at introduction [1,bNmax/2c]
ai Fathers Index of Ancestor i−1
µ Deathrates Likelihood of death during division 0 ∨ [0,0.5]
dpush Push distance Distance from the edge cells grow [0,x/2]
m Mutationrates Number of mutations during division ∼ h(T ∗)
db Sample box size Diameter of the sampling region [15,25]

6.2.4.1 ABC Rejection Sampling

The simplest ABC inference algorithm is that of rejection sampling. While this brute force

method can be used the obtain an approximation of the posterior, it is computationally very

costly as a time proportional to the density of the prior on θ is spent on the generation

of samples, even in regions with very low probability. Due to this shortcoming, many

more efficient alternative algorithms do exist. Still, due to its simplicity, this algorithm will

be used to test the output of the ABC-SMC algorithm described later and provide a short

introduction to ABC in general.
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The ABC rejection algorithm was first used by Tavaré et al. (1997) and a more gener-

alised version, introducing the explicit definition of a distance function ρ(η(D∗),η(D)) ≤

ε) by Pritchard et al. (1999). The general procedure used in both papers is principle identical

and described by the Algorithm 2.

Algorithm 2: ABC rejection sampler
Data: Target y, distance function ∆, prior distribution p(θ), simulator f (·|θ).
Result: A set of N particles P approximating the posterior distribution.
for i← 0 to N do

repeat
θ ∼ π(·); // sample parameter from prior
z∼ f (·|θ); // generate simulation

until ∆(y,z)≤ ε;
P← P∪{θ}; // append θ to set of particles

return (P)

This procedure results in the generation of a set number N of particles for which the

distance between the summary statistics of simulated and observed data fall below a pre-

determined distance threshold ε . These particles can be used to approximate the posterior

distribution of the parameters θ .

6.2.4.2 ABC-SMC Algorithm

Due to the general shortcomings of the simple rejection ABC algorithm, especially in high

dimensional problems with many parameters, a different ABC inference algorithm was used

for most cases. This algorithm is an adaptation of sequential Monte Carlo methods for the

ABC context and was described by Del Moral, Doucet, and Jasra (2012). It has a num-

ber of advantages over previous ABC-SMC methods described by others (e.g., Sisson, Fan,

and Tanaka 2007; Toni et al. 2009; Beaumont et al. 2009). First, it has linear complexity

O(N) in the number of particles N instead of O(N2) for these previously proposed meth-

ods. Secondly, the ABC-SMC algorithm by Del Moral, Doucet, and Jasra automatically

adjusts the distance threshold εn, whereas other methods require the explicit definition of

a distance schedule. The careful adjustment of this schedule on ε is often critical, as a

too fast reduction can reduce the performance of the inference or even lead to its collapse

(Del Moral, Doucet, and Jasra 2012). The ABC-SMC algorithm conceived by Del Moral,

Doucet, and Jasra only requires the definition of one parameter α that controls how fast the

critical distance ε is reduced.

The SMC algorithm consists of a number of steps, in which a set of N particles is

updated repeatedly. Each i = 1, ...,N of these particles consists of a set of parameters θ (i),
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M simulated observations X (i)
j=1...M,n=0 and a weight W (i)

n=0. The weight of each particle is

proportional to the number of simulated observations j ∈ {1, ...,M} that are part of the set

Aεn,y = {z ∈ D : ρ(y,z)< εn} and can be calculated as

W (i)
n =

∑
M
j=0 IAεn ,y

(X i
j,n=0)

∑
N
i′=0 ∑

M
j=0 IAεn ,y

(X i′
j,n=0)

,

where IAε,y(x) indicates whether the observation x is an element of the set Aεn,y.

The effective sample size (ESS) of a set of particles with the set of weights {W (i)
n } is

ESS({W (i)
n }) =

1

∑
N
i=0W (i)

n
2 .

This ESS is a measure of the complexity of the particle set (Liu 2008) and is used to update

the distance threshold ε and trigger a resampling of particles in different steps of the SMC.

The individual steps of the ABC-SMC algorithm are described in detail below:

0. Initialisation At the beginning of the SMC, i.e., at step n = 0, an initial set of N par-

ticles is generated. For each of these parameters and random, simulated observations

are generated with

X (i)
j,n=0 ∼ f (·,θ (i)), θ

(i)
n=0 ∼ p(θ), for j = 1, ...,M and i = 1, ...,N.

As the distance threshold is initialised as εn=0 = ∞, with W (i)
n=0 = 1/N and ESS = N

at this point.

1. Update of weights and ESS At the beginning of each SMC step n← n+ 1. Then

the distance threshold εn gets updated so that ESS(W (i)
n )≤ αESS(W (i)

n−1) for the new

value. If the relative reduction of the distance threshold ∆εrel =
εn−1−εn

εn−1
falls below a

critical value the inference is terminated at this point.

2. Resampling step If ESS(W (i)
n )≤ NR a resampling step is triggered. For this, N parti-

cles are sampled from the set of all particles with resampling at a rate proportional to

the particle weight. After the resampling, all particle weights are set to W (i)
n = 1

N .

3. MCMC step For each particle i with W (i)
n > 0 a proposed new parameter set θ ∗i is

sampled from the transition kernel θ ∗i ∼ K(θi). Here, K is a truncated multivariate

normal distribution θ ∗i ∼MV N(θi,2Σ̂,a,b), where Σ̂ is the empirical estimate of the

covariance, and a and b the lower bound of the parameters respectively.
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For each of these proposed new parameter values θ ∗, a random set of observations

X∗1:M are sampled: X∗(i)j ∼ f (·|θ ∗i ),where j = 1, ...,M. Each proposed particle is then

accepted with the likelihood given by the Metropolis-Hastings ratio

A(X∗(i)j ,X (i)
1:M) = min

(
1,

∑
M
j=1 IAε,y(X

∗(i)
j )

∑
M
j=1 IAε,y(X

(i)
j )

q(θ ,θ ∗)
q(θ ∗,θ)

)
.

At which point the algorithm continues at step 1.

Parametrisation of the ABC-SMC For the purpose of the ABC-SMC inference conducted

here a value of α = 0.95 was used in all cases. Initially conducted tests on a subset of cases

using a value of α = 0.99 obtained essentially identical results and multiple independent

runs of the ABC-SMC on a subset of cases using α = 0.95 also converged to essentially

identical solutions. This supported the stability of the results for the value of α = 0.95

and while a larger value might in principle still have been preferable, this would have also

increased the associated computational costs significantly. For the transition kernel, a trun-

cated multivariate normal distribution from the tmvtnorm package (Wilhelm and G 2015)

was used, giving a proposal of θ ∗i ∼ MV N(θi,2Σ̂,a,b), where Σ̂ is the empirical estimate

of the covariance obtained from the particle parameters {θ (i)
n } weighted by {W (i)

n } existing

at the time point n. The upper and lower limits a and b for each parameter set are listed in

Table 6.1.

As many different spatial samples from a single simulated tumour can be generated, a

second layer of sampling doing this was introduced. The number of multiple observations

drawn from a simulation is denoted as M′ below. The number of independent realisations

of simulations as M instead. In general, two setups were used: i) N = 500, M = 25 and

M′ = 100 for the first set of models with fixed sampling position parameters xe = 0.75,

φi = (0,0.25,0.5,0.75) and db = 25 and ii) N = 5000, M = 1 and M′ = 100 for a second set

of models with variable sampling positions with prior strength mφ = 50 and md = 20 (see

Chapter 6.2.2 for details). In all cases, the threshold at which resampling was triggered was

set to NR = 0.75N.

Termination criteria The ABC-SMC algorithm was terminated when the relative distance

reduction ∆εrel decreased below 1% for t∆ε > 3 steps (assumed convergence) or until a total

of n = 40 steps were run. In a couple of cases, a larger value for t∆ε was tested to evaluate if,

after longer mixing of the chain, a further decrease in ε could be archived. An example of

a distance schedule derived by the algorithm and the associated statistics of the ABC-SMC
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chain is shown in Figure 6.5. In this example, the algorithm’s parameters were α = 0.95,

N = 5000 and NR = 3750 and the inference was terminated after 14 steps.

Figure 6.5: Example of an ABC-SMC chain. The plot summaries i) the change of the ESS for the
chain with α = 0.95, N = 5000 and NT = 3750, ii) the resulting schedule of the distance threshold
ε , iii) the relative change of the distance ∆εrel and iv) the acceptance rate in the MCMC step for
different states of the SMC chain.

6.2.5 Model Selection

6.2.5.1 Synthetic Likelihoods

Generally, the distances under point estimates for neutral simulations were distributed ap-

proximately normally, as indicated by quantile-quantile-plots (see Figure 6.6). Further, the

likelihood to observe a single datum with a distance ∆D∗ below the critical distances ε was

often very low (� 0.1%). This makes the rejection based approximation of the likelihood

˜L(θ) = p(ρ(η(D),η(D∗))≤ ε) computationally very expensive and a SL approach (Wood

2010) was used instead in cases where the observed fraction of random realisations D∗ with

distance below ε was less than 1%. In these cases, the likelihood was approximated as

L̂s
N
(θ) = Φ

(
ε−µ

σ

)
=

1
2

[
1+ er f

(
ε−µ

σ
√

2

)]
,

where

µ̂θ =
1
N

N

∑
i=1

ρ(η(D),η(D∗i )), σ̂
2
θ =

1
N−1

N

∑
i=1

(ρ(η(D),η(D∗i ))− µ̂θ ).

are empirical estimates of the variance σ2 and mean µ calculated from a minimum of N =

1000 realisation for each θ .
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Figure 6.6: Quantile–quantile plot demonstrating that the distance between observed and simulated
data (z) generated under the maximum-a-posteriori (θ̂ ) as well as the posterior distribution (p(θ |D))
are approximately normal for neutral simulations (left), but not for models with selection (right) .

While it has been shown that the SLs can be fairly robust to violations of normality

assumptions (Everitt 2018; Price et al. 2018; Grazian and Fan 2019), an improved semi-

parametric version has been proposed (An, Nott, and Drovandi 2019). In the context of

the ABC-SMC conducted here, distances obtained from neutral models were approximately

normally distributed, whereas non-neutral models typically exhibited multiple modes across

the observed distance distribution. To these univariate Gaussian mixture models with a

variable variance and K = argminK∈1,...,9 BIC(MK) using the mclust R package were fitted

instead and estimates of the likelihood were obtained from these (Scrucca et al. 2016; Fraley

and Raftery 2002; Fraley et al. 2012).

For each step that involved the estimation of SLs, a simple bootstrap method (Efron

1992) was applied to the observed distances and the Gaussian mixture models fitted to these

permutated datasets to estimate the variability of the estimates and quantify errors arising

from the limited Monte-Carlo integration.

6.2.5.2 AIC

The AIC was used to penalise the different models for the number of free parameters. The

marginal likelihood p(D|m,ε) =
∫

θ
p(D|θ ,m,ε)p(θ |m)dθ was estimated for each model m

using Monte-Carlo integration across a minimum of 200 parameter sets θ obtained from

the posterior particles weighted by {W (i)
n }. For p(D|θ ,m,ε) the SL approximation L̂N

s,ε(θ)

obtained from the distribution of distances ∆(D,D∗) of a minimum of 100 simulated datasets

D∗ ∼ f (·|θ) was used. For the critical distances ε = min
m∈M

εend,m, where M is the set of

models on which model selection was performed, was tested. A large range of ε across
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possible distances were also evaluated to characterise how the results of model selection

were affected by ε .

I then used the obtained estimate of the marginal likelihood p(D|m,ε) to calculate

ˆAICε = 2k−2ln(p(D|m,ε)) where k is the number of free model parameters. An example

of such estimated marginal likelihoods and AIC values for given values of ε are shown in

Figure 6.9 D&I. Here the negative marginal log-likelihood (NMLL) of the ‘Neutral’ and

‘Selection’ models are very similar, leading to the ‘Neutral’ model being preferred over the

alternative models due to its lower AIC.

6.2.6 Code Availability

The code used to perform the ABC-SMC inference on the EPICC cohort and to create

other figures shown here can be found on GitHub: https://github.com/T-Heide/

EPICC_inference.

6.3 Results

For the ABC-SMC inference, two sets of trees were generally used as input i) the MP

trees reconstructed from the mutation data (Figure S.51, page S.51), and ii) the MP trees

with assigned LP-WGS samples (Figure 4.11, page 143). The simple accept-reject ABC

algorithm was initially applied to a couple of test cases. Two of these — one for which

the ABC inferred boundary driven growth and another with non-boundary driven growth

— will be shown as a simple example first. Following this, results using the ABC-SMC

algorithm from the entire cohort will be summarised.

6.3.1 Rejection ABC

6.3.1.1 Inference of non-boundary driven growth in C561

ABC rejection sampling was, together with a couple of other examples, initially applied to

the tree of C561 shown in Figure 6.7B and a total of 1,000,000 simulated trees from 10,000

particles were generated. These were filtered to retain 0.05% of simulations with a distance

ε < 3987.2. One of the trees from the posterior tree set is shown in Figure 6.7C. This tree

and most other trees in the set reflect the topology and general structure of the target tree,

suggesting that the distance method and ε chosen were able to select trees with a good fit to

the target.

Only a single (neutral) model without cell death (i.e., µ = 0) and fixed sampling posi-

tions relative to the centre (i.e., db = 25 and de,a = 0.75) was considered. For this reason,

https://github.com/T-Heide/EPICC_inference
https://github.com/T-Heide/EPICC_inference
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Figure 6.7: Results of the ABC rejection algorithm applied to the tree of case C561. A) The
estimated marginal and joined posterior density distributions of the dpush parameter in the interval
[0,175] and corresponding mutations rates, m. The marginal densities of the parameters, shown
across the diagonal of the plot suggest that m ≈ 110 and dpush > 20. A weak correlation of m and
dpush can be seen in the joined posterior density (bottom left grid). The posterior mode is shown as
red (bottom left grid) and black (top right grid) dot in these plots. The estimated posterior densities
are shown by black lines. The top right grid shows the rejected (blue points) and accepted particles
(red points). B) The target tree y and C) a simulated tree z from the posterior set of trees with ε < 39.

only two parameters, the mutation rate m and pushing distance dpush were inferred. The

posterior distribution of both is shown in Figure 6.7A. These posterior distribution suggest

that simulations similar to the target tree are more likely to be observed under conditions

with weak spatial constraints (i.e., dpush > 20) at a mutation rate of m≈ 110 per gland divi-

sion. The bottom left and top right grid in Figure 6.7A show the joined posterior probability

distribution of m and dpush. This plot only shows a weak correlation of the two parameters

across the posterior distribution.

6.3.1.2 Inference of boundary driven growth in case C356

The same ABC rejection sampling was also applied to the tree of case C536 shown in Figure

6.8D. For the distance threshold, the value of ε = 760 — which identical to the final ε of the

ABC-SMC algorithm described below — was used. This allows a direct comparison of the

results both algorithms. At this ε , all accepted trees were extremely similar to the observed

tree. A representative example of a simulated tree from the posterior particle set is shown

in Figure 6.8E.

Again, only a neutral model with fixed values for µ = 0, db = 25 and de,a = 0.75 was
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Figure 6.8: Results of the ABC rejection algorithm applied to the tree of case C536 (see D). A) The
estimated posterior density distribution of the dpush parameter in the interval [0,25] and correspond-
ing mutations rates, m. The posterior mode is shown as red (bottom left grid) and black (top right
grid) dot in these plots. The top right grid shows the rejected (blue points) and accepted particles
(red points) as well as the estimated posterior density (black lines). B) As A but for the full range
of dpush ([0,175]). C) As A but for a smaller range of dpush ([0,10]). D) The target tree y. E) One
simulated tree z from the posterior set.

considered, meaning that only two parameters, m and dpush were inferred. The posterior

distribution of these two parameters is shown in Figure 6.8A. The posterior distribution

of dpush indicates clear boundary driven growth with 0 ≤ dpush ≤ 5 and a mutation rate of

m≈ 75 per gland division.

As seen in the lower right grid of Figure 6.8A the prior distribution for dpush was re-

stricted to the interval [0,25]. In this interval ≈ 0.03% of the proposed trees were accepted.

If proposals were instead drawn from the full range of the prior (i.e., [0,175]), the accep-

tance rate was with ≈ 0.0014% substantially lower (Figure 6.8B). Not a single tree with a

distance of ε < 760 simulated from particles in the range of 20 < dpush < 175 was observed,

hence reducing the total fraction of accepted trees substantially. Likewise, a narrower range

across the parameters are shown in Figure 6.8C. From the data shown, one can estimate that

over the whole distribution of the dpush parameter, approximately 1.6 · 10−5 of proposed

simulations are accepted, and to generate 500 accepted trees, one would have to simulate

> 3.2 ·107 trees.

In multivariate setups with additional parameters, the fraction of accepted particles

across the entire parameter space can become even lower. This can make inference compu-

tationally infeasible. Even in the above case, the acceptance of simulations with dpush > 20



214 Chapter 6. ABC-SMC Inference

is rare, and the resulting low number of accepted simulations would lead to a poor approx-

imation of the posterior. Alternative ABC algorithms — like the ABC-SMC algorithm by

Del Moral, Doucet, and Jasra (2012) used below — were developed for this exact reason.

6.3.2 Fixed Sampling Schema

In the two examples using the ABC rejection sampling algorithm shown before, only sim-

ulations with one subclone were considered. In the following, the number of subclones

max(i) and the corresponding clone parameters (λi ≥ 1, ti ≥ 0) will also be inferred from

the data.

6.3.2.1 General Classification Framework

ABC-SMC inference In order to select the most appropriate model, in this example, the

tree of the case C536 (Figure 6.9A), first the parameters of all considered models were in-

ferred using ABC-SMC (Figure 6.9B). In this case a fully neutral model (‘Neutral’) with

variable strength of the boundary driven growth dpush, a neutral model with additional

stochastic death ‘Neutral+Death’ and models with one or two selected subclones ‘Selec-

tion’ and ‘Selection x 2’ were considered.

The inference for each of these was run till convergence. At this point, a set of particles

from which one can estimate the posterior distribution was obtained. In Figure 6.9C the

prior and posterior distribution of dpush, the only inferred parameter of the fully neutral

model, are shown. These can be compared to the posterior obtained from the rejection ABC

described earlier (see Figure 6.8). This comparison shows that both methods agree and that

they suggest the presence of strong boundary driven growth.

Model selection A model selection procedure was then used to decide if any of the alter-

native models were more likely to generate the observed data. In brief, a random set of

parameters θ was sampled from the posterior predictive distribution of the model and used

to estimate the marginal likelihood using Monte Carlo (MC) integration in combination

with SLs (see Section 6.2.5 for details). Given the estimates of the marginal likelihood, the

AIC was used to penalise each model for the number of free parameters.

In Figure 6.9D the results of the model selection procedure for C536 are shown. Here,

number of parameters of the model k and NMLL are shown. NMLL was estimated as

−ln
∫

p(D|θ ,M)p(θ |M)dθ through MC integration across 1,000 simulations with 500

trees each. To ensure that this resulted in a reasonably accurate estimation of the NMLL,

a bootstrap of the data was applied during the estimation of the SL. The different NMLL
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Figure 6.9: ABC-SMC inference framework applied to the ML LP-WGS tree of C536. A) The target
tree of C536. B) For various models, parameters are inferred using the ABC-SMC inference. C) The
resulting posterior distributions of each model are then used to estimate the marginal likelihood of
the data at a given critical distance threshold ε . D) A model selection procedure using the AIC
was then used to select the best model (i.e., ‘Neutral’). E-H), J-M) and N-R) The best simulated
tree, the associated simulated VAF spectrum of the entire tumour, the result of clustering this with
MOBSTER and the spatial distribution of clones in space for the ‘Neutral’, ‘Neutral+Death’ and
‘Selection’ model respectively. I) The distribution of the AIC for various distances for all three fitted
models obtained from C). Q) The fraction of accepted simulations in which samples were located in
the ancestral (i.e., clone #1 ) and the selected clone (i.e., clone #2) respectively.

estimates that were obtained from the bootstrapped data are shown as violin plots around

the point estimates in Figure 6.9D. In this case, no overlap of the bootstrapped distributions

existed, demonstrating that inaccuracies of the MC integration were negligible in this case.

Further, it can be seen that virtually no difference between the ‘Neutral’ and ‘Selection’

model with regard to the likelihood to observe matching trees under the two models existed.

For the ‘Neutral + Death’ model, the marginal likelihood to generate matching data was

even lower than for the less complex ‘Neutral’ model, a effect that is sometimes referred

to as Bayesian Occam’s razor (Murray and Ghahramani 2005). After penalisation for the

number of free parameters of each model, the simplest ‘Neutral’ model was selected. To
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test whether this pattern was consistent for different distance thresholds ε , identical values

were also calculated for a range of values. The results of this procedure are shown in Figure

6.9I, indicating that the Neutral model was consistently preferred over all alternative models

for a wide range of ε .

Best model fits and additional statistics In Figure 6.9E, 6.9J and 6.9N simulated trees with

the smallest distance to the target tree (Figure 6.9A) for the ‘Neutral’, ‘Neutral + Death’ and

‘Selection’ model are shown respectively. All of these were essentially indistinguishable

from the target tree. This was, as shown in Figure S.127 (page 319), also true for the

accepted trees in general. For each of the simulations from which the simulated trees were

generated, a ‘synthetic tumour bulk sample’, with several clonal variants equivalent to the

ones present in the sample tree, was simulated. These are shown in Figure 6.9F, 6.9K and

6.9O for each of the three trees respectively. In each of these Figures, variants are coloured

by the actual clone or combination of these in which they were present. As seen in Figure

6.9F, around 90% of the simulated variants detected at a coverage of 100x are from the

clonal cluster, with the remaining mass being located in the subclonal power-law tail. A

similar pattern can be seen for the simulation with stochastic death (i.e., ‘Neutral+Death’)

as shown in Figure 6.9K. Due to the different scaling of the tail in the presence of death, a

slightly larger number of variants are present within the tail. From the VAF spectrum of the

‘Selection’ model, it is evident that the subclone effectively swept through the population,

with a small number of ‘hitchhiker mutations’ present at a VAF > 0.45. This subclonal

sweep can makes the obtained observations ‘effectively neutral’.

Consistent, with these observations, the MOBSTER clustering method (Caravagna et

al. 2020) correctly identified the presence of a neutral tail and the corresponding fraction of

mutations for the two neutral simulations (Figure 6.9G, 6.9L) as well as for the essentially

neutral simulation of the ‘Selection’ model (Figure 6.9Q). The spatial extend of simulated

clones, and the locations of the individual samples are shown in Figure 6.9H, 6.9M and

6.9R for the three simulations respectively. From Figure 6.9R, it can be seen that none of

the samples were taken from the ancestral clone (blue), which is consistent with the general

pattern across all accepted simulations (Figure 6.9Q).

6.3.2.2 An Example of a Selected Subclone - C539

In contrast to this neutral case, the inference on the case C539, which was previously iden-

tified to contain an activating KRAS mutation (p.G12C) and associated elongated internal
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edge (see Figure 6.10A), suggested the presence of a selected subclone (Figure 6.10B).

In addition to the three models considered in the example of C536 and in all other cases,

various additional models were explored in this case (i.e., one subclone plus death, two sub-

clones and two subclones plus death). While the model with two subclones and death had

the lowest NMLL, after penalisation for the number of parameters using the AIC, the model

with one subclone was selected consistently over the alternative model (Figure 6.10C). The

best-fitting simulations of three selected models — neutral, one subclone and two subclones

— are shown in Figures 6.10D,H&L respectively.

Figure 6.10: ABC-SMC inference framework applied to ML LP-WGS tree of C539. A) The target
tree (WGS&LP) of C539. B) Model selection indicates that the preferred model is ‘Selection’ (i.e.,
one subclone). C) This is consistently the case over a wide range of ε . D-G) The simulated neutral
tree closest to the target tree. E) The best simulation with one subclone. F) The best simulation with
two subclones. G-K) Proportion of times individual samples fall into a given clone for simulations
with one subclone. L-O) Like G-K for the model with two subclones. P&Q) The fraction of sim-
ulations in which each sample was associated with a given clone for the model with one and two
subclones respectively.
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Neutral model As seen in 6.10D the neutral model, indeed provided a poor fit to the target.

While a substantially elongated internal edge, similar to that of the target, was present, the

overall structure of the resulting trees was inconsistent with that of the target. From the

simulated global VAF (Figure 6.10E) a shift of non-selected variants to a higher frequency

resulting from stochastic drift can be seen. This pattern does not fit the expected power-

law distribution and consequently gets detected by Mobster as a subclonal cluster (Figure

6.10F). Such extreme drift is very unlikely to occur, which is reflected by the very low

marginal-likelihood (Figure 6.10B).

Model with one subclone The model with one selected subclone (Figure 6.10G) instead

resulted in simulated trees reasonably similar to the target. From the sample locations drawn

into the simulated tumour (Figure 6.10K), it can be seen that the samples from regions

A&B were both located within the subclone and the corresponding edge of the simulated

tree shown in Figure 6.10H is highlighted by the label ‘Driver 1’. Figure 6.10P shows the

fraction of accepted simulations in which each sample was located within the two clones

(i.e., the ancestral clone and the subclone). From this summary of the accepted particles,

it can be seen that all samples from regions A&B were consistently assumed to be located

within the subclone and samples from C&D within the background clone. The simulated

global VAF spectrum also showed clear evidence for the presence of a selected subclone

(Figure 6.10I&J), which would likely be detected in a representative sample of the entire

tumour.

Model with two subclones Finally, Figure 6.10L shows the best fit obtained from the

model with two selected subclones. Here the edge of the clade formed by samples from

regions C&D is explained through the introduction of a second selected subclone. This

simulated driver is as highlighted by the ‘Driver 2’ annotation in the tree. In the instance

shown here, samples from region B, except for sample B1 G3, were located in the ancestral

clone (blue), samples from A within the first subclone (red) and samples from regions C&D

within the second subclone (green) (Figure 6.10O).

Again, Figure 6.10Q shows that this is a pattern that was generally supported by the

posterior set of simulated trees, with the majority of representative bulk samples obtained

from the tumour showing the presence of selected subclones similar to those in Figure 6.10

M&N.
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Figure 6.11: Result of ABC-SMC inference for the WGS tree of C539. A) Target tree of C539
containing only deeply sequenced WGS samples. B) The result of the model selection indicates that
the model with one subclone (‘Selection’) and two subclones (‘Selection x 2’) provide a reasonable
explanation of the data. After penalisation of the models for their respective complexity with AIC the
‘Selection’ model is picked. C) The best fit of the ‘Selection’ model. D) The posterior distribution
of the parameters for both the models fitted to the WGS tree and the LP-WGS tree also including the
LP-WGS samples (see Figure 6.10).
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Posterior distributions To evaluate whether the assignment of the LP-WGS sequenced

samples could have potentially altered the results of the inference and subsequent model

selection; the same procedure was also applied to the trees containing only the deeply se-

quenced WGS samples (Figure 6.11A).

Reassuringly, the inference obtained very similar results from this tree in terms of

both i) the selected model (Figure 6.11B) and the inferred posterior distribution of model

parameters (Figure 6.11D). Figure 6.11C shows a representative example of a simulated

tree from the posterior tree set of the ‘Selection’ model, which again has a similar structure

to those inferred from the trees that included LP-WGS samples (see Figure 6.10H).

6.3.2.3 Model Selection Results Across the EPICC Cohort

In order to establish how many of the analysed cases exhibited evidence of subclonal se-

lection, the ABC-SMC inference — described for two representative cases above — was

applied to the entire cohort. Many different criteria can be used for the selection of models,

and here, three different criteria were used, the marginal likelihood, the AIC and the AIC

with a minimum discriminatory power of ∆AIC > 4. Each of these penalises the model

complexity differently. The result of the number of times each of the tested models was

selected based on these criteria is summarized in Figure 6.12.
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Figure 6.12: Summary of model selection results from ABC-SMC with the fixed sampling setup.
The results shown are based on the two tree sets (WGS and LP+WGS), using different model se-
lection criteria. In order of increasing penalty, these are the marginal likelihood (ML), the AIC and
lastly ∆AIC where only models with a minimum difference ∆AIC > 4 were classified.

Marginal likelihood As expected, given the increased flexibility of the non-neutral models,

the marginal-likelihood often selected more complex models with multiple subclones over

the neutral ones. This was especially the case in the absence of additional LP-WGS samples

(1/27 neutral, 9/27 one subclone, 17/27 two subclones), but also for the trees in which the

LP-WGS samples were included (1/27 neutral, 16/27 one subclone, 4/27 two subclones).
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Consistent with the previously described results, the addition of stochastic death4 never

provided a better description of the data compared to the alternative models. The two cases,

C544 and C555, in which the marginal likelihoods of the ‘Neutral + Death’ model were

lower, differences were within the error of the MC integration (see Figure S.137, page 325

and Figure S.138, page 326). This observation makes sense in light of the tissue architecture

of colorectal cancers, which are composed of individual crypts with multiple, closely related

stem cells.

AIC After penalising the different model for the model complexity using AIC = 2k−

2ln(L), in ≈ 40% (11/27) of cases, the neutral model was preferred over the alternative

models, suggesting that in the remaining ≈ 60% some structures of the trees required sub-

clonal selection to be explained. In only one case, C518 (see Figure S.136, page 324), a

model with two subclones was selected. I next assessed whether trees were consistently

classified as neutral or non-neutral for both available tree sets. As shown in Figure 6.13 this

appeared to be the case for the majority of cases (18/26, ≈ 70%). Still, four cases (C559,

C562, C543, C560) were classified as neutral when using the WGS trees and non-neutral

when using the WGS & LP-WGS samples. The opposite was the cases for four other cases

(C544, C528, C530 and C554).
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Figure 6.13: Agreement of the model selection based on LP+WGS sample and WGS sample trees
for the fixed sampling layout. Model sets with ∆AIC > 4 are highlighted by bold text within the
tiles.

A review of the corresponding model selection data (see Figure S.128-S.135, page

320-323) showed that for all but C559 and C562 the differences in the AIC between models

was very small (i.e., < 4). This indicates that the best model was only marginally preferable

over the alternative one, and as such, the less complex neutral model might be preferred

over the more complex model in C543, C560 (∆AIC < 4) as well as C544, C528, C530

4Tested on the ML LP-WGS trees only.
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and C554 (i.e., all cases where the addition of LP-WGS lead to classification as neutral). In

this case, 16/26 or ≈ 50% of cases would be classified as neutral. For, C559, one of the

two cases in which the errors of the MC integration did not explain the differences in model

selection, the more complex ‘Selection’ model indeed provide a much better explanation of

the observed data (Figure S.139, page 327). Why the addition of a single LP-WGSsample

to the case of C562 had such a drastic effect on the selected model (Figure S.140, page

328) is unclear. Most like this resulted from overfitting despite the penalisation using AIC.

In general, results of model selection obtained for the two different tree sets were either

identical or explainable by small insignificant differences in the AIC.

I also tested whether cases inferred to be neutral had a lower number of samples on

average, as this could indicate the lack of power to detect the presence of selection in these

cases. Reassuringly, in line with the relative consistency of the results of the ABC-SMC

classification of cases across both datasets, no such differences were observed (Figure 6.14),
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Figure 6.14: Relationship of the number of samples on the selected model for the fixed sampling
setup. A) Shows that for neither of the two datasets a significant difference in the number of available
samples existed between the cases classified as neutral (’Neutral’) and non-neutral (’Selection’)
for the inference using the fixed sampling scheme. This suggests that insufficient power did not
cause the classification of a large number of cases as ‘Neutral’. B) The same, but with all samples
where discriminatory power was insufficient to choose between two or more alternative model (i.e.,
∆AIC ≤ 4) shown as ‘Undecided’. Again, no difference in the number of samples between cases
classified as neutral and non-neutral was evident.
∗ Cancer samples only.

6.3.2.4 Posterior Model Parameters

While the differences in the selected model were reasonably small for both datasets (i.e.,

WGS and ML LP-WGS trees), the inclusion of the LP-WGS samples into the inference led

to some differences in the inferred posterior distribution of the parameters. These distribu-

tions are summarized for all cases in Figure 6.15. As shown in this figure, the ABC-SMC

inference suggested that the data supported a model of boundary driven growth in a subset

of cases5 (i.e., 11/27 ≈ 41%) and non-boundary driven growth in other cases6 (i.e., 7/27
5C536, C532, C544, C552, C554, C548, C543, C559, C538, C549, and C539
6C561, C530, C528, C522, C550, C551, and C518
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≈ 26%).
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Figure 6.15: Marginal posterior distribution of inferred parameters obtained from the ABC-SMC
using the fixed sampling setup. For the parameter estimates of the width of the growing outer rim
dpush a smaller window (0,50) of the posterior is shown (fourth row). Mutation rates m with a value
over 250 (i.e., cases with MSI) are truncated (indicated by a small triangle). Abbreviations: m muta-
tion rate, dpush width of growing edge, λi birthrate of subclone i and ti start time of subclone i. The
lines indicate the central 90% intervals of the marginal posterior distribution, dots the multivariate
estimates of the maximum a posteriori probability.

Secondly, the posterior on the birthrates of subclones was in general extremely wide. In

light of the sampling scheme used, this makes sense as the information on the spatial extent

of an expanded subclone was severely limited. Essentially, only the number of regions over

which a subclone spreads can be identified, leaving a significant uncertainty in the actual

clone size. As this size of a clone, in combination with ti, provides information on the value

of λi, the large prediction interval observed are expected.

A high level overview of how the inferred parameter and subclones are related to over-

all structure of the trees, is shown in Figure S.154 (page 334, WGS trees) and Figure S.153

(page 333, LP-WGS trees). From these two figures, it is obvious that the introduction of
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selected subclones explained different aspects of the trees incompatible with the neutral

model. This is foremost the presence of elongated internal edges, like in C539 or C538,

but also the presence of clade formed by samples from different regions with a more recent

MRCA as seen, for example, in C518.

6.3.3 Variable Sampling & Overdispersion

Further evaluation of the posterior trees derived using the fixed sampling layout showed that,

while the structure of the accepted trees was generally similar to the ones observed, specific

aspects of the tree topology and shape were not. For example, compared to internal edges,

the length of terminal edges was often consistently too long (see for example Figure 6.10H

or 6.10L). I suspected that such differences would be reduced by locating the sampling

regions closer to the edge of the simulated tumour, which some simple tests confirmed.

Further, questions regarding the effect of the relative sampling position along the edge of

the tumour arose, especially whether moving two sampling regions closer to each other

would emulate features otherwise attributed to subclonal selection (e.g., clades formed by

two adjacent regions).

Variable sampling model For this reason, I derived an alternative simulated sampling

schema that took the uncertainty of the conducted sampling layout into consideration. The

details of this are outlined in Section 6.2.2 above, but in brief, a Dirichlet prior on the angle

φ between sampling regions and a Beta prior on their distance from the edge de were added

to the model. The average position relative to the edge was assumed to be around 90%,

which upon reconsideration of the actual sample collection performed appeared to be more

realistic. The average angular position was again assumed to be at 90, 180, 270 and 360

degrees.

In addition to this variation of the sampling positions, I also allowed for increased

variability of individual edge lengths within the tree. This was motivated by the assumption

that spatio-temporal variations of the mutation rate or drift within the stem-cell compart-

ment of glands could cause such an overdispersion to arise. For this I replaced the Pois-

son distributed number of mutations accumulated per generation with a Negative-Binomial

distribution. The Negative-Binomial distribution was parametrised so that an additional pa-

rameter ψ ≥ 0 would control the amount of overdispersion. This additional parameter ψ

was then also inferred as part of the ABC-SMC. For ψ = 0, the distribution of edge length

is equivalent to a Poisson distribution and as ψ increases, the length of individual edges in
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the tree become more variable.

6.3.3.1 Results of Model Selection

Again, the classification and inference framework — this time using the modified version

of the simulated sampling — was applied to both WGS and ML LP-WGS trees from the

entire cohort. The results of the model selection for the alternative model are summarised in

Figures 6.16 and 6.17. Summary plots of the results in each case are shown in the Figures

S.164-S.192 (page 340-368).

WGS only WGS & LP

ML AIC ∆ AIC ML AIC ∆ AIC
0

10

20

0

10

20

Statistic

N
um

be
r 

of
 c

as
es

Model

Undecided
Selection x 2
Selection
Neutral

Variable Sampling

Figure 6.16: Summary of model selection results from ABC-SMC with the variable sampling setup.
The results shown are based on the two tree sets (WGS and LP+WGS), using different model se-
lection criteria. In order of increasing penalty, these are the marginal likelihood (ML), the AIC and
lastly ∆AIC where only models with a minimum difference ∆AIC > 4 were classified.

When using this alternative setup, a substantially larger fraction of cases were con-

sidered to be compatible with the neutral model. Specifically, 16/27 (≈ 59%) and 15/27

(≈ 55%) of cases were classified as neutral based on the WGS and ML LP-WGS trees re-

spectively. An even larger fraction of cases — 10/16 (≈ 62%) and 13/17 (≈ 76%) of cases

respectively — of those in which the ∆AIC > 4 suggested sufficient discriminatory power,

were classified as neutral.

Comparison of the different classifications of individual cases showed that these were

generally consistent with results obtained previously (Figure 6.17). Notably, the six cases7,

which were specifically discussed before (i.e., undecidable with regard to the preferred

model), were classified as neutral in this setup. As such, no unexpected changes of the

general classifications did occur, but the overall structure of the simulated trees was more

similar to the observed ones.

Finally, I assessed, as before, whether the number of tips differed significantly between

cases classified as neutral and non-neutral to elucidate whether the number of tips might

have limited the ability to classify cases. As shown in Figure 6.18, this was again not the

7C543, C560, C544, C528, C530, and C554
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Figure 6.17: Agreement of the model selection based on LP+WGS sample and WGS sample trees
for both sampling setups. Model sets with ∆AIC > 4 are highlighted by bold text within the tiles.

case, indicating that the number of assessed samples did not generally limit the ability to

detect selection.
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Figure 6.18: Relationship of the number of samples on the selected model. A) Shows that for
neither of the two datasets a significant difference in the number of available samples existed between
the cases classified as neutral (‘Neutral’) and non-neutral (‘Selection’) for the inference using the
variable sampling scheme. This suggests that insufficient power did not cause the classification
of a large number of cases as ‘Neutral’. B) The same, but with all samples where discriminatory
power was insufficient to choose between two or more alternative models (i.e., ∆AIC≤ 4) shown as
‘Undecided’. Again, no difference in the number of samples between cases classified as neutral and
non-neutral was evident.
∗ Cancer samples only.

Summarising, the results from the classification obtained using the ABC-SMC infer-

ence suggest that the trees observed in ≈ 40% of cases indicated the presence of a selected

subclone in at least one of the regions. This is between the estimates of Williams et al.

(2016) of ≈ 60% of analysed colon cancers with deviations from the expected VAF spec-

trum and the≈ 20% of analysed cases reported by Williams et al. (2018b). I applied the 1/ f

test statistic to simulations from the posterior of the ABC-SMC in each case and observed

that both, cases with boundary driven growth (i.e., dpush < 10) and subclonal selection, fre-

quently had values of R2 < 0.98 (see Figure S.157A, page 336 and Figure S.158A-B, page



6.3. Results 227

337). This indicated that the 1/ f statistic used by Williams et al. (2016) might also have

identified a subset of neutral colorectal cancers with non-exponential growth and provides

an explanation for the slightly higher fraction of non-neutral tumour identified by them. This

has indeed been suggested by Wang et al. (2018a) before. Given the improved power to de-

tect selection events in the single-gland sequencing data of the EPICC cohort, the slightly

larger fraction of cases with evidence for the presence of subclonal selection compared to

the study by Williams et al. (2018b) appear reasonable.

6.3.3.2 Overdispersion and Sampling Locations

I next assessed the posterior distribution of the dispersion parameter ψ and the distribution

of the sample locations of the accepted particles to identify cases in which the added flex-

ibility of the model was required to explain the data sufficiently. The marginal posterior

distribution of ψ is shown, together with those of the other parameters, in Figure 6.21. As

seen here, the posterior distributions of ψ generally suggested that only a relatively small

amount of overdispersion was present in the data. Notable exceptions from this observation

were the cases C516, C549, C538, and C562 (see Figure 6.21, compare Figure S.155, page

335).

In two of these cases, a very small number of samples were obtained (i.e., C516 and

C562), and here the larger value of ψ only improved the fit of the edge to the sample closest

to the root of the tree. The remaining two cases with large posterior values of ψ were still

inferred to contain a selected subclone (i.e., not ‘Neutral’), suggesting that some general

variability within the tree was insufficiently explained by the introduction of a selected

subclone into the model and absorbed by increased variability of the edge lengths. While the

specific reason for this is elusive, it is important to note that the larger degree of dispersion

allowed by the model did not cause a different classification of either of these two cases

compared to the model that did not include such a parameter (see Figure 6.17).

A similar observation was made for the relative positioning of samples within the tu-

mour. Here the variability of φ and de meant that samples could have theoretically been

placed much closer to the edge of the tumour or closer to each other. If such changes in

the positioning of samples would have consistently led to improved fits of the model, these

patterns should be observable in the marginal distribution of the sample locations within the

tumour. Still, in general little deviation of the sample locations from the prior locations did

occur. A representative example of this can be seen in Figure 6.19 (C561).
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Figure 6.19: Regional sample positioning in case C561.

As for the majority of other cases, only small deviations from the prior did occur in

this case, with the mean of the region position being at the average position of the prior.

A counter-example showing a clear deviation from this pattern can be seen in the fit

of the, still inadequate, neutral model fitted to tree of C518 shown in Figure S.156 (page

336). Here, the regions A&B were consistently moved close to each other in space, thus

sampling from a clone patch with a more recent MRCA. Given the priors defined on the

positioning of samples in space, the non-neutral models were still favoured over the neutral

model, leading to the selection of the model with two subclones in this specific case.

In summary, these results confirm that while the relative sampling positions were rel-

atively unimportant in many cases, a couple of exceptions did exist. In these, non-neutral

models were sometimes preferred to explain the observed patterns (e.g., C518), thus leaving

the question of whether alternative growth models (e.g., 3D or growth along existing spatial
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structures) would explain the observed trees better.

6.3.3.3 Subclonal dN/dS After ABC-SMC Classification

While the general consistency of the ABC-SMC across sampling setups and different

datasets was on its own reassuring, I next sought to test if an excess of non-synonymous

mutations suggested the presence of subclones in the cases classified as ‘Neutral’. For this,

an approach similar to the one used by Tarabichi et al. (2018) in their criticism of the 1/ f

method was followed. In brief, subclonal variants identified in the entire cohort were split

based on the microsatellite stability of cases and dN/dS ratios for various sets of genes

estimated with the dndscv model (Martincorena et al. 2017). Based on the results of the

model selection of the ABC-SMC inference, all cases were divided into a ‘Neutral’ and

‘Non-Neutral’ group. dN/dS ratios were then calculated on the subclonal variants of these

two groups. A summary of this analysis can be seen in Figure 6.20A and the obtained

dN/dS estimates for the subclonal variants in the different sets of patients are summarised

in Figure 6.20B.

Figure 6.20: dN/dS estimates from subclonal variants based on ABC-SMC classification. A) The set
of all subclonal variants was split based on the model selection performed by the by the ABC-SMC
inference method.B) dN/dS estimates by dndscv (Martincorena et al. 2017) from subclonal variants
of all, MSI and MSS colorectal carcinomas (y-axis grids) for missense and truncating variants (x-axis
grids) in the entire genome (‘All’), colorectal driver genes defined by IntOGen (Martı́nez-Jiménez
et al. 2020) and a set of pan-cancer drivers from Martincorena et al. (2017). The results show a
general excess of subclonal non-synonymous variants in driver genes for MSS cases (blue arrow).
After classification of cases with the ABC-SMC inference method, evidence of positive selection
was found in those classified ‘selected’ (red arrow), but not in those classified as ‘neutral’ (black
arrows).

As seen here, subclonal dN/dS estimates of known driver genes were markedly ele-
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vated above one when all cases were analysed (blue arrow in Figure 6.20), thus indicating

the presence of subclonal selection in a subset of cases. Reassuringly, the point estimates

of the dN/dS values for which the presence of a subclone was inferred as part of the ABC-

SMC inference were even higher, consistent with the presence of a clone with a selective

advantage due to a somatic mutation (red arrow in Figure 6.20). In contrast, the dN/dS

point estimates for subclonal variants of the remaining cases (i.e., those classified as neu-

tral), was almost exactly dN/dS = 1 (black arrow in Figure 6.20). This is consistent with

the absence of selected subclones in the observed part of the tumours.

Altogether, this analysis suggests that the ABC-SMC classification was indeed able to

identify trees for which the structure suggested the presence of subclonal selection in some

parts of the tumour. While potentially underpowered due to the relatively small number of

analysed cases (27), the majority of cases (i.e.,≈ 60%) appeared to be better explained by a

very simple spatial model without subclonal selection. Consistent with this, the orthogonal

dN/dS analysis also did not reveal an excess of non-synonymous mutations. While it is

certainly possible that non-genetic drivers could have cause widespread subclonal selection,

a analysis of chromatin accessibility changes and differential expression8 using ATAC-seq

and RNA-seq conducted as part of the EPICC study did not reveal any evidence for this.

However, as mentioned before, alternative model including more complex spatial dynamics,

like immunoselection, necrosis or structures of the surrounding tissue, should certainly be

considered to assess whether these would provide a better fit to the data.

6.3.3.4 Posterior Distributions

To evaluated the posterior distribution of the individual parameters, the marginal posterior

distribution of all parameters were determined. These are summarised for both datasets and

all cases in Figure 6.21. In the following, I will discuss specific aspects of these marginal

posterior distributions.

Boundary vs non-boundary driven growth Consistent with the previous results, some

cases were found to only be compatible with boundary driven growth (see panel dpush in

Figure 6.21). Among these were 5/6 of the neutral cases9 for which the inference using the

fixed sampling setup suggested the presence of boundary driven growth (i.e., dpush ≤ 20).

Similarly, the 5 neutral cases10 for which the inference previously suggested non-boundary

8This work was done by Jacob Househam.
9C536, C532, C544, C552, and C554. Not C548.

10C522, C528, C530, C550, and C561.
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Figure 6.21: Marginal posterior distribution of inferred parameters obtained from the ABC-SMC
using the variable sampling setup. For the parameter estimates of the width of the growing outer rim
dpush a smaller window (0,50) of the posterior is shown (fourth row). Mutation rates m with a value
over 250 (i.e., MSI cases) are truncated (indicated by a small triangle). Abbreviations: ψ dispersion
parameter, m mutation rate, dpush width of growing edge, λi birthrate of subclone i and ti start time
of subclone i. The lines indicate the central 90% intervals of the marginal posterior distribution, dots
the multivariate estimates of the maximum a posteriori probability.

driven growth, were generally also so in the new variable sampling setup. One additional

case11, which previously classified as non-neutral, was also found to be consistent with

neutral boundary driven growth. In the remaining cases, wide posterior intervals suggested

that little information on the strength of boundary driven growth was contained in the data.

Mutation rates Mutations are expected to accumulate proportional to the number of alleles

(i.e. copy-numbers). For this reason, mutation rates obtained from the posterior distribution

of the m parameter were adjusted to account for the differences in the ploidy of individual

cases. After this correction, the median of the maximum a posteriori probabilitys (MAPs)

of the mutation rates in the tumours was 78.6 and 540 per gland division per diploid genome

for MSS and MSI cases respectively. Assuming an effective genome size of 2.9 · 109 base

11C537.
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pairs, this corresponds to a mutation rate of 1.35 · 10−8 and 9.31 · 10−8 per base and gland

division respectively. The relative difference of a ≈ 6.8 fold difference between MSI and

MSS cases is generally consistent with those reported previously. Still, the rates themselves

are lower than those estimated by Williams et al. (2016) and Williams et al. (2018b) from

bulk WGS data.

Previous studies have suggested that boundary driven growth, which is not part of the

model used in either of the two studies, would lead to the overestimation of mutation rates

(Fusco et al. 2016; Schreck et al. 2019). To confirm this, I tested the performance of the 1/ f

test statistic on these cases and found that in those with boundary driven growth, estimates

of the mutation rates were indeed larger than the true rates (Figure S.158C, page 337C and

S.157B, 336). Still, as the majority of cases with strong boundary driven growth had a

R2 < 0.98 the majority of these would have been expected to be excluded from the analysis

performed in Williams et al. (2016) (see Figure S.158A&B, page 337 and S.157A, page

336).

I also assessed whether a high false negative rate during the calling of mutations in

single-gland samples with Mutect2 might explain the observed discrepancy (see Figure

S.163, page 339), but found that the power to identify clonal mutations in individual sam-

ples was generally above > 90% (i.e., FNR < 0.1). It might be possible that a significant

amount of false positive low-frequency variant calls caused the estimates in previous stud-

ies to be too high. As this problem would not exist for the single-gland WGS data analysed

here and for this reason the obtained estimates might indeed be more accurate (Salcedo et al.

2020).

Subclone parameters Consistent with the previous observations, the posteriors of the

clone specific parameters λi and ti were very wide. Especially, the birthrate varied over

a large range of values. The likely reasons for this were described in detail above, but in

brief, very little information on the size of individual clones is contained in the generated

data. As this is the main measure that allows estimating λ and ti, large posterior intervals

are expected. For more precise estimates, a different sampling layout would have had to

been used.

Conclusion Assuming that the inferred estimates of dpush are informative, one would as-

sume that the absence of spatial limitations on the tumour growth might be a property that

is associated with a generally more invasive phenotype. For this reason, cases with a low
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estimate for dpush might be expected to have a worse prognosis. Likewise, the presence of

a faster-growing subclone might be indicative of a worse outcome. As the entire study was

planned as prospective study data on the outcome will be available in the future and as these

come available, evaluation of these two hypotheses should be possible.

6.3.3.5 Tree Topologies

In Figure 6.22 critical parameters of the ABC-SMC inference, as well as the classification

of cases along the trees used for the inference, are shown alongside each other. Edges of

the tree that were consistently associated with a simulated ‘Driver’ mutation in the 200 best

fitting trees are highlighted in colour for the cases classified as non-neutral. In cases where

somatic subclonal drivers were identified as part of the previous analysis, these were also

added as labels to the tree.

For a number of these highlighted (i.e., selected) edges a subclonal driver mutation

was identified. These observations suggest that the subclonal mutations in Table 6.2 had

detectable fitness effects in the respective genetic and environmental context in which they

occurred. In the following paragraphs I will discuss each of these putative driver muta-

tions in detail and in context of existing literature. In the majority of cases, this assessment

showed that the identified subclonal driver mutations did indeed provide a reasonable ex-

planation for the observed selection.

Table 6.2: Likely subclonal driver mutations identified by the ABC-SMC inference on the trees of
the EPICC cohort.

Case Gene Mutation Type Figure

C518 PTEN p.C136R Second hit of TSG S.141, page 329
C524 PIK3CA p.C378R Oncogene S.142, page 329
C525 PIK3CA p.Q546P Oncogene S.144, page 330
C531 SMAD4 p.A118V TSG S.145, page 330
C538 RNF43 p.D153∗ TSG S.146, page 330
C539 K-Ras p.G12C Oncogene S.147, page 331
C542 chr1p Loss CNA S.108, page 311

Activating K-Ras mutation Activating mutations in classic colorectal oncogenes, like K-

Ras and PIK3CA, lead to the over-activation of signalling pathways12 and are expected to

have a dominant effect. For this reason the observation of a fitness altering effect for these

mutations is not surprising.

Especially for the K-Ras p.G12C mutation observed in C539, these would be expected.

12The RAS and the PI3K/AKT pathway respectively.



234 Chapter 6. ABC-SMC Inference

A1_G4
A1_G3*

A1_G6
B1_G3*

B1_G8
B1_G6

B1_G1*

C1_G1*

D1_G8
D1_G2*
D1_G5*
D1_G1*

D1_G6
D1_G10*

5549

PTEN (p.C136R)

PTEN (p.C136R)

d_push = 27

 C518 (Selection x 2)

A1_G7*A1_G10*A1_G2*A1_G1A1_G4*

A1_G8A1_G5A1_G3*

A1_G9*

A1_G6*

B1_G8*B1_G4*B1_G1*B1_G6*B1_G5B1_G10*

B1_G2*B1_G7*
B1_G3

C1_G5C1_G3C1_G10*C1_G9C1_G8*

C1_G4*

D1_G9D1_G10*D1_G2D1_G3*

D1_G7*

446 d_push = 240

 C551 (Selection)

A1_G7

A1_G5

A1_G2*

A1_G3

1083 d_push = 66

 C562 (Selection)

A1_G1

B3_G9

B1_G7

B1_G5*

1657 d_push = 35

 C516 (Selection)

A1_G7*

B1_G9
B1_G1*

B1_G8
B1_G6*

B1_G3*
B1_G10

B1_G2*

B1_G4*

C1_G1*
C1_G7*
C1_G9*
C1_G5*
C1_G8*
C1_G10
C1_G4*
C1_G2
C1_G3

D1_G10
D1_G4

D1_G6*
D1_G1*

D1_G5*
D1_G8

D1_G7*

187

RNF43 (p.Q153*)

d_push = 34

 C538 (Selection)

A1_G8*
A1_G1

A1_G5*

A1_G7*
A1_G4

A1_G6*

B1_G6
B1_G1

B1_G7

C1_G10*
C1_G8*

C1_G9*
C1_G7

C1_G2
C1_G4*
C1_G1*

C1_G5
C1_G6*

D1_G3
D1_G7*

D1_G10*
D1_G6*
D1_G5*
D1_G9*

299

−chr1p

d_push = 32

 C542 (Selection)

A1_G4
A1_G5*

B1_G4*
B1_G8

B1_G7*
B1_G5

B1_G6*
B1_G3
B1_G1*

C1_G7

441 d_push = 31

 C549 (Selection)

A1_G4*
A1_G10*
A1_G9*
A1_G3*
A1_G5

A1_G6*
A1_G7
A1_G8

B1_G2*

B1_G3

B1_G1
B1_G9*

C1_G3
C1_G5*
C1_G1

C1_G7*
D1_G10

D1_G7*
D1_G4

D1_G5*

1331

KRAS (p.G12C)

d_push = 30

 C539 (Selection)

A1_G6*
A1_G1*

A1_G9*

B1_G4*
B1_G2
B1_G1

B1_G3

C1_G3*
C1_G9

C1_G7
C1_G2*

D1_G8
D1_G6*

D1_G10
D1_G4*

114

PIK3CA (p.Q546P)

d_push = 26

 C525 (Selection)

A1_G6*A1_G9*A1_G1A1_G2*A1_G8*A1_G3*A1_G7*A1_G10A1_G5*

B1_G1*B1_G3*B1_G5*B1_G4*B1_G9*B1_G7B1_G8

B1_G10B1_G2*

C1_G8
C1_G2*C1_G1*C1_G4C1_G3*C1_G9*C1_G10*C1_G7C1_G5*D1_G3* D1_G1D1_G10D1_G2*

D1_G9*D1_G5

216

ARID1A (p.Q1142Dfs*22)

d_push = 17

 C559 (Selection)

A1_G10
A1_G6*

A1_G5*
A1_G1*

A1_G7

A1_G8*

B1_G8
B1_G2*

B1_G3
B1_G9*

B1_G4*
B1_G5

B1_G1*

C1_G7
C1_G8*

C1_G1
C1_G2

C1_G9*
C1_G4

C1_G5*

363

SMAD4 (p.A118V)

PIK3CA (p.Q546K)

d_push = 14

 C531.2 (Selection)

B1_G6
B1_G1*

B1_G5
B1_G4

B1_G3*

C1_G2

C1_G5

C1_G8
C1_G10

C1_G4
D1_G10

D1_G1*

D1_G5

319

PIK3CA (p.C378R)

PIK3CA (p.R88Q)

d_push = 12

 C524 (Selection)

A1_G1

A1_G6

A1_G9

C1_G6

C1_G8

D1_G10

D1_G2

D1_G7

200 d_push = 210

 C522 (Neutral)

A1_G1*A1_G9A1_G5*

A1_G8A1_G4*

B1_G6B1_G7*
B1_G9B1_G10*B1_G1*B1_G5*B1_G3*

B1_G8B1_G2*
B1_G4*

C1_G1

C1_G10C1_G9*
C1_G6*C1_G4*

D1_G5D1_G6

D1_G10D1_G3*
D1_G8*D1_G1*D1_G9*D1_G4*

356 d_push = 200

 C561 (Neutral)

A1_G10*

A1_G7

B1_G1*
B1_G3*
B1_G10*
B1_G7*

B1_G2
B1_G9

C1_G10
C1_G3*

C1_G6*
C1_G9

C1_G4*
C1_G1*
C1_G2*

318 d_push = 180

 C528 (Neutral)

B1_G9*

C1_G7

C1_G5

C1_G9*

D1_G1

D1_G3*

D1_G6*

D1_G8*

D1_G5

463 d_push = 170

 C550 (Neutral)

A1_G1

A1_G4A1_G6A1_G10*

A1_G8*A1_G2*A1_G3*A1_G7*A1_G9A1_G5*
B1_G4*B1_G9*B1_G6*

B1_G7B1_G1*

B1_G2

C1_G6*
C1_G7C1_G5*

C1_G4*C1_G2*

C1_G3*

D1_G1D1_G2D1_G5D1_G3*

D1_G9*D1_G7*D1_G10

251 d_push = 150

 C530 (Neutral)

A1_G1*
A1_G4

A1_G7*
A1_G10

A1_G8*
A1_G5*

B1_G10
B1_G4

B1_G8*
B1_G7*

B1_G9*
B1_G3*

B1_G2*
C1_G6*

C1_G3
C1_G7

C1_G1*
C1_G10*

C1_G4*

D1_G1
D1_G3*
D1_G8*
D1_G2*

D1_G9
D1_G7*

D1_G6*
2414 d_push = 17

 C548 (Neutral)

D1_G1

D1_G9

D1_G6*

D1_G8

D1_G4*

313 d_push = 16

 C555 (Neutral)

A1_G10
A1_G6

A1_G4*
A1_G5*

B1_G7
B1_G6*
B1_G5*

B1_G9*
B1_G10*

B1_G2*
B1_G3

B1_G8*
B1_G1*

C1_G4
C1_G5*

C1_G9*
C1_G6

C1_G2*
C1_G3*

C1_G7*

C1_G8*

D1_G10*

195 d_push = 16

 C560 (Neutral)

A1_G1
A1_G7

A1_G5*
A1_G8*

B1_G2
B1_G5

B1_G9*

B1_G10
B1_G1

B1_G8*

C1_G10*
C1_G4*

129 d_push = 5.3

 C543.2 (Neutral)

B1_G8
B1_G6

B1_G9

C1_G3*
C1_G5
C1_G8

C1_G1
C1_G6*

D1_G4
D1_G1

D1_G2*

754

FBXW7 (p.R313*)

d_push = 3.2

 C554 (Neutral)

A1_G7*
A1_G9*

A1_G3
A1_G2*
A1_G1*

A1_G4

A1_G5
A1_G10*

B1_G8*
B1_G7*

B1_G10
B1_G3*

C1_G4*
C1_G9*

C1_G10
C1_G6

C1_G7
C1_G2*

D1_G3*
D1_G8

D1_G4*

393

BIRC6 (p.L4578P)

d_push = 2.2

 C532 (Neutral)

A1_G2*

C1_G9

C1_G3

C1_G5*

D1_G5

D1_G7

D1_G3*

D1_G9*

D1_G8*

1841 d_push = 2.1

 C552 (Neutral)

B1_G1

B1_G9

D1_G8

D1_G9

D1_G4

D1_G1

1419

ARID1B (p.R1795C)

d_push = 1.8

 C536 (Neutral)

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221 d_push = 1.4

 C544 (Neutral)

A1_G9*
A1_G1
A1_G10

A1_G7*
B1_G7

B1_G9*

C1_G4*
C1_G7*

C1_G1
C1_G10

C1_G9*

C1_G2*
C1_G5

C1_G8*

D1_G1

228

PIK3CA (p.E545K)

d_push = 1.2

 C537 (Neutral)

0.1 0.2 0.3 0.4 0.5
Selection

Figure 6.22: ML LP-WGS trees and associated results of ABC-SMC inference. The classification
of cases based on the AIC (i.e., ‘Neutral’, ‘Selection’ and ‘Selection x2’) are shown above trees. The
MAP estimates of the strength of boundary driven growth for the selected model are shown below
the trees. The frequency colours edges of the trees that these were associated with the introduced
subclonal ‘Driver’ mutation in the 200 best fitting trees from the posterior distribution (legend in the
bottom left).
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Alterations of RAS genes are the single most common oncogenic mutation acquired in var-

ious human malignancies (Bos 1989). In colorectal cancers p.G12D, p.G12V, and p.G13D

mutations are typically found to be present. A smaller subset of ≈ 3% of cases also har-

bour the p.G12C mutation (Prior, Lewis, and Mattos 2012) observed in C539. The most

likely explanation for these tissue-specific differences is that the specific substitutions — a

C[C>A]A mutation for the p.G12C K-Ras mutation — are more likely to occur under spe-

cific mutagenic processes active in these tumour entities (Prior, Lewis, and Mattos 2012;

Temko et al. 2018). In the case of C539, the analysis of mutational signatures indicated

the presence of a relatively large number of C>A mutations (Figure S.159, page 337), thus

providing a reasonable explanation for the presence of the relatively unusual K-Ras p.G12C

mutation.

Since, the K-Ras mutation arose in the context of a full loss of APC and p53 activity

this also provided a nice counter-example to the classic adenoma-carcinoma sequence. This

model of CRC evolution suggests that oncogenic K-Ras mutations are important for the

initiation of adenomas and that they typically occur before p53 mutations (Vogelstein et al.

2013). Summarised the analysis showed that activating subclonal K-Ras mutations also

lead to a substantial fitness effects in an already established colorectal carcinoma.

PIK3CA mutations Interestingly, neither of the two PIK3CA mutation for which a signif-

icant fitness effect was inferred (i.e., p.C378R and p.Q546P) was one of the most common

‘hotspot mutations’ (i.e., p.E542K, p.E545K or H1047R). Nevertheless, previous screen-

ing of the phenotypic effects of such rarer PIK3CA mutations showed, these can also have

growth-promoting activity (Dogruluk et al. 2015). The data analysed here suggested that, in

the genetic background of a activating K-Ras mutation, these two variants cause significant

phenotypic effects in vivo.

Still, while the lack of phenotypic effects might explain the absence of selection for

some of the rare PIK3CA variants (i.e., p.R88Q and p.G118D), the p.Q546K mutation ob-

served in C531 was previously found to have growth-promoting effects. The phenotypic

effect of this p.Q546K PIK3CA variant was indeed predicted to be similar to the p.Q546P

PIK3CA variant for which clear evidence of selection was identified in C525. While it is

certainly possible that the environmental or genetic background of this specific case played

a role, it seems to be more likely that the variant arose very recently within the carcinoma

and that selection did not have sufficient time to act on this variant. In this case, it would
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be expected that only a small increase of the edge length would occur. This in turn might

cause problems to identify deviations from the neutral expectation.

A similar lack of power to detect selection might explain why the p.H1047Q and

p.545K PIK3CA mutations found in C544 and C537 respectively, were not identified. Alter-

natively, the absence of a co-occurring K-Ras mutations might have reduced the phenotypic

effect of these PI3KCA mutations. This hypothesis is also supported by observations made

by others (e.g., Wang et al. 2013a; Stintzing and Lenz 2013; Phipps, Makar, and Newcomb

2013; Green, Trejo, and McMahon 2015; Oda et al. 2008; Wang et al. 2018b). This obser-

vation is also supported by a recent paper that found a co-mutation of K-Ras and PIK3CA,

but not PIK3CA alone to be associated with poor overall survival (Luo et al. 2020)

PTEN mutation in C518 In case of C518, the inference suggested that the presence of

a PTEN p.C136R mutation caused selection of the mutated subclone. Importantly, this

subclonal PTEN mutation occurred in the background of a clonal truncating PTEN mutation

(p.K267Rfs∗9) that should have caused the loss of the alternate allele. Consistent with

this a separate analysis of the RNA-seq data13 from the EPICC cohort confirmed that the

expression of the second allele was completely lost in samples from regions A and B of the

tumour (see Figure S.160, page 338).

The identified PTEN p.C136R mutation causes a substitution close to the NG2-terminal

phosphatase domain of the PTEN protein (Han et al. 2000). However, the mutation is not

within one of the frequently mutated hotspots of the protein (Bonneau and Longy 2000;

Dillon and Miller 2014). Still, similar PTEN mutations (i.e., p.C136Y) have previously

been found to disrupt the phosphatase activity of the PTEN protein itself (Han et al. 2000).

Further evidence for the phenotypic effect of the PTEN p.C136R mutation comes from the

observation that germline PTEN p.C136R mutations are associated with Cowden syndrome

— a genetic disease caused by germline PTEN mutations — as well as the demonstration

of a reduced stability and loss of phosphatase activity of the encoded protein in vitro (He

et al. 2013). Taken together, it seems likely that the second (subclonal) PTEN mutation led

to the complete loss of PTEN activity.

PTEN itself is considered a CRC tumour suppressor gene. It inhibits the conversion

of phosphatidylinositol-4,5-bisphosphate to phosphatidylinositol-3,4,5-triphosphate (PIP3)

(Molinari and Frattini 2014). Loss of PTEN activity, thus causes the accumulation of

13This work was done by Jacob Househam.
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PIP3 within the cells, leading to the over-activation of downstream PI3K pathway (Song,

Salmena, and Pandolfi 2012). This activation of the PI3K pathway, mediated through its

various targets, is associated with increased proliferation, inhibition of cell death, and stim-

ulation of angiogenesis (Song, Salmena, and Pandolfi 2012; Molinari and Frattini 2014).

Summarised, the subclonal PTEN mutation identified in C518 provides another example of

subclonal alterations of the PI3K pathway in the analysed CRCs.

SMAD4 mutation in C531 The ABC-SMC inference applied to the tree of C531 suggested

the presence of a putatively selected subclone in region B of the tumour. The assessment of

potential somatic driver alterations in genes reported in the IntOGen database revealed the

presence of a single SMAD4 mutation.

Mutations in SMAD4 occur in about 8.5% of CRCs (Fleming et al. 2013). In the

EPICC cohort three clonal SMAD4 variants in CRCs with MSI were identified in addition

to the SMAD4 p.A118V mutation in C531. SMAD4 mutations have previously been found

to be associated with poor outcome in a metastatic setting (Alazzouzi et al. 2005; Mizuno

et al. 2018; Kawaguchi et al. 2019), chemo-resistance to 5-FU (Zhang et al. 2014a), and

resistance to Cetuximab (Lin et al. 2019). These studies highlight the general importance

of SMAD4 loss in the late-stage evolution of CRCs. Genes of the SMAD family of genes

are transcription factors that control the expression of genes as part of the TGF-β signalling

pathway. Activation of TFG-β signalling has tumour suppressive and metastasis promoting

effects (Bierie and Moses 2006).

The formation of SMAD2-4 complexes is necessary for the transduction of growth-

inhibiting effects of TGF-β signalling in the nucleus and their loss appears to cause a shift

towards negative effects of TGF-β signalling in CRC (Zhang et al. 2010). The specific sub-

clonal driver mutation observed in C531 (i.e., SMAD4 p.A118V), occurred in a frequently

mutated position of the gene and is likely pathogenic (Iacobuzio-Donahue et al. 2004; Jones

et al. 2008; Fleming et al. 2013).

Still, the mutation only affected one of the two SMAD4 alleles (see Figure S.145, page

330). Some previous studies indicate that mutations of genes of the SMAD family can act

dominantly-negative (Hoodless et al. 1999; Xu et al. 2000; Alberici et al. 2006), but bi-

allelic mutation of SMAD4 are frequently observed in cancer genomic data (Fleming et al.

2012). This suggests that the mutation or loss of the second allele would likely be required.

For this reason, I assessed the expression of SMAD4 in general and the SMAD4 p.A118V
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variant specifically in all the samples of C531. Surprisingly, this analysis of the RNA-

seq data of the EPICC project showed that virtually no expression of SMAD4 occurred in

samples from the mutated region B (see Figure S.161, page 338). This complete loss of

SMAD4 expression — potentially due to the down-regulation of expression by a second

independent event — in combination with the pathogenic SMAD4 mutation, suggests that

a complete loss of SMAD4 activity occurred in the corresponding lineage of the tumour.

This provides a reasonable explanation for the observed subclonal selection in region B.

RNF43 mutation in C538 Another example of a subclonal mutation of a known CRC

driver gene on an edge for which the ABC-SMC suggested the presence of a positively se-

lected alteration was identified in C538. Here all samples found in region B and one sample

from region A (A1 G7) were part of a putatively selected subclone and an associated trun-

cating mutation of RNF43 (p.Q153∗) was identified. Truncating mutations of RNF43 are

relatively frequently observed in colorectal, endometrial, ovarian and pancreatic carcinoma

(Jiang et al. 2013; Zou et al. 2013; Ryland et al. 2013; Giannakis et al. 2014).

RNF43, together with ZNRF3, typically plays a vital role in the inhibition of Wnt

signalling through the degradation of Wnt receptors of the Frizzled family (Koo et al. 2012;

Jiang et al. 2015; Tsukiyama et al. 2015). Since the expression of RNF43 and ZNRF3 is

induced by Wnt/β-catenin signalling itself, these proteins provide a negative feedback loop

required for this signalling cascade. The deletion of both RNF43 and ZNRF3 was shown

experimentally to induce tumour formation through activation of the Wnt pathway (Koo

et al. 2012). This activation of the Wnt pathway is also thought to be the reason APC loss,

the most common driver mutation of CRCs, is selectively advantageous. Consistent with

this APC and RNF43 mutations were previously found to be mutually exclusive in CRCs

(Giannakis et al. 2014). The degradation of FZD receptors by RNF43/ZNRF3 is thought

to be caused by the activation of endocytosis through ubiquitination by the RING domain

of these proteins (Hao et al. 2012; Koo et al. 2012) and the recognition of Frizzled family

receptors is mediated by DVL binding to the DIR domain of RNF43 and ZNRF3 (Jiang

et al. 2015).

The variant observed in C531 is predicted to cause the loss of both of these domains

(i.e., DIR and RING). While such a mutation certainly leads to the loss of function of

the mutated allele, only one of the two alleles was found to be mutated in C531 (Figure

S.146, page 330), meaning that the second allele could potentially compensate for the loss
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of RNF43 function. Similarly, it has previously been suggested previously that ZNRF3 can

potentially compensate for the loss of RNF43 and that only loss of both proteins leads to

tumour formation and altered Wnt/β-catenin signalling (Koo et al. 2012; Lannagan et al.

2019). Assessment of the mutation and expression status of ZNRF43 revealed no evidence

for somatic mutations or altered expression of ZNFRF43 in the corresponding samples. The

expression of the mutant RNF43 variant showed that the gene was dominantly expressed in

one of the three samples from tumour region B but not in the others.

Interestingly, some previous studies found that missense mutations observed in CRC

(Koo et al. 2012; Tsukiyama et al. 2015; Yu et al. 2020) and truncated RNF43 variants

missing the RING domain (Hao et al. 2012; Tsukiyama et al. 2015) might have a dominant-

negative effect. Still, the overwhelming majority of truncating variants tested in a large

screening of RNF43 variants by Yu et al. (2020) and specifically a p.Q152∗ mutation (i.e.,

one amino-acid differences to the one observed here) were found to only cause to loss of

function and not to be dominant-negative. A single truncating frameshift variant of APC

was observed (p.E1309Dfs∗4) in this patient. Assuming that a second APC variant affecting

the alternate allele was present but not detected, a mutation like that of RNF43, which also

activates the Wnt/β-catenin pathway, would be expected to not lead to any or very little

fitness increase.

Evidently, the results suggest that the mono-allelic loss of function mutation of RNF43

p.Q153∗ in C538 might have a fitness altering effect, but this appears to be at odds with ex-

isting literature and the assumed mode of function of this mutation. Given the APC mutated

background and the inconclusive analysis of the gene expression data, it might be possible

that a different, possibly undetected, somatic mutation or non-genetic alteration was respon-

sible for the observed effect. Alternatively, while certainly speculative, mono-allelic RNF43

mutations in the APC depleted background present in C538 might be haploinsufficient and

hence lead to further activation of the Wnt/β -catenin pathway with corresponding fitness

effects.

Other cases Similarly, non-genetic or unidentified somatic mutations of driver genes might

provide an explanation for four cases in which no corresponding somatic mutation in a

driver gene could be identified. These were C542 (region B&C, Figure S.148, page 331),

C542 (region A, B & D, Figure S.148, page 331), C549 (region B&C, Figure S.150, page

332), C551 (Figure S.151, page 332) and C559 (region B, Figure S.152, page 332). In C542
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for example, the subclonal loss of chr1p — an alteration that was found to be recurrent in

Stage III CRCs (Xia et al. 2020) and more frequently mutated in metastatic CRC (Ghadimi

et al. 2006; González-González et al. 2014) — could explain the subclonal selection of one

tumour region. In general, a larger cohort of cases would be needed to assess whether cases

in which no subclonal driver mutations could be identified are simply false positives or if

rare or non-genetic drivers are indeed present in these.

I found no conclusive evidence of subclonal alterations of gene expression using the

available RNA-seq data or changes of chromatin accessibility that would explain the ob-

served selection, but future studies powered to perform a comprehensive analysis of such

alterations in putatively selected subclones should certainly be considered.

6.3.3.6 Prediction of Clone-Size Distributions

The marginal posterior of the ABC-SMC inference can also be used to estimate the distribu-

tion of subclones within the tumour. To demonstrate this, the 100 simulations that produced

trees with the closest distance to the observed data were obtained and used to estimate the

marginal distribution of each subclone in space. The locations of simulated cells were first

rotated by φA, assigned to the closed grid point and then used to calculate the fraction of

times specific subclones were observed at these positions (see Figure 6.23A). The results

of this procedure are shown for one example (C539) in Figure 6.23B. Here the inference

suggested that the subclone (Clone 2) extended over a large area of space.

Various methods to detect and map somatic variants in situ have been developed

(Bagasra 2007; Larsson et al. 2004) and these could in principle be used to improve or

verify predictions of the algorithm.

6.3.4 Limitations of the Conducted Analysis

While the performed inference appeared to generally provide sensible results and able to

recover subclonal selection due to somatic mutations of bona fide CRC drivers, a couple of

limitations of the analysis, which will be discussed in the following, have to be considered.

Limitations of the used sampling schema The applied sampling schema provides on its

own a minimal amount of information on the spatial extent of selected subclones within

the tumours. If, for example, all samples from one region of the tumour would be sampled

from a subclone — assuming that this could be identified by an elongated edge in the re-

constructed tree in this case — only very little would be known about the size of the clone

itself. From the observed data, it would be reasonable to assume that the subclone covers at
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Figure 6.23: Marginal clone size estimate for C539. A) Two realisations drawn from the set of
particles approximating p(θ ,D∗|D,ε). These are centred and rotated to calculate B) The marginal
fraction each grid point contains a specific clone.

least the sampled region (i.e., d ≈ 5mm) and less than a quarter of the tumour (i.e., from the

left to the right neighbouring region).

Since the size of a subclone and the time it arose provide information on the relative

strength of selection a subclone is experiencing, large credibility intervals (CIs) on λ would

be expected. These large CIs are precisely what was observed from the inference, with

potential values of λ ranging from little more than the background clone to a, certainly

unrealistic, 25-fold increase of the division rate of selected subclones (see Figure 6.21).

Performing systematic spatial sampling while keeping a record of the relative sampling

positions in space or deep bulk sequencing of a huge tissue sample would provide a much

better information on the spatial extend of selected subclones. Other, more practical meth-

ods might also allow a better idea of the spatial extent of these. For example, mixing the

spatial sampling performed here with several random small punch biopsies along the outer

diameter and subjecting these to pooled deep sequencing might also allow a more accurate

estimation of relative clone sizes.

Similarly, large parts of each tumour were not observed, potentially reducing the ability

to detect expanding subclones in general. The sampling locations themselves only cover a
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tiny area of the tumour as a whole (i.e., < 5%), and while selected subclones by definition

grow to cover a large area, they could, in principle, still be present between sampled regions.

This assumption is encoded in the model itself and hence the inference framework, but a

detailed analysis of the likelihood of this under different model parameters might be worth

conducting.

Three-dimensional structures Furthermore, the three-dimensional structure CRCs exhibit

was simplified as a two-dimensional model (see Figure 6.2A). This might be reasonable if

cells primarily grew along the horizontal plane, but adenoma and carcinoma frequently ex-

hibit complex three-dimensional structures growing into the colorectal lumen. Whether sub-

clonal dynamics within these are sufficiently recapitulated in the simpler two-dimensional

model used here could undoubtedly be questioned. Especially as some conclusions made

here are on the strength of boundary driven growth, questions remain if and how these would

be recapitulated in three dimensions.

Alternative growth models should also be considered. The spatial model used here is

equivalent to the ‘constant crust’ model of tumour growth (Mayneord 1932; Conger and

Ziskin 1983). Such simple models were suggested to be insufficient to even explain growth

dynamics of tumour spheroids in culture (Marušić et al. 1994) or in vivo (Marušic et al.

1994). Despite a long-held interest in the growth laws of human malignancies (Steel and

Lamerton 1966; Gerlee 2013), the exact nature of these in tumour entities in general (Chig-

nola and Foroni 2005; Talkington and Durrett 2015) and CRCs in specific (Burke et al.

2020) are surprisingly not fully understood. It would certainly be of interest if genomic

measurements could give insight into the growth law (i.e., exponential vs boundary driven

growth) on a patient-by-patient basis, especially this might even predict the growth rate at

related metastatic sites. Still, other models should be considered as well. For example,

inclusion of desquamation at the surface the tumour — a proposes that was proposed by

Spratt (1961) to explain the slower growth rates of CRCs at the primary site compared to

the metastatic site — or the inclusion of central growth inhibition (Mayneord 1932; Steel

and Lamerton 1966) might significantly alter the predictions made by inference on the ge-

nomic data.

Stem cell dynamics Another factor that should probably be considered are the stem cell

dynamics within single-glands as well as the genetic heterogeneity of stem cells existing

in these. These additional complexities were ignored here, which is only reasonable if the
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replacement rate of stem cells within glands/crypts is swift compared to the division rate of

these. Previous studies have shown that this is to be accurate, but this might not generally

be the case.

Siegmund et al. (2009b) for example, have suggested that ‘palm shaped’ phylogenies,

which were found to be explained reasonably well by boundary driven growth alone, might

arise due to the presence of a few long-lived cancer stem cells (CSC) and that star-shaped

phylogenies, here explained by non-boundary driven growth, instead arise in the presence

of many CSC. Not having included these dynamics into the spatial model appears to be one

of the major shortcomings of the analysis. It is unclear whether large stem cell pools and

growth dynamics could be distinguished from each other and how data generated under a

combination of both of these would behave.

Changes of mutation rates Last but not least, spatio-temporal changes of mutation rates

might occur during the evolution of individual tumours. The previously described analysis

of mutational signatures, as a surrogate of such mutation rates, did not identify any particu-

larly prevalent subclonal changes. While the analysis of mutational signatures did suggest

that the relative contribution of the individual process was not altered over time, it could

certainly be that their absolute contribution changes over time. Given that one of the signa-

tures of subclonal selection is the elongation of individual edges compared to the remaining

tumour, it might be hard to distinguish changes of mutation rates from subclonal selection.

6.4 Discussion
Here I presented results from statistical inference, which used an extended version of a

spatial tumour model previously described by us (Chkhaidze et al. 2019) to perform com-

putational inference on single-gland multi-region sequencing data from a total of 26 CRCs.

Using this framework, it was possible to quantify tumour-specific properties that describe

their evolutionary dynamics. Specifically, cases were distinguishable based on i) the pres-

ence of subclonal selection, ii) their growth law (i.e., slow, boundary driven vs fast exponen-

tial growth), and iii) their mutation rates. Importantly, these are — unlike a mere collection

of features provided by the measurement of gene expression (Uhlen et al. 2017) or somatic

mutations (Campbell et al. 2020) — interpretable descriptions of the growth dynamics oc-

curring in individual tumours.

While speculative, these properties might also predict the speed with which already

exiting, but still, invisible metastasis grow or be associated with a malignant phenotype.
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As such, the corresponding parameter estimates appear to be a reasonable proposal for an

‘evolutionary biomarker’. The quality of these will be assessed as part of the prospective

follow-up of the EPICC study in the near future.

A specific aspect of the inference that appears to be worthwhile to validate further is

the prediction that some CRC evolved under boundary driven growth, whereas others did

not. This would imply that individual CRCs are growing at a substantially different speed.

Measuring such ‘growth laws’ of CRCs in general and especially in individual patients

appears to have been challenging (Burke et al. 2020), but of general importance (Friberg

and Mattson 1997; Sachs, Hlatky, and Hahnfeldt 2001; Comen, Morris, and Norton 2012;

Rodriguez-Brenes, Komarova, and Wodarz 2013).

The presented results also corroborate previous studies on the prevalence of subclonal

selection in CRCs. In many of the characterised tumour lineages, I was unable to identify

any putative driver alterations. These cases were sufficiently explained by a spatial model

without selected subclones, suggesting that the observed parts of the tumours evolved effec-

tively neutral. This is consistent with previous observations made in bulk sequencing data

(e.g., Williams et al. 2016; Williams et al. 2018b) and supports the reply to previous criti-

cism (e.g., Williams et al. 2017; Williams et al. 2018a; Heide et al. 2018) of these studies

by others (e.g., Balaparya and De 2018; Tarabichi et al. 2018; McDonald, Chakrabarti, and

Michor 2018). In a subset of cases, subclonal driver mutations were identified. Here the

ABC-SMC inference framework frequently suggested the presence of positively selected

subclones. This demonstrates that the method was sufficiently powered to detect devia-

tions from neutrality in general. An orthogonal analysis of dN/dS values, inspired by the

criticism of Tarabichi et al. (2018), support these conclusions.

The presented analysis demonstrates that single-gland multi-region sequencing can

provide a general framework to measure the effect of subclonal driver alterations in vivo.

Due to the ability to fully reconstruct the lineage of individual subclones, this approach

allows analysing the effect of driver alterations in the genetic and environmental context

they occurred in. Such context-specific effects are thought to be of importance (Berger,

Knudson, and Pandolfi 2011) and a large-scale application of the approach used here could

be used for the discovery of refined models of in vivo driver gene activity.

Due to the scarcity of subclonal selection and the relatively small cohort analysed,

a comprehensive analysis of novel driver mutations could not be performed. Still, I am
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optimistic that in the future, more extensive studies using a similar approach might allow

to gain significant insight into the role of genetic and epigenetic alterations in subclonal

tumour evolution. Here, similar approaches could distinguish the large amount of ‘neutral

signal’ present in measurements of intra-tumour heterogeneity from that associated with

meaningful subclonal selection.

The identification of signals from selected subclones could be especially beneficial

for the analysis of non-genetic drivers (Black and McGranahan 2021) that lack appropriate

models to describe their dynamics. Indeed, a small subset of cases in which inferred somatic

driver mutations did not explain subclonal selection was identified as part of this work. In

these cases, non-genetic events could have had a critical role.

6.5 Conclusion
The spatial computational inference on the single-gland sequencing data of the EPICC co-

hort presented here has allowed to i) predict the presence of selected subclones and ii) esti-

mate the growth laws in individual tumours. Furthermore, the conducted analysis demon-

strated that the developed method allows to identify relevant subclonal selection events and

could thus guide the discovery of novel or rare genetic driver alteration in the future.





Chapter 7

Summary and Outlook

7.1 Summary

The aim of this thesis was to investigate intratumor heterogeneity of CRCs concomitantly on

the genetic and epigenetic levels. For this experimental data from a multi-omics sequencing

method able to perform WGS, ATAC-seq and RNA-seq on single-gland colorectal glands

were utilised. This was done in particular to i) identify, so far understudied, epigenetic alter-

ations that might contribute to carcinogenesis in CRCs, ii) demonstrate that the information

encoded in the genomic data accessible by single-glands WGS can be used to infer the pres-

ence of subclonal selection in individual patients, and iii) derive ‘evolutionary biomarkers’

with a potential predictive value that could be assessed during the follow up of patients. The

analysis was driven by the goal to integrate such measurements into a rigorous statistical

inference framework able to make predictions on the evolutionary dynamics and properties

of subclones within individual tumours, especially with regard to subclonal selection, to

then identify responsible epigenetic and genetic alterations.

A combination of theoretical models and genomic data (i.e., sequence information)

have allowed gaining profound insight into the evolution and population dynamics of

species. Population genetics, which is concerned with the study of alleles as the source

of genetic variation of individuals in populations, is indeed one of the few areas of biology

that is based on a well defined theoretical foundation. The existence of such a theoretical

framework allows performing quantitative experiments that are able to determine funda-

mental properties of the studied system (e.g., in the form of model parameters) and to make

generalisable predictions from these. This is in stark contrast to many other areas of biology

that lack a clear theoretical basis and hence rely much more on experimental validation of

specific hypotheses.
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Interestingly, in the field of cancer evolution, which studies the effects and dynamics

of somatic alleles in tumour tissues, similar models have been applied comparatively little

so far. Instead, much of our knowledge of which genes contribute to the development of

cancer and their effects they have been derived through the use of biological experiments

that introduced mutant alleles into biological systems to observe their effects. For this cell

lines and mouse models have been used extensively. Still, these model systems often do not

allow to draw direct conclusions about the effect of mutations in human tumours and they

are often costly and time-consuming. The use of animals for cancer research has also been

criticised due to ethical concerns.

Since the advent of NGS, which allows for routine high throughput screening of so-

matic variants detectable in individual tumours, statistical methods have been used to sys-

tematically identify mutations with a role in the development of various tumour types. These

are often based on the relative frequency with which genes or specific sites of a protein are

mutated in a large cohort of cases. While these studies have been invaluable for the system-

atic identification of genes that contribute to tumourigenesis, they are unable to predict the

exact phenotypic effect such mutations have in vivo.1

Here the utilization of models similar to those used in population genetics, promises to

allow a direct inference of the relevant phenotypic properties of cells in terms of their rela-

tive fitness compared to other cells in a tumour. In tumour evolution, the pervasive selection

of adaptive mutations is often assumed by default. This is in contrast to the interpretation

of sequence data in species evolution where rigorous statistical tests — since these make

assumptions that are violated in tumours these can unfortunately not directly be used in the

context of tumours — are applied to come to such conclusions. Many studies of tumour

heterogeneity in the field of tumour evolution focus on the accurate reconstruction of the

ancestral relationships of cells or subclones. The observation of a large number of subclonal

mutations in many multi-region sequencing studies, some of which are also putative driver

mutations, can give the illusion of a functional interpretation of these variants. However, it

is important to note that these data can only provide the data basis — a detailed summary

of the ancestral relationships encoded in the genomic information of tumour cells — for a

subsequent interpretation.

The debate of if and how the detection of selected subclones could be done with se-

1The co-occurrence of mutations can provide some insight into dependencies and in combination with pre-
vious knowledge of the function of genes some deductions of their effects can be made.
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quencing data from tumours is ultimately what contributed to the controversy surrounding

a study by Williams et al. (2016). Here, Williams et al. used a simple summary statistic

— the 1/ f test, which compares the VAF spectrum to that expected under neutrality (i.e.,

the LD mode) as a null model — to identify tumours with evidence for subclonal selection.

Despite the fact that this null model was rejected in the majority (≈ 65%) of cases, the crit-

icism primarily focused on the fact that the null model was not rejected in all cases. This

debate provided much of the motivation for the work described herein.

In Chapter 2 of this thesis I presented a detailed analysis of one of these criticisms

(i.e., Tarabichi et al. 2018) that I conducted at the beginning of the project. Here, I showed

that Tarabichi et al. severely mischaracterised the weaknesses of the 1/ f statistic and that

their assertion that it might constitute a worse than random classifier was simply false.

Instead, much of the parameter space analysed by Tarabichi et al. (2018) was found to

give rise to ‘effectively neutral’ VAF distributions as a consequence of subclones with an

increased mutation rate. This caused the large ‘neutral tail’ of the hypermutant subclone

to mask the deviations the clonal variants of the subclone caused in the VAF distribution.

Still, even under perfect conditions, the power of the 1/ f statistic was generally found to

be insufficient. In a subsequent study, which instead used a Bayesian classifier, Williams,

Sottoriva, and Graham also showed that the detection of subclonal selection from the VAF

distribution alone is generally hard (Williams, Sottoriva, and Graham 2019).

In Chapter 2 I have also described how the VAF spectrum of mutations generated by a

branching process model of tumour evolution might be uninterpretable by frequently used

clustering methods at the currently used sequencing depth. In Chapter 3 I expanded on

some of these observations. Here, I explored in more detail whether multi-region bulk se-

quencing data, which can be used to study the evolutionary relationships of cells in tumours

(e.g., Gerlinger et al. 2012), would allow the detection of subclonal selection more easily.

For this, I developed a simple spatial tumour simulator together with Ketevan Chkhaidze.

I describe this model in detail in Chapter 3, but summarised it allows to model the effects

of spatial crowding and boundary driven growth, subclonal selection, changes of mutation

rates, and cell death. I used this simulator, to identify some general problems associated

with spatially sampled bulk WGS data. These issues, arising from artefacts of spatial sam-

pling, mean that the shape of reconstructed trees can be distorted in various ways. For this

reason, the presence of these caveats has to be taken into account for the interpretation of
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such data in light of selection. In this context of this analysis, I have also shown that the

application of clustering methods to multi-region WGS will likely cause the identification

of many subclonal clusters and that these should not generally be interpreted to suggest the

presence of selected subclones. Again, due to the aforementioned spatial artefacts, the inter-

pretation of the results of such clustering methods is not always intuitive. For example, the

mutation burden identified in individual samples or clusters can vary widely and should not

be used to make direct predictions of the ‘age’ of a subclone. However, a similar analysis

of simulated single-cell sequencing data showed that these would be ideal methods for the

detection of subclonal selection and boundary driven growth as a consequence of spatial

crowding. The absence of distortions introduced due to the spatial sampling of cells means

that such data are generally more well behaved. Subclonal selection should be revealed by

a clear elongation of internal branches and the presence of boundary driven growth, by a

characteristic alteration of the internal branching structure. Still, the reliable detection of

mutations from single-cell sequencing data is currently still challenging.

The limitations of single-cell sequencing were the reason why the multi-region se-

quencing study ‘EPICC’ that I analysed in Chapter 4 instead conducted sequencing of sin-

gle colorectal tumour glands. Since CRC glands are thought to be the clonal units of CRCs

this approach should have a similar resolution to single-cell sequencing in other tumour

entities and therefore allow the detection of subclonal selection from the genomic measure-

ments obtained from these glands. In Chapter 4, I have presented a detailed analysis of

the conducted concomitant WGS, ATAC-seq and RNA-seq of individual colorectal tumour

glands. Based on the WGS data obtained from the glands, I showed that relatively many

spurious subclonal mutations in putative driver genes can be identified. A dN/dS analysis,

similar to the one I described in Chapter 2, also indicated the presence of subclonal selec-

tion. Still, since the majority of the observed mutations occurred in genes that rarely show

clonal mutations in CRCs and since most of these genes were not recurrent across patients

either it was not clear how to interpret these data. Neither a careful visual examination of

reconstructed phylogenetic relationships nor a summary statistic motivated by the 1/ f test

of (Williams et al. 2016) were able to give a conclusive answer on which driver mutations

were under active selection in the majority of cases. The only exception from this were a

single subclonal K-Ras mutation and a small number of subclonal PIK3CA mutations. In

general, a pervasive and widespread subclonal selection of driver mutations, as suggested
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by other studies (e.g., Dentro et al. 2021), was certainly not apparent on the genetic level.

Non-genetic alterations, such as changes of the chromatin accessibility, are also

thought to contribute to tumorigenesis and they can, just like genetic alterations, also be

subject to selection. Here, the concomitant profiling of glands using ATAC-seq allowed me

to provide some insight into the prevalence of epigenetic alterations in the CRCs. For this, I

used the data of multiple glands obtained from each tumour and the matched normal crypts

to identify genuine somatic chromatin accessibility alterations in the carcinomas. Across

cases, this lead to a list of several hundred genomic regions that showed a highly recur-

rent alteration of chromatin accessibility compared to healthy colorectal glands. It is not

unreasonable to assume that some of these might constitute bona fide epigenetic drivers

of CRCs and that a careful evaluation of these might eventually lead to the identification

of novel therapeutic targets. Consistent with this hypothesis, the majority of the identified

alterations were not found to be sub-clonally altered in different regions of the tumour, sug-

gesting that the identified alterations were, just like known genetic drivers, primarily early

clonal events.

It has to be mentioned though, that the obtained single-gland ATAC-seq profiles were

of comparatively poor quality and that additional biases further reduced the ability to iden-

tify subclonal changes of chromatin accessibility. For this reason, it was also not possible to

conduct a detailed genome-wide analysis of chromatin alterations on a single-gland level.

Instead, a preliminary analysis of the data suggested that the chromatin accessibility of the

majority of functional sites of the genome might be under drift and thus evolve in paral-

lel with the genome. Still, specific alterations, potentially different from those recurrently

altered in CRCs, might arise due to selection or phenotypic plasticity. Further studies are

clearly required to elucidate these aspects further.

In Chapter 6, I have presented the results of a computational ABC based inference

that I applied to the genomic data of the EPICC cohort. For this, I integrated the spatial

tumour simulator from Chapter 3 into an ABC-SMC based inference framework, that al-

lows the identification of the number of selected subclones and the degree of boundary

driven growth based on information contained in phylogenetic trees reconstructed from sin-

gle cells or glands. The approach explicitly simulates the performed spatial sampling and

is hence able to take into account potential biases arising from spatial sampling. To further

increase the size of the reconstructed dataset and hopefully the ability to identify examples
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of selection, I also assigned additional LP-WGS glands onto the reconstructed phylogenies

using a simple maximum-likelihood method that I described in Chapter 5 and modified the

inference framework to take their specific properties into account.

Summarised, I was able to conduct the inference on 26 CRCs with a sufficient number

of whole-genome sequenced single-glands. In a subset of 8 CRCs showed strong evidence

(∆AIC > 4) for subclonal selection. In 5/8 of these cases, putative subclonal driver muta-

tions were found to be present on the exact edges of the trees that the inference suggested

to be under selection. Specifically, I found that the subclonal selection in these tumours

was likely driven by a PIK3CA p.Q546P, a RNF43 p.Q153*, a KRAS p.G12C, a SMAD4

p.A118V, and a PTEN p.C136R mutation. Overall, a total of 12/26 cases showed weak

evidence for subclonal selection (AICS < AICN), with the remaining 14/26 trees being con-

sistent with neutrality. The orthogonal dN/dS based analysis of IntOGen driver genes found

dN/dS ratios of≈ 1 in ‘neutral’ and dN/dS > 1 in ‘non-neutral’ cases, thus confirming that

the computational inference framework was indeed capable to identify subclonal selection.

While certainly speculative, the results from a ABC based inference also suggested

that it was possible to use the single-gland WGS and LP-WGS data to identify the ‘growth-

law’ individual tumours adhered to. For 7/14 tumours the inference suggested the presence

of strong boundary driven growth and nearly exponential growth for the remaining tumours.

If this is indeed true it seems not unreasonable to assume that the former cases might have

a somewhat better prognosis. However, given the limited evidence, further investigation

of this is certainly warranted. The same is certainly true for many other aspects of spa-

tial tumour growth, that were not considered in this analysis. Specifically, the effect of

three-dimensional growth, changes in mutation rates or the presence of tumour stem-cell

populations should be considered.

In summary, this thesis aimed to provide an assessment of the genetic and epigenetic

heterogeneity of individual CRCs on a functional level. For this, I have used statistical

and computational approaches to interpret genomic measurements obtained from tumours.

This functional interpretation of the information encoded in the spatial distribution of mu-

tations was the goal of the computational inference that I presented in the last chapter. This

approach, which is rooted in populations genetics, allowed the identification of a small num-

ber of bona fide driver mutations that were likely under active selection in these tumours.

The statistical analysis of the ATAC-seq dataset has provided the so far largest collection of
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somatic epigenetic driver mutations in CRCs, but these were found to be exclusively clonal.

7.2 Outlook

I hope that similar approaches will ultimately provide us a much better understanding of the

fitness landscape of tumours. This knowledge would be crucial to allow predictions of the

future evolutionary trajectory of cells in a tumour. This might eventually allow to routinely

exploit population dynamics between different tumour subpopulations, as for example sug-

gested by Zhang et al. (2017), in the clinical practice. Other ideas like the evolutionary

steering of tumour cells (Nichol et al. 2015; Acar et al. 2020) towards a more manageable

state might also be possible, but likewise, they also hinge on a better understanding of the

fitness landscape of tumours. For this further technological advancements of sequencing

methods will likely be essential. Excitingly, much progress is already being made in this

regard and many limitations of currently conducted WGS might indeed be resolved soon.

These limitations mainly stem from two factors: i) the relatively high error rates of the

necessary PCR based amplification steps and ii) the loss of phasing information. Due to

this high error rate, it is currently only possible to detect mutations at a relatively high fre-

quency. Here new methods now make the reliable detection of mutations occurring in single

DNA molecules possible (Abascal et al. 2021). Ultra-deep sequencing using such methods

might soon be able to routinely detect mutations occurring only in a very small fraction of

cells. Indeed the comparison of different variants might itself enable to gain fundamental

insight into the fitness landscape existing within individual tumours. Similarly, recent ad-

vancements of single-cell sequencing now permit the reliable detection of single-nucleotide

variants in individual cells (Xing et al. 2021). Such an approach preserves the phasing

information of mutations and would thus make the perfect reconstruction of the ancestral

relationships of a large number of cells possible. Applied to tumours, these or similar meth-

ods will undoubtedly provide an excellent data basis to research how individual tumours

evolve.

Similar progress is being made on single-cell multi-omics methods. A relatively large

number of different approaches combining WGS sequencing with single-cell ATAC-seq

and RNA-seq are currently being researched. In the not too far future many of these will

likely allow to conduct single-cell multi-omics and provide a much clearer insight into how

individual somatic mutations and epigenetic alterations affect the phenotypic properties of

tumour cells.
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Much progress will certainly be made on the various statistical methods required to

interpret these new sequencing data. It seems obvious that many of the currently used

approaches, like dN/dS or phylogenetic reconstruction, will be extended to single-cell or

low-frequency mutation detection. Likewise, approaches that look at the relative frequency

of subclonal ‘driver mutations’ for individual sites will likely be used. In terms of the

interpretation of single-cell phylogenies, computational approaches, like the one I used,

could of course be used. However, such methods have serious drawbacks and statistical

problems. For this reason, it seems likely that new mathematical models or even some

closed-form solutions of specific aspects of spatial tumour evolution will be identified and

used to answer questions regarding the interpretation of ancestral relationships between

cells.

Together these approaches might permit us to obtain such a detailed understanding of

the evolutionary dynamics within tumours, that prediction of their behaviour under various

conditions becomes possible. This might in turn enable us to approach the treatment of

tumours as a disease in a more informed way. Instead of the ‘brute-force’ application of

targeted drugs, chemotherapies or radiation, which eventually fail due to evolution of re-

sistance, an ‘evolutionarily informed’ treatment of tumours might allow for the much more

efficient use of already existing drugs. The detailed knowledge of evolutionary properties

of tumour cells might even allow the identification of new drug targets or alternative thera-

peutic approaches.
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S.1 Neutral Tumour Evolution

A

326/672 (48.5%)

105/672 (15.6%)

76/672 (11.3%)

165/672 (24.6%)

0.80

0.85

0.90

0.95

1.00

0.85 0.90 0.95 1.00

R2  of new model fit without VAF adjustment

R
2   o

f n
ew

 m
od

el
 fi

t w
ith

 V
A

F
 a

dj
us

tm
en

t

(Spearman: ρ = 0.61, p ≤ 2.2e−16;   Fisher's exact test: OR = 6.72, p ≤ 2.2e−16)

TCGA data: Analytical 1/f analysis B

59/107 (55.1%)

15/107 (14.0%)

21/107 (19.6%)

12/107 (11.2%)

0.80

0.85

0.90

0.95

1.00

0.85 0.90 0.95 1.00

R2  of previous model fit
R

2   o
f n

ew
 m

od
el

 fi
t w

ith
 V

A
F

 a
dj

us
tm

en
t

(Spearman: ρ = 0.44, p ≤ 3.2e−06;   Fisher's exact test: OR = 2.23, p ≤ 0.094)

TCGA data: Analytical 1/f analysis

Supplementary Figure S.1: Effect of the inclusion of CN correction on the 1/ f classification in A)
the entire analysable TCGA cohort and B) the subset assessed by Williams et al. (2016).
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Supplementary Figure S.2: Positions of clusters inferred by DPClust in simulated WGS. Data in
this figure should be compared to the results shown in Figure 2.4.
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Supplementary Figure S.3: ROC of the 1/ f test on stochastic simulations. A) Shows the AUC for
the 1/ f test applied to non-neutral simulations with a subclone fraction 0.25 < fsc < 0.75 at various
parameter combinations. B) Shows the ROC curve for the 1/ f test applied to all simulations with a
subclone fraction 0.25 < fsc < 0.75 across all of these parameters.
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Supplementary Figure S.4: Average number of clusters inferred by DPClust in simulated WGS.
Data in this figure should be compared to the sensitivity shown in Figure 2.4G.
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Supplementary Figure S.5: Neutrally classified case TCGA-12-0778 with multiple subclonal non-
sense mutations. This is one of the 11/290 neutrally classified tumours with three or more subclonal
nonsense mutations in cancer driver genes.
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Supplementary Figure S.6: Neutrally classified case TCGA-DD-A1EE with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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Supplementary Figure S.7: Neutrally classified case TCGA-DF-A2KU with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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Supplementary Figure S.8: Neutrally classified case TCGA-DU-6392 with multiple subclonal non-
sense mutations. This is one of the 11/290 neutrally classified tumours with three or more subclonal
nonsense mutations in cancer driver genes.
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Supplementary Figure S.9: Neutrally classified case TCGA-FI-A2D5 with multiple subclonal non-
sense mutations. This is one of the 11/290 neutrally classified tumours with three or more subclonal
nonsense mutations in cancer driver genes.
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Supplementary Figure S.10: Neutrally classified case TCGA-AX-A0J1 with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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Supplementary Figure S.11: Neutrally classified case TCGA-F5-6814 with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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Supplementary Figure S.12: Neutrally classified case TCGA-AJ-A5DW with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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Supplementary Figure S.13: Neutrally classified case TCGA-AN-A046 with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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Supplementary Figure S.14: Neutrally classified case TCGA-AP-A0LM with multiple subclonal
nonsense mutations. This is one of the 11/290 neutrally classified tumours with three or more sub-
clonal nonsense mutations in cancer driver genes.
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S.2 Spatial Simulations
S.2.1 Details of the R Package CHESS

S.2.1.1 Implementation

The spatial simulator described in Section 3.1.1 (page 77) was implemented in the C++

general-purpose programming language and integrated into a package for the R statistical

programming language (R Core Team 2020). For this, methods from the Rcpp package

(Eddelbuettel and Francois 2011; Eddelbuettel 2013), which allows seamless integration of

R and C++, were used. Further, methods from the following R packages were used: ape

(Paradis and Schliep 2019), phangorn (Schliep 2011), reshape (Wickham 2007), magrittr

(Bache and Wickham 2014), dplyr (Wickham et al. 2020), tmvtnorm (Wilhelm and G 2015),

ggplot2 (Wickham 2016), ggtree (Yu et al. 2017), ggrepel (Slowikowski 2020), ggtern

(Hamilton and Ferry 2018), ggrastr (Petukhov, Brand, and Biederstedt 2020).

S.2.1.2 Pushing of Cells

During divisions in which non neighbouring grid cells were found to be empty dividing

cells were assumed to make room by pushing cells along a vector v. This vector v was

either chosen to be a random vector in space or a vector that points to the closest edge of

the tumour.

Pushing of cells Cells along the identified vector v were generally moved until an empty

grid point was found or the distance dpush was reached. In the first case, creating room for

the daughter cell was considered successful, and the cell would undergo division. In the

latter case, the daughter cell’s creation was unsuccessful, and the division was aborted. For

the moving of cells along the grid, a 3D version of the Bresham line drawing algorithm

(Bresenham 1965; Heckbert 1990), which allows to quickly traverse each grid point along

v, was used.

Vector for random pushing The vector for random pushing in space was generated by

sampling
φ =U(−π,π), u∼U(−1,1)

followed by the determination of new target coordinates along the vector as

x′ = x+ sqrt(1−u2) · cos(φ)dpush,

y′ = y+ sqrt(1−u2) · sin(φ)dpush,

z′ = z+udpush,

where x, y and z are the current coordinates and dpush the maximum distance to traverse

along v. Pushing along v was terminated if a empty grid point was encountered.
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Vector for pushing to the closest edge To speed up the identification of the closest edge of

the tumour a simple heuristic was used: The search for the closest edge from the position

pk = (xk,yk,zk) of the cell k was started along the vector defined by φ = atan(yk− yc,xk−
xc)+ φos with φos = U(−0.05π,0.05π). Given the maximum distance to the edge dpush a

quick ‘sweep’ around the position of the cell was conducted to identify an offset vector

φ + φos along which the position at distance 1.5 dpush + 5 was empty. For this, the values

φos from (0.2,−0.2,0.4, ...,−0.8) were tried in turn until such a position was found. If none

of these positions contained an empty position, the search was aborted. From the identified

vector a binary search was conducted to find vectors with a closer edge. For this, an offset

of φos ∈ π was tested, then an offset of φos ∈ {−0.5π, 0.5φ} and so on, until a difference of

5π/360 was reached. The search for the distance to the edge along the vector φ +φos was

done using a binary search between the maximum distance possible and the location of the

cell. The code for this was only created for two-dimensional simulations.

S.2.1.3 Runtime

The runtimes of the simulator for different 2D tumours with various diameter and differ-

ent values of dpush and the death rate µ are shown in Figure S.15. The shown run times

were obtained on a 1.4 GHz Intel Core i5 and are the average of 20 replicates. For cases

with boundary driven growth (i.e., dpush < rtumour) a much larger number of generations are

required to reach a specific tumour size (compare Figure 3.3) and as such it is expected

that this parameter significantly increases the runtime of the simulator as shown in Figure

S.15A. Generally, the runtimes of the simulator were sufficiently short to simulate several

thousand realisations — for example as part of a ABC inference — of a tumour containing

up to 5 ·105 cell/glands in a feasible time frame (i.e., less than a week).
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Supplementary Figure S.15: Average runtime for the generation of a spatial 2D tumour simulation
as a function of the simulated tumour size. A) The left figure shows the effect of the push distance
parameter (dpush) on the simulation runtime in the absence of any cell death (µ = 0). B) Similarly,
the effect of different death rates (µ) under non-exponential growth (dpush = 20) is shown on the
right.

S.2.2 Supplementary Figures
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Supplementary Figure S.16: Expected time for a tumour to reach a radius of rend = 175 under
various degrees of boundary-driven growth and in different dimensions.
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Supplementary Figure S.19: Average branching times under different degrees of boundary driven
growth.
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Supplementary Figure S.21: Performance of clustering methods in multivariate datasets.
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S.3 EPICC Data

Supplementary Figure S.23: EPICC: CNA alterations
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Supplementary Figure S.24: EPICC: Frequency of clonal and subclonal CNAs.
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Supplementary Figure S.25: Example VAF distribution in a tetraploid tumour (C531).
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Supplementary Figure S.26: Example of normal adjacent glands.
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Supplementary Figure S.27: Example of marginal mutation multiplicity estimates (C539).
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Supplementary Figure S.28: Correlation of estimated ploidy and purity in cancer WGS samples.
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Supplementary Figure S.29: Example of mitochondrial variant calls in C536.

Supplementary Table S.1: Cases of the EPICC cohort. EM: Extramural, IM: Intramural, PN:
Perineural.

Case Grade TNM TNM Stage Gender Venous Invasion
C516 2 pT3 N1 M0 IIIB F IM
C518 2 pT3 N0 M0 IIA M None
C519 2 pT3 N0 M0 IIA M IM
C522 3 pT4b N2 M0 IIIC M IM, EM, PN, lymphovascular
C524 2 pT3 N2 M? IIIC M submucosal venous invasion
C525 2 pT3 N1 M0 IIIB M EM
C527 1 PT2 N1 M0 IIIA M None
C528 3 pT3 N2b M0 IIIC F EM
C530 ? pT3 N1b M0 IIIB M possible EM
C531 2 pT4a N2a M0 IIIC F IM, EM, PM
C532 1 pT4a N0 M0 IIC M None
C536 3 pT4a N1a M0 IIIB M IM
C537 2 pT4a N2a M0 IIIC F EM
C538 1 pT2 N0 M0 I F EM
C539 2 pT3 N0 M0 IIA F None
C542 2 pT3 N0 M0 IIA M EM
C543 2 pT3 N0 M0 IIA M EM
C544 2 pT2 N0 M0 I M IM
C547 2 pT3 N0 M0 IIA M EM, PN
C548 2 pT3 N0 M0 IIA M submucosal venus invasion
C549 2 pT2 N0 M0 I F None
C550 2 pT3 N1b M0 IIIB M IM
C551 2 pT3 N0 M0 IIA M None
C552 2 pT4a N1c M0 IIIB M EM lymphatic
C554 2 pT3 N0 M0 IIA M IM
C555 2-3 pT4a N1c M1 IIIB F EM
C559 2 pT4a N0 M0 IIB M EM
C560 2 pT3 N0 M0 IIA M None
C561 2 pT3 N2b M0 IIIC M EM
C562 2 pT3 N1b M0 IIIB M IM venous & lymphatic
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Supplementary Figure S.30: Median coverage of WGS samples.
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Supplementary Figure S.31: Correlation of ATAC-seq and WGS purity.
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cases.
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Supplementary Figure S.34: Mutation spectrum of a representative normal crypt C552 E1 G3.
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Supplementary Figure S.35: Mutation spectrum of a representative cancer adjacent normal crypt
C519 B1 G3.
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Supplementary Figure S.36: Mutation spectrum of a representative intermixed normal crypt
C528 B1 G6.
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Supplementary Figure S.37: Mutation spectrum of a normal adjacent crypt with the pks+ muta-
tional signature C547 B1 G2.
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Supplementary Figure S.38: Mutation spectrum of a normal adjacent crypt with the pks+ muta-
tional signature C547 B1 G3.
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Supplementary Figure S.39: Mutation spectrum of a normal adjacent crypt with the pks+ muta-
tional signature in sample C547 E1 G1.
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Supplementary Figure S.40: Driver mutations of case C539.
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Supplementary Figure S.41: Driver mutations of case C544.
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Supplementary Figure S.42: Driver mutations of case C531.
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Supplementary Figure S.43: Driver mutations of case C525.
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Supplementary Figure S.44: Driver mutations of case C524.
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Supplementary Figure S.45: Driver mutations of case C537.
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Supplementary Figure S.46: Driver mutations of case C561.
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Supplementary Figure S.47: Driver mutations of case C554.

6/15 4/17

8/25 8/16

9/19 6/14

8/26 9/25

4/21 4/19

7/14 21/25

0/21 0/16

1/21 5/29

14/32 10/28

13/26 11/23

18/21 30/31

0/26 10/18

26/26 12/24

0/13 5/14

13/23 12/32

2/15 1/19

26/27 21/24

0/22 0/31

5/40 2/40

7/12 5/14

19/33 20/30

21/23 25/26

12/33 7/28

11/24 5/22

7/18 10/19

16/32 20/39

5/27 7/32

25/27 21/30

0/35 0/20

3/46 1/44

14/22 8/25

22/52 18/42

42/44 33/44

0/19

0/41

0/18

0/36

0/20

0/33

0/35

0/40

0/24

0/39

0/46

A B C E

APC 

ERBB3 

FANCD2 

FBXW7 

KMT2C 

PIK3CA 

SOX9 

TP53 

E
P

IC
C

_C
56

0_
A

1_
G

10
_D

1

E
P

IC
C

_C
56

0_
A

1_
G

6_
D

1

E
P

IC
C

_C
56

0_
B

1_
G

3_
D

1

E
P

IC
C

_C
56

0_
B

1_
G

7_
D

1

E
P

IC
C

_C
56

0_
C

1_
G

4_
D

1

E
P

IC
C

_C
56

0_
C

1_
G

6_
D

1

E
P

IC
C

_C
56

0_
E

1_
B

1_
D

1

                               APC (p.E1550Gfs*15)
APC (p.G1288*)

APC (p.R216*)

ERBB3 (p.E332K)

FANCD2 (p.N503=)

FBXW7 (p.R578*)

KMT2C (p.A2413S)
KMT2C (p.P871=)

PIK3CA (p.E545K)

SOX9 (p.F154L)

TP53 (p.R213*)

Sample

0.00

0.25

0.50

0.75

1.00
VAF

Supplementary Figure S.48: Driver mutations of case C560.
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Supplementary Figure S.49: Meta-analysis of subclonal PIK3CA (A) and FAT4 (B) mutations in
CRC. For each study and the joined analysis 95% confidence intervals (CI) and maximum likelihood
estimates (MLE) of the fraction of CRC with subclonal mutations are shown.
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ations with matched changes of gene expression.
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Supplementary Figure S.56: Global ATAC-seq differences between and within regions.
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Supplementary Figure S.57: Correlation of CPM values of reads in regions of open chromatin in
EPICC (normal & tumour), ENCODE (normal) and TCGA (tumour) datasets.
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Supplementary Figure S.61: Correlation of genetic and epigenetic distances between samples
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Supplementary Figure S.62: Signal of unique TF binding sites compared to all binding sites for
groups with large overlap (see Figure S.60).
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Supplementary Figure S.66: Correlation of CPM values of reads in regions of open chromatin in
EPICC (normal & tumour), ENCODE (normal) and TCGA (tumour) datasets.
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S.4 LP Assignment to Trees
S.4.1 ML LP Trees of the EPICC Cohort

LP assignment: C516
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Supplementary Figure S.67: ML LP-WGS assignment results for case C516. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.68: ML LP-WGS assignment results for case C518. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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LP assignment: C524
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Supplementary Figure S.69: ML LP-WGS assignment results for case C524. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.70: ML LP-WGS assignment results for case C525. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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LP assignment: C528
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Supplementary Figure S.71: ML LP-WGS assignment results for case C528. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.LP assignment: C531
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Supplementary Figure S.72: ML LP-WGS assignment results for case C531. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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LP assignment: C530
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Supplementary Figure S.73: ML LP-WGS assignment results for case C530. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.74: ML LP-WGS assignment results for case C536. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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LP assignment: C537
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Supplementary Figure S.75: ML LP-WGS assignment results for case C537. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.76: ML LP-WGS assignment results for case C543. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.77: ML LP-WGS assignment results for case C538. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.78: ML LP-WGS assignment results for case C549. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.79: ML LP-WGS assignment results for case C539. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.80: ML LP-WGS assignment results for case C552. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.81: ML LP-WGS assignment results for case C542. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.82: ML LP-WGS assignment results for case C544. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.83: ML LP-WGS assignment results for case C548. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.84: ML LP-WGS assignment results for case C554. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.85: ML LP-WGS assignment results for case C550. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.LP assignment: C560
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Supplementary Figure S.86: ML LP-WGS assignment results for case C560. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.87: ML LP-WGS assignment results for case C551. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.88: ML LP-WGS assignment results for case C555. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.89: ML LP-WGS assignment results for case C559. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.90: ML LP-WGS assignment results for case C561. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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Supplementary Figure S.91: ML LP-WGS assignment results for case C562. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing likelihood that the samples are associated with a given edge.
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S.4.2 VAF Plots of LP Samples From the EPICC Cohort
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Supplementary Figure S.92: VAF distribution of the LP sample C516 A1 G3 L1.
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Supplementary Figure S.93: VAF distribution of the LP sample C524 B1 G3 L1.
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Supplementary Figure S.95: VAF distribution of the LP sample C543 B1 G9 L1.
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Supplementary Figure S.96: VAF distribution of the LP sample C548 C1 G1 L1

S.4.3 CN Plots of LP Samples From the EPICC Cohort

Supplementary Figure S.97: LP tree and CNA data of C516.
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Supplementary Figure S.98: LP tree and CNA data of C518.

Supplementary Figure S.99: LP tree and CNA data of C524.
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Supplementary Figure S.100: LP tree and CNA data of C525.
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Supplementary Figure S.101: LP tree and CNA data of C528.
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Supplementary Figure S.102: LP tree and CNA data of C530.
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Supplementary Figure S.103: LP tree and CNA data of C531.
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Supplementary Figure S.104: LP tree and CNA data of C536.

Supplementary Figure S.105: LP tree and CNA data of C537.
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Supplementary Figure S.106: LP tree and CNA data of C538.
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Supplementary Figure S.107: LP tree and CNA data of C539.

Supplementary Figure S.108: LP tree and CNA data of C542.
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Supplementary Figure S.109: LP tree and CNA data of C543.
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Supplementary Figure S.110: LP tree and CNA data of C544.
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Supplementary Figure S.111: LP tree and CNA data of C548.
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Supplementary Figure S.112: LP tree and CNA data of C549.
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Supplementary Figure S.113: LP tree and CNA data of C550.
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Supplementary Figure S.114: LP tree and CNA data of C551.

Supplementary Figure S.115: LP tree and CNA data of C552.

Supplementary Figure S.116: LP tree and CNA data of C554.

Supplementary Figure S.117: LP tree and CNA data of C555.
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Supplementary Figure S.118: LP tree and CNA data of C559.

Supplementary Figure S.119: LP tree and CNA data of C560.

Supplementary Figure S.120: LP tree and CNA data of C561.

Supplementary Figure S.121: LP tree and CNA data of C562.
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S.4.4 Various Other Figures

Supplementary Figure S.122: MP trees reconstructed for sites with equal CN (A&B allele state) in
cancer samples. Differences in the tree topology compared to the equivalent tree reconstructed from
all mutation (Figure S.51) are highlighted with red boxes.
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Supplementary Figure S.123: EPICC: ATAC-seq ML trees reconstructed from all mutations.
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Supplementary Figure S.124: ML ATAC-seq assignment results for case C531. A) ML tree re-
constructed from data. B) Maximum-likelihood estimate of per sample parameters. C) Plot of the
likelihood along the different edges (panels on the x-axis) of the tree for each sample. D) Heatmap
showing the distribution of likelihood that the samples are associated with a given edge.
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Supplementary Figure S.127: Range of accepted trees ABC-SMC inference on the LP-WGS tree
of C536.

S.5.1 ABC-SMC Model Selection Results



320 Supplementary Data

A
k NLL AIC

N
eu

tr
al

S
el

ec
tio

n

S
el

ec
tio

n 
x 

2

N
eu

tr
al

S
el

ec
tio

n

S
el

ec
tio

n 
x 

2

N
eu

tr
al

S
el

ec
tio

n

S
el

ec
tio

n 
x 

2

22

24

26

28

6

7

8

9

0

2

4

6

V
al

ue
Model selection − C559

ε = 1680

AIC

0 3000
0

20

40

Critical distance ε

V
al

ue

Model

Neutral
Selection
Selection x 2

C559

B
k NLL AIC

N
eu

tr
al

N
eu

tr
al

 +
 D

ea
th

S
el

ec
tio

n

N
eu

tr
al

N
eu

tr
al

 +
 D

ea
th

S
el

ec
tio

n

N
eu

tr
al

N
eu

tr
al

 +
 D

ea
th

S
el

ec
tio

n

32

36

40

9
11
13
15
17

0
1
2
3
4

V
al

ue

Model selection − C559

ε = 4350

AIC

5000 10000 15000
0

20

40

60

Critical distance ε

V
al

ue

Model

Neutral
Neutral + Death
Selection

C559

Supplementary Figure S.128: Model selection results for C559 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.129: Model selection results for C562 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.130: Model selection results for C543 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.131: Model selection results for C560 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.132: Model selection results for C544 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.133: Model selection results for C528 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.134: Model selection results for C530 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.135: Model selection results for C554 using fixed sampling schema. A)
WGS trees. B) ML LP-WGS trees.
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Supplementary Figure S.136: SMC-ABC inference framework applied to ML-WGS tree of C518.
A) The target tree. B) Model selection results for all tested models. C) Corresponding AIC values
for a wide range of ε . D-F) The best fitting simulated neutral tree for the ‘Neutral’, ‘Neutral+Death’
and ‘Selection’ model respectively.



S.5. SMC-ABC Inference 325

A
A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G10*

A1_G5*

A1_G1

A1_G8

A1_G9*

C1_G10

D1_G3

D1_G8

228

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2689; C0 = 63%, C1 = 37%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2689; C1 = 64%, Tail = 36%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30 40
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0, dpush = 4.14, m = 0, ts = 0, ia = − 1

B k NLL AIC

N
eu

tr
al

N
eu

tr
al

 +
 D

ea
th

S
el

ec
tio

n

N
eu

tr
al

N
eu

tr
al

 +
 D

ea
th

S
el

ec
tio

n

N
eu

tr
al

N
eu

tr
al

 +
 D

ea
th

S
el

ec
tio

n

28
30
32
34
36

12.25
12.50
12.75
13.00

0
1
2
3
4

V
al

ue

Model selection − C544

ε = 983

C AIC

2500 5000
0

10

20

30

40

Critical distance ε

V
al

ue

Model

Neutral
Neutral + Death
Selection

C544

D
A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G10*

A1_G5*

A1_G1

A1_G8

A1_G9*

C1_G10

D1_G3

D1_G8

228

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2689; C0 = 63%, C1 = 37%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2689; C1 = 64%, Tail = 36%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30 40
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0, dpush = 4.14, m = 0, ts = 0, ia = − 1

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G10*

A1_G5*

A1_G1

A1_G8

A1_G9*

C1_G10

D1_G3

D1_G8

228

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2689; C0 = 63%, C1 = 37%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2689; C1 = 64%, Tail = 36%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30 40
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0, dpush = 4.14, m = 0, ts = 0, ia = − 1

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G10*

A1_G5*

A1_G1

A1_G8

A1_G9*

C1_G10

D1_G3

D1_G8

228

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2689; C0 = 63%, C1 = 37%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2689; C1 = 64%, Tail = 36%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30 40
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0, dpush = 4.14, m = 0, ts = 0, ia = − 1

E
A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G8

A1_G1

A1_G9*

A1_G4

A1_G10*

A1_G5*

C1_G10

D1_G3

D1_G8

221

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2751; C0 = 62%, C1 = 38%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2751; C1 = 63%, Tail = 37%

A1_G1

A1_G9*

A1_G10* A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0.191, dpush = 7.09, m = 0, ts = 0, ia = − 1

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G8

A1_G1

A1_G9*

A1_G4

A1_G10*

A1_G5*

C1_G10

D1_G3

D1_G8

221

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2751; C0 = 62%, C1 = 38%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2751; C1 = 63%, Tail = 37%

A1_G1

A1_G9*

A1_G10* A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0.191, dpush = 7.09, m = 0, ts = 0, ia = − 1

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G8

A1_G1

A1_G9*

A1_G4

A1_G10*

A1_G5*

C1_G10

D1_G3

D1_G8

221

C544 (Simulation)

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1

N = 2751; C0 = 62%, C1 = 38%

0

100

200

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster 1 Tail

N = 2751; C1 = 63%, Tail = 37%

A1_G1

A1_G9*

A1_G10* A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

0

10

20

30

0 10 20 30
mm

m
m

Clone 1

1e+01

1e+03

1e+05

0 10 20 30
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1

Parameters: λ = 1, µ = 0.191, dpush = 7.09, m = 0, ts = 0, ia = − 1

F
A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G5*

A1_G1

A1_G8

A1_G9*

A1_G10*

C1_G10

D1_G8

D1_G3

215

M1

C544 (Simulation)

0

100

200

300

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1 2 HH

N = 3554; C0 = 48%, C1 = 28%, C2 = 2.3%, HH = 22%

0

100

200

300

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster B1 Tail

N = 3554; B1 = 54%, Tail = 46%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8
0

10

20

30

0 10 20 30
mm

m
m

Clone 1 2

1

10

100

1000

10000

0.0 2.5 5.0 7.5 10.0
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1 2

Parameters: λ = (1  13.2), µ = (0  0), dpush = (78  78), m = (0  0), ts = (0  28400), ia = (− 1  0)

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G5*

A1_G1

A1_G8

A1_G9*

A1_G10*

C1_G10

D1_G8

D1_G3

215

M1

C544 (Simulation)

0

100

200

300

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1 2 HH

N = 3554; C0 = 48%, C1 = 28%, C2 = 2.3%, HH = 22%

0

100

200

300

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster B1 Tail

N = 3554; B1 = 54%, Tail = 46%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8
0

10

20

30

0 10 20 30
mm

m
m

Clone 1 2

1

10

100

1000

10000

0.0 2.5 5.0 7.5 10.0
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1 2

Parameters: λ = (1  13.2), µ = (0  0), dpush = (78  78), m = (0  0), ts = (0  28400), ia = (− 1  0)

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8

221

C544 (Target)

A1_G4

A1_G5*

A1_G1

A1_G8

A1_G9*

A1_G10*

C1_G10

D1_G8

D1_G3

215

M1

C544 (Simulation)

0

100

200

300

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Clone 0 1 2 HH

N = 3554; C0 = 48%, C1 = 28%, C2 = 2.3%, HH = 22%

0

100

200

300

0.00 0.25 0.50 0.75 1.00
VAF (100x)

C
ou

nt
s

Cluster B1 Tail

N = 3554; B1 = 54%, Tail = 46%

A1_G1

A1_G9*

A1_G10*

A1_G8

A1_G5*

A1_G4

C1_G10

D1_G3

D1_G8
0

10

20

30

0 10 20 30
mm

m
m

Clone 1 2

1

10

100

1000

10000

0.0 2.5 5.0 7.5 10.0
Gillespie time

P
op

ul
at

io
n 

si
ze

Clone 1 2

Parameters: λ = (1  13.2), µ = (0  0), dpush = (78  78), m = (0  0), ts = (0  28400), ia = (− 1  0)

Supplementary Figure S.137: SMC-ABC inference framework applied to ML-WGS tree of C544.
A) The target tree. B) Model selection results for all tested models. C) Corresponding AIC values
for a wide range of ε . D-G) The best fitting simulated neutral tree for the ‘Neutral’, ‘Neutral+Death’,
‘Selection’ and ‘Selection x 2’ model respectively.
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Supplementary Figure S.138: SMC-ABC inference framework applied to ML-WGS tree of C555.
A) The target tree. B) Model selection results for all tested models. C) Corresponding AIC values
for a wide range of ε . D-G) The best fitting simulated neutral tree for the ‘Neutral’, ‘Neutral+Death’,
‘Selection’ and ‘Selection x 2’ model respectively.
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Supplementary Figure S.139: SMC-ABC inference framework applied to ML-WGS tree of C559.
A) The target tree. B) Model selection results for all tested models. C) Corresponding AIC values
for a wide range of ε . D-G) The best fitting simulated neutral tree for the ‘Neutral’, ‘Neutral+Death’,
‘Selection’ and ‘Selection x 2’ model respectively.
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Supplementary Figure S.140: SMC-ABC inference framework applied to ML-WGS tree of C562.
A) The target tree. B) Model selection results for all tested models. C) Corresponding AIC values
for a wide range of ε . D-G) The best fitting simulated neutral tree for the ‘Neutral’, ‘Neutral+Death’,
‘Selection’ and ‘Selection x 2’ model respectively.
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Supplementary Figure S.141: Driver mutations of C518.
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Supplementary Figure S.142: Driver mutations of C524.
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Supplementary Figure S.143: Driver mutations of C530.
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Supplementary Figure S.144: Driver mutations of C525.
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Supplementary Figure S.145: Driver mutations of C531.
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Supplementary Figure S.146: Driver mutations of C538.
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Supplementary Figure S.147: Driver mutations of C539.
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Supplementary Figure S.148: Driver mutations of C542.
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Supplementary Figure S.149: Driver mutations of C554.
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Supplementary Figure S.150: Driver mutations of C549.
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Supplementary Figure S.151: Driver mutations of C551.
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Supplementary Figure S.152: Driver mutations of C559.
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Supplementary Figure S.153: Inferred subclones mapped to WGS trees. Shown are the
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Supplementary Figure S.158: 1/f test applied to simulations from the posterior. For each the 20
best spatial simulations were generated and the 1/f test was applied to simulated global VAF data.
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Supplementary Figure S.164: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C516. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.165: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C518. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.166: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C522. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.167: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C524. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.168: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C525. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.169: SMC-ABC inference framework with variable sampling schema
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considered.
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Supplementary Figure S.170: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C530. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.171: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C531. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.172: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C531 (excl. D1-G7). A) The target tree. B) Model selection results
for all tested models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best
fitting simulated neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G)
and H) The fraction of times samples were located in the corresponding clones for the ‘Selection’
and ‘Selection x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’
model was not considered.
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Supplementary Figure S.173: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C532. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.174: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C536. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.175: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C537. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.176: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C538. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.177: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C539. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.178: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C542. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.179: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C543. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
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x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.180: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C543 (excl. A1-G9). A) The target tree. B) Model selection results
for all tested models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best
fitting simulated neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G)
and H) The fraction of times samples were located in the corresponding clones for the ‘Selection’
and ‘Selection x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’
model was not considered.
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Supplementary Figure S.181: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C544. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.182: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C548. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.183: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C549. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.184: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C550. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Parameters: λ = (1  13.1), µ = (0  0), dpush = (92.9  92.9), m = (0  0), ts = (0  3390), ia = (− 1  0)
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Parameters: λ = (1  13.7  11.5), µ = (0  0  0), dpush = (238  238  238), m = (0  0  0), ts = (0  5030  5950), ia = (− 1  0  0)
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Supplementary Figure S.185: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C551. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.186: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C552. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.187: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C554. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.188: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C555. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.189: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C559. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.190: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C560. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.191: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C561. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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Supplementary Figure S.192: SMC-ABC inference framework with variable sampling schema
applied to ML-WGS tree of C562. A) The target tree. B) Model selection results for all tested
models. C) Corresponding AIC values for a wide range of ε . D), E) and F) The best fitting simulated
neutral tree for the ‘Neutral’, ‘Selection’ and ‘Selection x 2’ model respectively. G) and H) The
fraction of times samples were located in the corresponding clones for the ‘Selection’ and ‘Selection
x 2’ model respectively. Figure parts F) and H) can be missing if the ‘Selection x 2’ model was not
considered.
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(Feb. 17, 2020). “On the minimum value of the Colless index and the bifurcating trees
that achieve it”. In: arXiv:1907.05064 [cs, math, q-bio]. arXiv: 1907.05064.

Costa, Ana, Alix Scholer-Dahirel, and Fatima Mechta-Grigoriou (Apr. 2014). “The role of
reactive oxygen species and metabolism on cancer cells and their microenvironment”.
In: Seminars in Cancer Biology 25, pp. 23–32.

Crick, F. H. C., Leslie Barnett, S. Brenner, and R. J. Watts-Tobin (Dec. 1961). “General
Nature of the Genetic Code for Proteins”. In: Nature 192.4809, pp. 1227–1232.

Cross, William, Michal Kovac, Ville Mustonen, Daniel Temko, Hayley Davis, Ann-
Marie Baker, Sujata Biswas, Roland Arnold, Laura Chegwidden, Chandler Gatenbee,
Alexander R. Anderson, Viktor H. Koelzer, Pierre Martinez, Xiaowei Jiang, Enric
Domingo, Dan J. Woodcock, Yun Feng, Monika Kovacova, Tim Maughan, S:CORT
Consortium, Marnix Jansen, Manuel Rodriguez-Justo, Shazad Ashraf, Richard Guy,
Christopher Cunningham, James E. East, David C. Wedge, Lai Mun Wang, Claire
Palles, Karl Heinimann, Andrea Sottoriva, Simon J. Leedham, Trevor A. Graham, and
Ian P. M. Tomlinson (Oct. 2018). “The evolutionary landscape of colorectal tumorige-
nesis”. In: Nature Ecology & Evolution 2.10, pp. 1661–1672.

https://arxiv.org/abs/1907.05064


BIBLIOGRAPHY 377

Cross, William, Maximilian Mossner, Salpie Nowinski, George Cresswell, Abhirup Baner-
jee, Marc Williams, Laura Gay, Ann-Marie Baker, Christopher Kimberley, Hayley
Davis, Pierre Martinez, Maria Traki, Viola Walther, Kane Smith, Giulio Caravagna,
Sasikumar Amarasingam, George Elia, Alison Berner, Ryan Changho Choi, Pradeep
Ramagiri, Ritika Chauhan, Nik Matthews, Jamie Murphy, Anthony Antoniou, Susan
Clark, Jo-Anne Chin Aleong, Enric Domingo, Inmaculada Spiteri, Stuart AC Mc-
Donald, Darryl Shibata, Miangela M. Lacle, Lai Mun Wang, Morgan Moorghen, Ian
PM Tomlinson, Marco Novelli, Marnix Jansen, Alan Watson, Nicholas A. Wright,
John Bridgewater, Manuel Rodriguez-Justo, Hemant Kocher, Simon J. Leedham, An-
drea Sottoriva, and Trevor A. Graham (Mar. 29, 2020). “Stabilising selection causes
grossly altered but stable karyotypes in metastatic colorectal cancer”. In: bioRxiv,
p. 2020.03.26.007138.

Darwin 1809-1882, Charles (1859). On the origin of species by means of natural selection,
or preservation of favoured races in the struggle for life.

Darwin, Charles and Alfred Wallace (Aug. 1, 1858). “On the Tendency of Species to form
Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selec-
tion”. In: Zoological Journal of the Linnean Society 3.9, pp. 45–62.

Davis, Alexander, Ruli Gao, and Nicholas Navin (Apr. 2017). “Tumor evolution: Linear,
branching, neutral or punctuated?” In: Biochimica Et Biophysica Acta. Reviews on
Cancer 1867.2, pp. 151–161.

Del Monte, Ugo (Feb. 2009). “Does the cell number 10 9 still really fit one gram of tumor
tissue?” In: Cell Cycle 8.3, pp. 505–506.

Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra (Sept. 1, 2012). “An adaptive sequen-
tial Monte Carlo method for approximate Bayesian computation”. In: Statistics and
Computing 22.5, pp. 1009–1020.

DeLeo, A. B., G. Jay, E. Appella, G. C. Dubois, L. W. Law, and L. J. Old (May 1, 1979).
“Detection of a transformation-related antigen in chemically induced sarcomas and
other transformed cells of the mouse”. In: Proceedings of the National Academy of
Sciences 76.5, pp. 2420–2424.

Denissenko, M. F., A. Pao, M. Tang, and G. P. Pfeifer (Oct. 18, 1996). “Preferential forma-
tion of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53”. In: Science
(New York, N.Y.) 274.5286, pp. 430–432.

Dentro, Stefan C., David C. Wedge, and Peter Van Loo (Aug. 1, 2017). “Principles of Re-
constructing the Subclonal Architecture of Cancers”. In: Cold Spring Harbor Perspec-
tives in Medicine 7.8.

Dentro, Stefan C. et al. (Apr. 7, 2021). “Characterizing genetic intra-tumor heterogeneity
across 2,658 human cancer genomes”. In: Cell.

DePristo, Mark A., Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R. Maguire,
Christopher Hartl, Anthony A. Philippakis, Guillermo del Angel, Manuel A. Ri-
vas, Matt Hanna, Aaron McKenna, Tim J. Fennell, Andrew M. Kernytsky, Andrey
Y. Sivachenko, Kristian Cibulskis, Stacey B. Gabriel, David Altshuler, and Mark J.
Daly (May 2011). “A framework for variation discovery and genotyping using next-
generation DNA sequencing data”. In: Nature Genetics 43.5, pp. 491–498.

Desper, R., F. Jiang, O. P. Kallioniemi, H. Moch, C. H. Papadimitriou, and A. A. Schäffer
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Yu, Jia, Permeen A. Mohamed Yusoff, Daniëlle T. J. Woutersen, Pamela Goh, Nathan Harm-
ston, Ron Smits, David M. Epstein, David M. Virshup, and Babita Madan (Dec. 15,
2020). “The Functional Landscape of Patient-Derived RNF43 Mutations Predicts Sen-
sitivity to Wnt Inhibition”. In: Cancer Research 80.24, pp. 5619–5632.

Yue, Xuetian, Yuhan Zhao, Yang Xu, Min Zheng, Zhaohui Feng, and Wenwei Hu (June 2,
2017). “Mutant p53 in cancer: accumulation, gain-of-function and therapy”. In: Jour-
nal of molecular biology 429.11, pp. 1595–1606.

Zaccaria, Simone and Benjamin J. Raphael (Feb. 2021). “Characterizing allele- and
haplotype-specific copy numbers in single cells with CHISEL”. In: Nature Biotech-
nology 39.2, pp. 207–214.

Zack, Travis I., Steven E. Schumacher, Scott L. Carter, Andrew D. Cherniack, Gordon
Saksena, Barbara Tabak, Michael S. Lawrence, Cheng-Zhong Zhang, Jeremiah Wala,
Craig H. Mermel, Carrie Sougnez, Stacey B. Gabriel, Bryan Hernandez, Hui Shen,
Peter W. Laird, Gad Getz, Matthew Meyerson, and Rameen Beroukhim (Oct. 2013).
“Pan-cancer patterns of somatic copy number alteration”. In: Nature Genetics 45.10,
pp. 1134–1140.

Zaidi, Syed H. et al. (July 20, 2020). “Landscape of somatic single nucleotide variants and
indels in colorectal cancer and impact on survival”. In: Nature Communications 11.1,
p. 3644.

Zakut-Houri, R, B Bienz-Tadmor, D Givol, and M Oren (May 1985). “Human p53 cellular
tumor antigen: cDNA sequence and expression in COS cells.” In: The EMBO Journal
4.5, pp. 1251–1255.

Zapata, Luis, Oriol Pich, Luis Serrano, Fyodor A. Kondrashov, Stephan Ossowski, and
Martin H. Schaefer (May 31, 2018). “Negative selection in tumor genome evolution
acts on essential cellular functions and the immunopeptidome”. In: Genome Biology
19.1, p. 67.

Zeira, Ron and Benjamin J Raphael (July 1, 2020). “Copy number evolution with weighted
aberrations in cancer”. In: Bioinformatics 36 (Supplement 1), pp. i344–i352.

Zhang, B., B. Zhang, X. Chen, S. Bae, K. Singh, M. K. Washington, and P. K. Datta (Feb. 18,
2014a). “Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil
through activating Akt pathway”. In: British Journal of Cancer 110.4, pp. 946–957.

Zhang, Bixiang, Sunil K. Halder, Nilesh D. Kashikar, Yong–Jig Cho, Arunima Datta, D. Lee
Gorden, and Pran K. Datta (Mar. 1, 2010). “Antimetastatic Role of Smad4 Signaling
in Colorectal Cancer”. In: Gastroenterology 138.3, 969–980.e3.

Zhang, Jianjun, Junya Fujimoto, Jianhua Zhang, David C. Wedge, Xingzhi Song, Jiexin
Zhang, Sahil Seth, Chi-Wan Chow, Yu Cao, Curtis Gumbs, Kathryn A. Gold, Neda
Kalhor, Latasha Little, Harshad Mahadeshwar, Cesar Moran, Alexei Protopopov,
Huandong Sun, Jiabin Tang, Xifeng Wu, Yuanqing Ye, William N. William, J. Jack
Lee, John V. Heymach, Waun Ki Hong, Stephen Swisher, Ignacio I. Wistuba, and
P. Andrew Futreal (Oct. 10, 2014b). “Intratumor heterogeneity in localized lung ade-
nocarcinomas delineated by multiregion sequencing”. In: Science (New York, N.Y.)
346.6206, pp. 256–259.

Zhang, Jingsong, Jessica J. Cunningham, Joel S. Brown, and Robert A. Gatenby (Nov. 28,
2017). “Integrating evolutionary dynamics into treatment of metastatic castrate-
resistant prostate cancer”. In: Nature Communications 8.1, p. 1816.

Zhang, Junjun, Joachim Baran, A. Cros, Jonathan M. Guberman, Syed Haider, Jack Hsu,
Yong Liang, Elena Rivkin, Jianxin Wang, Brett Whitty, Marie Wong-Erasmus, Long
Yao, and Arek Kasprzyk (2011). “International Cancer Genome Consortium Data



418 BIBLIOGRAPHY

Portal–a one-stop shop for cancer genomics data”. In: Database: The Journal of Bio-
logical Databases and Curation 2011, bar026.

Zhang, Yiqun, Lixing Yang, Melanie Kucherlapati, Fengju Chen, Angela Hadjipanayis, An-
geliki Pantazi, Christopher A. Bristow, Eunjung A. Lee, Harshad S. Mahadeshwar,
Jiabin Tang, Jianhua Zhang, Sahil Seth, Semin Lee, Xiaojia Ren, Xingzhi Song, Huan-
dong Sun, Jonathan Seidman, Lovelace J. Luquette, Ruibin Xi, Lynda Chin, Alexei
Protopopov, Wei Li, Peter J. Park, Raju Kucherlapati, and Chad J. Creighton (July 10,
2018). “A Pan-Cancer Compendium of Genes Deregulated by Somatic Genomic Re-
arrangement across More Than 1,400 Cases”. In: Cell Reports 24.2, pp. 515–527.

Zhang, Yong, Tao Liu, Clifford A. Meyer, Jérôme Eeckhoute, David S. Johnson, Bradley E.
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