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Abstract

Colorectal cancer is one of the most frequent malignancies in the world and contributes
significantly to cancer-related death. While previous studies of the genomic alterations in
colorectal cancers (CRCs) have significantly contributed to our understanding of this dis-
ease, somatic mutations do not seem to fully explain the evolution of malignant phenotypes.
Epigenetic alterations have been suggested to play a crucial role in this context, but they
remain insufficiently characterised in CRCs. It is also widely recognised that significant
genetic diversity exists in all tumours, but how to interpret this heterogeneity functionally
is the subject of significant debate. Even less is known about the role of epigenetic hetero-
geneity in CRCs.

Here I will present an analysis of the genomic and epigenomic heterogeneity in 30 col-
orectal carcinoma using a novel multi-omics profiling method. This multi-omics profiling
method allows for profiling of somatic mutations with whole-genome sequencing, chro-
matin accessibility with ATAC-seq and gene expression using RNA-seq concomitantly in
single CRC glands. Using data from 1,377 samples from 30 primary cancers and ten ade-
nomas, consisting of 1,212 chromatin accessibility profiles and 527 whole-genomes, I will
provide a comprehensive map of genetic and epigenetic heterogeneity in these tumours.

Using an ABC-SMC inference framework based on a spatial tumour growth model, I
will also demonstrate how measurements of somatic mutations in multiple single glands can
be used to identify subclonal driver mutations undergoing selection. This analysis also sug-
gests that individual CRCs might evolve under different degrees of spatial constrain and that
this can be inferred from genomic measurements. Both, the presence of selected subclones

and the amount of spatial constraint, might constitute a novel ‘evolutionary biomarker’.
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Chapter 1

General Introduction

1.1 A Historical Perspective

A tumour is composed of billions of cells that grow out of control and do not comply with
the normal organisation of a tissue (DeVita, Young, and Canellos 1975; Del Monte 2009).
Tumours can therefore arise in virtually all multicellular organisms, including the most
basic forms of life. Indeed, tumour-like growth have been observed in Porifera' (Robert
2010) and Cnidaria® (Squires 1965; Millane et al. 2011; Domazet-Loso and Tautz 2010).
Historical accounts of tumours as pathology in humans date back as far as 3000 BC, and
methods of treatment were already described by Hippocrates 400 BC (Hajdu 2011).

Explanations for why tumours arise in some people varied over the centuries, ranging
from a contagious disease to imbalances of body humors. One of the first correct identi-
fications of an environmental factor causing the development of cancer was the discovery
that the exposure to soot increases the risk to develop scrotal cancer by Pott (1775). Today
we know that this is due to the ability of chemicals in the soot to cause mutations of the
deoxyribonucleic acid (DNA) — a long polymeric molecule composed of a sequence of the
four nucleobases adenine (A), cytosine (C), guanine (G) and thymine (T) — that contains
the genomic information. Shortly after the discovery that all living organisms are composed
of cells (Schwann and Schleyden 1847), Virchow, maybe inspired by others (Tan and Brown
2006; Wright and Poulsom 2012), established that tumours arise as a disease of cells from
a single ancestral cell (Virchow 1860).

Based on the observation of abnormal chromosomes in the nuclei of cancer cells

(Hansemann 1890), Boveri suggested that tumours develop due to particular abnormal com-

ISponges
2Jellyfish and corals.
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binations of stainable particles, the chromosomes?, that are passed during the division of a
cell to the daughter cells (Boveri 1914). While this theory was not universally praised at the
time, it is from a modern perspective surprisingly accurate. Almost 50 years later, Nowell
and Hungerford (1960) discovered the ‘Philadelphia chromosome’, a chromosomal rear-
rangement of chromosome 9 and 22 that causes the fusion of the genes BCR and ABLI. It is
the only chromosomal alteration required for the development of chronic myeloid leukaemia

and occurs in almost all cases of this disease (Quintas-Cardama and Cortes 2009).

Other research conducted during this period of time had, for example, discovered the
cancer-causing effect of x-rays (Marie 1910), tar (Yamagiwa 1915) and various chemical
compounds (Friedewald and Rous 1944). Francis Peyton Rous had instead identified a
filterable transmissible agent, that was able to induce cancer in birds (Rous 1910; Rous
1911) and it would later be discovered that this effect was caused by a tumour-inducing
virus (Claude, Porter, and Pickels 1947). All of these observations lead to the formulation
of two, each other apparently contradicting, theories i) that cancer arise due to external
factors inducing the growth of cells or ii) that cancer arises due to the spontaneous ‘somatic

mutation’ of inherent properties of the genomic information.

After the identification of the DNA as the molecule containing the genomic informa-
tion (Watson and Crick 1953), it was discovered that the ribonucleic acid (RNA) of the
Rous sarcoma virus could also be translated into DNA (Temin and Mizutani 1970; Bal-
timore 1970). This provided an explanation of how the oncogenic information from the
virus would become accessible in infected cells (Huebner and Todaro 1969). Shortly later,
research of this genomic information identified almost identical versions of the oncogenic
parts of the viral genome in the chicken genome itself (Varmus et al. 1972). This implied
that the oncogene of the Rous sarcoma virus was of cellular origin and that a corresponding
cellular ‘proto-oncogene’ with a normal physiological function existed. Together with the
discovery that many of the previously identified carcinogens were indeed able to change the
genomic information (i.e., mutagenic) (Ames et al. 1973), it became clear that cancers did
primarily occur because of somatic mutations accumulating in cells and that arguments to

the contrary by Rous (1967) and others were erroneous.

31t would later be discovered that chromosomes contain the DNA and hence all genomic information.
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1.2 Cancer as Evolutionary Process

This somatic mutation theory of cancer was also consistent with statistical observations of
cancer incident rates (Nordling 1953; Armitage and Doll 1954) and known familiar predis-
positions to some cancer types (Knudson 1971). Based on the scaling of incident rates with
age, Armitage and Doll (1954) deduced that tumour development could be a multi-stage

process requiring around six independent mutations.

Armitage and Doll also derived an alternative explanation for the observed incidence
rates (Armitage and Doll 1957). They suggested a two-step process in which a first alter-
ation causes a subset of cells to clonally expand (initiation) with an independent second step
causing the transition to malignancy (progression). Further analysis of these two theories
concluded that tissue-specific effects and a combination of both might explain the incident

rates observed in other tumour entities better (Ashley 1969).

Similarly, Knudson (1971) concluded from the observed number of retinoblastomas
in patients with and without familial predisposition that two independent mutations were
required for the development of this tumour type. This observation was consistent with
the loss of both copies (i.e., alleles) of a single gene, which Knudson suspected to be the
explanation for his observation. His prediction would later be proven by the discovery of

the gene RB that, if lost, causes the formation of retinoblastomas (Friend et al. 1986).

The somatic mutation theory of cancer also implied that — just like for species (Darwin
1859) — evolutionary principles applied (Cairns 1975). In a seminal paper Nowell (1976)
outlined the principles of the clonal evolution of cancer, highlighting its equivalence to an
asexually reproducing species. In this evolutionary framework, the selection of lineages
with advantageous variations, arising due to random mutation, causes the cell population
to grow faster than others and hence rise to a higher frequency in the population (Nowell
1976). It also explains why the proliferative capacity of tumours generally increases over

time or the ability to grow into the underlying tissue and metastasise arise (Figure 1.1).

1.3 Tumour Biology

The perspective of cancer as a genetic disorder arising due to somatic mutation of the normal
cells provided the motivation for the identification of responsible genes. These efforts led
to the discovery of p53, as a protein-bound by a viral protein in cells transformed by the

tumour inducing virus SV40 (Kress et al. 1979; Chang et al. 1979; Linzer and Levine 1979;
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Figure 1.1: Cancer evolution. a) Cancer clones evolve in their micro-environment through an evo-
lutionary process. Vertical lines represent selective pressure and differently coloured circles repre-
sent subclones with different phenotypes (i.e., mutations). As already suggested by Nowell (1976)
stepwise selection of adapted subclones, might ultimately cause the development of clones able to
diffusely infiltrate into the underlying tissue or to metastasis (i.e., to grow in a different ecosystem).
Treatment (Tx) introduces a new selective pressure that can cause resistant subclones to arise, hence
causing recurrence (dark red clone). b) Darwin’s branching evolutionary tree of speciation from his
1837 notebook. (Figure from Greaves and Maley, 2012).

4 in some

Lane and Crawford 1979) and independently due to its abnormally high expression
tumours (DeLeo et al. 1979).

The gene TP53, which encodes for the protein p53, would later be cloned in mice
(Chumakov, Iotsova, and Georgiev 1982) and humans (Matlashewski et al. 1984; Zakut-
Houri et al. 1985). Decades of research of the molecular function of this single gene would
ultimately lead to the characterisation of its various roles in normal cells and tumours (May
and May 1999). Similar research of other tumour-associated genes lead to the discovery
of ERBB2 (King, Kraus, and Aaronson 1985), the RAS gene family (Tsuchida, Ryder, and
Ohtsubo 1982; Wong-Staal et al. 1981; Marshall, Hall, and Weiss 1982; Shih and Weinberg
1982) or APC (Nishisho et al. 1991).

It was observed that for some of these genes, the mutation of both alleles — equiv-

alent to the ‘two-hit’ hypothesis proposed by Knudson (1971) for RB in glioblastoma —

was required. In contrast, other genes only required a single mutation to cause the trans-

4The high p53 expression in many tumours (Bartek et al. 1991; Yue et al. 2017), is in contrast to normal cells,
in which p53 expression is usually kept at low levels. Non-truncating mutations of p53 are strongly associated
with increased expression (Bartek et al. 1990; Alsner et al. 2008), suggesting the change of expression directly
arises from higher stability of mutated p53 (Yue et al. 2017). However, the introduction of mutant p53 into mice
(i.e., knock-in) does not cause an increase of p53 levels (Lang et al. 2004; Olive et al. 2004), thus suggesting
that additional mechanisms are involved (Yue et al. 2017). The negative-dominant phenotype of many p53
mutations would indeed explain why these additional alterations are adaptive and selected for.
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formation of cells. These contrasting effects could be explained by the activity these genes
have. For genes involved in the active suppression of tumorigenic properties, called tumour
suppressor gene (TSG), the second unmutated allele can still perform this activity. Such
TSG hence tended to require the loss of both alleles (i.e., they are recessive). In contrast,
genes that actively promote tumour-associated traits, like an increased growth rate, typi-
cally only required one mutant allele to be present (i.e., they are dominant). These types of
cancer-associated genes are also called ‘oncogenes’ and examples include constitutively ac-
tive mutants of K-Ras, the most commonly found oncogenes in colorectal cancers (CRCs).

Still, exceptions from this general pattern do exist. An example of this is the previously
mentioned p53. While p53 acts primarily as a TSG (Levine and Oren 2009; Vousden and
Prives 2009), many of the mutant alleles found in tumours are sufficient to cause a dominant
phenotype. This ‘dominant-negative’ effect is thought to arise from the ability of mutant p53
to disrupt the function of tetrameric p53 complexes. These tetramers are the actual active
protein structure able to bind to the DNA and regulate the transcription of target genes. The
activity is lost if a single mutant p53 protein is integrated into the complex (Goh, Coffill,
and Lane 2011). Since a higher expression of the mutant allele will disrupt an even larger
fraction of the p53 complexes (Yue et al. 2017), the ‘dominant-negative’ phenotype is also
able to explain why a high expression of mutant p53 alleles might be advantageous in a

tumour.
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Figure 1.2: Genetic model of colorectal tumorigenesis by Fearon and Vogelstein (1990).

The study of the relative frequency with which tumour-associated genes (i.e., driver
genes) were mutated, quickly led to the formulation of sequences able to explain the multi-
step nature of cancer. In the context of CRC, the adenoma-carcinoma sequence was de-
scribed by Fearon and Vogelstein (1990). This simple model of colorectal tumorigenesis
suggests that early alterations of APC induce the formation of adenomatous tumours and
that the subsequent mutation of K-Ras and the loss of p53 cause the progression to a carci-
noma (see Figure 1.2). While simplistic in nature, this model still shapes our understanding

of CRC as a disease (e.g., Vogelstein and Kinzler 2015; Lote et al. 2017) and remains at the
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heart of statistical models (e.g., Paterson, Clevers, and Bozic 2020).

The detailed study of the functional effects mutation of different cancer driver genes
had in cells, led to the identification of common characteristics. These ‘Hallmarks of Can-
cer’ that are acquired during the tumorigenesis, provide a rationale for the interpretation of

mutations occurring in individual cancer genomes (Hanahan and Weinberg 2000).

1.4 The Human Genome Project & NGS

The hope that the identification of other cancer-associated genes might reveal a cure for
the disease partially motivated large international efforts to sequence the human genome in
its entirety. Fierce competition between ‘The Human Genome Project’ (Sinsheimer 1989)
and the Celera Corporation lead to the completion of initial drafts of the human genome at
the beginning of the 21st century (Venter et al. 2001; Lander et al. 2001). This reference
genome provided the basis for the identification of new human genes (e.g., Hubbard et al.
2002) and allowed the study of their evolution in more detail.

Parallel to the sequencing of the human genome, the development of new sequenc-
ing techniques allowing high-throughput sequencing took place. These methods are today
collectively referred to as next-generation sequencing (NGS). A full description of the var-
ious approaches and technologies would certainly be outside of the scope of this simple
introduction, but good reviews of NGS methods can be found in Shendure and Ji (2008) or
Mardis (2008). The currently most widely used NGS method is Illumina’s sequencing-by-
synthesis. Sequencing-by-synthesis allows the parallel sequencing of pools of fragmented
DNA with attached primer pairs, so-called libraries.

These libraries are then added onto a glass surface to which complementary primers are
covalently bound (Adessi et al. 2000; Fedurco et al. 2006). This causes individual fragments
of DNA from the library to bind to the complementary primers. After this, polymerase
chain reaction (PCR) based amplification of the bound DNA fragments is performed. At
each step of this PCR, the free ends of the DNA fragments form a bridge that binds to a new
free primer pair attached to the glass surface. After several rounds, small clusters of nearly?
identical DNA fragments are formed (see Figure 1.3).

These clusters are then sequenced in a base-by-base fashion using fluorescent nu-

cleotides (Turcatti et al. 2008). At each sequencing step, images of the glass surface are

SErrors during the copying of the DNA can arise and are one source of noise that complicates the detection
of bona fide mutations from the obtained DNA sequences.
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taken. Through the analysis of the images, the sequence of each non-overlapping cluster
can be determined. This approach results in the generation of millions of reads, contain-
ing the sequence of the DNA in a single cluster and hence the sequence of a single DNA

fragment of the library.

In principle, partial matches between reads from overlapping genomic regions can be
used to assemble an entire reference genome de novo. Alternatively, reads can be aligned to
a known reference genome like the one produced by the Human Genome Project (Schneider
et al. 2016). This alignment-based analysis requires far fewer reads and is computationally
cheaper. By detecting differences between the reference genome and the sequenced reads,
variants present in the library can then be identified. For a variant m at a given locus i the
observed variant allele frequency (VAF) f;, of such a variant is given by f,, = Ny, /N;, where
N; is the total number of reads covering i and N, the number of these reads that support the
variant m. The observed VAF provides an estimate of the true frequency of the allele in the

sequenced sample.

In the absence of a genuine variant, one also expects to see some sporadic mismatches
between the reference genome and the generated reads. These mismatches are due to errors
that are introduced during the amplification of DNA molecules with PCR or due to random
misread bases during the sequencing process itself. The rate at which these errors arise
can be locus, library, and sequencing run specific and many different algorithms, so-called
mutation or variant callers, have been designed to distinguish bona fide variants from this
background noise (see for example Pabinger et al. 2014). With such algorithms, one can

readily identify most germline variants a person inherited from their parents.

In order to detect the somatic mutations that are present in a tumour one needs to dis-
tinguish these somatic mutations from the millions of germline variants present in all cells
of a person. For this, a second normal tissue sample, a so-called reference, is required.
Somatic variant callers were developed for the specific purpose of identifying somatic mu-
tations from such paired tumour-normal data. Extensive reviews of the performance of these
algorithms have been performed (see for example Wang et al. 2013b; Xu et al. 2014; Xu
2018).

Some variant calling algorithms for both, somatic and germline mutations, are also
able to detect mutations that delete or insert a sequence into the DNA. The analysis of these

so-called insertion or deletions (InDels), is limited by the length of the available reads. For
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the sequencing-by-synthesis method, the length of reads that can be obtained is limited to
~ 150bp from either end of the fragment. Beyond this, the degradation of the base quality
makes sequencing impractical. For this reason, only relatively small alterations can be fully

resolved by most currently available NGS data.
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Figure 1.3: llumina sequencing-by-synthesis. Clusters of identical fragments are created through
‘Bridge amplification” on the surface of the flow cell (top row). The sequence of these clusters
(bottom left) of reads is then sequenced base-by-base using reversible terminator bases (bottom).
During this process, a single base binds to the DNA. The fluorescent signal is picked up using image
sensors (bottom right). At this point, the reversible terminator is removed from the base and the
process is repeated with the next base (bottom row). (Figure from Mardis, 2008)

A known reference genome and NGS methods now allow to re-sequence the entire
human genome within hours. This has provided the technological basis for the comprehen-

sive characterisation of mutations in thousands of cancer genomes as done by The Cancer
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Genome Atlas (TCGA, Bailey et al., 2018) or the Pan-Cancer Analysis of Whole Genomes
(PCAWG, Campbell and Giocomo, 2019) project. Both studies have also used NGS meth-
ods to analyse the transcription of genes in the entire genome or the presence of non-genetic

modifications of the genome, which will be explained later.

1.5 Modern Cancer Genomics

1.5.1 Cancer Driver Genes

Large-scale pan-cancer genomic studies have significantly advanced our understanding of
the genomic changes underlying carcinogenesis. The analysis of somatic mutations present
in individual cancer types has allowed the identification of novel cancer driver genes and
the characterisation of the frequency with which these occur in different tumour entities
(Kandoth et al. 2013). Similar studies of somatic copy-number alterations (CNAs) of genes
have provided significant insight into the recurrence and putative causes of CNAs (Zack
et al. 2013).

Due to the complexity of the processes underlying the accumulation of point mutations
and their selection, statistical models are required for their analysis. Many approaches to
the detection of such recurrently mutated genes exist. Examples of these include methods
that analyse an excess of non-synonymous mutations compared to an expected background
(Weghorn and Sunyaev 2017; Martincorena 2019; Dietlein et al. 2020), clustering of muta-
tion within protein structures (Arnedo-Pac et al. 2019; Tokheim et al. 2016), the predicted
impact of mutations (Mularoni et al. 2016) or a combination of such methods (Lawrence
et al. 2014). Dedicated projects for the analysis and curation of such cancer-specific driver
genes across datasets and discovery methods have been developed (e.g., Sondka et al. 2018;
Martinez-Jiménez et al. 2020).

Despite these efforts little is known about the functional impact the large majority of
these driver mutations have in vivo. Where such experimental data exist, they often involve
mouse models that do not necessarily resemble the effect these have in humans. The longi-
tudinal observation of driver mutations in primary lesions is rarely possible. Longitudinal
tracking of somatic driver mutations using liquid biopsies can instead provide a window
into disease evolution, but it integrates information over tumour cells from the primary as
well as potentially existing metastatic sites (Khan et al. 2018).

Cells in a tumour also do not necessarily shed DNA at a uniform rate from all locations

of a tumour. Instead, the rate at which DNA is shed depends on the rate at which tumour
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cells die, which itself depends on factors like the degree of vascularisation. For this reason,
the frequency of mutations in the circulating tumour DNA might not be identical to the
frequency of the mutations in all tumour cells. Despite the limited knowledge of the fitness
effects of driver mutations in vivo, the pan-cancer identification and analyses of driver genes
have provided crucial insights into their role in the development of human malignancies and
provides the very basis for today’s precision oncology and genomic medicine (Vander Velde

et al. 2020).

1.5.2 Mutational Signatures

The analysis of somatic mutations across cancer types has also allowed to gain insight
into the processes that contribute to their accumulation. In a seminal study Alexandrov et
al. (2013b) showed that different mutational processes can be identified based on unique

“fingerprints’ from information on the somatic mutations across different tumour entities.

It has in principle been known for a long time that various mutagens affect the DNA in
different ways. An example of a well characterised mutational process is the effect of ultra-
violet light with a wavelength between 280-315 nm (UV-B). The ability of UV-B to induce
nucleotide changes and double-strand breaks explains why the exposure to ultraviolet light
is a major risk factor for the development of the most common types of skin cancer (Arm-
strong and Kricker 2001; Narayanan, Saladi, and Fox 2010). The permanent changes of the
DNA sequence by ultraviolet light mainly result from the formation of covalent bonds be-
tween adjacent pyrimidine bases (i.e., C and T) in the DNA upon exposure to UV-B, causing
the formation of cyclobutane-type pyrimidine dimers (Setlow 1966). The incorrect repair
of these DNA lesions can then lead to alterations of the DNA sequence itself (Pfeifer, You,
and Besaratinia 2005). Depending on which strand of the DNA one considers, this incorrect
repair primarily leads to the accumulation of CC>TT/GG>AA and CC>TC/GG>GA (i.e.,
C>T) mutations.

In line with this, the majority of somatic mutations identified in early sequencing data
obtained from a skin-cancer cell line were found to be CC>TT/GG>AA and C>T muta-
tions (Pleasance et al. 2010a). In a small-cell lung cancer cell line sequenced by the same
authors, such somatic mutations were in contrast found to be very rare (Pleasance et al.
2010b). This cell line instead mostly showed G>T/C>A, G>A/C>T and A>G/T>C mu-
tations (Pleasance et al. 2010b). This was consistent with earlier observations of mutations

in TP53 obtained through targeted sequencing (Pfeifer et al. 2002) and the mechanism of
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mutation induction by polycyclic aromatic hydrocarbons, the main mutagenic compounds
present in tobacco smoke (Deutsch-Wenzel et al. 1983; Denissenko et al. 1996). Overall,
these early studies demonstrated that somatic mutations obtained from sequencing data of
individual tumours are a powerful method to characterise the effects of dominant mutational
processes.

Alexandrov et al. (2013a) used a similar approach to systematically identify muta-
tional processes based on their induced mutation across patients by using a dimensionality
reduction method called non-negative matrix factorization (NNMF) non-negative matrix
factorization (Lee and Seung 1999). For the analysis Alexandrov et al. extended the six
possible substitutions — i.e., C>A, C>G, C>T, T>A, T>C, and T>G using the opposite
strand for sites with a reference G or A base — by the two bases flanking the mutated site
(i.e., their 5" and 3’ context). Since there are four possible bases for the 5’ base, four bases
for the 3’ and six substitutions this results in a total of 4 -4 -3 = 96 substitution types. The

number m of each of these K = 96 substitution types across G patients can be summarised

as a matrix
1 1 1
m; m m
1 2 ... G

K mk mK

Alexandrov et al. then used NNMEF to factorize this matrix M into a K x N matrix P and
a N x G matrix E for which M ~ P x E. This approach results in a reduced representation
of the data as a linear combination of N ‘mutational signatures’ stored in the columns of P
and the ‘exposure’ of a patient to each of these stored in the rows of E. They found that the
minimum number of N required to factorize the data from total of 7,042 patients from 30
was 21, suggesting that around 21 different mutational process might have been active in
various tumours.

It was indeed possible to identify known aetiologies for many of the identified mu-
tational signatures. An example is a signature they primarily identified in lung cancers of
smokers, that could be attributed to the mutagenic effects of substances contained in tobacco
smoke (Alexandrov et al. 2013b). Another mutational signature, which was only found in
sun-exposed skin, matched the known profile of mutations induced by ultraviolet light. A
more surprising discovery was that cytidine deaminase from the APOBEC family appeared
to contribute substantially to the accumulation of somatic mutations in a subset of tumours

from various entities (Nik-Zainal et al. 2012b). Today, similar analyses of ‘mutational sig-



32 Chapter 1. General Introduction

natures’ in various cancer types have contributed significantly to our understanding of how
the exposure to and the activity of mutational processes — that ultimately provide the nec-
essary variation for tumour evolution — change over time and in different disease stages

(Alexandrov et al. 2020).

1.6 Intratumor Heterogeneity

As outlined in the above paragraphs, many pan-cancer sequencing studies focused on the
analysis of somatic mutations across patients. Doing so, they revealed an extensive pattern
of inter-tumour heterogeneity and gained insight into the events involved in the development
of the corresponding malignancies. Still, each tumour is composed of 108-10° cells per
gram of tissue (Del Monte 2009) and the dividing cells continue to accumulate mutations
as a tumour growths. Since these mutations cause the phenotypic variability that selection
can act on, a better understanding of this intratumor heterogeneity (ITH) of mutations is
important for the understanding of cancer as a disease (Greaves and Maley 2012; Greaves
2019).

Some mutations can cause subgroups of cells to be better adapted and grow faster, thus
causing a positive selection of the corresponding subpopulation. Other mutations might
not directly provide a growth advantage, but instead confer resistance to drugs used for
the treatment of cancer, these pre-existing resistant subpopulations can then cause the rapid
failure of these therapies (Roche-Lestienne et al. 2002; Khan et al. 2018; Shah et al. 2002).
Irrespective of their effect on the phenotype, all genetic mutations can serve as naturally
arising markers of genetically related cells (i.e., lineage markers) that allow to trace them
through time and space. Easily observable markers, like the previously mentioned Philadel-
phia chromosome, have indeed been used very early to prove that most tumours are clonal
and thus arise from a single ancestral cell (Fialkow 1976).

The single cellular nature of cancer makes the observation of most genetic mutations
hard (Cairns 1975; Kinzler and Vogelstein 1996), but with technological advancement the
detection of other genetic variants became possible.

Examples of this include the usage of microsatellite mutations by Tsao et al. (1998) or
gains and losses of chromosomal regions for phylogenetic inference by (Desper et al. 1999).
Thanks to the vast improvement of methods over the last decades various other studies (e.g.,
Siegmund et al. 2009b; Navin et al. 2011; Anderson et al. 2011; Gerlinger et al. 2012; Nik-

Zainal et al. 2012a; Sottoriva et al. 2015; Lawson et al. 2020) have enabled similar analyses
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at ever-increasing level of detail.

The first comprehensive study of the extend of ITH was provided by a seminal study
by Gerlinger et al. (2012). In this study, the authors used whole-exome sequencing (WES)
— a method that allows the detection of mutations in the majority of the coding genome —
of samples from multiple regions obtained from four renal-cell carcinomas. Through this
approach, the extensive mutational heterogeneity existing within each tumour was revealed.
Similar multi-region sampling combined with NGS based sequencing was applied to many
malignancies and, maybe surprisingly, revealed that complex branching patterns and spatial
segregation defined the internal clonal structures of all tumours. Likewise, studies of metas-
tasis revealed complex branching patterns that suggested reseeding between sites (Gundem
et al. 2015; Yates et al. 2015; Yates et al. 2017; Noorani et al. 2020). While some of
these studies identified mutations in previously identified driver genes, how and if these
contributed to disease evolution often remained elusive. A notable exception were cases in
which multiple independent mutations of the same gene were observed in an independent
lineage (e.g., Gerlinger et al. 2012; Gerlinger et al. 2014). This convergent evolution indeed
provided strong evidence of context-dependent selection of specific mutations. Neverthe-
less, convergent evolution of subclonal mutations is fairly rare and the question of whether
the observable ITH arises due to pervasive selection of subclones or if it is instead explain-

able by genetic drift remains unclear.

1.6.1 Phylogenetic Reconstruction

Since the realisation that all existing species arose through the process of evolution from a
common ancestor (Darwin and Wallace 1858; Darwin 1859), reconstruction of these ances-
tral relationships, became a fundamental part of biological research (Haeckel 1866) and is
today the subject of the field of phylogenetics. Various methods have been used to recon-
struct the relationships between species and between individuals of the same species.

One of the most frequently used methods to reconstruct phylogenetic relationships of
N individuals or species is the identification of a tree that requires the smallest number of
character changes, a maximum-parsimony (MP) tree. This problem can be split into two
sub-problems i) the calculation of the parsimony score S of a given tree T and ii) the explo-
ration of all possible trees. For the calculation of S Fitch’s algorithm can be used. Fitch’s
algorithm labels each internal node with the intersection of the labels of the descendant

nodes or if this set is empty, with the union of the labels. The number of changes in sets
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in the tree are then equal to the minimum number of character changes required. This ap-
proach can then be repeated for all analysed characters. The identification of the best tree
T is in theory NP-hard and requires to explore the entire tree space. In practice, other ap-
proaches, like hill climbing, are often used to reduce the complexity of the problem. Various
heuristics, like the parsimony ratchet (Nixon 1999), can be used to ensure that the tree space

is explored sufficiently (Felsenstein and Felenstein 2004).

In line with these approaches, many studies of cancer evolution have used methods
from phylogenetics to reconstruct phylogenetic trees from mutation data observed in sam-
ples. A vast number of algorithms exist for the inference of trees from sequence data and
indeed most of these have been used to infer phylogenetic relationships from cancer genome
data as well. The options range from simple distance-based methods like unweighted pair-
group methods (e.g., Bruin et al. 2014) or neighbour-joining (e.g., Navin et al. 2011; Xu
et al. 2012) to maximum parsimony methods (e.g., Bruin et al. 2014; Zhang et al. 2014b).
and maximum-likelihood methods (e.g., Jahn, Kuipers, and Beerenwinkel 2016).

The phylogenetic trees reconstructed by these methods are directed and rooted graphs
that consist of nodes and edges connecting nodes. In a phylogram, a particular type of
phylogenetic tree, each edge has a length proportional to the amount of character change
occurring between the two nodes (Santamaria and Therén 2009). Unless otherwise men-
tioned, phylogenetic trees shown in the following will always be phylograms. Figure 1.4
shows an example of a phylogram and various terms used to describe elements of it are

highlighted in it.
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Figure 1.4: Example of a phylogenetic tree. Terms generally used in phylogenomics are shown in
blue and those specifically used in cancer evolution are shown in black. Edges associated with the
clade formed by the samples S1 and S2 are shown in red.

The tree’s root node represents the germline, which can be estimated from appropriate

normal tissue (i.e., blood or normal colon bulks). As mentioned before, the length of each
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edge represents the number of character changes (i.e., mutations) occurring between two
nodes. Nodes can either be internal nodes that are connected to two other nodes or a tip node
that is only connected to one other node. Tip nodes represent observed samples or clonal
entities. Internal nodes instead represent the common ancestor of a set of samples/clones
and are unobserved. The subset of a tree containing such a common ancestor and all its
descendants are also referred to as a clade (shown in red in Figure 1.4).

Mutations associated with the edge that connects the root of the tree with the most re-
cent common ancestor (MRCA) of the entire tumour are frequently referred to as ‘truncal’
or ‘clonal’ mutations and the rest as ‘subclonal’ mutations. In some contexts, subclonal mu-
tations on terminal edges will also be referred to as ‘private’ mutations and all the remaining

ones as ‘shared’ mutations.

1.6.2 Subclonal Deconvolution

Sample trees are not phylogenies One aspect of cancer genomics data that complicates the
application of the described phylogenetic reconstruction methods to multi-region sampling
data has to be considered. Each obtained sample consists of an admixture of cells or cell
populations that, due to extensive I'TH, contain different mutations. When all mutations of
each sample are combined, the ‘sample trees’ reconstructed from these data are not true
‘phylogenies’ (Alves, Prieto, and Posada 2017).

The reason for this discrepancy is summarised in Figure 1.5A&B. For a tumour with
three subpopulations of cells distributed in space (see left of Figure 1.5A), the clonal struc-
ture of the tumour can be represented by their three mutation profiles (see middle of Figure
1.5A). Phylogenetic reconstruction methods can be applied to these mutational profiles to
infer the ancestral relationships of the subpopulations (see right of Figure 1.5A).

If instead all mutations observed in a spatial sample (see left of Figure 1.5B) are com-
bined and phylogenetic reconstruction conducted on the resulting mutational profiles of the
samples (see middle of Figure 1.5B), then a wrong phylogenetic tree might be inferred (see
right of Figure 1.5B). This problem can in theory be mitigated through the identification
of the ‘clonal variants’ of each sample, this essentially estimates the mutation state of the
MRCA of all cells, but this approach disregards much of the genetic information and can

still be problematic if a subclone is present at a high frequency.

Subclonal deconvolution Instead, one should reconstruct the mutational profiles of the

present subclonal populations (i.e., clones) from information contained in the VAF of each



36 Chapter 1. General Introduction

(A) True clonal phylogeny
True clonal sequences Clon.eA ch Cgc
1 2 3 4 5
v 5
S UV D1
E Clone B %%%%. ‘
2 7 7
= Clone C %...% . 3
2
Tumor MRCA
1
Healthy cell
(B) Inferred sample tree
c Mutational profile Sample | Sample !l  Sample lIl
o
£ 1 2 8 4 5
a D0, 9 1) 5 Parallel
g' Sample | %%%%. .. 4 change
‘ff Sample Il %%%.% %
Eg' Sample Il %..- ﬂj '
3
'; Tumor MRCA
1
Healthy cell
(@] Observed VAFs Inferred clonal tree

il 2 3 4 5
sompie1 [05]os [os s o ® ® O
Inferred Inferred Inferred

Sample Il n “ clone 1 clone 2 clone 3
s [5[0 [0 0]55] @g

Clonal inference

With clonal decomposition

Inferred clonal sequences

1 2 g 4 5
O el clone Inferred clone 1 %%%.. 1
7 % % %
Pudd Inferred clone 2 %%%%. Healthy cell
{ \ Regional Inferred clone 3 %...%

) S / sample

Tumor MRCA

Figure 1.5: Phylogenetic Analysis of Bulk Tumour Samples. (A) Left panel: clonal composition of
a hypothetical primary tumour. Coloured circles represent the three clones present (Clones A—C).
Mid panel: true clonal sequences for five different genomic sites, where the dashed square indicates
a somatic mutation. Right panel: true clonal history with red dots depicting the chronological order
of mutations. Tumour most recent common ancestor (MRCA) highlighted as an internal node. (B)
Left panel: bulk regional samples (I-III), with intermixed clones at different proportions. Mid panel:
mutational profile (presence/absence) inferred; dashed square indicates the presence of mutations.
Right panel: inferred sample history using maximum parsimony. Red dots depict the chronological
order of mutations. (C) Left panel: bulk regional samples (I-III), with intermixed clones at different
proportions. Mid panel: variant allele frequency (VAF) estimates for mutation at each sample, and
inferred clonal sequences using the Clomial algorithm. (Figure from Alves, Prieto, and Posada,
2017, reproduced under a Creative Commons CC-BY-NC-ND licence. )
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of the observed alleles. From the reconstructed mutation profiles, one can in principle infer
the correct ancestral relationships (Figure 1.5C). Still, in this approach, the noise associated
with NGS becomes a problem.

As described before, NGS generates a set of short reads that can be aligned against
the genome. The number of reads N; covering a genomic site i then defines the ability
to resolve the true frequency f; of the mutation in the population. Ignoring potentially
overdispersion, the observed number of mutated alleles y; follows a Binomial distribution
with X; ~ B(n;, f;). This means that if we, for example, assume that two equally sized sets
of mutation with fj = 0.4 and f> = 0.5 are present in the population and that we sequence
this at N = 50 for only ~ 10% of the mutations, one can determine to which set they belong
at a confidence level of 5%. At 7 = 100 this increases to ~ 31% and at i1 = 1000 > 90% of
mutations could be confidently assigned to either of the two components.

Since sequencing at such high coverage is infeasible in most contexts, statistical meth-
ods are often used to instead infer the mixture distributions. Applying these methods
to multi-region or single-sample NGS mutation data is called ‘subclonal deconvolution’.
These methods have in common that they try to infer the number of mixture components
or ‘clones’ and the mixture weight of each. The statistical methods and details surrounding
the model vary for any of these, but many are based on Dirichlet Process clustering.

A representative example of these is DPClust, which models the VAF distribution as a
mixture of n subpopulations of cells, each making up an unknown fraction of tumour cells
7, and contributi ng an unknown fraction of all mutations @j,. The distribution P of all 7, is
modelled as a Dirichlet Process and the number of mutated reads y; obtained from a variant
allele i supported by N; are then assumed to follow a Binomial distribution. The full model
can thus be described as

yi ~ Bin(N;, §i(m;)), m; ~ DP(Py, @),
where {; is a function that gives the expected VAF of the mutation i if it is present in a

fraction m; of tumour cells. DPClust uses the stick-breaking view of the Dirichlet Process

P=

00r,, 0y = Vi [ [(1—=V1), with 7, ~ Py, Vj ~ Beta(l, ),
h=1 =1

where Oy, represents the indicator function evaluating to one at 7, and @), is the weight of
cluster % in its implementation.
To obtain samples from the posterior distribution of the model Gibbs sampling is used.

The base distribution Py is assumed to be Py ~ U(0, 1), the total number of clusters limited
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to k and a prior distribution is put on the concentration parameter o ~ I'(1,00)) with the

hyperparameter .

A similar method is used by PyClone, which fits a mixture of binomial or overdis-
persed beta-binomial distributions to cluster mutations (Roth et al. 2014). The Markov
chain Monte Carlo (MCMC) step of DPclust and PyClone is associated with a significant
computational cost, which motivated the development of variational Bayesian methods like
SciClone. SciClone can use mixtures of beta, gaussian or binomial distributions to cluster
mutation data (Miller et al. 2014). Both PyClone and SciClone allow the analysis of mul-
tiple samples and PyClone also allows to conduct the clustering analysis across different

copy-number states.

In all cases, the number of reconstructed clusters depends on the available data and
importantly is not necessarily equal to the true number of subclonal populations. Mutation
clusters present in a very similar fraction of cancer cells, the cancer cell fractions (CCF),
are inherently hard to resolve as independent clusters. Low sequencing depth and low tu-
mour purity are other factors that can limit the ability to resolve clusters and can thus cause
the underestimation of the number of present subpopulations and their clonal composition.
These factors are especially important for single sample sequencing studies. In a multi-
variate setting, the spatial segregation of mutations often allows to resolve the subclonal

structures much better, but the same issues can arise in this context as well.

Reconstruction of phylogenetic relationships Based on inferred subclonal mutation sets
identified by clustering methods clone trees — i.e., proper phylogenies — can be recon-
structed (Alves, Prieto, and Posada 2017; Dentro, Wedge, and Van Loo 2017; Tarabichi et
al. 2018). The methods used for this rely on the ‘pigeonhole principle’, which says that the
cellular-prevalence (i.e., the estimated fraction of mutated cells) of a mutation cluster nested
into another ancestral cluster must be smaller than the cellular prevalence of the ancestral

cluster.

With perfect information on the subclonal structure of a tumour, all trees compatible
with the ‘pigeonhole principle’ can be identified. It is important to note that more than
one tree can be compatible with the observed subclonal mutation clusters. In this case,
the identification of the true tree is then obviously not possible. In principle phasing of
mutations located on the same DNA molecule can allow drawing additional inference on

the ordering of clusters in a tree, but due to the short read length of readily available NGS,
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such phasing is often not possible.

Furthermore, the available data themself often do not allow to perfectly reconstruct the
subclonal composition of the tumour. Instead, due to the limited sequencing depth, a low
number of samples and confounding factors like tumour purity, the subclonal structure can
only be resolved imperfectly. This can cause actually separated clusters to be merged and
their cellular prevalence to be estimated wrongly. Furthermore, the estimated frequency of
mutation clusters is subject to a considerable degree of uncertainty, even if their structure is
perfectly resolved.

Due to the imperfect information on the subclonal composition of a tumour, statistical
methods that are able to take these errors into account are required. One method that allows
the automatic reconstruction of clone trees from the results of subclonal deconvolution has
been suggested by Niknafs et al. (2015) Their inference framework combines a fitness func-
tion to evaluate the compatibility of a given tree of the inferred subclonal composition with
a genetic algorithm to heuristically explore the tree space. An alternative approach that
combines both, the subclonal deconvolution and the identification of the clone tree, was
suggested by Jiao et al. (2014). This method applies a stick-breaking process that is tree-

structured and hence results in tree-compatible cellularity values for mutation clusters.

1.6.3 Definition of a ‘Subclone’

After explaining how statistical deconvolution of NGS data and multi-region sequencing
can be used to reconstruct ‘clone trees’, a definition of a subclone is certainly needed. Sur-
prisingly, despite being essential for the interpretation of their results, many publications
doing such reconstruction do not define this explicitly (e.g., Dentro et al. 2021). In the fol-
lowing, three possible definitions — all of which are used in cancer genomics studies —
will be provided. A more detailed discussion of these and other definitions can be found in

Sottoriva, Barnes, and Graham (2017).

The mutation centred perspective When speaking of the results of mutation clustering
methods, reconstructed clusters are often referred to as subclones. These can be defined
as ‘a set of mutations present in a set of cells due to their shared ancestry’. This mutation
centred perspective provides little information on the property of actual tumour cells since
mutations from more than one such ‘mutation subclones’ can co-occur in one tumour cell.
Given the size of the human genome and the relatively large mutation rates observed in

human malignancies, a new mutation cluster is expected to be produced during each cell
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division of which both created lineages survive. For this reason, there are expected to be

more mutation subclones than cells.

The genotype centred perspective When the results of a mutation clustering are instead
used to reconstruct a compatible ‘clone tree’ this tree contains a set of genetic subclones
as tip nodes. These can be defined as ‘a set of genetically identical cells with common
ancestry’. Again, given the size of the human genome and the relatively large mutation
rate observed in human malignancies, most cells are expected to accumulate at least one
additional mutation during each division. Therefore, the number of such subclones would
be almost identical to the total number of cells in the tumour.

The ability to resolve all of these would then primarily be limited by the amount and
quality of data obtained. Still, the ancestral relationships of these clones might provide
valuable insight into the life history of a tumour. However, the interpretation of these trees

is at present still challenging.

Phenotype centred perspective Ultimately, one might be able to use the information con-
tained in reconstructed trees to infer properties of subclones that constitute ‘a set of cells
with common ancestry with a common phenotype’. This definition allows for the pres-
ence of different mutations in cells, but these or other factors must not alter the phenotypic
properties of the cells.

The growth dynamics of a tumour containing billions of cells are too complicated
to allow an easy interpretation of a reconstructed phylogenetic tree and for this reason,
statistical models or simulations that can capture the relevant properties of the process are
necessary. Currently, statistical models that allow such inference are lacking. In a tumour
significant spatial crowding occurs (Schreck et al. 2019) and how phenotypic properties are
altered is not fully understood.

In the following, this definition of a subclone, with the considered phenotype being the
replicative potential of cells (i.e., a selected subclone), will be used. How to reliably identify
selected subclones from tumour sequencing data is indeed subject of current research and
the subject of considerable debate that will be outlined in much more detail in Chapter 2.

It is important to note that all of these possible definitions are fundamentally different
in their meaning. This is especially problematic since they are often, at least implicitly, used
interchangeably. In the following, a subclone will, unless mentioned otherwise, refer to a

subclone that has a selective advantage compared to other cells in the tumour.
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1.7 Epigenomics

While the genome provides the ‘blueprint’ for all phenotypes that can be generated by cells
in the body, other mechanisms to regulate the expression of these phenotypes must exist.
This is obvious as almost all® cells of the body contain identical genomic information but

express vastly different and stable phenotypes.

Initially introduced as abstract ‘higher level’ or epigenetic control (Waddington 1942),
decades of research have revealed a plethora of mechanisms by which this regulation of the
expression is archived. By definition, these epigenetic modifications are, like the genome,
heritable. Still, unlike the genome, they exhibit much larger flexibility and are controlled
by a complex network of regulatory mechanisms. Modification of the epigenome can also
occur as a reaction to environmental or cell-intrinsic cues, thus allowing the modification of

gene expression (Allis and Jenuwein 2016; Cavalli and Heard 2019; Jung et al. 2020).

1.7.1 Epigenetic Modifications

Various modifications of the chromatin structure — the combination of the DNA and asso-
ciated proteins — have been identified. Many of these have at some point been implicated
in the development of cancer. In the following, the most important epigenetic modifications

will be explained in detail.

DNA methylation The most extensively studied epigenetic modification is the methylation
of cytosines at the C5 position of CpG dinucleotides (see left of Figure 1.6). Indeed, most
CpG dinucleotides are methylated within the genome, and only a small fraction of CpGs
in the genome are unmethylated. These are often located in short, 200 — 2,000bp long,
clusters of CpG rich intervals called ‘CpG islands’ (Suzuki et al. 2007). Such CpG islands
frequently occur around the promoter region of genes, and their methylation is associated
with reduced expression of the associated genes (Ng and Yu 2015). Similarly, methylation
of regulatory elements is associated with a reduction of their activity (Luo et al. 2010). Loss
of methylation around retrotransposons — small sequences of DNA that can be removed
and inserted in different regions of the genome by special enzymes — is associated with
their reactivation and can contribute to genomic instability in CRC (Antelo et al. 2012;

Baba et al. 2018).

Physiological somatic recombination is known to occur as part of V(D)J recombination (Market and Pa-
pavasiliou 2003), isotype switching of immune cells (Market and Papavasiliou 2003) and brain neurons (Lee
et al. 2018).
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Figure 1.6: Fundamentals of epigenetic modifications. DNA is generally organised in nucleosomes,
small segments of DNA wrapped around histones (right inset). These histones are composed of four
subunits with tails that can be modified. These histone modifications occur at specific positions of
the peptides (e.g., H3K27, meaning histone protein 3, lysine 27). The figure shows the two main
chromatin states and their associated chromatin modifications. The first, so-called heterochromatin,
is generally compact and less accessible. Heterochromatin is associated with 5-C methylation of
CpG dinucleotides transferred by DNA methyltransferases (DNMTs) and methylation (filled blue
squares) of histone tails. This type of chromatin is found in the majority of the genome, especially
in the promoters of non-expressed genes and transposable elements in the DNA. The second type
of chromatin, so-called euchromatin, is less compact and more accessible to protein binding to the
DNA. It is associated with low levels of CpG methylation, acetylation of histone tails (filled red
squares) and methylation of different peptides in the histone tails (see right inset). Euchromatin
can be found around expressed genes, specifically around their promoter regions. Loss of chromatin
compaction can lead to the reactivation of transposons in cancer; this can cause them to be reinserted
in different genomic regions and contribute to tumorigenesis. In CRC, genome-wide hypomethyla-
tion is frequently observed. In a subset of cases, promoter hypermethylation occurs, causing aberrant
gene expression. (Figure from Jung et al., 2020)

Histone modifications In normal physiological conditions, the DNA is wrapped around
histone proteins, forming the so-called nucleosomes (see right of Figure 1.6). Histones are
small proteins composed of eight subunits, which each possess a tail (Chi, Allis, and Wang
2010). A second large group of epigenetic modifications are marks left on peptides at vari-
ous positions of the histone tails. Common modifications of the histone tails are the addition
of methyl and acetyl groups to arginine and lysine peptides in the histone tails (Kouzarides
2007). The absence or presence of these modifications can alter the relative compactness
of the chromatin (Struhl 1998), and other proteins can specifically recognise specific his-
tone marks. These DNA binding proteins can cause further modifications of the chromatin
structure. Multiple proteins recruited to regions of the chromatin (Jung et al. 2020) can also
interact with each other. Together chromatin modifications and proteins binding specific
elements of the DNA give rise to a complex and poorly understood regulatory network that
ultimately determines how genes are expressed.

Nevertheless, two general histone modification states have been identified. The first
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one is a generally repressed and compacted state of the chromatin that is associated with
H3K?27 and H3K9 and H4K20 trimethylation (Peters et al. 2003; Wiles and Selker 2017;
Shoaib et al. 2018). Another, generally activated and less compact, chromatin state is in-
stead associated with H3K4, H3K36, and H3K79 trimethylation and the acetylation of his-

tone tails (Kouzarides 2007).

Measurement of chromatin accessibility The presence of histone modifications can be
measured using chromatin immunoprecipitation assays with sequencing (ChIP-seq). ChIP-
seq isolates small fragments of DNA with modification specific antibodies that can then be
profiled through sequencing. Still, ChIP-seq is a very time consuming and complex method.
Alternative approaches directly measure the accessibility of the chromatin as a surrogate of
the general chromatin states. One such method is called assay for transposase-accessible
chromatin using sequencing (ATAC-seq) (Buenrostro et al. 2013; Buenrostro et al. 2015).
ATAC-seq uses the activity of a modified TnS transposase that can nick the DNA and insert
short adapter sequences into the flanking regions. The activity of Tn5 occurs primarily in
regions of open chromatin and regions deprived of nucleosomes (Figure 1.7a). For this rea-
son, the Tn5 can be used to obtain a high-level surrogate of the general chromatin state. In
ATAC-seq promoter regions of actively transcribed genes or active enhancers tend to accu-
mulate many insertions, whereas non-transcript genes do not show an increased number of
insertions relative to the background (Figure 1.7c). When two nicks by the Tn5 occur close
to each other in the same DNA molecule a barcoded DNA fragment that can be sequenced
will be generated. When the NGS reads obtained from these fragments are aligned to the
genome, they will reveal characteristic peaks that can be used to profile regions of open-
chromatin in a genome-wide fashion. Another important advantage of ATAC-seq compared
to ChIP-seq is that it requires very little input material and that it can be conducted with as

few as 500 cells (Figure 1.7b).

1.7.2 Epigenetics in Cancer

It is widely recognised that epigenetic alterations play an important role in the development
of cancer (Akhtar-Zaidi et al. 2012; Jones and Baylin 2007; Biswas and Rao 2017; Nebbioso
etal. 2018). While recurrent genetic alterations detected in tumours clearly demonstrate that
they are a major factor contributing to malignant phenotypes, our general understanding of
epigenetics and especially its role in human malignancies is still rather limited (Baylin 2011;

Lao and Grady 2011; Corces et al. 2018). Much past research of epigenetic alterations in
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Figure 1.7: The ATAC-seq assay. a) ATAC-seq relies on the activity TnS transposon (green) loaded
with sequencing adaptors (red and blue). These nick and insert these adaptors preferentially into
regions of open chromatin (e.g., between nucleosomes shown in grey). This generates fragments that
can be sequenced by conventional NGS. b) Unlike alternative methods ATAC-seq is fast and requires
very little input material. c) ATAC-seq generates tracks similar to other chromatin accessibility
assays and shows a signal in regions associated with active enhancers and promoters. (Figure from
Buenrostro et al., 2015)

CRC has focused on methylation, which is only one of the many known epigenetic mod-
ifications (Lao and Grady 2011; Okugawa, Grady, and Goel 2015). This research led to
the identification of a CpG island methylator phenotype (Ogino et al. 2008), microsatel-
lite instability (MSI) caused by hypermethylation of DNA mismatch repair (MMR) genes
(Herman et al. 1998), a genome-wide hypomethylation phenotype (Suter, Martin, and Ward
2004), and various methylation biomarkers (Okugawa, Grady, and Goel 2015). Studies
assessing other epigenetic alterations in CRC are relatively rare, but some have identified
recurrent CRC specific alterations of histone modifications (Akhtar-Zaidi et al. 2012). The

so-far largest profiling of general chromatin accessibility using ATAC-seq was conducted
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as part of the TCGA project (Corces et al. 2018) and demonstrated general tissue-specific
chromatin states that are able to explain much of the variation in gene expression across
tumour types. Still, due to the lack of normal controls, the TCGA study was not able to
determine whether the observed chromatin states were a consequence of the tissue of origin
or bona fide somatic changes.

Still, very little is known about the ITH of epigenetic alterations and its relation-
ship with the genetic heterogeneity (Black and McGranahan 2021). One seminal study
by Roerink et al. characterised the relationship of genomic (WGS), epigenomic (Illumina
450K methylation array) and transcriptomic (RNA-seq) ITH in CRCs (Roerink et al. 2018).
For this Roerink et al. analysed single cell-derived organoids from a total of three colorectal
cancers along with normal cells from adjacent tissues and showed that heritable and stable
subclonal changes occurred in parallel during the expansion of the tumour. Still, clock-like
changes of DNA methylation are known to exist (Field et al. 2018; Shibata 2009; Shibata
2011) and a parallel drift of the epigenome and genome seems to be a reasonable assump-
tion. It is of course possible that a subset of the subclonal chromatin state changes observed
by Roerink et al. were subject to subclonal selection, but more research is required to eluci-
date this.

Furthermore, phenotypic changes can also be induced by the microenvironment
through pre-existing cellular mechanisms, rather than drift or selection of specific pheno-
types (Via and Lande 1985; Price, Qvarnstrom, and Irwin 2003). This phenotypic plasticity
might play a role in the adaptation of cancers to various microenvironments (Anderson et al.
2006; Xue and Leibler 2018; Jolly et al. 2018; Ardaseva et al. 2020). Unfortunately, such
microenvironmentally induced differences can be reduced or altered by the in vitro cultiva-
tion of cells required for the methods used by Roerink et al. For this reason, the concomitant
profiling of epigenetic and genetic alterations in primary CRC is required to gain conclusive

insight into the prevalence of these.

1.8 Thesis Objective and Outline

The objective of this thesis was to characterise this ITH existing in colorectal carcinoma on
the genetic and epigenetic level, as well as the relationship between these. This was done
with the goal to derive ‘evolutionary biomarkers’ that characterise the growth dynamics of
individual tumours and to evaluate if they are predictive of the clinical outcome.

In the first two chapters of this thesis, I will illustrate the difficulties of understanding
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genetic diversity using bulk sequencing of tumour samples. Here, using simulated sequenc-
ing data from a stochastic branching-process model of cancer evolution and by reanalysing
several large-scale genomic profiling studies, I will show the limitations of simple summary
statistics of neutral dynamics, clustering-based methods, and cohort-wide measurements of
selection like dN /dS ratios to provide insight into subclonal dynamics from such data.

Following this, I will present results from a novel study on the co-evolution of the
genome and epigenome in 30 CRCs at a single-gland level that was motivated by the limita-
tions of bulk whole-genome sequencing (WGS). Here, I will use the multi-omics profiling
of individual glands sampled from different regions of the tumours. Using measurements
from more than 1,300 glands of 30 primary cancers and ten concomitant adenomas, consist-
ing of over 1,000 chromatin accessibility profiles and 500 whole-genomes, I will provide a
comprehensive map of genetic and epigenetic heterogeneity in CRCs. I will use these data
to identify recurrently altered promoter and enhancer accessibilities and global changes of
transcription factor activities.

Finally, I will discuss the observed subclonal architectures of somatic mutations in
light of the limited evidence for subclonal selection in most cases. In this context, I will
suggest a maximum-likelihood (ML) method to integrate samples subject to WGS and low-
pass whole-genome sequencing (LP-WGS) into a single phylogenetic tree. To these trees, I
will apply an Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) in-
ference framework based on a spatial tumour model that I developed. This provided insight
into how competition for space limits expansions on a case-by-case basis and identified sub-
regions likely under selection from driver mutations. The ability to identify such selected
driver mutations with this method in vivo was also supported by orthogonal dN/dS based

methods.
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Neutral Tumour Evolution

2.1 Introduction

Following the previous general introduction into the field of tumour genomics and tumour
evolution, I will now provide a more detailed introduction to the current debate on the role
and prevalence of selected subclones in tumours. In this context, I will primarily focus on
the discussion that followed a seminal paper by Williams et al. (2016), in which the authors
suggested that sub-clonal structures observed in a substantial fraction of tumours might also
arise in the absence of selection, i.e., under neutral evolution.

Williams et al. based their conclusion on data from the then largest comprehensive
study of cancer-genomes, the TCGA project (Bailey et al. 2018). While neutral evolution
had been long debated in species evolution, little thought was given to this idea in the
context of the somatic evolution of tumours. Maybe curiously, the publication by Williams
et al. (2016) was subject to heavy criticism (Tarabichi et al. 2018; Balaparya and De 2018;
Noorbakhsh and Chuang 2017; Wu et al. 2016; McDonald, Chakrabarti, and Michor 2018,
i.e., ). Others criticised that the test statistic used by Williams et al. (2016) lacked sufficient
power to reject the null-hypothesis (i.e., neutrality) and that some models of selection might
be practically indistinguishable from the neutral model considered by them.

Interestingly, the general debate of these ideas in the field of cancer genomics (e.g.,
Bozic, Gerold, and Nowak 2016; Davis, Gao, and Navin 2017; Sun et al. 2017; Turajlic
et al. 2019; Williams, Sottoriva, and Graham 2019; Lakatos et al. 2020; Li et al. 2020),
resembled the general discussion of idea of neutrality in the field of population genetics and
other fields. This eventual even lead some to suggest that there exists a ‘neutral syndrome’
(Leroi et al. 2020), a fascination with the ability of neutral models to give rise to observable

patterns. It is certainly true that abundance distributions, like the VAF distribution of alleles
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obtained from bulk tumour sequencing data, contain only little information on the presence

of selection.

Still, this is an important point in itself, given that relatively little attention was given
to mechanistic models like the one used by Williams et al. (2016). In the end, two fun-
damental questions that were raised by Williams et al. and which remain unanswered are:
‘How frequent is subclonal selection within established tumours?’ and ‘Can one use the
distribution of somatic variants in a tumour to identify selected subclones’? It is thus not
surprising, that the discussion of how to integrate neutral evolution it into the interpretation
of cancer genomic data is still on-going (e.g., Caravagna et al. 2020; Edwards, Marusyk,

and Basanta 2020; Diamond et al. 2021; Dentro et al. 2021; Black and McGranahan 2021).

In the following a more detailed introduction into the ‘neutral theory’ of Kimura
(1968b) in the field of population genetics and dN/dS based methods that can be used
to deduce that a population was subject to selection will be provided. After this general in-
troduction of these two relevant topics, I will outline the debate surrounding neutral tumour
evolution in the field of tumour evolution. In this context I will present a detailed analysis
of the criticism by Tarabichi et al. (2018) that motivated some of the work presented in the
following chapters. These were published as reply to Tarabichi et al. (Heide et al. 2018),
and in the presentation of them, I will follow the general structure of it. Some of the results
were also used in reply to criticism by Balaparya and De (2018) and published separately
(Williams et al. 2018a).

2.1.1 Neutral Evolution

In a study in which he tried to reconcile the apparent excess of mutation arising in species
evolution (e.g., Zuckerkandl and Pauling 1965; Buettner-Janusch, Buettner-Janusch, and
Mason 1969) when compared to the rates expected under theoretical models (Haldane
1957), Kimura (1968b) suggested that a substantial fraction of occurring mutations might
be selectively neutral or nearly-neutral. Essentially the same idea was also brought forward
by King and Jukes (1969) a year later. While Kimura as well as King and Jukes never
questioned the fundamental importance of selection as driving force of evolution, their the-
ories did question whether most variants that fixed in a population — i.e., become present
in each individual — did so due to Darwinian selection. Instead they proposed that these
fixations could occur due to chance — that is, genetic drift — alone (Kimura 1983; Kimura

1989). Other researcher had also considered dynamics of neutral mutations in populations
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(i.e., Fisher 1923; Fisher 1958; Wright 1931; Kimura 1955), but by assuming this process
to be ubiquitous and studying the implications of this neutral theory, Kimura was able to
gain significant insight into the evolution of neutral alleles in a population (Leigh 2007). In
this context, Kimura introduced the concept of the infinite sites model in which only unique
and novel mutations that are not subject to recombination arise. This model can, for exam-
ple, be used to make predictions about the number and distribution of alleles present in a

population of finite size (Kimura 1969).

Maybe because the theory of neutral evolution was in a stark contrast to the predom-
inant concept of evolution as described by Darwin, the idea of neutral evolution caused
immediate criticism and a heated debate (Smith 1968; Langley and Fitch 1974; Gillespie
1984; Kreitman 1996). Today, more and better data as well as improved statistical tests for
the detection of selection in sequence data (Tajima 1989; Macdonald and Long 2005) have
led to the discovery of striking examples for the selection of adaptive variants in species
evolution (Macdonald and Long 2005; Boyko et al. 2008; Halligan et al. 2010; Carneiro
et al. 2012; Enard et al. 2016). Discoveries like these have led some to suggest that the
neutral theory in itself has outlasted its usefulness and should not be used as a universal
basis for hypothesis testing (Kern and Hahn 2018). Nevertheless, doing so still provoked a
harsh reaction (Jensen et al. 2019). As reiterated by Jensen et al. (2019) the neutral theory
is fundamentally important as most of the genome is not conserved (e.g., many non-coding
regions of the genome) and hence only subject to drift. Further signals arising from de-
mographic dynamics, negative selection and hitchhiking of alleles due to genetic linkage
can complicate the analysis of genomic data in light of selection (Jensen et al. 2019). Here

neutral evolution can serve as a reasonable null model to compare observations again.

While a fascinating debate in itself, there is a key difference in the concept of neutral
evolution used in population genetics and its application to cancer genomics. The former is
mostly concerned with the evolution of variant alleles in a given, finite or constant, popula-
tion and the dynamics of such new alleles in the population (e.g., Kimura and Crow 1964;
Kimura 1968a; Kimura and Ohta 1969). Opposed to this, cancer is a disease in which one
cell expands clonally to an extremely large number (i.e., > 108 cells, Del Monte 2009) of
cells through repeated division. In such an expanding population of cell these principles

identified by Kimura and others do not apply.

Instead, the allele distribution one expects to observe under neutrality in cancer, is that
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of the famous Luria—Delbriick (LD) model, which Luria and Delbriick used to demonstrate
experimentally that the evolution of resistance to bacteriophages in bacteria arises due to
random mutation of sensitive bacteria (Luria and Delbriick 1943). The LD model describes
a population of bacteria arising from initially sensitive bacteria through exponential growth
and in the absence of any selective pressure. During each division mutation from a sensitive
to resistant type are assumed to occur with a given probability. The mutation is assumed to
not have any effect on the growth rate in the absence of bacteriophages and mutation back

to a resistant state is assumed to never occur.

To distinguish this model from the alternative model, which assumed that a resistant
state was only acquired in the presence of the bacteriophages (i.e., induced), Luria and
Delbriick (1943) plated solutions of bacteria onto multiple plates. After the bacteria grew to
a confluent layer in these, bacteriophages were added and the number of resistant colonies
was determined. Luria and Delbriick (1943) showed that the high variability of the number
of resistant individuals in the plates was insufficiently explained by the expectation of the
alternative model (i.e., a Poisson distribution) and that the LD model provided a better ex-
planation for their observations. Under the LD many resistant individuals arise if a random
mutation occurs early in an individual that ultimately gives rise to a large population of
daughter cells, thus greatly increasing the variability of the number of resistant individuals

per plate.

The elegant experiment they conducted showed that the expected number of pre-
existing resistant bacteria in a population grown from a single sensitive bacterium was
equivalent to the number they observed in experiments. The mathematical analysis of
the birth-death process underlying the LD model has proven challenging, but solutions of
the probability distribution of the process have been derived (Antal and Krapivsky 2011;
Kessler and Levine 2013). Due to its applicability to cancer, variations of this model have
been used to study the evolution of drug resistance (e.g., Coldman and Goldie 1986; Ko-
marova 2006; Iwasa, Nowak, and Michor 2006; Tomasetti and Levy 2010; Kessler, Austin,
and Levine 2014), metastasis (e.g., Michor, Nowak, and Iwasa 2006; Dingli et al. 2007;
Yachida et al. 2010; Haeno and Michor 2010), and carcinogenesis in general (e.g., Kendall
1960; Moolgavkar 1986; Bozic et al. 2010; Bozic, Gerold, and Nowak 2016; Durrett et al.
2010; Diaz Jr et al. 2012).
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2.1.2 dN/dS Ratios

A number of statistics were developed to detect deviations from neutral evolution based
on the site frequency spectrum (SES), the distribution of the allele frequency f; = N;/N of
alleles i present in N; individuals of a population of N individuals (Weir and Cockerham
1984; Tajima 1989; Fu and Li 1993; Fay and Wu 2000). Probably the most well know of
these statistics is Tajima’s D (Tajima 1989). Tajima’s D compares the average observed
number of pairwise sequence differences between individuals 7 from a constant effective
population size N and given mutation rate U, against the expected number of divergent sites
in a population of effective size N at equilibrium under neutrality (E[r] = 4Np). Still, the
power of these statistical tests can be limited (Neuhauser and Krone 1997; Nielsen n.d.).
They can also be sensitive to non-selective population dynamics, like temporal changes
of the population size (Sano and Tachida 2005; Jensen et al. 2005; Haddrill et al. 2005;
Ramirez-Soriano et al. 2008; Simonsen, Churchill, and Aquadro 1995) or spatial dynamics

(Ray, Currat, and Excoffier 2003) that are often hard to identify themself.

Here dN /dS methods, which are instead based on the analysis of the effect mutations
in protein-coding genes have on the peptide sequence of proteins, provide a valuable orthog-
onal alternative. dN /dS methods are not based on a specific model explaining the SFS. In-
stead, dN /dS methods exploit the general property of the genome that only some mutations
change the encoded peptide sequence of proteins. This is a property arises from the univer-
sal genetic code (Hinegardner and Engelberg 1963; Woese 1964) that translates information
from DNA into a sequence of peptides. The genetic code is based on a sequence of trin-
ucleotides, called codons, which each encode for a specific amino acid (Crick et al. 1961;
Nirenberg and Matthaei 1961). All possible codons could theoretically translate 4° = 64
amino acids, but only 20 canonical proteinogenic amino acids exist. While three codons
cause the termination of the translation into protein sequences (stop codons), the remain-
ing 41 codons encode an amino acid for which at least one other codon exists. From this
redundancy of the code, follows that only some mutations, the so-called non-synonymous
mutations (N), can change the protein encoded by a gene and that the majority of mutations

do not cause a change of protein sequences, hence called synonymous mutations (S).

Since natural selection can only act on the phenotypic differences that arise from struc-
tural changes of proteins, S mutations are expected to be selectively neutral. N variants

might instead also be under negative or positive selection. The information of non-selected



52 Chapter 2. Neutral Tumour Evolution

S variants can hence be used to construct a background model of mutation rates at different
sites of the genome. A depletion or an excess of N variants compared to this background
model — that is a difference in the rate dN and dS at which these arise — can provide ev-
idence for the selection of a subset of N mutations. Due to their relative simplicity, dN/dS
ratios' have a long history in population genetics for the detection of selection in sequence

data (reviewed in Yang and Bielawski 2000).

Many different methods for calculating dN /dS ratios have been suggested, but in gen-
eral, these can be grouped based on two properties. First, based on whether they calculate
average dN/dS ratios across genomic regions or if they calculate site-specific estimates
(Kosakovsky Pond and Frost 2005). Secondly, based on the statistical approach used to
calculate the estimates (Yang and Bielawski 2000; Kosakovsky Pond and Frost 2005). sim-
ple count-based methods just determine the number of N & S sites, calculate the ratio of
the two and then apply a correction factor for biases affecting the ratio in the absence of
selective forces. For the analysis of sequence data obtained in the field of population ge-
netics these factors are usually differences in the mutation rate of transitions (i.e., A<+G
and C+T mutations) compared to transversion (i.e., A<>C, A+T, C+G, and G<T mu-
tations) and the codon usage. Some adaptations make the simplistic assumption of equal
transition/transversion rates and uniform codon usage (Miyata and Yasunaga 1980; Nei and
Gojobori 1986), while others take into account differences of the former (Li, Wu, and Luo
1985; Comeron 1995; Pamilo and Bianchi 1993) or both (Yang and Nielsen 2000). For the
analysis of somatic variants detected in tumours, a similar method has been used by Zapata
et al. (2018) to assess the prevalence of negative selection. A second class of methods are
likelihood-based and directly infer parameters of a substitution model, one of which is the
dN /dS ratio (i.e., as a single parameter, often denoted ®) itself (Goldman and Yang 1994;
Muse and Gaut 1994; Muse 1996). Both CBaSE (Weghorn and Sunyaev 2017) and dndscv

(Martincorena et al. 2017) are examples of such methods in the context of cancer genomics.

While the various statistical approaches (e.g., summary statistics or likelihood-based
methods) tend to obtain similar dN/dS estimates, the assumptions underlying the mod-
els themself (e.g., regarding transition/transversion rates or codon usage) tend to have a
large influence on the results they obtain (Yang and Bielawski 2000; Kosakovsky Pond

and Frost 2005). In the context of somatic mutations and especially in cancer genomes,

IEspecially in the field of population genetics, the synonymous term K, /Kj ratio is often used.
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several additional factors further complicate the correct estimation of dN/dS-ratios. One
major reason for concern are variations of mutation rates across the genome, potentially
invalidating models that do not account for these. Regions of closed chromatin, for exam-
ple, tend to accumulate mutation at a higher rate than those in open chromatin (Polak et al.
2015; Schuster-Bockler and Lehner 2012). Similar effects are caused by differences in gene
expression (Fousteri and Mullenders 2008; Pleasance et al. 2010a) and replication timing
(Stamatoyannopoulos et al. 2009). Furthermore, complex mutational processes with activ-
ity in specific mutational contexts tend to be active in human tumours (Nik-Zainal et al.
2012b; Roberts et al. 2012; Alexandrov et al. 2020). The knowledge of these biases has
motivated the development of statistical methods that are able to correct for these sources
of variation (Lawrence et al. 2013b).

Martincorena et al. (2017) used such a model to adapt the classic dN /dS methods for
somatic variants. Applied to sequence data from cancer genomes, the dN/dS estimates of
their model suggested that negative selection, which would be indicated by dN/dS < 1,
was absent at most genomic sites and that positive selection, indicated by dN /dS > 1, acted
on sites in known cancer driver genes. This observation was in stark contrast to species
evolution, where the majority of variants have a deleterious effect and are quickly removed

by purifying selection, thus resulting in global dN/dS ratios < 1 (Yang et al. 2000).

2.1.3 Neutral Tumour Evolution

In a seminal study Williams et al. (2016) suggested that the observable subclonal structures
of many tumours could also arise under neutral evolutionary dynamics. In their publication
Williams et al. demonstrate that under the assumption of exponential growth, the cumulative
number of subclonal mutations in the VAF spectrum is expected to follow a simple power-
law distribution. They showed that the expected number of mutations M in the VAF interval
[f, finax] Of @ tumour with mutation rate y and a fraction of ‘effective divisions” f is then

given by

u /1 1
0t =5 (5 7).
Here p is the number of mutations introduced into the genome of the sister cells during
each division and f3 the fraction of division for which both resulting lineages survive, which
might not be the case due to random cell death.

The model analysed by Williams et al. (2016) is equivalent to the previously mentioned

LD model and a general solution of the stochastic problem has been derived by Kessler and
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Levine (2013), who showed that the number of mutants follows a one-sided Levy a-stable
distribution with ¢ = 1 in the very large population limit. At high frequencies assessable
by currently used next-generation sequencing data the tail of this Landau distribution can
be approximated by 1/ f2 as done by Williams et al. (2016) and others before (e.g., Griffiths
and Tavaré 1998; Durrett 2013; Nicholson and Antal 2016).

Williams et al. specifically used the resulting linear relationship between the inverse
of the VAF 1/f and the cumulative number M(f) of mutations in the interval [f, finu], to
determine if the observed VAF data obtained from real tumours followed the distribution
expected under neutrality. For this, they fitted a linear model with a fixed intercept to the
observed VAF data of each tumour and calculated the coefficient of determination R* to
measure the obtained goodness-of-fit. Cases with a RZ > 0.98 were assumed to be consistent
with the neutral model. Williams et al. limited this analysis to mutations with a VAF in the
interval [0.12,0.24] and in diploid regions. The lower bound of this interval was motivated
by the general limit of detection of ~ 10% of the algorithm used for the variant calling
(Cibulskis et al. 2013). Since one can typically observe a large number of clonal mutations

present in all tumour cells, an upper bound of 0.24 was chosen so that these would not affect
M(f).

The expected VAF of clonal mutations at a diploid locus is f = 0.5. For a mutation at
a triploid locus only one out of three alleles are mutated hence resulting in a lower expected
VAF of f = 0.33. Another factor that influences the expected VAF is the fraction of normal
cells that contaminate the analysed tumour tissue. It is not unusual to see a purity of less
than 70% and in this case f ~ 0.35 for a diploid site. Since the noise associated with NGS
can be described by a Binomial distribution, it follows that for a diploid tumour with a purity

of 70% less than 1.2% of truly clonal variants are expected to be observed at a VAF < 0.24.

The scaling behaviour of the subclonal VAF and the described influence of clonal vari-
ants can easily be seen in simulated sequencing data obtained from a stochastic branching
process like the one used in Williams et al. (2018b). Figure 2.1A shows an example of such
simulated sequencing data of a neutral tumour obtained from the model used in Heide et al.
2018 (see Methods 2.2.2 for details). In this model a tumour is grown from a single trans-
formed cell with N, mutations in an asymmetric branching process using the Gillespie
algorithm (Gillespie 1977). Cells are assumed to randomly give birth to two daughter cells

with the rate A and during the division the daughter cells are assumed to die randomly with
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Figure 2.1: VAF spectrum in simulated neutral and non-neutral tumours. Both tumours have 2500
clonal mutations, a mutation rate of 50 mutations per division and a death rate of u = 0.2. A) The
SES of a simulated neutral tumour. Two structures are visible i) the clonal cluster (green) and a
subclonal tail (orange). B) A plot of the cumulative number of mutation against the inverse allelic
frequency shows the expected 1/f scaling behaviour. C) A simulated sequencing of a tumour with a
subclone (x;. = 51%) , showing a subclonal peak at f ~ 32%. Notably, at a higher VAF than ‘driver
mutations’ with f ~ 26%, due to the hitchhiking effect of alleles present in both, the selected and
unselected subpopulation. Low-frequency variants are a mixture of two lineages (pink and purple).
D) The 1/f fit shows a clear deviation from the expected linear scaling between the number of
variants with a VAF in the interval [f,0.24] given by M(f) and the inverse allelic frequency 1/f.
The shown simulations were generated with the simulator used in Heide et al. (2018).

a probability u. From the generated phylogenetic structure, bulk WGS sequencing data
were generated. It was assumed that the number of passenger mutation during each division
followed a Poisson distribution with a rate of m.

As expected from the theoretical population genetic model described above, the VAF
spectrum of subclonal variants in these neutral simulations tends to follow the expected
1/f? distribution. This can be seen from the linear relationship between the inverse allelic

frequency 1/f and the cumulative number of mutation M(f) in the interval [f,0.24] shown
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in Figure 2.1B. The introduction of a transformed cell with a fitness advantage over the
ancestral population (i.e., A, > 1) can instead cause alleles present in the selected subclone
to move to a higher frequency. This in turn leads to the presence of a subclonal peak, that
causes a clear deviation from the expected 1/f scaling behaviour of the VAF spectrum. The
VAF distribution of a representative simulated non-neutral tumour, with a selected subclone
at a frequency of 52%, is shown in Figure 2.1C. In this simulation, the birth rate of a random
cell was increased by 40% when the tumour reached a size of 100 cells. This subclonal
cluster causes a clear deviation of the linear 1/f scaling as shown in Figure 2.1D.

Since the subclonal structure observed in a substantial fraction of tumours from the
TCGA study (Muzny et al. 2012) as well as other bulk-sequencing studies (Wang et al.
2014; Sottoriva et al. 2015) closely resemble that of the neutral theoretical model (i.e.,
VAF distribution similar to 2.1A), Williams et al. concluded that many tumours evolved
effectively neutral. Specifically, by using a high goodness-of-fit as indicated by a R* value
> 0.982 they identify a subset of 32% of tumours in the pan-cancer TCGA cohort that
might be evolving neutrally. Still, for the majority of cases (i.e., 68 %) the authors identified
R? < 0.98 indicating the presence of subclonal selection, or more specifically the deviation

from neutral exponential growth.

2.1.4 Criticism of Williams et al. (2016)

Curiously, following the publication of Williams et al. (2016), which brought attention to
the concept of neutral evolution in the field of cancer genomics, several authors heavily
criticised the methods and conclusions made by them. These followed two main lines of
argument 1) that alternative models of selection could show patterns identical to neutrality,
i.e., questions of identifiability (Balaparya and De 2018; McDonald, Chakrabarti, and Mi-
chor 2018) and ii) that the power of the 1/f test is insufficient to reject the null (Tarabichi
et al. 2018; Wang et al. 2018a; Noorbakhsh and Chuang 2017).

Unidentifiability of selection in bulk WGS Specifically, McDonald, Chakrabarti, and Mi-
chor (2018) argued, using stochastic simulations with a random introduction of subclones,
that multiple coexisting subclones could create subclonal structures for which the VAF dis-
tribution looks similar to the 1/f? power-law distribution expected under neutrality and that
for this reason, the conclusions made by Williams et al. (2016) were logically flawed. Sim-

ilarly, Balaparya and De (2018) showed that if a significant degree of overdispersion of the

2This value was motivated by the observation that none of the simulated neutral tumours showed a 1/f fit
with a R < 0.98 (Williams et al. 2016; Williams 2019).
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VAF exists, a single subclone present at a frequency of /= 0.15 could cause the right tail of
a beta-binomially distributed VAF spectrum to scale very similar to the power-law expected
under neutrality. Further Balaparya and De (2018) argued that multiple clones coexisting
(i.e., a mixture of binomials) at frequencies between [0.1,0.25] could likewise cause the

mixture distribution to look like neutral 1/f tails.

Lack of power of the ‘1/f test’ The remaining criticism primarily focused on the general
lack of power to reject neutrality based on observations of the VAF distribution. In this
context, Wang et al. (2018a) argued that the narrow window of observability in single bulk-
sequencing data severely limits the ability to identify subclonal selection in general. Instead,
they suggest that extensive multi-region sequencing methods similar to those conducted by
Ling et al. (2015) should be used. The criticism of Noorbakhsh and Chuang (2017) instead
focused on the noise of the observational process — reads obtained by NGS methods are
approximately binomially distributed — and the consequently limited ability to resolve f; of
individual mutations. They specifically showed that uncertainties in the observed VAF mean
that alternative scaling patterns (i.e., 1/f, 1/1/f and 1/f?) of the subclonal VAF cannot be
distinguished at coverage values of n ~ 100 available in the TCGA cohort (Muzny et al.
2012).

Critic by Tarabichi et al. (2018) While the criticism by Tarabichi et al. (2018) contained
arguments similar to those made by others (i.e., unidentifiability and lack of power), they
also provided concrete evidence for the presence of subclonal selection in the tumours
Williams et al. (2016) classified as ‘neutral’. For this, the authors used a dN/dS based
method (Martincorena et al. 2017) that is similar to those commonly used to analyse se-
quence data in population genetics. As described above, these methods analyse if an excess

or depletion of non-synonymous variants relative to synonymous mutations exists.

A depletion of non-synonymous variants (i.e., dN /dS < 1) would suggest their removal
through negative selection and an excess of non-synonymous (i.e., dN/dS > 1) would in-
stead suggest that these were positively selected. In their letter Tarabichi et al. showed
dN/dS estimates > 1 for subclonal mutation in TCGA cases for which the ‘1/f test’ did not
reject neutrality, demonstrating the presence of selection in these ‘neutral’ tumours.

They further used simulations across a wide range of subclonal selection rates A and
subclonal mutation rates u to suggest that the ‘1/f” classifier used by Williams et al. (2016)

performs worse than random. Tarabichi et al. based this argument on the receiver operating
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characteristics (ROC) of the 1/f statistic for various thresholds of the R? value. The ROC
is the curve that shows the relationship between the false positive rate (i.e., neutral tumours
classified as non-neutral) and the false negative rate (i.e., non-neutral tumours classified as
neutral). A point on the ROC curve below the diagonal of the plot represents a classification
that is worse than random for a given discrimination threshold. The area under the ROC
curve (AUC) can be used as a summary statistic of a classifier.

For the 1/f statistic Tarabichi et al. report a AUC of 42% and a behaviour that is worse
than random across a wide range of classification thresholds. While certainly a curious
suggestion, this seems to contradict previous theoretical work (see above for details). As
Tarabichi et al. provided no explanation for these observations and to address their criticism
in general, a detailed analysis of a similar setup was performed. The results of this work,
which will be presented below, showed that Tarabichi et al. nonexplicitly made arguments
similar to that of other authors: i) some models without selection can lead to (consistent)
rejection of neutrality and other models with selection can look like neutral simulations
(i.e., unidentifiability) and ii) that the 1/f test lacks power in some areas of the parameter
space. While these arguments are undoubtedly valid, they certainly apply, as shown below,
to other methods as well.

In addition to this analysis, the behaviour of a commonly used Dirichlet Process based
clustering method DPclust was analysed. This analysis showed that such clustering methods

were unable to accurately cluster the mutations of the selected subclones.

2.2 Methods

2.2.1 Analysis of TCGA Data

The dN/dS analysis Tarabichi et al. (2018) used to assess the discriminatory power of the
1/f test statistic, was based on CAVEMAN (Jones et al. 2016) variant calls from the anal-
ysis of TCGA samples by Martincorena and Campbell (2015) . These variant calls were
unfortunately not publicly available and Mutect2 (Cibulskis et al. 2013) variant calls from

the Cancer Genomic Data database (GDC) were used instead (Grossman et al. 2016).

2.2.1.1 Pan-Cancer Classification

In order to reproduce the results of the analysis conducted by Tarabichi et al. (2018), so-
matic variant calls and copy-number array data (log-R ratios) of 8,455 TCGA tumours were

downloaded through the GDC data portal (https://portal.gdc.cancer.gov/).
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Annotations of sample purities were obtained from a separate study of pan-cancer purities
in the TCGA cohort (Aran, Sirota, and Butte 2015). Next, diploid regions in the log-R ra-
tios obtained through GDC were identified and the VAF of somatic mutations adjusted for

purity estimates.

As in the original publication by Williams et al. (2016) samples with a purity below
70% or less than 12 diploid subclonal variants with a purity adjusted VAF f within the

integration range [0.12,0.24] were removed from the analysis>.

The 1/f test statistic — i.e., the R? value of a linear model with a fixed intercept fitted
to 1/f and M(f) in the VAF interval [0.12,0.24] — was calculated for each case on the
mutations in diploid regions. In line with the previous analysis by Williams (2018) cases
with a R? < 0.98 were classified as ‘non-neutral’ and those with R? > 0.98 as ‘neutral’. Of
the total of 8,455 tumours analysed 724 satisfied all the filtering criteria (see Figure 2.2A).
Of these cases, 1,021 were already available during the original analysis conducted by
Williams et al. (2016) and 117 of them passed the filtering criteria in the analysis presented
here (see Figure 2.2B).

A B

with_purity_data with_purity_data

sufficent_power sufficent_power

high_purity, high_purity,

any_diploid_snvs
with_CNA _data with_CNA_data

any_diploid_snvs

Figure 2.2: Reason for exclusion of samples from reanalysis of TCGA data. All samples were
required to have purity data available (‘with_purity_data’), a sample purity > 70% (‘high_purity’),
matched copy-number data (‘with_cna_data’), any diploid regions (‘any_diploid’) and at least 12
variants in the interval [0.12,0.24] (‘sufficient_power’). A) Annotation of all 8,455 TCGA samples
obtained from GDC. B) Annotation of the subset of TCGA samples analysed by Williams et al.
(2016).

3No specific reason for the value of 12 subclonal variants, apart from the need to remove cases with too few
subclonal variants, was given by Williams et al. (2016), but for the sake of consistency this value was also used
here.
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2.2.1.2 dN/dS Analysis

For the dN /dS analysis, variants of each case were split — in line with the 1/f-test integra-
tion range of [0.12,0.24] — into a set of clonal variants with a purity adjusted VAF f > 0.24
and a set of subclonal variants with f < 0.24. The clonal and subclonal mutations of cases
were then grouped based on the classification of the 1/f test statistic. This resulted in a total
of four sets of somatic variants (neutral clonal, non-neutral clonal, neutral subclonal and

non-neutral subclonal) on which dN/dS estimates were calculated.

The estimation of these dN/dS values was done with the dndscv model developed by
Martincorena et al. (2017). To increase the power of this analysis to detect positive dN /dS
values, only coding regions of previously identified cancer driver genes were considered.
For the pan-cancer analysis of the TCGA cohort a set of 198 previously identified genes
reported Martincorena et al. (2017) was used. For the analysis of the 169 colorectal cancers
previously analysed in Williams et al. (2016) a set of 369 driver genes from (Martincorena
et al. 2017) was used instead. Default parameters were used for the model, this especially

uses the included covariate model and the ‘192r_3w’ substitution model.

After the estimation of dN/dS values for cancer driver genes, dN /dS values of genes
that are likely not under selection were calculated as reference. For this, a gene set com-
posed of all ~ 19,000 genes used by Martincorena et al. (2017) excluding the 198 driver
genes, a set of genes that were identified as neutral (i.e., top 25% of the highest p-values)
by an orthogonal dN/dS method (Zapata et al. 2018), and third a set of genes reported as

neutral by (Martincorena et al. 2017) was used.

To each of these sets of genes, a bootstrap procedure (Efron 1992) was applied to
calculate null distributions of dN/dS values to which the point estimates of cancer driver
genes could be compared. For this, a random set of genes with a size equivalent to that
of the driver genes (i.e., 198) was sampled 1,000 times with repetition from all genes and
dN /dS estimates in each of the four variant sets were calculated for these. For subclonal
variants, p-values were calculated by comparing the dN/dS points estimates against the
distribution of the three neutral-background sets. For subclonal nonsense variants, dN /dS
and p-values were recalculated after the removal of 1/57 (1.7%) and 11/290 (3.8%) cases

with > 3 subclonal nonsense variants from the gastric and pan-cancer cohort respectively.
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Table 2.1: 1/f classification results of the TCGA cohort per tumour type.

Tumour type R2>098 R2?<098 Fraction R? < 0.98
Adrenocortical carcinoma 1 2 67%
Bladder Urothelial Carcinoma 7 13 65%
Breast invasive carcinoma 21 33 61%
Cervical squamous cell carcinoma 6 20 77%
Colon adenocarcinoma 24 48 67%
Glioblastoma multiforme 30 15 33%
Head and Neck squamous cell carcinoma 6 30 83%
Kidney renal clear cell carcinoma 3 5 62%
Brain Lower Grade Glioma 8 14 64%
Liver hepatocellular carcinoma 4 11 73%
Lung adenocarcinoma 5 31 86%
Lung squamous cell carcinoma 12 41 77%
Ovarian serous cystadenocarcinoma 41 21 34%
Prostate adenocarcinoma 17 30 64%
Rectum adenocarcinoma 11 2 15%
Skin Cutaneous Melanoma 0 18 100%
Thyroid carcinoma 8 10 56%
Uterine Corpus Endometrial Carcinoma 85 89 51%
Uterine Carcinosarcoma 1 1 50%

2.2.2 Stochastic Simulations

An in-depth analysis of the stochastic simulations performed by Tarabichi et al. (2018) was
conducted to explain the apparent mismatch between the deterministic model (see Figure
la, Tarabichi et al., 2018) and the stochastic simulations (see Figure 1b, Tarabichi et al.,

2018).

Generation of simulations I assumed that the parameter space explored by Tarabichi et al.
(2018) was indeed realistic and explored the behaviour of the model under these parameters
in more detail. A stochastic branching process model using the Gillespie algorithm (Gille-
spie 1976), equivalent to the one used by Tarabichi et al. (2018) implemented in C++ was
used for this purpose.

The tumour model was initiated with a single cell of the ancestral cell type. This
cell was assumed to carry no mutations (i.e., N.jonqr = 0). The birthrate of all cells of the
ancestral cell type were assumed to be A = 1 and the doubling of cells in the tumour were
simulated using the Gillespie algorithm. During each division either daughter cells was
assumed to die with a probability determined by the deathrate . At a given population size
t,- a random cell of the ancestral type was selected and converted to a subclone with altered
birthrate A, = 1 + a,., where ay. is the relative growth advantage of these cells over the
ancestral type. The simulation was terminated once the tumour reached a given size t,.

To prevent an entire cell type from dying out the last member of a cell type was assumed
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to never die.* Synthetic sequencing data were then generated from the recorded ancestral
history of cells. For each mutation Poisson distributed coverage N; ~ Pois(A = N) and
a Binomial distributed number of mutated reads n ~ Bin(N, p;) with success probability

pi = fi/2 being determined by the fraction of cells f; carrying the mutation i.

A number of parameters were set to fixed values identical to the ones used by Tarabichi
et al. (2018). The deathrate was fixed at u = 0.2 per division and the mutation rate of
the ancestral clone was assumed to be (t = 16 mutations per division. All simulations
were terminated at a tumour size of z,,; = 2%° = 1,048,576 cells. Subclones were always
introduced at a population size of #,. = 28 = 256 cells. Simulated sequencing data were

generated with an average sequencing coverage of N = 100.

For each combination of the subclones selective advantages a € {0,0.01,0.02,...,1}
and mutation rates U € {12,1.52,...,10%} a total of 200 realisations were generated. This

resulted in 17 x 101 x 200 = 383, 800 simulation for further analysis (Figure 2.3).

A Normalized cumulative distributions B Normalized cumulative distributions
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Figure 2.3: Examples of 1/f plots in simulated sequencing data. A) Random realisations of neutral
simulations (fy. = 28, a = 0). B) Random realisations of simulations with selection (t,, = 28, a =
0.75). The ‘normalised M(f)’ is the cumulative number of alleles M(f) in the interval [0.25, f]
divided by the maximum of M(f).

1/f classification Equivalent to the analysis of the TCGA dataset the 1/f test statistic
(Williams 2018) with the integration range [0.12,0.24] was applied to the simulated se-
quencing data. Cases with a R? < 0.98 were classified as ‘non-neutral’ and those with

R? > 0.98 as ‘neutral’.

“It should be noted that the choice to not let cell types to die out introduces some biases. Specifically, this
leads to a prolonged duration of drift around a low number of cells. For the ancestral clone this would lead to
the presence of additional clonal mutations. For a subclone this would likewise cause presence of additional
mutations in the clonal peak and a more variable clone size for a given set of parameters. A better approach
would be to reject simulations in which either population did die out. Still, the amount of simulated death was
low and for this reason differences between both approaches should be relatively small.
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Cluster analysis of simulated data Clustering of the simulated sequencing data was done
with the Bayesian Dirichlet Process (Dunson 2010) based clustering method implemented
in the DPClust package for R (Nik-Zainal et al. 2012a; Dentro, Wedge, and Van Loo 2017).
DPClust and similar methods are commonly used to interpret the VAF spectrum observed
in tumour sequencing data (Tarabichi et al. 2021) and to better understand the behaviour
of these methods when applied to data from the considered branching-process model was

considered to be important.

Bayesian dirichlet process model of DPClust DPClust models the VAF distribution as a
mixture of n subpopulations of cells, each making up an unknown fraction of tumour cells
7, and contributing an unknown fraction of all mutations wy,. The distribution P of all 7, is
modelled as a Dirichlet Process and the number of mutated reads y; obtained from a variant
allele i supported by N; are assumed to follow a Binomial distribution. The full model is
hence described by
yi ~ Bin(N;, §;m;), m; ~ DP(Py, ),

where {; is the expected VAF of the site if the mutation is present in all tumour cells and 7;
the fraction of tumour cells containing i. DPClust uses Gibbs sampling to obtain samples
from the posterior distribution with priors of Py ~ U(0,1) and o ~ T'(1, %)), where o is a
hyper-parameter. The total number of clusters is unusually limited to k.

To characterise the behaviour of DPClust on the simulated WGS data, a subset of
3,780 tumours consisting of 20 simulations in which the subclone made up more than 5%
of the total number of cells were selected for each combination of a € {0,0.05,0.1,...,1}
and U, € {21 22 29}. DPClust was then run with the default parameters k = 20 and o =
0.01 for a total of 10,000 iterations. Since samples from the beginning of a MCMC chain
may not accurately represent the posterior distribution, the first 5,000 samples were treated
as burn-in period and discarded. DPClust uses the samples from the posterior distribution
to determine the position 7, and weight @y, of clusters to which mutations can be assigned.

Posterior clusters with no assigned mutations were discarded.

2.3 Results

2.3.1 Insights From Simulated Tumours
In their letter, Tarabichi et al. (2018) used an analytical solution of the tumour growth model
(their Figure 1a) and a small number of stochastic simulations (their Figure 1b) to argue

that the 1/f test used by Williams et al. (2016) leads to the arbitrary classification of tu-
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mours (their Figure 1c). As an explanation for this Tarabichi et al. (2018) suggested that
the biological noise caused by the stochasticity of the process (i.e., genetic drift) lead to the
arbitrary classifications by the 1/f test. This seems at odds with previous theoretical work
on this (Williams et al. 2016; Bozic, Gerold, and Nowak 2016; Kessler and Levine 2013;
Durrett 2013). It is worth noting, that subclones were introduced at fixed time points in all
simulations and instead of testing the classification at different time points of subclone in-
troduction #,. and selective advantages a,., the effect of subclonal selection a,. and changes

of mutation rate U, were assessed.

More specifically it was assumed that the change of (i, co-occurred with a change of
asc. Whether such a change of the properties of a subclone in a tumour is realistic might
be questionable in itself. Further the relative changes considered by Tarabichi et al. (2018)
seem rather extreme. The change of the mutation rate per division Tarabichi et al. (2018)
they tested ranged from a decrease from 16 mutations per division to ~ 1 mutation per
division — a decrease by a factor of 16 — to an increase to ~ 2,000 mutations per division
— a decrease by a factor of more than 100 (x-axis of Figure 1a, in Tarabichi et al.). Indeed,
such a substantial increase of mutation rate can likely only be explained by cases with
a subclonal defect of the DNA mismatch repair machinery or a POLE/POLD alteration
(Billingsley et al. 2015). Studies of subclonal MMR gene defects indicate that these are
very rare in endometrial cancer (Stelloo et al. 2017) or colorectal cancer (Joost et al. 2014).
An analysis of POLE mutated subclones arising within a POLE wild-type background also
indicated that these are very infrequent events (Temko et al. 2018). Together these initial
observations indeed suggest that the extremities of the parameters considered by Tarabichi

et al. should be interpreted with caution.

To address their criticism and explain the observed results, I tried to reproduce the
analysis shown in Tarabichi et al. Figure 1b. For this I generated multiple realisations of
simulations for parameter sets across the range considered by them (Figure 2.3 and Meth-
ods). This analysis showed that when the selected subclone was present at f,. > 10% (i.e.,
when a,. > 0.2), the 1/f test correctly rejected neutrality in the majority of cases if no si-
multaneous increase of the mutation rate occurred (top left quadrant of Figure 2.4A). An
example of such a simulation is shown in Figure 2.4B. Here the presence of a subclone at a

frequency of ~ 0.5 (i.e., 0.25 in the VAF spectrum) leads to a clear deviation from the 1/f

distribution (R? = 0.94) similar to some realisation shown in Figure 2.3B.
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Figure 2.4: Insights from stochastic simulations of cancer growth. A) Heat map recapitulating Tara-
bichi et al.’s 2018 Figure 1b with the same parameter set and showing the proportion of simulations
in which neutrality was rejected (200 cases per parameter combination).
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Figure 2.4: (Continued) B) Example VAF distribution with a detectable subclonal cluster (dashed
line indicates subclone frequency). The 1/f test rejects neutrality in favour of selection (R2
reported). C) Example VAF distribution with a weakly selected subclone that remains below
the limit of detection (100x depth). D) Subclone cell fraction in the final tumour as a func-
tion of fitness advantage; for a < 0.5, the subclone rarely reaches a detectable size of ~ 10%
cell fraction (assuming 100x depth). LOD, the limit of detectability. E) Example VAF distri-
bution for a subclone with a selective advantage and, at the same time, a high mutation rate.
F) Example VAF distribution for a selected and extreme mutator subclone. G) Sensitivity of
the 1/f test applied to subclonal mutations in the extended range of VAF f = [0.025,0.45] from
the simulations in a. Numbers report the proportion of cases in which neutrality was rejected
(R?> < 0.98). H) AUC values of the 1/f test in various regions of the tested parameter space.
(Modified version of the figure presented in Heide et al. 2018)

As expected a relationship between the selective advantage a,. and the subclone cell
fraction fi. in the final tumour was observed (Figure 2.4D). Notably, subclones in simula-
tions with a,. < 0.3 rarely reached a size fi. > 0.1. Variants at such a low VAF are basically
undetectable at a depth of ~ 100x commonly used for sequencing. This highlighted again
the issue of the limit of detectability in currently used methods (Williams et al. 2018b), a
point that was later confirmed by a more rigours analysis (Caravagna et al. 2020). Since
selected clones at such a low f do not significantly change the observable clonal composi-
tion of the tumour, the signature of neutral growth (i.e., the ‘1/f tail’) does still dominate
the detectable VAF spectrum (Figure 2.4C) and neutrality was not rejected (bottom part of
Figure 2.4A). Importantly, this is not an issue of the test statistic itself, but rather seen as a
general limitation of NGS.

Notably, for hypermutant subclones with strong selective advantage (i.e., U > 64 and
age > 0.4, top right of Figure 2.4A), the analysis indicated that the method consistently failed
to reject neutrality. Examination of realisations of these simulations showed that a massive
1/f tail containing thousands of the subclone’s private mutations was frequently observed.
These effectively masked the comparatively small cluster of mutations that were present
in the selected subpopulation of cells and hence overrepresented at a high VAF (example
in Figure 2.4E). These mutations dominated the entire VAF distribution and obscure the
underlying subclonal structure. Unsurprisingly, the 1/f test and likely any other similar test
would struggle to detect any subclonal cluster or deviation from the expected power-law
distribution in these cases.

Curiously, for moderate values of selection as =~ 0.5 and very high mutation rates
s > 28, a change in mutation rate from normal to hypermutant was detected, thus leading

to consistent rejection of neutrality (mid-right area in Figure 2.4A; example in 2.4F). A
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similar example was indeed shown in Supplementary Figure 11h of the original paper in
Williams et al. (2016). In cases with weak selection and hypermutation, subclones did not
reach a detectable size, and therefore neutrality was not rejected (bottom right of Figure

2.4A)

As discussed in the original paper (Williams et al. 2016) and the reply (Heide et al.
2018), the main motivation for the narrow integration range of 0.12 < f < 0.24 were con-
cerns of mutations from triploid sites or impure samples affecting the power-law tail and
for this reason an upper threshold of f ~ 0.25 was used by them. A larger integration range
would potentially allow to detect the presence of subclones outside of this fairly narrow
window. Since the simulated tumours were all diploid and did not contain such subclonal
mutations, it was possible to test this hypothesis. For this reason, the 1/f test was used
with an extended integration range and this did indeed demonstrate that the 1/f test is more
accurate when applied to the entire VAF spectrum (Figure 2.4G). Under these conditions,
neutrality was consistently rejected (i.e., > 75%) for non-neutral simulations at background

mutation rates and sufficiently large subclones.

I further suspected that the lack of discriminatory power in the peculiar scenarios con-
sidered by Tarabichi et al. did not depend on the method per se but was largely due to
minimal signal in the data. To demonstrate this, the 1/f test using the extended integra-
tion range (Figure 2.4G) was compared to results from DPclust (Nik-Zainal et al. 2012a), a
method often used to detect subclones on the basis of Dirichlet Process clustering. Indeed,
the sensitivity of DPclust was suboptimal in most cases (Figure 2.4H), even in the presence
of strong selection. This despite the fairly consistent number of 3-5 clusters inferred to be
present from the simulated VAF data (see Figure S.4, page 263). The clusters inferred by
DPclust were often located at similar positions of the VAF distribution and independent of
the true subclone frequency (see Figure S.4, page 263). Importantly, the positions of the
cluster also implied that mutations in them occurred in independent lineages, thus raising

question on how one should interpret the result from such clustering methods in general.

Still, this observation did still not explain why the 1/f classifier might have performed
for than random, as Tarabichi et al. (2018) reported. For this reason, I calculated conducted
a similar analysis on the stochastic simulations generated as described above. For these
additional neutral simulations with a;c = 0 and ;. = 16 were generated and used as a

comparison for the classifier. ROC curved and the AUC of these were calculated for each
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parameter combination. This analysis confirmed that the AUC was substantially larger than
0.5 in some areas and at least 0.5 across the entire parameter space (Figure S.3A, page 263).
In light of the observed ROC across the entire parameter range for cases with a putatively
detectable subclone (0.25 < f;. < 0.75) shown in Figure S.3B (page 263), it seems likely
that Tarabichi et al. (2018) swapped the false-positive and false-negative rates when they
conducted a similar analysis. In summary the 1/f statistic is an imperfect interpretation of
the VAF spectrum, but certainly not worse than a random classifier.

In summary, the detailed analysis of stochastic simulations described above confirmed
the initial concern that Tarabichi et al. (2018) failed to perform a fair test of the 1/f statistic.
Instead of considering the behaviour of simulations in the parameter range considered (Fig-
ure 2.4), the authors appeared to instead integrate over a wide range of parameters. This
likely lead them to underestimate the strength of the test under more realistic scenarios of
subclonal selection. Further, the analysis of a commonly used clustering approach (Figure
2.4H) demonstrated that applying these methods to data of somatic mutations detected from

cancer bulks might be problematic.

2.3.2 Analysis of Subclonal Selection Using dN/dS Ratios

In the second part of their letter Tarabichi et al. used a test inspired by the classical dN/dS
method to demonstrate evidence for the presence of selected subclonal variants in tumours
classified as neutral. Specifically, the authors pooled subclonal mutations in known cancer
genes from multiple patients and calculated dN/dS ratios for the neutral and non-neutral
groups. Tarabichi et al. argue that for cases in which the 1/f test failed to reject the null
hypothesis, subclonal mutations should lack evidence of selection (i.e., dN/dS ~ 1). While
this is a sound argument if one assumes that there is no classification error whatsoever,
it is incorrect to draw conclusions about individual samples from such a population-level
statistic. Instead, the observation of dN/dS > 1 for mutations from the subclonal mutations
of all samples might simply indicate that the 1/f test misclassified one or more patients.

To investigate this possibility, I repeated the dN/dS analysis conducted by Tarabichi
et al. with the same method. Summarised, global dN/dS estimates for 369 the driver genes
reported by Martincorena et al. (2017) were calculated for the colorectal and gastric cancers
analysed in the original publication (Williams et al. 2016). Since the TCGA CAVEMAN
calls Tarabichi et al. (2018) used were not available publicly, I instead reanalysed the pan-

cancer TCGA variant calls that were available through GDC. Due to the criticism by Tara-
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bichi et al. regarding the presence of tetraploid tumours in the original analysis conducted
by Williams et al., which could cause the false rejection of the null hypothesis, I restricted
the analysis to diploid regions and samples with high purity (see Methods for details). The
usage of the newly published ploidy and purity estimates for the TCGA samples should
generally have improved the classification. Curiously, this new analysis found that 290/724
(40%) of cases compared to the 31% in the original analysis were consistent with neutrality

(Table 2.1), thus confirming the findings by Williams et al. (2016).

Consistent with the results by Tarabichi et al. (2018) the dN/dS estimates of missense’

and nonsense®

mutations were significantly above one for the clonal variants of the pan-
cancer TCGA cases classified as neutral and non-neutral (Figure 2.5C). Equivalent results
were also observed for the 101 CRCs that were also analysed by Williams et al. (2016). As
shown in Figure 2.5A, dN /dS > 1 was observed for clonal missense and nonsense mutation
of cases classified as neutral (34/101) and non-neutral (67/101). For the 68 gastric tumours
Williams et al. (2016) analysed only the clonal nonsense mutations showed a dN/dS > 1

(Figure 2.5B).

In contrast to clonal mutations, which should have a dN/dS > 1, subclonal muta-
tions might in principle only have dN /dS > 1 in cases classified as non-neutral, but not in
those classified as neutral. Consistent with this expectation the dN /dS ratios of subclonal
missense mutations of tumours from all three cohorts were found to not be significantly
different from 1 (Figure 2.5A-C, missense mutations at left, blue bars). Likewise, dN/dS
estimates of subclonal nonsense mutations from the colorectal and gastric cohort were not
significantly above one either Figure 2.5A—C, missense mutations at right, blue bars).

In contrast the analysis of subclonal nonsense mutations for neutral cases of the TCGA
cohort suggested dN /dS > 1. This observation is of course in conflict with the classification
of these cases as ‘neutral’. Still, a more detailed analysis of the cases showed that a small
subset of patients classified as neutral showed a high number of subclonal nonsense mu-
tations in putative driver genes. Specifically, 1/57 cases (1.7%) of the gastric cancers and
11/290 (3.8%) cases of the pan-cancer cohort classified as neutral contained > 3 subclonal

nonsense mutations.

Manual examination of these patients (Figure S.5-S.14, page 263-266) suggested that

5Non-synonymous mutation of the DNA that cause the replace of one encode amino acid by another.
%Non-synonymous mutations of the DNA that cause the premature termination of the translation and hence
the expression of a shorter, unfinished protein product.
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Figure 2.5: dN/dS analysis with the method of Martincorena et al. (2017) applied to colorec-
tal cancers. A) Gastric cancers from Wang et al. (2014) analysed in Williams et al. (2016)
B) TCGA pan-cancer cases analysed by using newly available GDC calls to reproduce Tara-
bichi et al.’s 2018 dN/dS analysis. C) Cancers were classified as neutral or non-neutral with
the 1/f test, and the dN/dS values of were calculated over pooled variants from each group
(split between clonal/subclonal and missense/nonsense). D) Comparison of the dN/dS esti-
mates obtained for the 198 driver genes (black dots, point estimates; error bars, 95% confidence-
intervals) with the distribution of 1,000 random subsets from three control sets of non-driver
genes, demonstrating a general positive bias of estimated dN/dS values (white dots, median;
box, interquartile range; whiskers, 90% prediction interval). After removal of 3.8% of pan-
cancer cases with three or more subclonal nonsense mutations in driver genes, both missense
and nonsense dN/dS in neutral cancers were not significantly different from the neutral expecta-
tion. ‘Martincorena’ refers to Martincorena et al. (2017), ‘Zapata’ refers to Zapata et al. (2018).
(Figure as presented in Heide et al. 2018)

some clonal mutations were ‘bleeding’ into the subclonal integration range. Since clonal
mutations are expected to have a dN/dS > 1, this would explain the elevated dN/dS value
of subclonal mutations in ‘neutral’ cases. In other cases, a misclassification caused by er-
roneous ploidy estimates or the presence of a selected subclones underneath a power-law
tail seemed possible. Regardless of the exact reason, after the removal of the 3.8% of cases
with > 3 subclonal nonsense mutations from the analysis, the dN/dS values of subclonal
nonsense mutations were found to not be significantly different from that of the neutral
background (Figure 2.5C; dN /dS = 1.44, p = 0.32). For the calculation of this background,
dN /dS values of known passenger genes was generated using a bootstrap method of 1,000

random sets of 198 non-drivers as described in the Methods (Figure 2.5D). This showed
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a systematic positive bias for the estimation of dN/dS, possibly due to publicly available
somatic GDC calls being filtered for common human germline variants present in dbSNP.
Since germline mutations are composed of more synonymous than non-synonymous vari-
ants, estimates of dN /dS ratios generated from such data are skewed upward (Martincorena
et al. 2017). While not significant, dN /dS values were consistently higher in non-neutral

versus neutral cases (Figure 2.5D).

2.4 Discussion

Summarised, the analysis of the simulations conducted by Tarabichi et al. (2018) explained
the apparent mismatch between the stochastic simulations conducted by the authors and the
previous mathematical theory on the convergent solution of the continuous-time stochas-
tic branching process (Durrett 2013; Kessler and Levine 2013; Kessler and Levine 2015;
Williams et al. 2016; Bozic, Gerold, and Nowak 2016). Simulations based on the Gillespie
algorithm, which explicitly model asynchronous cell divisions, did agree with the solutions
of the stochastic branching process and, as shown by others such stochastic neutral models
(Durrett 2013; Kessler and Levine 2013; Kessler and Levine 2015) do generally scale ac-
cording to the expected 1/f2. This general scaling behaviour even holds in the presence of
stochastic cell death (Kessler and Levine 2013).

While Tarabichi et al. (2018) appear to, at least implicitly, acknowledge that simula-
tions of tumour expansion as a branching process (i.e., Bozic, Gerold, and Nowak 2016)
provide a reasonable model of tumour evolution, they seem to have missed why the ob-
served structures (i.e., the 1/f2 distribution) arise. They instead allude to classic studies of
neutral evolution in population genetics like that of Kimura and Ohta (1969) by suggesting
that ‘drift can drive novel variants to high frequencies’. These studies are concerned with
the drift of novel variants arising in 1/N individuals within a population of constant size.
However, the argument by Williams et al. (2016) was on the site frequency spectrum arising
in an exponentially expanding population, which also arise in the absence of selection and
drift. At least at sufficiently high mutation rates, neutral tails, similar to those observable
in the cancer genomic data analysed by Williams et al. (2016), are simply a consequence
of the mutations that arise with each cell division during the clonal expansion of a tumour
(Williams et al. 2016; Williams et al. 2018b). Drift can obviously also arise due to the
stochastic events in exponentially expanding tumours, but this would emulate the properties

of selection revealed by the 1/f test. Importantly, the presence of such subclonal structures
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is also not taken into account by the clustering-based methods some of these authors suggest
to use for the analysis of subclonal mutations observed in bulk sequencing data (Tarabichi

et al. 2021).

Tarabichi et al. (2018) also seem to ignore that the limitations they highlight for the
1/f test, namely that it is ‘neither a necessary nor a sufficient’ method to detect selection,
apply in the same way to commonly used clustering methods (e.g., Dentro, Wedge, and
Van Loo 2017). The analysis of one such clustering method (Figure 2.4H) showed that
the application of these to data of somatic mutations detected from cancer bulks might be
problematic in general. Most importantly, if the assertions made by Williams et al. are
correct, variants at a subclonal frequency would often be present in different lineages (e.g.,
Sottoriva, Barnes, and Graham 2017). The way in which some of the authors suggest to
interpret results from clustering methods would then be inherently flawed (Tarabichi et al.

2021; Dentro et al. 2021).

Curiously, the application of the dN/dS methods Tarabichi et al. (2018) used to crit-
icise the 1/f test statistic has demonstrated that most mutations detected in individual tu-
mours are selectively neutral (Martincorena et al. 2017). This observation is entirely con-
sistent with the premise of neutral tumour evolution, which is that the majority of genetic
variation arising through mutation are selectively neutral (Kimura 1968b; Kimura 1991).
The presence of a positive dN /dS ratio for subclonal mutations in known cancer genes, as
described by Dentro et al. (2021) in a recent pan-cancer analysis of subclonal drivers, is not
at odds with this. The detection of a positive dN /dS ratio in a set of patients does not imply
that all of these are non-neutral, but only means that at least some have a subclone arising
through selection. Indeed, the analysis of dN/dS ratios in the pan-cancer TCGA cohort
shown above identified a subset of tumours with multiple subclonal non-synonymous vari-
ants. The removal of this small subset (3.8%) of cases reduced the dN/dS ratio to a level at
which it was not significantly above one. In theory, a single misclassified patient carrying
multiple nonsense mutations in driver genes could significantly alter the dN /dS value of an
entire cohort. This highlights that, since dN/dS analysis at the cohort level combines mu-
tations from different patients, it cannot easily evaluate the performance of statistical tests

that aim to detect neutrality at the patient level.

Last but not least, the point that the ‘failure to reject the null hypothesis is not the same

as proving it true; made by Tarabichi et al. (2018) is certainly correct. Still, it somewhat
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misses the main point made by Williams et al. in the original 2016 paper. Here neutrality
is explicitly formulated as the null model for a frequentist approach. This null hypothesis
is rejected by the proposed test statistic in most cases, suggesting the widespread presence
of subclonal selection. The fact that the remaining cases are referred to as ‘neutral’ in the
publication does not change the setup of the test itself.

Summarised, the critique by Tarabichi et al. (2018), did not invalidate the conclusions
made by Williams et al. (2016). Neutral evolution provides an adequate null model for the
pattern of ITH that can be observed in many tumours. Ignoring this risks to misinterpret
existing cancer genomic data or, even worse, to conduct ill-equipped experiments. This
will, in turn, delay potential clinical improvements that could be archived from a better

understanding of the dynamics driving late-stage cancer evolution.






Chapter 3

Modelling Cancer Evolution in Space

The simple 1/f summary statistic described in Williams et al. (2016) and the Approximate
Bayesian Computation (ABC) inference able to detect selection using the entire VAF spec-
trum Williams et al. (2018b) developed later use single bulk WGS sequencing data as the
basis for statistical inference. Due to the abundance of such datasets, generated as part of
several large-scale cancer sequencing projects like TCGA (Bailey et al. 2018) or PCAWG
(Campbell and Giocomo 2019), the development of such methods was crucial. Despite this,
the methods were heavily criticised for their lack of discriminatory power. One example of
this is the criticism by Tarabichi et al. (2018) and in the previous chapter, I have presented
results from the reply to this criticism. While the analysis showed that Tarabichi et al. over-
stated the severity of these problems, detection of selected subclones from bulk sequencing

data is inherently challenging.

One of the most significant drawbacks of bulk WGS is that information on which alle-
les co-occur in individual cells is lost. Especially, at the commonly used sequencing depth,
it is thus not possible to confidently demine if mutations with a similar VAF occur in the
same lineage or not. A number of studies assume that only a few genetically identical
subpopulations of cells are present at frequencies that are detectable by NGS. These pop-
ulations are assumed to be co-existing subclones that have expanded to a significant size.
Clustering methods, like the previously mentioned DPclust, could in this case be applied to

reconstruct phylogenetic relationships among subclones (see Section 1.6 for details).

If instead, as suggested by Williams et al. (2016), subclonal structures primarily arise
as a consequence of the clonal expansion itself, then these assumptions do not hold. In this
case, one would instead expect that many clusters of mutations are identifiable at a CCFs

between 10% and 100%. Many of these would be present at such similar frequencies that
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they could not be resolved by currently used sequencing approaches.

This issue, was already demonstrated in the previous chapter, where I applied DPclust
to simulated sequencing data of neutral and non-neutral tumours that were obtained from
a branching process-based tumour model. The results of this analysis showed that DPclust
was often unable to identify the ‘peak’ of mutations that the selected subclone carried to
a higher frequency. Instead, the clustering results often appeared to be dominated by the
power-law tail, which is itself composed of many mutation clusters generated by multiple
parallelly expanding lineages. As expected DPclust was also unable to resolve the mutations
of these parallel lineages as independent clusters and instead suggested the presence of a
small number of large clusters. Still, tumours usually expand as a mass of cells and different
lineages are thus expected to variegate in space. For this reason, one can in principle use
multiple WGS samples obtained from different areas of a tumour to resolve lineages much
better. This formed the basic motivation for multi-region sequencing studies like the one
conducted by Gerlinger et al. (2012).

Multi-region sequencing experiments do allow a much more accurate reconstruction
of ancestral relationships for the dominant cell populations (Tarabichi et al. 2021). Still, it
is not entirely clear if the detection of subclonal selection in such phylogenies would easily
be possible or not. Similar to the previous interpretation of single bulk samples, various
issues arising from neutral dynamics might exist. Specifically with regard to biases arising
from spatial sampling in a tumour relatively little is known. The behaviour of commonly
applied multivariate clustering methods, when applied to simulated multi-region sequencing
data arising under neutrality, was previously also uncharacterised. To better understand
these key questions and to gain insight into if bulk sequencing can easily be used gain
insight into tumour growth dynamics and especially the presence of subclonal selection,
a model that could generate artificial multi-region sequencing data was required. For this

I Given

reason, I developed a spatial tumour simulator together with Ketevan Chkhaidze.
the general interest in the field, I aimed to make this method as easily accessible to others
as possible. The code was implemented in C++ and then integrated into a package for
the R programming language (R Core Team 2020). R is very commonly used in the field,

and as an interpreted language, it is a suitable option for this purpose. We also integrate

IDetails of the model will be provided below. Ketevan Chkhaidze implemented a first version of the model in
Python. This first version assumed random ‘pushing’ in space and non-boundary driven growth. I implemented
a version in C++ of this model and integrated it into an R package. I also modified the model to consider
boundary driven growth and let cells in the tumour ‘push’ to the closest edge.
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additional code into the package, allowing the simulation of various sampling schemas and
plotting of simulated datasets. Our method allows the simulation of exponentially growing
and boundary-driven tumours. This simulator was used to describe the general properties of
spatially growing tumours and demonstrate that ABC inference can infer model parameters
from genomic measurements. The results of this were published in Chkhaidze et al. (2019).

I also expanded on some of the work presented in the previous chapter. Especially, I
tried to characterise the behaviour of commonly used clustering methods (e.g., Roth et al.
2014) when applied to simulated sequencing data of spatial and non-spatial tumours. The
ability of these methods to distinguish mutations present in individual ‘mutation clones’
was, as expected, very poor for all commonly used coverage values. This provided some
important insight into the results expected from real experiments, especially with regard
to the effect of purity and coverage. They also provided some important insights into the
usability of multi-region bulk WGS sequencing data for statistical inference of selection.
The results suggest that some of the identified issues might be hard to mitigate in practice.
These results were added to the publication of a statistical method MOBSTER developed by
Giulio Caravagna (Caravagna et al. 2020).

Combined, these extended analysis of simulated spatial and non-spatial WGS datasets
showed that sequencing of individual clonal units (i.e., cells or glands) might be better suited
for the inference of selection from sequencing data and that great care has to be taken in
the interpretation of results obtained from clustering of mutation calls. Even extreme diver-
gence of samples obtained very closely in space can arise from neutral dynamics. Overall,
this provided a rationale for the multi-region single-gland sequencing study of CRCs called

EPICC, which I will present in the next chapter.

3.1 Methods

3.1.1 Spatial simulator

Due to the limitations of single bulk WGS data, I decided to explore how commonly con-
ducted multi-region sequencing data could be used for improved detection of selected sub-
clones in individual tumours. For this purpose, we developed a simple spatial tumour
simulator with which spatial dynamics could be simulated and to which different spatial
sampling strategies could be applied. The spatial simulator we developed for this purpose,
models tumour growth using a stochastic spatial model of cells that incorporates cell divi-

sion, cell death, random mutations, clonal selection and effects of spatial crowding. This
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simple model is described in detail below.

A
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propensities reaction HebeH Bitng LR
1 2 g Ilgxt‘ertgaction ’:ﬂ—u“‘(%) H —
u=1 “ Death
6[7]8 > > etionus S <y P R
v=1 v=1 T
i N N u T
Insert one cell in the centre Calculate reaction propensity tocaton s't;ﬂ" e <;“" e iy e
for each cell type T T
T repeat until termination criterium met
Sampling in space Marking of active lineages Simulation of WGS

S8

@
3
o

; 0.00 0.25 0.50 0.75 1.00
Lineage tree Spatial structure VAF (100x)

Figure 3.1: Schema of the spatial simulator. Simulations involve two steps: A) The spatial simula-
tion of the tumour using the Gillespie algorithm. B) The simulation of WGS sequencing data. For
this, a subset of cells is selected in space. Then active lineages — that is, edges that connect any
of the sequenced cells to the root of the tree — were annotated with the number of sequenced cells
below them. Finally, the active part of the tree was traversed from the root to simulate WGS data.

3.1.1.1 Simulation of the Tumours

The birth-death process The growth of a tumour is simulated on a 2D or 3D lattice with
Moore neighbourhood (see left panel in Figure 3.1A). Each simulation is initialised with a
single cell placed at the centre of the space at the time point z, = 0. All cells A are assumed
to be able to undergo two reactions, birth and death. A cell that undergoes death is removed
from the simulation and frees up the occupied space (A N A). This reaction is assumed to
occur with the birth rate . A cell that undergoes a birth event is assumed to give rise to a
second, identical daughter cell A’ that it tries to place into a location in its neighbourhood

(A i> A+ A"). This reaction occurs with the birth rate A.

Pushing of cells If during a birth event empty grid points (i.e., in the Moore neighbourhood)
exist next to A, then A is simply placed into one of these at random. If instead all neigh-
bouring grid points are occupied by other cells, then the cell A tries to ‘make room’ for the
cell A’ by trying to ‘push’ other cells away. This pushing in space is done along a vector v
up to maximum distance d,,,, and if it is possible all cells along this vector are moved one

position forward. If instead, the pushing was unsuccessful, then the division is considered
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to have failed and the cell A’ dies. For the choice of v two options were considered: 1)
pushing into a random direction of the space and ii) pushing towards the closest edge of the

tllI'IlOl,lI'.2

Gillespie Algorithm As outlined above, cells are assumed to be able to undergo two re-
actions, birth according to the birth rate A and death according to the death rate p. The
actual rate with which cells undergo these two reactions is determined by their ‘cell type’ i.
As daughter cells are assumed to be identical copies of their parents, their cell type is also
identical to that of the parent. This means that for any cell type i a set of member cells M;
exists.

Since each cell type is assumed to undergo the same reaction types (i.e., birth and
death) with a different birth and death rate A; and L; respectively, one can consider these
to be different reactions. For this reason, the total number of reactions is twice the number
of cells types. To simulate a trajectory of reactions one can use to the Gillespie algorithm
(Gillespie 1977; Gillespie 1977). The Gillespie algorithm allows sampling of both, the time
to the next reaction 7 and the index of the corresponding reaction j. Several variations of
the Gillespie algorithm exist, of which the so-called ‘first-reaction method’ (Gillespie 2007)

was used. For a set of uni-molecular, like the one considered here, one can sample

1 1
log(—), withr; ~U(0,1),

Tj=
QN rj

where N; = |M;| are the number of cells of the species i taking part in the reaction and o; is

the rate of the reaction. The next reaction j and the time to it 7 is then given by

T=min Ty, j=argmin Tj.
J i

From the species i taking part in the reaction j, a random element k£ was chosen. The reaction

J was then executed on & as described above and the Gillespie time updated: t, =, + 7.

Introduction of subclones & Termination The transformation of one cell of type A to
another one B was assumed to take place at a specific population size t,.. For this, a random
member of A was chosen and its reaction rates were updated with those of B. To prevent
the random disappearance of the cell type A, transformations were delayed until A had
more than one member. All simulations were stopped once the simulated tumour reached a

predetermined size.

21 will later comment on the effects of these two choices in more detail (see Section 3.2.1).
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3.1.1.2 Generation of Simulated Sequencing Data

During simulations, the ancestral relationship of all cells was recorded in form of a phylo-
genetic tree to allow the generation of simulated sequencing data (Figure 3.1B). Different
ways to simulate such datasets were considered. These can be distinguished by how cells
were sampled in space and by the parameters that described the model used to simulate the
sequencing data (see Table 3.1).

In all cases, simulated sequencing data were obtained through a traversal of the
recorded phylogeny (Figure 3.1B). The generation of simulated sequencing data for a set of
cells C can be done by applying the following three steps to recorded ancestors of any of
the cells: i) determine the number of passenger mutations that occurred during the ances-
tors’ division, ii) determine the expected frequency of these passenger mutations, and iii)

generate simulated sequencing data for each of these passenger mutations.

Number of mutation per division The number of mutations that occurred during each di-
vision were assumed to be Poisson distributed with Am ~ Pois(m;), where m; is the mutation
rate of the ancestors’ cell type i. For divisions that failed due to lack of space, mutations
were still assumed to have occurred in the corresponding ancestral cell. This behaviour
makes sense if one assumes that one of the two cells resulting from such a division into
insufficient space immediately dies from overcrowding. Other options were separately con-
sidered. Specifically, a setup in which mutations are only accumulated during ‘successful’
divisions and where a second process, simulated as a reaction in the Gillespie algorithm,

causes the continuous accumulation of mutations.

Determination of the frequency of mutations The expected frequency fy of mutations
that occurred in a ancestor N depends on the number of descendants of N that are in C. The

frequency of mutated cells is

1
Jfi= |7C‘ Z Hcedesc(N)a

ceC
where [.ce5c(n) indicates if the cell ¢ is a descendant of N.
Generation of simulated sequencing data The generation of simulated sequencing data
for each mutation i can be broken down into the simulation of the coverage n; and the simu-
lation of mutant reads y;. Three model M., for the simulation of n; under a given average se-
quencing depth 77 were considered: i) Poisson distributed sequencing depth: n; ~ Pois(7i), ii)
i 1 (06-1)(d-1)

overdispersed sequencing depth with n; ~ Bin(g%, ), where 7 ~ Beta(% —1,==)

and d is a constant dispersion parameter d = 0.08, and iii) constant sequencing depth n; = .
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Table 3.1: Sequencing model parameters of the spatial simulator. Variables with a subclone index
i are set individually for each subclone. All other variables are assumed the be constant for the
whole tumour. The default values were chosen to represent an ideal sample (i.e., 100% purity) with
a coverage similar to sequencing data from the TCGA project that was filtered with commonly used
filters.

Symbol Description Values  Default
il Average sequencing depth [0, 0] 100
M;eq Sequencing depth model® {1,2,3} 1

p Sample purity (0,1] 1.0

Somin Minimum VAF for detection  [0,1) 0.05
Vmin Minimum reads for detection [0, o) 2

The number of mutated alleles y; was in all cases assumed to follow a Binomial dis-
tribution y; ~ Bin(n;, p;) with the expected VAF being p; = %, where ¢; = 2 is the
copy-number of the mutated site in the tumour, m; = 1 the multiplicity of the mutated allele
in the tumour and f the fraction of mutated cells in the sample.

The generated mutation data were then filtered to only retain those with a minimum
number of mutated reads y; > ymi, and a minimum VAF y;/n; > finin. Unless otherwise
mentioned values of f,,;, = 0.05 and y,,;, = 2 were used. The filtering based on y; and y; /n;
was motivated by their common use as filtering criteria for the reduction of spurious false-
positive mutations in NGS experiments (e.g., Williams et al. 2016; Cross et al. 2018). An

overview of all parameters of the model used for the generation of sequencing data can be

found in Table 3.1.

3.1.1.3 R Package - CHESS

The spatial simulator described above was implemented in the C++ general-purpose pro-
gramming language and integrated into a package for the R statistical programming lan-
guage (R Core Team 2020). For this, methods from the Rcpp package (Eddelbuettel
and Francois 2011; Eddelbuettel 2013), which allows seamless integration of R and C++,
were used. The code of the package is available on GitHub: https://github.com/
T-Heide/CHESS.cpp. This package also contains the code for the ABC-SMC algo-
rithm described in Chapter 6. Some additional notes on the implementation of the model

can be found in Section S.2.1 (page 267).

3.1.2 Tree Statistics

Three tree balancing methods and one statistic that describes the distribution of the rela-

tive branching times were used to assess deviations in the tree shapes introduced by the
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subclonal selection.

Sackin Index The first and probably the most commonly used statistic to describe the
balance of a tree is the so-called Sackin Index S (Shao 1990). This is a modification of
a similar index proposed by Sackin (1972) and used for the first time by Shao (1990).
While there are several definitions of the Sackin index, these can be shown to be equivalent

(Fischer 2020). Here S was calculated as

S(T) Y, &,

teVI(T)

where 0, ; denotes the number of edges that have to be traversed to reach the node j from

the root p of the tree (i.e., the depth of j) and V!(T') is the set of all leave nodes in 7.

Colless’ index The second one, another commonly used index, is the so-called Colless’
index C (Colless 1982; Mir, Rotger, and Rossell6 2018; Coronado et al. 2020) and defined
as

C(T)= Y, balr(t) =Y |K(c1)—K(c2)],

tev?3 rev3

where ¢ and c; are the two children of the node ¢ and K(s) is the number of leaves that are

part of the descendants of s.

Total Cophenetic Index Third, the Total Cophenetic Index & proposed by Mir, Rosselld,

and Rotger (2013) was assessed. The statistic is given by

d(T) = Z Z 8p (LCA(s,1)),

seVireVI\{s}
where LCA(s,) denotes the last common ancestor of s and ¢.

The 7y statistic Most of these classic indices disregard information about branch lengths
(Mooers and Heard 1997). I hence also calculated Pybus and Harvey (2000) 7y statistic.
This statistic has well defined properties extensively described in the literature (Pybus and
Harvey 2000) and defined as

(W\%z LYy (o8- 5,),[71))) -3 i

,withT =Y j(8pi—8pi1),
=2

T\ v J

vT)=

where nodes are ordered by their distance from the node &, ; and |V| denotes the number of

nodes.

Intermixing statistic Another summary statistic / was used to calculate the degree of inter-

mixing within a simulated tree. For this, a number of cells were sampled from the tumour
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and labelled by a lineage marker m; to create a set of cells C. The intermixing within the
reconstructed tree was then measured as

\C| Z (|D | Z mﬁém,> , Dy={r e V'|t e desc(pa(s))},

seC €Dy

where V! are all tip nodes of the tree, desc(s) the descendants of s, pa(s) the parent node

of s and 1,,,,, an indicator function that indicates if s and # had different labels m.

3.2 Results

3.2.1 Artefacts Arising From ‘Random Pushing’

One of the main aspects of the spatial simulator described here was to consider the effect of
spatial crowding on tumour growth dynamics. This aspect of the simulator was controlled
by the d,,,s, parameter, which describes up to which distance cells can push other cells away
to make room for a daughter cell. In the initial implementation of the simulator, if no empty
grid point in the Moore neighbour existed, a random vector v was generated, and a push
was initialised along this vector. Upon reaching the maximum allowed distance, the tried
push was aborted, and the division skipped.

While this heuristic might appeared to be a reasonable and computationally cheap
approach, upon closer inspection artefacts arising from it were identified. Considering a
mass of N cells, only a subset at a distance r, = d,,,g, from the outer edge should be able to
grow in a spatially constrained tumour. By simply assuming that growth occurs in form of
a disc or sphere, the expected growth dynamics in 2-3 dimensions can be described by the

following ordinary differential equations (ODEs):

dN
2D:E:N—Tcmax(0,r—rg)2;r: N/,
1
dN 4 3TN\ 3
3D:dt—N—37‘17max(0,r—rg)3;r-(7:1 >

Comparison of the growth curves expected from these ODEs to those obtained from
the spatial simulator revealed an obvious discrepancy between the two (compare red and
black lines in Figure 3.2). For both extreme parametrisations of the model (i.e., dpysn = 1
and dp,s, = *°), no deviations from the expected behaviour existed, but for intermediate
degrees of constraint, the simulations started to deviate from the expectation at some point.

To show that this resulted from the pushing of cells into a random direction, an alter-

native ODE model that would take the effects of this into account was constructed. In two
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Figure 3.2: Simulated vs expected growth curves using random pushing. The black lines show 50
random realisations obtained from the simulator.

dimensions the pushing distance forms a radius r, around the location of the dividing cell
located at a distance r; from the centre of the tumour (Figure S.17B, page 269). Given the
size of the tumour N, its radius can be assumed to be r = \/]W If r < rj+r,, then the
pushing radius r, around the position r; and the outer edge of the tumour r will intersect in

two points (x,+a) given by

rl.2 — rg + r2 1
x=—7"——,a=—\/(=ritre—r)(—ri—rg+r)(—ritrg+r)(rit+re+r).
21’1' 2)’1'

The angle between these points is proportional to the likelihood that a random push

is successful. Taking the special cases of a cell being on the edge and those in which no

intersection with the edge exists into account, we have:
, ifrg+r<r,
ifre—ri>rvr—r; <1,
cos 2 (%) , otherwise.
8

—_ O

ppush(ri’rv rg) -

8=

Using this likelihood, the effective population size N,y can be calculated and used in
the ODE model instead of N to factor in random pushing, thus giving:
dN , r
g = Nesr — (\/N/pi—rg)* Neyy = /0 27ri ppush(rilr,rg) dri.
Indeed, this ODE explained the observed behaviour of the simulator better for higher
values of dp,,, (see blue lines in Figure 3.2). Upon inspection of the function p ., (ri|7,7,)

for different parameter values, it also became apparent that the random pushing leads to
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unwanted behaviour if the radius of the tumour is r < d,,,. In this case, cells at the centre
of the tumour are more likely to divide than cells on the outer edge (Figure S.17A, page
269). This behaviour arises since cells in the centre will be able to push in all directions,
whereas cells on the periphery can only push towards the edge of the tumour, although with
a lower likelihood (Figure S.17B, page 269). Due to this and the increased intermixing
arising as a consequence of this method, an alternative heuristic that identifies the closest
edge was added to the simulator (see Section 3.1.1.1 of Methods, page 78). With this
alternative method, the simulated growth curves (Figure 3.3A or Figure S.18A, page 269)
and the number of generations required to reach a specific tumour size for different values

of dpysn (Figure 3.3B) matched the expected ones almost exactly.
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Figure 3.3: Expected vs simulated generation times for different degrees of boundary-driven growth.
A) Random realisations of growth curves obtained from the spatial simulator for different diameters
of the outer growing edge (dpus) When cells ‘push’ to the closest edge. The red line shows the
expected distribution obtained from a set of ODEs. B) The time required for a neutrally growing
tumour to reach a radius of r,,; = 175 in two dimensions. The red line shows the expected growth
dynamics according to a simple ODE model, and the blue line shows the same for a set of ODEs that
accounted for the effect of pushing into a random direction instead of to the closest edge during cell
divisions. The black and grey dots show random realisations obtained from the stochastic simulator,
where cells push approximately to the closest edge or into a random direction respectively. It is
evident that the random pushing causes artefacts leading to a deviation from the expected behaviour
(grey dots vs red line). No such deviation is visible for the simulations in which pushing occurs
approximately towards the closest edge (black dots vs the red line).

3.2.2 General Insights Into Spatial Tumour Growth

In Figure 3.4A-C, three examples of neutral and non-neutral spatial simulations, obtained
using a small degree of boundary-driven growth (d,s; = 20), are shown. It is important to
note that the results significantly depend on this parameter. Staining Ki67, a marker for the
replicative activity of cells, in tumours have shown a higher replication rate on the edge of

tumours, thus supporting that tumour growth is primarily driven by cells on the outer edge
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of a tumour. For this reason, boundary driven growth was assumed to be the most realistic
model in the following. In the following the behaviour of the model under various degrees
of boundary-driven growth will be described and in Chapter 6 I will apply an ABC-SMC

algorithm to fit this parameter to the trees of individual patients.

The first example shown in Figure 3.4A is an entirely neutral simulation. At a tu-
mour size of 10 cells, each existing cell was ‘marked’. In reality this might correspond to
a random passenger mutation or a lentiviral barcode (Lamprecht et al. 2017). Following
this, the simulated tumour was grown to a final size of 10° cells under neutral dynamics.
The top of Figure 3.4A shows the distribution of the marked lineages in space, and at the
bottom, each clone (i.e., cells with identical fitness due to common ancestry) are marked in
different colours. Equivalent plots for a tumour with one selected subclone and two selected

subclones (branching) are shown in Figure 3.4B and 3.4C respectively.

From the neutral simulation, it can be seen that the relative size of each marked sub-
lineage (i.e., the descendants of the marked single cells) differ substantially. This effect
arises from drift, which is amplified due to the competition for space under boundary-driven
growth. Under sufficiently significant selective advantages, deviations of the relative clone
sizes can, of course, be observed (yellow lineage in Figure 3.4B&C). Still, due to the poten-
tial effect of strong drift, deviations of relative sub-lineage sizes observed under selective
advantages can be hard to distinguish from neutrality (e.g., the dark blue lineage in Figure

3.4C).

Single-cell sequencing can be used to detect selection Single-cell sequencing provides in-
formation on which mutations co-occure in groups of cells. The information encoded in the
somatic mutations can easily be used to reconstruct the ancestral history of cells. In Figure
3.4D, two simulated neutral phylograms are shown. As seen here, relatively balanced trees
are obtained under both boundary-driven (top) and non-boundary-driven (bottom) growth.
Since mutations were also assumed to be accumulated in non-dividing cells in the simula-
tions, most cells have a relatively similar mutation burden. Still, one difference that can be
seen between boundary-driven and non-boundary-driven growth, which will be discussed in
more detail below, is that the relative branching-times (i.e., the relative position of internal
nodes between the root and the tip) differ. This effect arises due to cells going ‘practically

extinct’ once they fall behind the growing edge.

In a case of relatively late arising selection, phylogenetic trees reconstructed from ran-
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Figure 3.4: Examples of spatial simulations and single-cell trees. A) Representative simulations of
a neutral tumour. B) A tumour with one subclone. C) A tumour with two subclones. The top plots
show lineages of cells marked at a tumour size of 10 cells. D) Two representative single-cell trees
of random cells from a neutral tumour under boundary-drive (top) and exponential growth(bottom).
E) Equivalent single-cell trees from tumours with a late arsing subclone with a strong selective
advantage, similar to the ones in B. Here a clear deviation from the balanced tree in D is visible,
indicating the presence of a selected subclone. F) If a subclone arises early with only moderate
selective advantage and hence does not sweep through the whole population, deviations are less
clear and again hard to distinguish from selection.

domly taken single-cell samples revealed elongated internal edges and a subset of cells with

a higher mutation burden than others (Figure 3.4E). From these data, an obvious deviation

from neutrality is evident. This is something that would have been hard to resolve from the

size of randomly marked lineages alone. Still, if a selected subclone arises very early —
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i.e., under weak selection so that the subclone ultimately coexist with the ancestral clone —
these patterns are less pronounced and again, especially from relatively sparsely sampled

data, hard to distinguish from neutrality (Figure 3.4E).

3.2.2.1 Neutral Boundary-Driven Growth

I next assessed the effect of boundary-driven growth on the growth dynamics of individual
tumours. For this, spatial simulations with marked lineages, similar to the ones described
above, were generated and used to quantify the amount of spatial intermixing of different
lineages. Examples of these simulations are shown in Figure 3.5A.

From this figure, it can be seen that more intermixing of lineages occurs for lower
degrees of boundary-driven growth (left to right). In the case of fully exponential growth,
scattering is widespread. Increased death (top to bottom) only has a relatively minor influ-
ence on the amount of intermixing observed. These observations are also summarised by
the statistics shown in Figure 3.5B&C. Variable strength of boundary-driven growth in indi-
vidual tumours might explain the different rates of spatial variegation observed by Sottoriva

et al. (2015) between carcinomas and adenomas.

Phylogenies can be used to resolve boundary-driven growth The differences in the
growth dynamics implied by the different intermixing and scattering of cells in space im-
plied by the data summarised in Figure 3.5 should also be encoded within genomic mea-
surements obtained from single-cells. To test this hypothesis, a spatial sampling layout
similar to the one used by Sottoriva et al. (2015) was used. In brief, random single-cells
were obtained from four regions with diameters of ~ 50 x 50 grid located on the outer
edges of the tumour (350x350 grid points) with a 90° offset from each other (i.e., at a 12,
3, 6, and 9 o’clock position) were subjected to simulated sequencing and phylogenies were
reconstructed from these data using a maximum-parsimony method. Similar to the example
using random sampling of single-cells mentioned previously (top tree in Figure 3.4D), a
clear difference in the relative distribution of branching-times could be seen in these sim-
ulated trees (Figure 3.6A). Under strict boundary-driven growth (left side of Figure 3.6B),
‘palm-tree’ shaped phylogenies can be observed, and the strength of this effect is only mod-
erately reduced if the death rate is high (left bottom left of Figure 3.6B). Each clade in the
corresponding trees was formed by samples from one region, which are indicated by the

colour of the added labels (left site of Figure 3.6B).

For purely exponential growth, branching occurs instead at a relatively early position
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Figure 3.5: Illustration of mixing effects due to boundary and non-boundary-driven growth. A)
Neutral simulations obtain for combinations of the push distance (d,;) and death rate (mu) param-
eters. Cells and their descendants were marked as distinct lineages after reaching a population size
of ten cells. Red box: Stochastic out-competition of a lineage on the growing edge by surrounding
cells. This occurs more frequent under boundary-driven growth. Red arrows: Spatial segregation
arising due to early intermixing of lineages commonly observed under non-boundary-driven growth.
B-C) Summary statistics of the intermixing rate show how intermixing rates increase with a larger
width of the growing edge (d,.s,) and slightly with increasing death rates y. The intermixing rates
were calculated with the tree statistic / (see Methods section) on 100 randomly samples cells from a
tumour with a diameter of 350 points.

in the trees (right side of Figure 3.6B). Within the tree, samples from the same region were
frequently less distant to each other than those from different regions, but the formation of
clades by all samples obtained from one single region of the tumour occurred very rarely. At
the intermediate parametrisations of s, a transition between the patterns seen in the two
extreme cases became apparent (middle of Figure 3.6B). These observations suggest that
through the analysis of the shape of single-cell phylogenetic trees, an accurate estimation

of the strength of boundary-driven growth might be possible.
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Figure 3.6: Relative branching-time and structured sampling should allow the recovery of growth
laws. A) Relative branching-times of trees obtained from spatial sampling in four regions from the
outer edge of a tumour. Black lines show estimates of random realisations of trees containing 20
single cells each. Little difference with regard to the death rate p is visible, but changes in the width
of the growing edge d,,,, cause clear deviations. B) Examples for different parameter values from
A.

These patterns were also evident in the distribution of the lineages-through-time plots
shown in Figure 3.6A. In this context, it is important to note that a combination of two
effects is at play i) the effect of the boundary-driven growth itself and ii) biases introduced
due to non-random spatially sampling. If the latter effect did not exist, one would expect to
see a uniform branching across lineages under exponential growth, but due to the effect of
non-random sampling, we instead have to compare the relative distribution of branch times
for different values of d,,,, to assess its effect. However, the analysis showed that branching
in reconstructed phylogenies consistently occurred later (concave up) in boundary-driven

growth. For non-boundary-driven growth, branching occurred instead earlier (convex up).

Mutational processes can reveal boundary-driven growth Another possible way to dis-
tinguish boundary and non-boundary-driven growth might be the activity of different muta-

tional processes. In this context, two simple mutation processes can be conceived i) those
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that are continuously active and cause damage to the DNA (i.e., a ‘non-mitotic’ process)
and ii) those that are only active during cell division when a second copy of the DNA is
created (i.e., a ‘mitotic’ process). Given that cells within the centre of a boundary-driven
tumour have a reduced mitotic turnover and assuming that these two mutation types can
be distinguished from each other, differences in the mutation rate of these might reveal a

pattern that is indicative of the growth law in bulk WGS data.

To explore this hypothesis, I integrated both of these mutational processes into the
spatial simulator and generated simulated bulk WGS datasets from the tumour as a whole.
For the implementation of the two different processes, the default behaviour of the model
was slightly modified. Cells that did not manage to divide successfully were assumed to
not accumulate mutations to represent the ‘mitotic’ mutational process. The ‘non-mitotic’
mutation process was included as an additional reaction, which added one mutation to a
random cell, in the Gillespie algorithm. The rate of this process was set to the mutation
rate per division of the ‘mitotic’ process to ensure that mutations from both processes were

present at equal proportions under exponential growth.

The results of a representative simulated boundary-driven tumour are shown in Figure
3.7. These data revealed, as hypothesised, a pattern that could potentially distinguish the
presence of boundary-driven growth, namely an excess of mitotic mutations compared to

non-mitotic ones at a low VAF .

It might, in principle, be possible to distinguish such processes based on the analysis of
mutational signatures. Indeed, a previous study found that the number of mutations assigned
to individual mutational signatures was only weakly correlated with the age of a person at
the time of tumour diagnosis (Alexandrov et al. 2015). Only a single mutational signature
(S1) showed a strong correlation with age across tumour entities. S1 is associated with the
spontaneous deamination of methylated CpG dinucleotides (Alexandrov et al. 2013b) and is
therefore also expected to occur in non-dividing tissue (i.e., non-mitotic). Other mutational
signatures with a known aetiology are in contrast associated with defects introduced during
the duplication of the DNA (i.e., mitotic). One example of this would be signature S10
from COSMIC, which is associated with mutations of POLE, causing error-prone DNA
replication during division (Heitzer and Tomlinson 2014). Depending on how widespread
such mitotic signatures are, the observations made here might partially explain why shifts

in the activity of different mutational processes occur so frequently between clonal and
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Figure 3.7: Mutational processes can reveal boundary-driven growth. The histograms show the
global VAF distribution of mutations generated by two different mutational processes (colours): i)
mutations generated by a continuously active non-mitotic process (red) and ii) a mutational process
that is only active during division (i.e., mitotic). A clear difference in the VAF distribution of muta-
tions generated from these two processes can be seen between boundary-driven tumours (i.e., cells
growing only on the outer edge, dp,s, = 1) and exponentially growing tumours (d,,s; = °°) can be
seen. Tumours with boundary-driven growth show an excess of low-frequency mutations generated
by the mitotic process compared to exponentially growing tumours. Identification of such processes
from WGS data might allow discriminating between these two modes of growth in tumours.

subclonal mutations observable in tumour sequencing data.

3.2.2.2 Non-Neutral Boundary-Driven Growth

Boundary-driven growth dampens selection Similar to the previous analysis, an assess-
ment of what effects selected subclones have on the structure of reconstructed phylogenetic
trees in combination with boundary and non-boundary-driven growth was conducted. For
this subclones with a given selective advantage Ay were introduced into the simulation at
a given population size #,.. The simulated tumours (2D) were grown to a total popula-
tion size of N,,; = 10° and the relative size of the subclone fsc was determined. A range
of parameter combinations, were tested with this setup, specifically all combinations of
tie = {2027 | n € {0,...,30}}, Aye = {14+ x/4 | n € {0,...,36}} and d,p € {1,5,20,00}
with 25 realisations each. A mutation rate of m = 50 and a death rate of u = 0 was used in
all cases.

For the introduction of the selected subclone, a random cell was chosen from the pop-
ulation and modified. Given that for some of the parameter simulations, a large number of
cells were already present at this point, it is expected that some of the transformed cells
were located behind the growing edge. For this reason, simulations in which the introduced
subclone did not expand were rejected. The rate of this rejection is shown in Figure S.20

(page 270). On simulations in which the subclone was able to expand (i.e., the non-rejected
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ones), the average size of the subclone after reaching a total size of 10° cells was calcu-
lated. These numbers are summarised in Figure 3.8A. From the same setup of simulations,
the fraction of simulations in which the subclone made up between 10% and 90% of cells

in the simulation were also calculated. These are shown in Figure 3.8B.

The observations under boundary-driven growth, shown in the bottom right corner of
the two figures, can be used as a reference. As seen here, in the majority of the tested
parameter combinations the subclone effectively swept through the population (yellow in
Figure 3.8A and grey in Figure 3.8B). In this parameter range, it would be relatively unlikely
to sample from the ancestral clone. Likewise, for a number of parameter combinations the
subclone did not have enough time to grow to a sufficient size (dark blue in Figure 3.8A and
grey in Figure 3.8B). In these, it would be unlikely to sample from the subclone. In neither
of these two sets, we would expect to ever observe any evidence for selection in the global
VAF spectrum if we were to sequence the tumour as a whole. The issue of this relatively
narrow range in which subclones could potentially be detected in such data, the ‘wedge of

selection’, was also described in Williams et al. (2016).

A dpush =1 dpush =5 B dpush =1 dpush =5
16 16
g 12 % 124
£ 81 _ £ 8-
§ 41 Xsc S 4] (01<x5c<09)
o
N F F 1.00 gl 1 00
= 0.75 s . i o 75
% Apush = 20 doush = Inf 0.50 = 16 pusn = push = 0.50
Eld 2 0.25
8_ 124 0.25 8— 12 .
S 0.00 = 0.00
o 8 8
‘_l‘n 4 ' 4 4
0 0
A Agc Adse

Figure 3.8: Effect of boundary-driven growth on subclone sizes reached for different values of
the pushing distance s, the subclone start time #, and the selective advantage of the subclone
AAge = Age — Aye, Where A, = 1 and Ay are the birthrates of the ancestral clone and the subclone
respectively.

Comparison of the observations under fully exponential growth to those observed un-
der various degrees of boundary-driven growth showed that the efficiency of selection (i.e.,
the ability of the subclone to grow to a very large size) was reduced under boundary-driven
growth. Given that the growth of subclonal cells is restricted to the growing surface, this is
certainly expected. Still, depending on the actual growth law applying to human malignan-

cies (i.e., boundary vs non-boundary-driven growth), this effect would have to be considered
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to estimate correct parameters from bulk or multi-region WGS.

Boundary-driven growth is detectable in single-cell WGS data After the characterisa-
tion of the parameter range in which subclones in spatial simulations could potentially be
observed, random spatial sampling of single-cells, followed by simulated sequencing of
these, was conducted to determine the ability to detect subclonal selection from single-cell
sequencing data. For this, three tree balancing metrics and a metric that describes the distri-
bution of branching within the trees were assessed (see Methods for details). A simulation
setup identical to the one used to analyse clone sizes under selection, fully described in
the previous paragraph, was used. In each case, 20 random cells were obtained from the
simulated tumour, subjected to simulated sequencing and maximum-parsimony phyloge-
netic reconstruction. From the reconstructed phylogenies, the four summary statistics were
calculated. These statistics are summarised in Figure 3.9. From the results shown here,
it is evident that in those intervals in which samples from both subclones can in principle
be obtained (see Figure 3.8), an apparent deviation from the typical tree balance expected
under neutrality can be observed (dark blue colours in Figure 3.9). This suggests that even a
moderate amount of single-cells subjected to WGS sequencing should be sufficient to detect
subclonal selection. A larger number of cells should in principle even allow the detection of
selected subclones at a frequency far below the limit of detection in bulk WGS sequencing

data (i.e., < 10%).

3.3 Contributions to MOBSTER

In the previous chapter, some issues of commonly used clustering methods, when applied to
bulk simulated WGS sequencing data obtained from a neutral branching process model of
cancer evolution, were described (see Figure 2.3H, page 62). In short, these methods were
found unable to explain the expected power-law distribution of subclonal variants expected
under neutrality (see Figure 2.1A-B, page 55), causing these clustering methods to include
several subclonal clusters, almost irrespective of the true number and position of subclones
(Figure S.4, page 263 and Figure S.2, page 262). Importantly these subclonal clusters are,
as they are expected to be composed of multiple lineages present at a similar VAF, almost
uninterpretable.

These observations motivated Giulio Caravagna, a colleague in Andrea Sottoriva’s
group, to create an alternative clustering method called ‘model-based tumour subclonal

reconstruction’ (MOBSTER). MOBSTER can fit a mixture of a Pareto distribution (i.e., the
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Figure 3.9: Detection of subclonal selection in single-cell sequencing data. The presence of selected
subclones arising under various parametrisations causes detectable deviations in tree balances.

power-law ‘1/f tail) and multiple Beta distributions to the sequencing data and is hence a
method that should in principle be able to account for the structures expected to arise under
neutrality (Figure 3.10).

For the validation of the MOBSTER clustering method, two reference datasets com-
posed of simulated non-spatial (univariate) and spatial (multivariate) sequencing datasets
were generated. Each of these was composed of neutral simulations and multiple non-
neutral simulations with subclones present at different frequencies. Both of these datasets
were used to characterise the ability of MOBSTER to detect selected subclonal clusters in

comparison to other commonly used methods.

3.3.1 Non-Spatial simulations (Univariate dataset)

Generation of simulations The first dataset was composed of simulated sequencing data
obtained from a non-spatial (i.e., univariate) tumour model. For this, the simulator described

in Chapter 2 (see Section 2.2.2 on page 61 for details) was used. Instead of a Poisson
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distributed coverage C of mutant alleles x;, an over-dispersed Beta-Binomial distribution
was added to the model (see Section 3.1.1.2 on page 80). For each simulation, one ancestral
population and a single mutant subclone, introduced at a fixed time-step #,;, were generated.

Constant parameter values were used for the mutation rate m = 16 (mutations per dou-
bling), the death rate u = 0.2, the total number of reactions t.,; = 179,782,830 4 and the
total number of clonal mutations V. = 500. For the initial dataset, an average sequencing
depth of C = 120 and sample purity a = 1 were used. Nine random realisations for each
combination of subclone birthrates A, € {1+0.1i | i € NA1 <i < 13} and number reactions

prior to initiation of a subclonal expansion #; € {2/ | i € NA4 < i < 14} were simulated.

Selection of 150 datasets for testing All simulations in which the subclone accumulated
less than 50 mutations before its transformation (i.e., less than 4-5 divisions) were removed,
and three datasets with a specific fraction of mutated cells in the population (x;, the CCF
of the subclone) were generated by randomly selecting from the remaining simulations as
follows: i) 20 effectively neutral cases where x; < 5%, ii) 20 effectively neutral cases with
X5 > 90%, and iii) 110 cases with a potentially detectable subclone, with 20% < x; < 80%.
These cases represent tumours with minor, almost undetectable subclones (e.g., Figure
3.10C), tumours where the subclone has swept through the entire population and cases

where the subclone is detectable within the VAF spectrum (e.g., Figure 3.10D).

Analysis Mutations from each of these 150 WGS sequencing datasets were clustered with
DPclust (Nik-Zainal et al. 2012a), PyClone (Roth et al. 2014) and SciClone (Miller et al.
2014) before and after the removal of subclonal tails with MOBSTER (Figure 3.10B). The
number of inferred clusters relative to the true number of ‘clone cluster’ (i.e., kK = 1 for neu-
tral and k = 2 for non-neutral cases) is summarised in Figure 3.10E. These data demonstrate
that for all of the four tested methods a similar number of additional clusters were inserted
due to subclonal 1/f tail present in the simulated data (yellow colour in Figure 3.10E). This
was the case in the same way for both, neutral, and non-neutral WGS data. After removal
of the subclonal tail with MOBSTER the number of additional clusters was significantly
reduced (green colour in Figure 3.10E).

Representative fits for a simulated tumour with one subclone and an effectively neutral

case are shown in Figure S.22A (page 271) and Figure S.22B (page 271) respectively. Still,

“It is not entirely clear to me why I chose this somewhat arbitrary value, but ultimately one obtains very
similar data for a weakly selected subclone in a tumour grown to a larger size and a strongly selected subclone in
tumour grown to a smaller size (Williams et al. 2018b) . The size of the simulated tumours was ~ 107,800,000
cells.
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Figure 3.10: Validation of MOBSTER using synthetic tumour bulk sequencing data. A) Principle of
the MOBSTER method. Details can be found in Caravagna et al. (2020). B) Various clustering meth-
ods were either applied directly to simulated sequencing data or after the removal of the subclonal
power-law tails with MOBSTER. C) A representative neutral simulation. D) A representative non-
neutral simulation with a subclonal cluster present at a VAF of ~ 0.25. E) Summary of the number
of clusters inferred by DPclust, PyClone and SciClone before (yellow) and after (green) removal of
the subclonal tails with MOBSTER. F) The effect of reduced purity on the mixture weight of the tail
component.

as seen in Figure 3.10E misclassification did occur by MOBSTER. Analysis of these cases

identified three modes of failure.

Failure modes First, in = 70% of misclassified cases, the subclone was present at a very
high frequency (Figure S.22C, page 271). Here the additional variability of the beta com-
ponents fitted the mixture of two Binomial distributions sufficiently well. In these cases, an
approach that removed mutations assigned to the tail and clustered the remaining ones with

a method that fits a mixture of binomials on the raw count data (e.g., BMix) was typically
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able to identify the subclone correctly. The BMix package for R was used to fit maximum
likelihood Binomial mixtures to the data since the clustering of mutations was not the ob-
jective of this analysis. Still, in principle Dirichlet Process based clustering using Binomial
distributions like DPClust, would be expected to obtain similar results if clustering of muta-
tions would be required. Secondly, ~ 17% of misclassified cases the subclone was ‘hidden’
below the power-law tail (Figure S.22D, page 271). This problem especially arose when the
subclonal cluster was small (i.e., small #,.). While this is a genuine error of the method, it is
inherently hard to resolve. The remaining ~ 13% of misclassified cases had a low frequency
subclone with no fitted tail (Figure S.22E, page 271). In these cases, the low-frequency mu-
tations of the tail were assigned to the subclonal cluster instead. While incorrect, this might,

in practice, be irrelevant.

Notably, relatively high coverage is required to detect the subclonal tails (Figure
3.10F). At C < 100, reliably detecting variants at a low frequency is compromised, and
subclonal tails are often not detected in these data. This can, in turn, lead to over-calling of
subclonal selection in low-coverage WGS data. More extensive tests of this behaviour are
shown in Caravagna et al. (2020), but generally, a minimum of 100x sequencing coverage
appears to be required for subclonal reconstruction from single-bulk WGS data. A con-
clusion that was also supported by the simulated synthetic tumour datasets obtained from

non-spatial simulations.

3.3.2 Spatial Simulations (Multivariate dataset)

Generation of synthetic datasets A second multivariate dataset composed of tumours with
one (n = 50), two (n = 10) and three (n = 10) selected subclones at a detectable frequency
were created. Between two to nine simulated biopsies were obtained from these synthetic
tumours. Each tumour was grown on a 800 x 800 2D lattice until one of the cells reached the
edge of the space. This results in tumours containing roughly = 5- 103 cells. New subclones
with a birth rate A = [1, 1.6, 2.4] were introduced at time points [0,4,6.7] respectively. These
were chosen to allow coexistence of each subpopulation at approximately equal abundance
at the termination of the simulation. The remaining parameters, equivalent to the non-
spatial simulations, were kept constant: m = 10, N, = 100, C =100, H=0,a=1, and
d = 100 (see methods above). Biopsies of 10,000 cells (i.e., 100 x 100 grid points) were
taken along the outer perimeter with an equal angular distance relative to the centre between

them. Representative examples of a simulated neutral tumour with two biopsies are shown
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in Figure 3.11A&B. Figure 3.12A&B shows a representative example of a tumour with two

subclones and a total of three biopsies.

Fitting of multivariate datasets The multivariate datasets were fitted with the multivariate
variational Binomial clustering method VIBER® on the raw read counts. The same analysis
was run after removal on tail variants with MOBSTER along the marginals of samples (e.g.,

Figure 3.11B and Figure 3.12B).

Observations on neutral tumours In order to show how the reconstructed subclonal clus-
ters after and before the removal of tails with MOBSTER were related to the spatial distribu-
tion of variants within the tumour, a virtual in situ staining was applied to the simulations.
The results of this method for the neutral case shown as example above before and after
removal of tails with MOBSTER are shown in Figure 3.11C and Figure 3.11D respectively.
In these plots, a perfectly resolved ‘mutation cluster’ will have non-transparent colours in
the entire tumour (i.e., all mutations are present or absent). Imperfectly resolved ‘muta-
tion cluster’ will, in contrast, have a variable amount of staining within the tumour. This
means that all mutations are present in some cells, whereas others only contain a subset of
the mutations from the cluster. These imperfectly resolved clusters could still be identified
through more extensive sampling in space but should be removed for subclonal reconstruc-
tion. Comparing Figure 3.11C and Figure 3.11D shows that removing tails with MOBSTER
can help to reduce the amount of spurious unresolved subclonal clusters. This was sup-
ported by the observations in the re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>