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Abstract 38 

Rational development of targeted therapies has revolutionised metastatic breast 39 

cancer outcomes, although resistance to treatment remains a major challenge. 40 

Advances in molecular profiling and imaging technologies have provided evidence 41 

for the impact of clonal diversity in cancer treatment resistance, through the 42 

outgrowth of resistant clones. In this review we focus on the genomic processes that 43 

drive tumoral heterogeneity, the mechanisms of resistance underlying metastatic 44 

breast cancer treatment and discuss implications for future treatment strategies.  45 
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Introduction  72 

Breast cancer is the most common malignancy in women worldwide. 73 

Substantial improvements in survival of people with breast cancer over the last 30 74 

years has been attributed to screening, enhanced locoregional treatment and 75 

increasingly effective systemic adjuvant therapies in early-stage disease (1). In the 76 

metastatic setting, rational development of targeted systemic therapies has improved 77 

median overall survival (Table 1), although many targeted therapies remain costly 78 

and can cause detrimental side effects. Promisingly, small subsets of patients with 79 

metastatic breast cancer (mBC) may be cured by combination therapy. In HER2 80 

positive (HER2+) breast cancer (BC), cancers that overexpress HER2 or have 81 

amplification of the ERBB2 (HER2) gene, the landmark CLEOPATRA trial 82 

demonstrated that 16% of patients remain progression free at 8 years and may be 83 

effectively cured (2). Similarly, combinations of CDK4/6 inhibitors and endocrine 84 

therapy for the treatment of hormone receptor positive and HER2 negative (HR+ 85 

HER2-)  disease, improve overall survival(3, 4), and importantly increase the 86 

proportion of patients with long term responses that last for many years(2, 5). Yet 87 

resistance to treatment remains the major challenge, rendering most mBC incurable, 88 

claiming approximately 500,000 lives every year (6). Here, we review drivers of 89 

resistance to BC targeted therapies, in particular the role of intratumoral 90 

heterogeneity (ITH) in resistance, and discuss potential treatment strategies to 91 

further increase cure rates. The focus of this Review is proportionately reflective of 92 

the scientific advances in our understanding of heterogeneity in resistance of HR+ 93 

disease.  94 

  95 

Advances in molecular technologies have allowed direct measurement of 96 

clonal diversity of cancer(7, 8), ITH is a result of this diversity that occurs within the 97 

same tumor. Substantial evidence now exists in support of ITH as a key contributor 98 

to therapeutic resistance, (Figure 1), especially in the metastatic setting. Clinical 99 

intrinsic resistance refers to the failure of cancer to show clinical/ radiological 100 

response to treatment, due to the presence of pre-existing resistance mechanisms, 101 

whereas clinical acquired resistance refers to an initial clinical/ radiological response 102 

followed by cancer progression on treatment, due to the eventual development of 103 

resistance mechanisms. The clinical pattern of resistance may not directly reflect the 104 

cellular origin of resistance. Intrinsic resistant subclones expand in the face of 105 
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powerful selection pressures imposed by potent anti-cancer therapies, which may 106 

initially manifest as a radiological mixed response, although ultimately uniform failure 107 

of therapy ensues. The clinical pattern of acquired resistance may reflect diverse 108 

cellular mechanisms, for instance the pre-existence of an intrinsically resistant rare 109 

subclone in the cancer that may be selected by therapy, or de novo development of 110 

a resistance mechanism in a clone that subsequently expands, or a phenotypic shift 111 

in the cancer that leads to resistance without needing to evoke Darwinian concepts 112 

of clonal evolution.  113 

 114 

Histology- and immunohistochemistry (IHC)-based classification of BC has 115 

defined three clinical subtypes: HR+HER2-, HER2+ and triple negative breast cancer 116 

(TNBC). These represent a crude, indirect measure of inter-tumoral heterogeneity, 117 

and allow for the appropriate selection of subtype-targeted therapies. Molecular 118 

profiling has allowed further subdivision into four main classes: luminal oestrogen 119 

receptor positive (luminal A and B), HER2 enriched, and basal-like (9); moreover 120 

multiple transcriptomic subgroups of TNBC have also been defined(10).  Gene 121 

expression profiling on tissue bulk sample analysis has become an invaluable tool in 122 

clinical practice for estimating outcomes in early BC, however such tissue bulk 123 

analysis provides more limited resolution of ITH within a tumor sample. 124 

Technological advances such as the analysis of genetic material from circulating 125 

tumor cells (CTCs) at a single-cell resolution provide a means to more precisely 126 

measure ITH from heterogeneous, longitudinally collected CTCs, for real time 127 

selection and monitoring of therapy which remains an unmet need. 128 
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Heterogeneity in metastatic breast cancer 129 

ITH refers to the molecular variation within each tumor, both genomic and 130 

non-genomic, that leads to differences between populations of tumor cells. The 131 

extent of genetic heterogeneity as an underlying feature of mBC has been 132 

demonstrated, down to single cell resolution (11). As reviewed elsewhere (39), non-133 

genomic heterogeneity, encompasses both stochastic heterogeneity, caused by 134 

spontaneous variations in biological processes between genetically identical cells 135 

whereby random diversity ensues(12), or deterministic heterogeneity caused by 136 

variations in epigenetic modifications or DNA methylation profile. While non-genomic 137 

and genomic ITH both likely contribute to treatment resistance, this Review focuses 138 

predominantly on genomic ITH in BC. 139 

 140 

Multiple mutational processes from exogenous and endogenous sources, 141 

contribute to the somatic mutational landscape in cancer. Next generation 142 

sequencing (NGS) together with computational tools can delineate clonal and 143 

subclonal mutations, aiding the differentiation between “driver” mutations which 144 

actively contribute to cancer formation from “passenger” mutations which have no 145 

direct cancer promoting role, but represent an important historical record of the 146 

processes active during cancer formation (13). Although BC has the highest number 147 

of amplified driver genes (mean of 2.1), compared to other solid tumours (14), 148 

interrogation of the many thousand passenger mutations has even further resolved 149 

the mutational patterns and underlying mutational processes in tumorigenesis (13). 150 

In malignancy, the vast number of cancer cells also leads to ‘neutral drift’, with 151 

accumulation of passenger mutations in rare subclones of a cancer(15). When a 152 

cancer is treated with a therapy the selective pressure this exerts may switch some 153 

of these accumulating mutations  from ‘passenger’ to ‘driver’, resulting in outgrowth 154 

of a resistant subclone (Figure 2). 155 

 156 

In addition to large-scale efforts by the Tumor Cancer Genome Atlas (TCGA) 157 

and the International Cancer Genome Consortium (ICGC) that have enumerated 158 

primary BC genetics (16, 17), sequencing of 617 mBC samples uncovering nine 159 

established cancer genes (TP53, ESR1, GATA3, KMT2C, NCOR1, AKT1, NF1, 160 

RIC8A, and RB1) that were more frequently mutated in the metastatic setting 161 

compared with early BC (18). Genomic comparisons of matched primary and 162 
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metastatic samples have also revealed that metastatic breast tumors frequently 163 

possess a higher numbers of mutations (mutational load), including driver mutations, 164 

and somatic copy-number aberrations compared to matched primary tumors(19). In 165 

HR+ HER2- BC, this high mutational load in the metastatic tissue is likely to reflect 166 

the selection and outgrowth of resistant clones and acquired mechanisms of 167 

treatment resistance, as we discuss later.  168 

 169 

In individual cancers, driver mutations found in metastasis may not be found 170 

in the matched primary tumours(18, 20). This may be in part due to limitations in 171 

sampling whereby small subclones are missed in the primary specimen, but are 172 

selectively expanded in the metastasis. Alternatively, it is likely that some driver 173 

mutations have occurred after the cells have disseminated from the breast (true 174 

acquisition). Breast cancer brain metastases may be particularly clonally distinct, 175 

characterised by a greater number of private mutations relative to other metastatic 176 

sites(21). This may indicate that certain driver mutations are specific to the organ to 177 

which they metastasize, and in turn contribute to heterogeneous response or 178 

resistance to therapies between distant metastases. 179 

 180 

  181 

 182 

Processes that drive heterogeneity and evolution mBC 183 

Genomic drivers 184 

During metastatic dissemination and colonization in distant organs, and 185 

through the treatment of mBC, different mutational processes may be active. Thus, 186 

the genome of each mBC cell may be viewed as a combined evolutionary record 187 

from three sources: the ancestral “normal” cell type (which may differ between 188 

luminal and basal-like BC), the primary breast tumor, and the process of metastatic 189 

dissemination(22). This concept is illustrated by a landmark study using a 190 

mathematical approach to capture the signatures of mutational processes in each 191 

tumor, reflecting the combined accumulation of genetic mutations caused by 192 

chemical, physical or biological processes (23). Such studies have identified 193 

prominent signatures in BC indicative of DNA repair deficiencies, and endogenous 194 

mutagenic processes, such as those involving activated DNA cytidine deaminases 195 

(APOBECs), among others. APOBEC accounts for 15% of all mutagenesis in 196 
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sequenced human tumours (24). Whilst APOBEC enzymes play an important 197 

physiological role in restricting viral infections(25), aberrant enzymatic activity may 198 

promote oncogenic mutations such as PIK3CA mutations, and may also contribute to 199 

genomic instability and genomic heterogeneity within tumours, through the 200 

generation of localized clusters of mutations at DNA translocation sites known as 201 

“kataegis” (26).  202 

 203 

Mutational signatures including APOBEC are amenable to detection in 204 

clinically relevant samples (13). The PlasmaMATCH multi-cohort platform trial has 205 

reinforced that APOBEC plays a vital role in shaping the subclonal diversity of 206 

HR+HER2- advanced BC, with recurrent second mutations observed in PIK3CA at 207 

APOBEC mutagenesis sites (27). Interestingly the enrichment of signature 17 may 208 

reflect prior chemotherapy exposure in HR+HER2- BC(28). Furthermore, it is 209 

apparent that there is a shift from age-related mutagenesis in primary BC toward 210 

more APOBEC-driven processes in HR+HER2- mBC (28). Thereby highlighting the 211 

role of mutational signatures in identifying the processes that promote heterogeneity.  212 

 213 

 214 

 215 

Determinants of heterogeneity  216 

Subclonal expansion, following selective outgrowth of any given cell clone, 217 

has been described to follow branched or linear evolution (Figure 2). The theory of 218 

cancer as an evolutionary process was first described by Peter Nowell in 1976, 219 

drawing implicit parallels to Darwin’s theory of natural selection, a stepwise 220 

accumulation of somatic mutations along tumor progression, with sequential and 221 

subclonal selection of the fittest clones (Figure 1). ITH in the metastatic setting may 222 

manifest through acquisition of more fit clones in individual metastases, that may 223 

subsequently seed metastasize in pre-existing or new sites, and the 224 

microenvironment of different sites may differentially select fitter clones. Importantly 225 

the additional pressure of targeted therapies, result in selection of resistant clones, 226 

potentially driving further ITH in the cancer.  227 

 228 

Another layer in understanding tumor-intrinsic determinants of ITH is the 229 

cancer stem cell (CSC) model, whereby a subpopulation of tumor cells are identified 230 
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as CSC due to their unique ability to initiate and sustain tumor growth. Similar to 231 

normal stem cells, CSC are often characterised by their expression of drug‐efflux 232 

proteins, and thus may be less sensitive to therapies than the CSC progeny 233 

comprising the bulk of the tumor, and may drive therapy-resistant regrowth (29). Pre-234 

clinical data showing the ability of human mammary epithelial cells to de-differentiate 235 

into CSC-like cells with tumorigenic capacity, has challenged the view of a strictly 236 

defined CSC population in BC (30), and correlated with higher mortality (31).  237 

Whether the CSC phenotype is an evolutionary outcome of clonal competition, a 238 

transient state or a distinct separate population, it nonetheless likely plays a key role 239 

in development of intrinsic and acquired resistance to targeted therapies, as 240 

reviewed extensively elsewhere(32). 241 

 242 

The complex architecture of supportive stromal, immune, and endothelial cells 243 

that make up the tumor microenvironment (TME), can also contribute to ITH during 244 

tumor development, by exerting selective pressure for cells adapted to certain 245 

microenvironmental conditions (33). Patterns of TME gene expression appear to 246 

change with BC phenotypes (34, 35), and the ways in which paracrine signalling and 247 

TME crosstalk influence gene expression in BC is reviewed elsewhere (57).  248 

Single cell analyses of human BC, have revealed substantial transcriptomic 249 

heterogeneity both in the carcinoma cells, as well as the non-carcinoma 250 

microenvironmental cells  (36-38). Multi-platform profiling of multi-regional 251 

metastasis in autopsy studies, have revealed that the immune TME is not uniform 252 

across metastatic sites within a single patient (21). In addition to the diversity of 253 

tumor-infiltrating lymphocytes (TILs) within each patient and between patients, PD1 254 

and PDL1 expression was highly variable.  Interestingly tumor phylogenetic trees 255 

appear to be correlated with TIL-TCR (T-Cell receptor) trees across metastases, 256 

suggesting co-evolution between tumor diversity and T cell response across 257 

metastases(21). This heterogeneity in the immune TME has important implications 258 

for understanding immune surveillance during tumor progression, and in 259 

responsiveness to immune checkpoint blockade in mBC. 260 

 261 

 262 

 263 

Metastatic dissemination of BC  264 
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Extensive ITH within mBC leads to the question of how BC disseminates from 265 

the primary site of origin, and when in the process ITH originates. Phylogenetic 266 

analyses have been used to interrogate evidence for monoclonal and polyclonal 267 

models of mBC dissemination (Figure 1). Ideally, a direct comparison of multiple 268 

metastatic samples from the same patient, would establish if there are common 269 

events amongst metastatic clones that may act gatekeepers in metastatic 270 

progression; yet in practice obtaining multiple biopsies from each patient at different 271 

time points is very challenging, so studies of this design are rare. In two autopsy 272 

studies, each of 10 patients with mBC, examples of both monoclonal and polyclonal 273 

evolution (21) or predominantly polyclonal origins (19) were seen in individual 274 

patients. The former study also observed a metastasis-to-metastasis seeding pattern 275 

in the monoclonal model, whereas the latter concluded that metastases are initiated 276 

and maintained as groups of cellular clones, suggesting a polyclonal seeding 277 

pattern. Furthermore, WES data on treated and untreated mBC samples, has 278 

demonstrated that polyclonal seeding appears to be more prevalent in untreated 279 

metastasis than treated metastases, likely due to treatment pressures selecting for 280 

resistant subclones that manifest clinically as monoclonal metastases (39). 281 

Collectively, these phylogenetic patterns have, suggested that ITH is predominantly 282 

generated after the initiation of metastasis (19).  283 

 284 

Subclonal divergence of individual metastases has been consistently 285 

observed in the vast majority of studies. Evidence exists that the seeding pattern 286 

may be dependent on BC phenotype, with a predominance of monoclonal seeding in 287 

primary luminal cancers, and both seeding patterns seen in non-luminal primary 288 

tumors (40). This notion of a phenotype-dependent seeding pattern is supported by 289 

data from two patients with metastatic TNBC, both exhibiting polyclonal seeding 290 

patterns (41). 291 

 292 

The extent of subclonal divergence between multiple metastases within a 293 

patient is variable. Heterogenous population of driver and passenger mutations are 294 

apparent within each metastatic site, albeit specific subsets of metastases appear to 295 

be more closely related to each other than they are to others(21, 40). It is likely this 296 

geographical ITH, underlies the clinical phenomenon of differential response and 297 

progression, observed frequently in more heavily pre-treated patients. Receptor 298 
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subtype conversion from primary to metastatic disease, coincides with significant 299 

subclonal divergence (42).  300 

 301 

While these studies have greatly advanced our understanding human mBC, 302 

they come with caveats that genetic phylogeny data in isolation provides an 303 

incomplete picture of how tumor cells evolve, as intermediate clones that do not 304 

persist are not observable, and this approach does not capture phenotypic and TME 305 

contributions. Consequently, the general mechanisms of tumor dissemination remain 306 

open for discovery. In particular, analysis of phylogenetic data requires model fitting, 307 

that may overestimate polyclonal seeding patterns especially where data is inferred 308 

from clustering mutations from bulk sequenced tumours. At the same time although it 309 

is evident that polyclonal dissemination does occur in BC, it is likely that these 310 

events are still being underestimated as under-sampling of the primary and/or 311 

metastatic lesions is likely to lead to monoclonal inferences. Therefore, cases 312 

demonstrating monoclonal dissemination requires further scrutiny. 313 

 314 

 315 

 316 

Resistance to targeted therapies and the role of cancer heterogeneity in 317 

resistance  318 

The theory of clonal evolution would support that targeted therapies represent 319 

a potent selection pressure leading to the outgrowth of resistant subclones(8) (Figure 320 

1). The ability to differentiate whether resistant clones exist prior to treatment and are 321 

selected under treatment pressure, or whether they develop as a result of treatment, 322 

is paramount for assessing resistance and considering future therapeutic strategies. 323 

Here we describe key mechanisms of resistance and how they evolve on targeted 324 

treatment in the three main subtypes of BC. 325 

 326 

HR positive mBC 327 

HR+ BC, expressing oestrogen receptor (ER) and/ or progesterone receptor 328 

(PR), accounts for 70% of all BC(43), and is characterised by expression of ER and 329 

its downstream targets, one of which is PR (44,66). Endocrine therapy remains the 330 

standard of care for HR+ mBC, increasingly given in combination with other targeted 331 

therapies. Although almost all patients will eventually develop resistance to 332 
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treatment, loss of ER expression leading to endocrine insensitivity only accounts for 333 

up to 20% of patients(45). 334 

 335 

Resistance to endocrine therapy 336 

Aromatase Inhibitors (AI) work through depleting the oestrogen ligand, and 337 

resistance to AI often involves mutations to the oestrogen receptor gene (ESR1) 338 

resulting in ligand-independent constitutive activation. ESR1 mutations can also alter 339 

the chromatin binding properties of the ER, resulting in differential ER-regulated 340 

gene expression, and a more pro-metastatic phenotype (46). While ESR1 mutations 341 

are rare in primary BC (0-3% of patients) (47-49), and comparatively infrequent in 342 

patients who relapse following previous adjuvant AI therapy (7-12%) (50,51), in mBC 343 

previously treatment with AI ESR1 mutations are present in 20- 55% of patients (47, 344 

52). 345 

 346 

ESR1 mutations are frequently subclonal in HR+ cancers, and strikingly, in a 347 

study of patients receiving AI between 28.6- 49.1% of patients with ESR1 mutations 348 

detected in circulating tumor DNA (ctDNA), harboured polyclonal ESR1 mutations 349 

(53). The presence of multiple ESR1 mutations in one patient highlights the 350 

substantial selection pressure for these mutations during endocrine therapy, and the 351 

contribution of ITH in resistance processes. All of these observations likely suggest 352 

that the large tumor bulk of metastatic disease is important in ESR1 mutation 353 

development, with the low tumor volume of micro-metastatic disease not allowing 354 

ESR1 mutations to commonly develop (52). Such mutations may arise through 355 

clonal selection of low abundance intrinsic resistant clones, or alternatively these 356 

could arise through genuine acquisition due to error-prone replication taking place in 357 

the cancer during the course of endocrine-based combination therapies.  358 

 359 

Once ESR1 mutations have emerged that are detectable in ctDNA, this is 360 

indicative that a cancer is intrinsically resistant to further AI therapy. The endocrine 361 

therapy, fulvestrant has limited activity against ESR1 mutations, exemplified by the 362 

phase III SoFEA and EFECT trials of advanced HR+ mBC, with two main treatment 363 

arms, fulvestrant +/- anastrozole and exemestane. Patients with an ESR1 mutation 364 

benefited from slight improvement in PFS after taking a fulvestrant-containing 365 

regimen versus the AI exemestane (median PFS 3.9 months versus 2.4 months). 366 
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Furthermore, subgroup analysis of ESR1 mutations demonstrated a worse one year 367 

overall survival of patients receiving exemestane (62%) compared to fulvestrant (54). 368 

Drugs aimed to have improved efficacy against activating ESR1 mutations are in 369 

clinical development, including oral ER degraders (55-57).  370 

 371 

Specific ESR1 mutations may have important differences in function and 372 

resistance to therapy. ESR1 Y537S mutations conferred enhanced resistance to 373 

fulvestrant in preclinical research, (46, 58), which is supportive of clinical data from 374 

PALOMA-3, a randomized phase III trial of palbociclib plus fulvestrant versus 375 

placebo plus fulvestrant, whereby a positive selection of ESR1 Y537S was 376 

demonstrated through fulvestrant therapy, highlighting its role in resistance to 377 

fulvestrant therapy (6,59). ESR1 mutations are also selected through AI and CDK4/6 378 

combination therapy, confirming resistance to the endocrine partner remains relevant 379 

in this combination (60).  380 

 381 

 In sequencing data from 692 single site metastatic tumor biopsies from 382 

patients previously exposed to endocrine therapy, activating alterations in the 383 

mitogen-activated protein kinase (MAPK) pathway were found in 22% of all tumours, 384 

furthermore these were mutually exclusive with ESR1 mutations (61), suggesting 385 

distinct routes of endocrine resistance.  In contrast, in ctDNA data from the 386 

PlasmaMATCH trial, MAPK alterations were co-enriched in patients with ESR1 387 

mutations(62). These distinct findings likely reflect multiple geographical resistance 388 

mechanisms that are not apparent by sequencing individual tissue sites, but can be 389 

captured by ctDNA fragments that are continuously released to the bloodstream from 390 

potentially all metastatic sites. The presence of both MAPK and ESR1 mutations in 391 

ctDNA identifies a patient population with adverse prognosis, potentially suggesting 392 

that cancers with high levels of ITH have poor outcome(62). 393 

 394 

 In HR+ BC, PIK3CA mutations have similar prevalence in the metastatic 395 

setting (53%) and early disease (40-45%)(63, 64), whereas AKT1 mutations are 396 

likely enriched in mBC (62). Studies suggest that mutations in PIK3CA and AKT1 are 397 

mutually exclusive(65-67). Interestingly neither PIK3CA (64, 68, 69) or AKT1 (70) 398 

mutations are associated with worse outcomes in HR+ BC compared 399 

with PIK3CA/AKT1 wild-type. 400 
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 401 

The BOLERO-2 phase III clinical trial was the first to demonstrate the 402 

synergistic activity in dual targeting of both ER and mTOR, with improved PFS for 403 

everolimus plus exemestane compared to exemestane alone (71).  Subsequently, 404 

the SOLAR-I phase III clinical trial, demonstrated improved PFS for the alpha-405 

selective PI3K inhibitor alpelisib, in PIK3CA mutated HR+ mBC. A superior PFS of 406 

11 months was noted in those who received combination therapy compared to 5.7 407 

months in the fulvestrant arm(72). Although, the results from these clinical trials 408 

indicate cross talk between the PI3K and ER pathway, further research is required to 409 

establish the likely complex cross talk between these pathways, as indeed clinical 410 

trials have failed to reliably validate an association between PIK3CA mutations with 411 

endocrine resistance, as seen in preclinical research (96) 412 

 413 

Analysis of tumor biopsies has recently demonstrated that approximately 12-414 

15% of patients with PIK3CA mutant mBC have multiple PIK3CA mutations, 415 

frequently occurring in cis on the same allele, leading to hyperactivation of PI3K and 416 

downstream signalling. Furthermore, it is apparent that the second hit PIK3CA 417 

mutations are selected at sites characteristic of APOBEC mutagenesis. APOBEC 418 

mutational patterns are enriched in HR+ BC exposed to prior endocrine therapy, 419 

suggesting APOBEC activity subsequently edits PIK3CA resulting in hyperactive 420 

PI3K signalling (NCT03182634). Other acquired mutations, such as ESR1 421 

mutations, do not occur clearly at APOBEC sites and this discrepancy is not 422 

understood.  423 

 424 

Endocrine therapy also appears to exert selective pressure for alterations in 425 

key transcription factors, that may lead to transcriptional reprogramming related to 426 

resistance. For example, alterations in ARID1A, a gene involved in SWI/SNF 427 

signalling, were detected in 5% of primary cases, but increased in up to 12% of 428 

cases with treatment resistant HR+ BC(20, 73). Furthermore, CRISPR technology 429 

have demonstrated a critical role for SWI/SNF chromatin remodelling in in vitro 430 

studies with endocrine therapy resistance (74).  431 

 432 

MYC amplification is found more frequency in advanced BC, and has long 433 

been associated with endocrine resistance and prior progression (87). A comparison 434 
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of 28 pairs of matched primary and metastatic tumor specimens demonstrated a 435 

higher expression of c-MYC in the metastatic tumours following the development of 436 

tamoxifen resistance in the same patient (75). Similarly, high levels of MYCN 437 

amplifications have also been identified in progression samples compared to 438 

baseline(76). 439 

 440 

Resistance to CDK4/6 inhibitor in HR+ BC 441 

 In advanced HR+ BC the standard of care has shifted to combination 442 

endocrine therapy and CDK4/6 inhibitors (Table 1), which approximately double PFS 443 

compared to endocrine therapy alone and also improve overall survival.  Clonal 444 

selection dominates has been linked to resistance to CDK4/6 inhibitors, by 445 

phylogenetic analysis detected in 85% of patients at progression in one study(5). 446 

Multiple genetic resistance mechanisms have been identified, many of which directly 447 

involve other cell cycle regulators. The tumor suppressor retinoblastoma (RB1) 448 

protein controls transition from G1-S phase in the cell cycle. During G1 several 449 

growth signals result in cyclin D binding to CDK4 or 6 causing inactivating hyper-450 

phosphorylation of RB1, activation of E2F that promote the S phase transcription 451 

programme(77). Loss of function mutations of RB1 cause intrinsic resistance to 452 

CDK4/6 inhibition in preclinical models (78-80), and may also be acquired 453 

subclonally in patient derived xenografts selecting by prior therapy (78). While rare in 454 

HR+ primary BC, RB1 mutations are enriched in in up to 4% of metastatic cases 455 

(18). As both baseline RB1 mutations (35) and acquired, often subclonal, RB1 456 

mutations have been associated with resistance to CDK4/6 inhibitor therapy, 457 

alternative treatments are begin sought after for these patients (5, 81). As one 458 

example, preclinical data has demonstrated synthetic lethality with aurora kinase 459 

inhibitors in RB1-deficient models(82). 460 

 461 

Gene amplification of CCNE1 and overexpression of Cyclin E1 leading to 462 

bypass activation of CDK2, has been observed in some models with CDK4/6 463 

inhibitor resistance (78), and in biopsies from patients who progressed on this 464 

therapy, likely reflecting a phenotypic shift in the cancer(83). CDK6 overexpression, 465 

mediated by CDK6 amplification or in some cases rare FAT1 mutations, have also 466 

been reported to promote resistance to CDK4/6 inhibitors(84), (85).  467 

 468 
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Selection of PTEN (suppressor of the PI3K/AKT pathway) loss has been 469 

observed in serial biopsies and rapid autopsies from patients treated with a 470 

combination of ribociclib and letrozole (86). Increased AKT activation and PTEN loss 471 

promoted resistance to CDK4/6 inhibition in vitro and in vivo, in a mechanism 472 

involving CDK4 and CDK2 activation (86). Aberrant Fibroblast growth factor receptor 473 

(FGFR) activity has been associated with early relapse and shorter overall survival, 474 

specifically in HR+ BC(87). More recently, FGFR1 gene amplification has also been 475 

associated with resistance to CDK4/6 inhibitor therapy leading to a shorter 476 

progression-free survival. FGFR1 amplification in cell lines and xenografts display 477 

increased resistance to fulvestrant and palbociclib compared to FGFR1-nonamplified 478 

models. Interestingly this resistance was reversed with the FGFR tyrosine kinase 479 

inhibitor lucitanib (88). However, whether this could be used clinically for CDK4/6 480 

inhibitor-resistant disease may be dependent on a high-level 481 

clonal FGFR2 amplification, as low level or subclonal amplification does not respond 482 

to treatment(89). 483 

 484 

 485 

 486 

HER2 positive mBC 487 

HER2 is a member of the human epidermal growth factor receptor family and 488 

is encoded by ERBB2. This oncogene is overexpressed in approximately 15% of all 489 

mBC(90). HER2 forms homodimers and heterodimers with other family members 490 

such as EGFR or HER3, resulting in potent transduction of downstream signals, 491 

which can enhance tumor survival. Advent of anti-HER2 therapies such as 492 

trastuzumab have been transformative for women with HER2+ mBC (91), with 10-493 

15% of patients achieving long term non-progression (2). However, due to common 494 

resistance to anti-HER2 therapy this remains an aggressive subtype, with brain 495 

metastasis occurring in 40-50% of all patients (92). Several mechanisms of 496 

resistance have been described which ultimately cause reactivation of the HER2 497 

pathway or its downstream signalling. 498 

 499 

Resistance to anti-HER2 therapies  500 

 Advances in molecular imaging has furthered our understanding of tumor 501 

heterogeneity in HER2+ BC and also has demonstrated clinical utility in identifying 502 
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individuals who may benefit from HER2 targeted treatment. The ZEPHIR trial 503 

revealed striking levels of inter- and intra- tumoral heterogeneity in HER2 504 

expression, 29% of pre-treated advanced HER2+ mBC were considered HER2-505 

PET/CT negative, with little or no trastuzumab-zirconium uptake. Patients with 506 

HER2-PET scan heterogeneity had a median time to treatment failure (TTF) of 2.8 507 

months with the antibody drug conjugate trastuzumab-emtansine (T-DM1, Table 1) 508 

compared to 15 months of TTF with homogeneous HER2 overexpression (93). 509 

Heterogeneous HER2 amplification and overexpression is also observed in a small 510 

number of primary HER2+ BC, associated with a poor response to T-DM1 in the 511 

neoadjuvant setting(94).  It is likely that the degree of HER2 heterogeneity is 512 

magnified in mBC by selection for HER2-negative subclones following prior therapy, 513 

providing a possible explanation of the MARIANNE trial, which failed to show 514 

superiority of TDM1 in combination with taxane and trastuzumab in HER2+ 515 

mBC(95). 516 

 517 

 Although infrequent, ERBB2 mutations have been identified to co-exist with 518 

ERBB2 amplification(16, 96). Activating ERBB2 mutations are enriched in mBC 519 

compared to early disease, however the clinical significance of this remains 520 

unclear(97). These mutations are selected with increasing lines of HER2 directed 521 

therapy, and may represent a means of subclonally-acquired resistance to 522 

trastuzumab based therapy(98). It has generally not been established whether 523 

ERBB2 mutations and ERBB2 amplification co-occur in the same cells, or parallel 524 

evolution of ERBB2 mutations in non-amplified cancers. Activating ERBB2 525 

mutations, have been identified in extracellular, transmembrane and tyrosine kinase 526 

domains, are thought to activate HER2 signalling pathways, even in the absence of 527 

ERBB2 amplification(96).  528 

  529 

Alterations in the PI3K/AKT/mTOR pathway, including activating mutations 530 

in PIK3CA and or loss of the lipid phosphatase PTEN, are established resistance 531 

mechanisms to HER2 directed therapies (99-102). However, similar proportions of 532 

activating PIK3CA mutations have been found in both primary and metastatic 533 

biopsies, highlighting that these mutations are not necessarily selected during anti-534 

HER treatment(103). BOLERO- 3, a phase III clinical trial in trastuzumab-resistant 535 

HER2+ mBC  revealed that everolimus in combination with trastuzumab and 536 
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chemotherapy provided a modest improvement in median PFS of 7·0 months, vs 5·8 537 

months with placebo(104). Combined biomarker analyses of the BOLERO-1 and 538 

BOLERO-3 trials demonstrated an improved PFS in patients 539 

harbouring PIK3CA mutations or PTEN loss when treated with everolimus (105).  540 

 541 

Biomarker analysis of the CLEOPATRA trial, a phase III clinical trial 542 

investigating the role of pertuzumab plus trastuzumab plus docetaxel (THP) versus 543 

placebo plus trastuzumab plus docetaxel (TH) as first-line treatment for patients with 544 

HER2+ mBC, demonstrated that PIK3CA mutations are poor prognostic markers and 545 

predict poor PFS to both anti-HER2 therapy arms, although, the PIK3CA mutations 546 

did not predict a better response to THP than TH(106). In contrast the EMILIA trial, 547 

both PIK3CA and PTEN were associated with a poor response in the control arm 548 

(Capecitabine plus lapatinib), compared to the treatment arm with TDM1, indicating 549 

that PIK3CA and PTEN mutations may not result in resistance to the anti-Her2 550 

ADCs(2, 107, 108). Interestingly down regulation of PI3K has been described as 551 

positive predictive factor in long-responders on anti-HER2 agents(109).   552 

 553 

Cyclin D1- CDK4 is a multi-protein structure needed to drive cell-cycle 554 

progression from G1 to S phase. This pathway is regulated by several mechanisms 555 

including HER2(110). Several in vivo and in vitro models have demonstrated the role 556 

of cyclin D1/ CDK4 in growth of breast tumours driven by ERBB2(110-112), as well 557 

as the ability of CDK4/6 inhibition to overcome resistance to anti-HER2 therapy (110, 558 

113). Cyclin E overexpression not only confers a worse prognosis, but is also 559 

prevalent in individuals who have not received previous anti-HER treatment, which 560 

may suggest utility as a biomarker for intrinsic resistance to HER2-targeted therapy 561 

(114). 562 

 563 

PATRICIA is a phase II clinical trial investigating the role of combination 564 

therapy with palbociclib, trastuzumab +/- letrozole in HER2+ mBC patients who have 565 

already received 2-4 lines of anti-HER2 treatment. The combination treatment 566 

conferred superior PFS in patients with the PAM50 luminal subtype, compared with 567 

non-luminal disease (12.4 and 4.1 months respectively). This trial highlights the 568 

importance of  defining molecular subtypes in clinical practice (115).  569 

  570 
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Approximately 50% of patients who are HER2+ are also classified as HR+. Tumours 571 

with co-expression of HR and HER2 are less sensitive to endocrine therapy 572 

compared to HR+ and HER2 negative tumours. This indicates cross communication 573 

between the HER2 and ER signalling pathway, which has been shown to be bi-574 

directional (116).  In the PATINA and MONARCHER trials, concurrent inhibition of 575 

ER and HER2 led to improved outcomes(117, 118). Multiplex assay technology has 576 

demonstrated that heterogeneity of HER2 expression appears to be more 577 

pronounced in HR+ and HER2+ tumours compared with HR- and HER2+ (119).  578 

This resultant ITH might contribute to a small extent to the inferior pathological cure 579 

rates commonly observed in the neo-adjuvant setting in HR+HER2+ tumours (26%) 580 

compared to HR-HER2+ (78%)(120). 581 

 582 

 583 

 584 

TNBC 585 

 In comparison to HR+ BC, TNBC is a highly aggressive subtype with higher 586 

rates of metastasis, relapse, and poor overall survival(121, 122). Despite the 587 

molecular heterogeneity observed in TNBC, chemotherapy remains the standard of 588 

care. Increasing evidence suggest TNBC are more immunogenic than HR+ BC, 589 

characterised by higher levels of TILs and PDL1 expression(123), the significance of 590 

this in regards to disease evolution and treatment has been reviewed 591 

elsewhere(124, 125). Indeed, the IMPASSION130 trial has demonstrated an 592 

improvement in median PFS of 2.5 months with the addition of atezolizumab in PD-593 

L1 positive TNBC, with PD-L1 expression more frequently on immune cells than 594 

tumor cells. The mechanisms of resistance to anti-PDL1 therapy in TNBC have so 595 

far not been robustly determined. Heterogeneity in PD-L1 expression levels between 596 

distinct metastatic lesions may shape the immune response and thereby likelihood of 597 

response to atezolizumab (126). In other tumor types, clonal selection of acquired 598 

resistance such as acquired JAK pathway mutations have been implicated(127), 599 

albeit further research is required in TNBC.  600 

 601 

Tackling subclonal heterogeneity in the clinic 602 

Defining heterogeneity in clinics 603 
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The genetic evolution of BC over time, particularly in response to treatment, 604 

highlights the need for longitudinal biopsies of metastases. Diagnostic technologies 605 

have transitioned from open surgical biopsies to minimally invasive techniques, 606 

including incisional, excisional, core needle, bite and vacuum-assisted (128). Fixed 607 

and paraffin-embedded tissues remain the main method of tissue preservation for 608 

clinical diagnosis, although their inability to capture the genetic diversity of solid 609 

tumours is apparent (129). Single-site sampling, whereby tissue taken from a single 610 

spatial location is currently used as a representation of the entire tumor, introduces 611 

substantial sampling bias.  612 

 613 

Morphological assessment of tissue based on H&E-stained preparations 614 

would benefit from a standardised approach. Incorporation of multi-site tumor 615 

sampling is a better alternative that can represent different areas of the same tumor, 616 

which can have varying levels of gene expression and differentiation e.g. central 617 

core versus external borders, reviewed elsewhere(130, 131). Other sampling 618 

techniques include the analysis of the residual tumor in its entirety, as a means to 619 

represent ITH of the total tumor mass(132). Furthermore, although many gene 620 

expression tests are now available for clinical use in BC including: OncotypeDX, 621 

Mammoprint and PAM50, the accuracy of such tests relies on precise 622 

microdissection, whereby contamination with normal tissue introduces a strong 623 

source of bias in bulk genomic predictors (133). These aspects of ITH need to be 624 

incorporated into clinical practice in order to improve reproducibility, and 625 

representation of ITH in the molecular analysis of mBC. 626 

 627 

 The adoption of automated artificial intelligence-based extraction of 628 

morphological features based on H&E-stained preparations can be useful to 629 

incorporate sub-visual textural heterogeneity measurements(134), and overcome 630 

limitations in subjective visual assessments and in some instances improve 631 

performance when used in conjunction with standard detection and diagnostic 632 

protocols (135). Furthermore, multisite sampling in conjunction with a differentiation 633 

score such as the Gleason score for prostate cancer, may be a useful approach in 634 

measuring heterogeneity in clinical practice(136).  635 

 636 
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Advances in molecular imaging present the possibility of assessing gross 637 

intra-metastasis heterogeneity, although likely lack the precision for detecting 638 

intermixed heterogeneity in individual metastases. Ultimately current diagnostic 639 

histopathology techniques based on a single tissue biopsy is insufficient to establish 640 

the underlying complex genetic alterations and the biological events involved in BC. 641 

 642 

Liquid biopsies, on the other hand, allow non-invasive and repeated sampling 643 

for assessment of genomic features and ITH, predominantly using two different 644 

sources of circulating genetic information, ctDNA and CTC, which are shed from 645 

tumours into the bloodstream, where a small proportion survive, extravasate, and 646 

colonize distant sites. Although liquid biopsies have been shown to be highly 647 

accurate in assessing tumor genotype, and potentially in predicting which mutations 648 

are subclonal, there is limited evidence that assessing subclonality of a mutation is 649 

useful in making treatment decisions  (137, 138).   650 

 651 

Primary and cultured CTC from 19 HR+ BC patients who developed multidrug 652 

resistant metastatic disease demonstrated that 82% acquired HER2 expression, 653 

highlighting the need to monitor tumor cell subpopulations using CTC which may 654 

interconvert, leading to striking consequences for disease progression and drug 655 

response (139). Furthermore, it has been demonstrated that CTC-derived 656 

quantitative RNA-based digital PCR scoring assay, individualised to cancer-type 657 

specific marker, offer a non-invasive means to inform BC treatment by using 658 

pharmacodynamics measurements(140).  659 

 660 

Early intervention at molecular relapse  661 

The Norton-Simon hypothesis models the growth of cancer and its regression 662 

after therapy(141), which is primarily based on the Gompertzian growth curve(142). 663 

This theory suggests that initially growth from an overall low tumor burden occurs at 664 

an exponential rate, then progresses into a phase of rapid proliferation, and 665 

eventually tumor growth reaches a plateau. Currently radiographic detection is only 666 

possible when the mass is nearing the final phase of tumor growth. Therefore, it is 667 

logical to assume that earlier detection allowing intervention prior to the rapid growth 668 

phase could lead to more successful disease eradication (Figure 3). Proof of 669 

principle of early intervention on molecular relapse has come from prostate cancer, 670 
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where early introduction of enzalutamide in patients without metastatic disease but 671 

rising PSA, improves overall survival(143).  672 

 673 

Mutation tracking using ctDNA has allowed for the detection of molecular 674 

residual disease (MRD) in order to predict relapse in patients with early BC. Among 675 

patients who eventually relapsed, 50% had detectable ctDNA in a single post-676 

operative sample drawn 2-4 weeks after completion of therapy for early BC(144). 677 

Furthermore, MRD-positive patients exhibited significantly worse disease-free 678 

survival than MRD negative patients(144). Serial mutation tracking beyond the 679 

postoperative period increased the sensitivity of relapse prediction to 80%-89%(144, 680 

145), with ctDNA detected at a median of 7.9 to 8.9 months earlier than clinical 681 

relapse(144, 145). It has been demonstrated that tracking a greater number of 682 

individualised mutations can improve MRD detection, albeit sensitivity is driven by 683 

the number of tumor mutations available to track(146).   684 

 685 

Currently routine surveillance of individuals with a high risk of BC recurrence 686 

does not involve regular imaging, nor surveillance with tumor markers, due to the 687 

lack of evidence of benefit enshrined in international guidelines. Detection of 688 

molecular relapse before macroscopic recurrence, allowing for earlier initiation of 689 

therapy whilst metastatic tumor burden (MTB) and clonal diversity are low(52, 144), 690 

has the potential to improve outcomes. Clinical trials are ongoing to evaluate this, for 691 

example the cTRAK trial in patients with TNBC (NCT03145961).  692 

 693 

  Metastatic tumor burden may have a key role in subclonal resistance. For 694 

example,  ESR1 mutations are only rarely selected during AI treatment of low tumor 695 

volume or micro-metastatic disease (52). The exact reasons for this lack of selection 696 

remains unknown. It is likely that mutant subclones are not pre-existent in micro-697 

metastatic disease, and that low-level ongoing replication may allow for acquisition of 698 

the mutations, whilst micro-metastatic disease is overall more dormant. 699 

Early intervention may be the ideal scenario to investigate therapies that aim to 700 

block the subsequent development of ITH in the cancer, for example drugs that aim 701 

to inhibit APOBEC enzymes in ER positive breast cancer (147). Timely clinical 702 

detection of APOBEC mutational signatures would be critical for this strategy, which 703 

may require longitudinal monitoring of high risk patients, via liquid biopsy(148).  704 
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 705 

Combination therapy to block clonal outgrowth  706 

Combination therapies are a logical solution to target resistance mechanisms 707 

emerging from heterogenous cancer cell sub-populations. Indeed, clinical benefit of 708 

combining endocrine treatment with CDK4/6, PI3K and mTOR inhibitors is well 709 

established. As discussed earlier, preclinical research has helped identify potentially 710 

effective combinations and molecular biomarkers, such as the combination of PI3K 711 

and CDK4/6 inhibitors in the context of acquired RB1 mutation (78). If effective in the 712 

clinical setting, such combination therapy may address the issue of pre-existing 713 

heterogeneity and prevent the development of resistance secondary to on-target 714 

resistance mutations. Tolerability of such combinations remains one of the main 715 

barriers towards clinical implementation. For example, temporary withdrawal of 716 

targeted therapies can mitigate the selective advantage conferred upon the drug 717 

resistant cells, and enable repopulation of the tumor with drug sensitive cells (Figure 718 

4). Although intermittent dose scheduling can temporarily supress clonal outgrowth 719 

of drug-resistant cells, it is unable to eliminate it in its entirety. Therefore, 720 

combination strategies that target a smaller population of pre-existing drug-resistant 721 

cells and a larger proportion of drug-sensitive cells are likely to be most effective.  722 

 723 

Due to the heterogenous nature of mBC, a single tumor will likely contain a 724 

mixture of subclones which will be both resistant and sensitive to a particular 725 

treatment (Figure 4). Thus, elucidating each tumours genomic makeup, combined 726 

with computational based models, may help select the most appropriate combination 727 

regimen, and produce the optimal dosing schedules to account for this inherent 728 

heterogeneity. Mathematical models, based on data from gene expression profiles 729 

and biology networks show promising preliminary results(149-151).  730 

 731 

Antibody drug-conjugates, monoclonal antibodies connected by a specified 732 

linkage to anti-tumor cytotoxic molecule, provide a unique form of combination 733 

therapy whereby a single molecule, can target two distinct populations. 734 

Trastuzumab-deruxtecan has a higher drug to antibody ratio compared with T-DM1, 735 

with a higher membrane permeability resulting in an increased bystander effect, 736 

death of surrounding cells without specified target(152). Results from early clinical 737 

trials suggest that Trastuzumab-deruxtecan may have superior efficacy in heavily 738 
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pre-treated patients with HER2+ BC(153, 154), with activity also in non-amplified 739 

cancers that express HER (HER2 low BC)(155). These studies suggest that the 740 

systematic development of ADCs with an innate ability to exert significant bystander 741 

effect may help ameliorate ITH.  742 

 743 

Enhanced monitoring for evolution of resistance 744 

Non-invasive strategies such as ctDNA analysis have substantial potential to 745 

monitor resistance and direct which patients require combination therapy, which may 746 

have additional advantage in avoiding treatment-related toxicity in patients unlikely to 747 

benefit. Failure to suppress the level of ctDNA early in treatment is linked to poor 748 

prognosis, and thus may triage patients as candidates for combination therapy. 749 

Similarly, sequential ctDNA analysis through therapy may detect the emergence of 750 

resistant clones and direct intervention to block the ongoing growth of the resistant 751 

subclone. For example, the PADA-1 study is monitoring for the emergency of ESR1 752 

mutations on AI+CDK4/6 and testing the early intervention of fulvestrant 753 

(NCT03079011). 754 

 755 

Understanding curative responses 756 

 Within all subtypes of BC there appears to be a small subset of patients with 757 

durable responses, some of whom are almost certainly cured by treatment(156). 758 

Understanding the basis for sustained sensitivity in these patients will likely be 759 

important in developing clinical strategies for circumventing resistance in the 760 

remaining majority of patients. For example it is unknown whether a lack of genetic 761 

or non-genetic heterogeneity may underlie these responders, or whether these 762 

cancers have particularly singular oncogene addiction (157) which blocks routes to 763 

developing resistance. It is certainly clear that identifying mutations which occur early 764 

in tumorigenesis, or phenotypes unique to the cell of origin, that persist throughout 765 

evolution should be important in predicting long-term response. For example HR+ 766 

BC is considered positive in the presence of at least 1% tumor nuclei(158), yet 767 

cancers with infrequent ER staining are not those that likely achieve longer term 768 

responses either to single agent endocrine therapies or in combination.  769 

 770 

 771 

 772 
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Conclusion  773 

Scientific and clinical achievements have already led to a substantial 774 

improvement in BC related morbidity and mortality. Despite encouraging pre-clinical 775 

data, the majority of targeted agents yield a transient response in the clinical setting. 776 

Emerging techniques continue to shed light on the complex interplay between 777 

genomic and non-genomic heterogeneity in BC and the role in mechanisms of 778 

therapeutic resistance. Refinement of BC classification, and studies exploring 779 

longitudinal data in the metastatic setting will be essential in elucidating the evolution 780 

of BC, highlighting opportunities for more sophisticated personalized medicine and 781 

progress toward curing mBC. 782 

 783 

 784 

 785 

 786 
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Table 1- A table illustrating a selected range of targeted treatments available for the three main subtypes of mBC and their licenced indications of use as approved by the 1 
FDA. Cytotoxic agents have not been included.   2 

Hormone receptor positive HER2 negative  
Treatment Selected pivotal studies FDA licensed indication of use 

E
nd

oc
rin

e 
th

er
ap

y Aromatase 
inhibitor 

ER 
receptor 
(indirect) 

Letrozole  
Anastrozole 

TARGET(159)  
ILBCG(160) Monotherapy: postmenopausal women, including prior progression on 

tamoxifen. Combination: taken with CDK4/6 in postmenopausal.  Exemestane Paridaens et al (161) 

SERM  ER 
receptor Tamoxifen  Borner et al 1994 (162)  Monotherapy: adults with mBC. 

SERD ER 
receptor 

Fulvestrant  
 

CONFIRM(163) 
 

Monotherapy: postmenopausal women. Combination: given with 
CDK4/6 in postmenopausal women, and prior progression on endocrine 
therapy.  

in
hi

bi
to

rs
 

 

CDK 4/6 
inhibitor 

G1 cell 
cycle 
transition 

Palbociclib PALOMA-3(164)  
MONARCH-3 (165) 
MONALEESA- 7(166) 

Combination: given with AI/ fulvestrant in postmenopausal women and 
prior progression on endocrine therapy. Premenopausal, therapy should 
be combined with a LHRH. 

Abemaciclib 
Ribociclib 

PI3K 
inhibitor 

Alpha 
subunit 
specific  

Alpelisib* 
 SOLAR-1 (167) 

Combination: given with fulvestrant, in men and postmenopausal women 
with a PIK3CA-mutation, following progression on or after an endocrine 
treatment. 

MTOR 
inhibitor 

mTORC1 
 Everolimus BOLERO-2 (168) Combination: given with Exemestane, in postmenopausal women, and 

prior progression on AI.  
 3 

Triple negative 

M
on

oc
lo

na
l a

nt
ib

od
y 

Antibody 
drug 
conjugate 

Anti-
TROP-2 

Sacituzumab 
govitecan * IMMU-132-01(169) Monotherapy: following prior progression on at least 2  therapies (This 

indication is approved under accelerated approval)   

PD1 
immune 
checkpoint 

PDL-1 Atezolizumab IMPassion130(170) Combination: given with nab-paclitaxel whose tumours express PD-L1 
(This indication is approved under accelerated approval). 

PD1 
immune 
checkpoint 

PD1 Pembrolizum
ab KEYNOTE086(171) 

Monotherapy: following prior progression, who have no satisfactory 
alternative treatment options, and microsatellite instability-high or 
mismatch repair deficient (This indication is approved under accelerated 
approval).  

 4 



HER2 Positive 

M
on

oc
lo

na
l a

nt
ib

od
ie

s 

HER2 
inhibition 
+ ADCC 

HER2 
receptor Trastuzumab CLEOPATRA(172) 

Monotherapy: following at least one chemotherapy regimen. 
Combination: given with pertuzumab and docetaxel, who have not 
received prior anti-HER2 therapy or chemotherapy for metastatic 
disease. 

HER2 
inhibition 

HER2 
receptor Pertuzumab CLEOPATRA(172) 

Combination: given with trastuzumab and docetaxel, who have not 
received prior anti-HER2 therapy or chemotherapy for metastatic 
disease. 

Antibody 
drug 
conjugate 

HER2 
receptor 

Trastuzumab 
Emtansine EMILIA(173) Monotherapy: following prior progression on trastuzumab and a taxane. 

Trastuzumab 
deruxtecan 

DESTINY-
Breast01(174) 

Monotherapy: following prior progression on at least 2 or more prior anti-
HER2-based regimens in the metastatic setting. 

S
m

al
l m

ol
ec

ul
e 

in
hi

bi
to

rs
 

Tyrosine 
kinase 
inhibitor 

HER2 
receptor Tucatinib HER2CLIMB(175) Monotherapy: following prior progression on at least one or more prior 

anti-HER2-based regimens in the metastatic setting. 

HER2 and 
EGFR 

Neratinib NALA(176) Combination: given with capecitabine, following progression on two or 
more prior anti-HER2 based regimens in the metastatic setting. 

Lapatinib EGF100151(177) Combination: given  with capecitabine, following progression on an 
anthracycline, a taxane, and trastuzumab. 

 5 
BRCA1/2 

S
m

al
l m

ol
ec

ul
e 

in
hi

bi
to

rs
 

PARP inhibitor Olaparib 
 OlympiAD (178) Monotherapy: following at least one chemotherapy regimen and with 

deleterious or suspected deleterious gBRCAm. 

Abbreviations: SERM- Selective oestrogen receptor modulators, SERD- Selective oestrogen receptor degrader. ADCC- antibody-dependent cellular cytotoxicity. Note 6 
endocrine therapy can also be used for  HR+/HER2+ BC.   *pending approval by EMA at the time of writing.7 
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resulting in a heterogeneous metastatic tumor sites. Metastatic site A demonstrates monoclonal dissemination from primary BC, whereby a single subclone with metastatic potential seeds the metastatic lesions. Metastatic site B 
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Figure 2- Models of tumour evolution- Tumor evolution is always branched as cells are constantly dividing and mutating. Therefore, at any given time point there will be cells originating from multiple cell 
lineages. Linear model of evolution suggests that only one cell lineage survives, often this is perceived to be the case due to sampling bias. Mutations are continually occurring however when an adaptive 

occur rapidly, rather than gradual evolution which occurs over a greater duration of time. Neutral evolution occurs when evolution occurs in the absence of positive selection, with secondary mutations and 
drift in tumour genomics.



Figure 3- Gompertzian tumor growth curves, A illustrates the three phases of tumor growth, B Arrows illustrates the use of serial blood tests for the earlier detection of MRD, detection is consid-
erably earlier than radiological detection and thus at a point where the tumor is less heterogeneous. C. Early initiation of targeted treatment D. Treatment continued until tumour eradication.
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pre-existing resistance to drug A. Targeted monotherapy, leads to regression of sensitive subclones, with the eventual outgrowth of untargeted and pre-existing resistant subclones. Targeted combination therapy, leads to 
the regression of sensitive subclones, with the eventual outgrowth of untargeted and pre-existing resistant clones, with eventual development of acquired resistant subclones due to the selective pressure of targeted treat-
ment. Intermittent combined therapy, leads to initial regression of sensitive subclones, with outgrowth of sensitive subclones on treatment withdrawal and regression on treatment resumption. A slow but eventual 
outgrowth of pre-existing and acquired resistance subclones is also seen due to the selective pressure of targeted treatment.
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