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Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than
150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater
understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these
regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal
variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants
influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative
target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available
data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do.
There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more
representative of the normal “at risk” breast, generated using new technologies, should lead to a greater understanding of the
mechanisms that influence an individual woman’s risk of breast cancer.

British Journal of Cancer; https://doi.org/10.1038/s41416-021-01612-6

BACKGROUND
Genome-wide association studies (GWAS, Table 1) coupled with
large-scale replication and fine-scale mapping studies (Table 1)
have led to the identification of more than 150 genomic regions
that are associated with breast cancer risk [1–6]. Efforts to translate
these findings to improve the lives of women who are at risk of
developing breast cancer are focused on two main areas: risk
prediction and a greater understanding of disease mechanism.
The subject of this review is the latter.
Translating GWAS findings into a greater understanding of the

mechanisms that influence an individual’s risk of breast cancer,
requires the identification of functional variants (as opposed to
correlated variants, Table 1) and the targets of these functional
variants (the genes or non-coding RNAs that mediate the
associations observed in GWAS). The output from a GWAS is an
association signal between a marker single-nucleotide polymorph-
ism (SNP, Table 1) and outcome; in short, a GWAS provides
evidence that a particular region of the genome is associated with
breast cancer risk but little or no information regarding the
mechanism behind this association. The vast majority of GWAS
signals map to non-protein-coding regions and are thought to
influence transcriptional regulation [7, 8]. With a few exceptions
(e.g., splice donor and acceptor sites, Table 1), our ability to predict
the likely impact of non-coding variation is extremely limited. To
compound this difficulty, marker SNPs are specifically selected to

capture common variation at a given region of the genome, and
by definition, therefore, will be highly correlated with many other
variants, any of which might have a functional association with
breast cancer risk. Identifying “targets”, that is, the genes or non-
coding RNAs that mediate the associations observed in GWAS,
also provides challenges. Regulatory elements can influence the
expression of multiple genes, they can “skip over” nearby genes
and can act over distances of at least 1 Mb [9, 10]. Indeed, many
breast cancer GWAS signals map to gene deserts with the nearest-
known protein-coding genes mapping several hundred kilobases
(kb) away.
The Breast Cancer Association Consortium (BCAC, http://bcac.

ccge.medschl.cam.ac.uk/) was set up as a multidisciplinary con-
sortium of investigators, who are interested in investigating the
inherited risk of breast cancer. Led by scientists at the University of
Cambridge, BCAC published the first breast cancer GWAS [11] and
have led a series of locus-specific follow-up studies [12–29]. Most
recently, BCAC carried out a fine-scale mapping analysis of 152
breast cancer risk regions in 109,900 breast cancer cases and 88,937
controls of European ancestry [5]. Using multivariate logistic
regression, they confirmed associations for 150 of the 152 regions
(P < 1 × 10−4); to define independent signals within each region,
they used stepwise multinomial logistic regression, deriving the
association of each variant, conditional on the more significant
ones, in order of statistical significance. This analysis reported 352
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Table 1. Definitions.

SNP Single-nucleotide polymorphism: variation at a single nucleotide in the DNA sequence; differs between
individuals within a population. By definition, a polymorphism occurs at a frequency greater than 1% in the
population.

Germline variation Variants that are inherited from the parents and by definition, therefore, present in a reproductive cell (ovum or
sperm) in one parent.

Somatic mutation A variant that occurs de novo in somatic cells of an individual (all cells of the body except the gametes).

Copy-number variation A type of structural variation; specifically, a duplication or deletion event that affects a considerable number of
base pairs.

Cancer genes Genes which, based on sequencing of matched “normal” (usually from blood) and tumour DNA, confer a growth
advantage to the cancer cells due to somatic and/or germline mutations.

Linkage disequilibrium (LD) The non-random association of alleles at different loci in a population; i.e., the correlation structure between
individual variants that map proximal to each other and are, therefore, co-inherited. Linkage disequilibrium is
population-specific.

GWAS Genome-wide association study: a population-scale study in which variants that are specifically selected to
capture to common variation across the genome (through linkage disequilibrium), are genotyped in individuals
with and without a phenotype of interest.

Fine-scale mapping Fine-scale mapping refers to the process by which a GWAS association signal is refined. Specifically, at a given
region, a dense panel of variants are selected to be genotyped or imputed and tested for association with
outcome.

Credible causal variants (CCVs) Originally defined in Udler et al. [30] and subsequently used in Fachal et al. [5]; a group of variants that cannot be
excluded as “functional” on statistical grounds alone. In practical terms, all variants for which the association P
value is within two orders of magnitude of the “top SNP” at a given signal.

Functional variant A variant for which there is evidence (statistical and/or biological) of a causal association (rather than a
correlative association, below) with outcome.

Correlated variant A variant which is associated with outcome through correlation (by linkage disequilibrium) with a “functional”
variant.

eQTL Expression quantitative trait loci: genomic loci which harbour a variant/variants that show an association
between genotype (AA/Aa/aa) and levels of expression of a gene (usually quantified as steady-state mRNA
levels).

Intermediate phenotype A quantitative biological trait reflecting the pathway to disease development. Sometimes used as a statistically
efficient alternative to a disease outcome.

Cis-association In the context of an eQTL, a cis-association is an association between genotype and levels of expression of a
gene that maps proximal to the genetic variant.

Trans-association In the context of an eQTL, a trans-association is an association between genotype and levels of expression of a
gene that maps distal to, or on a different chromosome from, the genetic variant.

3’ and 5’ UTR Untranslated regions: UTRs map upstream of the first codon for translation (5’ UTR) and downstream of the last
codon for translation (3’ UTR). The 5’ UTR is important for regulating transcription and the 3’ UTR is important for
post-translational regulation of the gene.

Promoter A DNA sequence that binds proteins (including RNA polymerase) that are required to initiate transcription;
usually located at the 5’ end of the gene just upstream of the transcription start site.

Transcription start site (TSS) The location at the 5’-end of a gene sequence at which transcription begins.

Splice donor and acceptor sites Recognition sites for mRNA processing; donor-splice is the splicing site at the beginning of an intron (5’ end) and
acceptor splice is the splicing site at the end of an intron (3’ end).

Enhancer Regulatory DNA sequence that, when bound by transcription factors, increases gene transcription. Can act in an
orientation independent manner (ie an enhancer can be located upstream or downstream of the TSS) and can
act over large distances (up to 1Mb or possibly more).

Transcription factor (TF) Sequence-specific DNA-binding proteins that regulate transcription of a gene by binding to enhancers or
promoters.

eRNA Enhancer-derived RNAs: non-coding RNA transcripts originating from genomic regions that carry active histone
modifications (H3K27ac, H3K4me1, H3K4me3) indicative of an active enhancer element. eRNAs can be
unidirectional or bidirectional.

Epigenetics The study of changes in phenotypes caused by modification of gene expression rather than alteration of the
genetic code itself.

Promoter hypermethylation DNA methylation is an epigenetic modification of DNA in which methyl groups are added to the DNA.
Methylation can change the activity of a gene without changing the sequence, in particular hypermethylation of
CpG islands that map 5’ to a gene promoter is associated with gene silencing.

Episomal Autonomously replicating extrachromosomal DNA; in the context of the methods described in this review, the
important point is that the DNA is not integrated into the genome.

Pluripotent stem cell Cells that can self-renew and differentiate into any cell in the body.

Cell autonomous Acting only within the cell in which the gene is expressed, as opposed to influencing the behaviour of
surrounding cells.
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independent signals, 196 for which the evidence for association
was strong (conditional P < 10−6) and 156 for which the evidence
was more modest (10−6 < conditional P < 10−4), with a range of one
(n= 70) to nine (n= 2) independent signals per region. Finally, they
defined credible causal variants (CCVs, Table 1) within each signal
as variants with conditional P values within two orders of
magnitude of the index variant [30]. The number of CCVs per
signal ranged from one (n= 66) to 375, resulting in a total of 13,367
CCVs for follow-up analysis. Overall, these data provide some
insight into the scale of the task required if we are to identify the
truly functional variants from amongst the plethora of correlated
variants, link these variants to their target genes and understand
how the temporal, cell-type-specific response stimulated expression
of these genes that influence breast cancer risk. Over the past 10
years, however, tools for the annotation of CCVs and the selection
of target genes have been developed and publicly funded
resources, such as the Encyclopedia of DNA Elements [31] (ENCODE,
https://www.encodeproject.org/ Table 2) and Roadmap Epige-
nomics project (http://www.roadmapepigenomics.org/; Table 2),
have coordinated efforts to generate genome-wide datasets for a
wide range of the assay and cell types and made these rapidly
publicly available, in an effort to facilitate the interpretation of
GWAS signals.
In this review, we focus first on methods for selecting a subset

of CCVs for which there is evidence of functionality; we have
summarised high-throughput methods for identifying candidate-
regulatory sequences (CRS) and then testing them using a
functional output. We next describe techniques for prioritising
putative target genes and finally methods for linking CCVs to
those target genes. Where possible, we have reviewed these tools
specifically in the context of breast cancer GWAS; where these
tools have not yet been applied to breast cancer GWAS, we have
illustrated their potential in the context of other disease outcomes
or non-disease phenotypes.

DEFINING CANDIDATE-REGULATORY SEQUENCES (CRS)
On the assumption that both the promoters (Table 1) and the
more distal elements that regulate target genes (in particular
enhancers, Table 1) will be active in one or more of the cell types
that comprise breast tissue, a first step in the process of
prioritising CCVs for follow-up studies is aligning the CCVs with
markers of open chromatin (DNase-seq, ATAC-seq and FAIRE-seq,
Table 1), active histone modifications (particularly H3K27ac,
H3K4me1 and H3K4me3, Table 1) and transcription-factor- (TF,
Table 1) binding sites generated in these cell types (Table 3).
ENCODE, with the aim of building a comprehensive list of
“regulatory elements that control cells and circumstances in
which a gene is active” (https://www.encodeproject.org/), pro-
vides a rich source of these data for download and/or browsing
through web portals such as the WashU Epigenome Browser
(https://epigenomegateway.wustl.edu/; Table 2), the UCSC gen-
ome browser (https://genome.ucsc.edu/ Table 2) or Ensemble
(https://www.ensembl.org/ Table 2). In addition to providing
these datasets individually, ENCODE has generated a Chromatin
State Segmentation by Hidden Markov Model (ChromHMM)
function, which integrates ChIP-seq data for eight histone
modifications and CTCF (Table 1) binding, to predict 15
chromatin states. Data generated in breast-relevant cell lines,
tissue and primary cells are summarised in Fig. 1a and
Supplementary Table 1. The majority of datasets and data types
have been generated in MCF-7 cells (N= 267 out of a total 468
datasets), the most widely used cell-line model for oestrogen-
receptor-positive breast cancer. In particular, there are ChIP-seq
data for 117 TFs, including the three TFs that “define” the ER+
transcriptome (ESR1, FOXA1 and GATA3, Table 1) [32–35]
generated, for example, in the presence and absence of
oestradiol. By contrast, the Roadmap Epigenomics project [36]
uses primary ex vivo tissues to generate normal epigenomes,
these are arguably more relevant for analyses of breast cancer

Table 1 continued

Exome sequencing Genomic sequencing of the exons in a genome.

3C Chromosome-conformation capture: a technique for analysing the spatial organisation of chromatin in the
nucleus. 3C is a “one-by-one” technique testing for an excess of interactions between two pre-defined regions of
interest.

Hi-C Genome-wide version of 3C; the “all-by-all” technique for quantifying all possible pairs of interactions across the
genome.

DNase-seq A technique for identifying regions of open chromatin on the basis that nucleosome-depleted DNA at active
regulatory regions (promoters and enhancers) is more sensitive to cleavage by DNase I, creating regions of
DNase-I hypersensitivity.

FAIRE-seq Formaldehyde-assisted isolation of regulatory elements: a technique for identifying regions of open chromatin
on the basis that formaldehyde cross-linking is less efficient in active nucleosome-depleted DNA than in
nucleosome-bound DNA.

ATAC-seq Assay for transposase-accessible chromatin: a technique for identifying regions of open chromatin on the basis
that a hyperactive transposase (Tn5) preferentially cleaves and tags (tagments) regions of open chromatin.

Active histone modifications Histones can be post translationally modified by methylation, phosphorylation, acetylation, ubiquitylation or
sumoylation. Histone modifications are correlated with specific states of activity; acetylation of K27 and mono-
methylation of K4 on histone H3 (H3K27ac and H3K4me1) are active enhancer marks, and tri-methylation of K4
on histone H3 (H3K4me3) is an active promoter mark.

CTCF CCCTC-binding factor: a DNA-binding protein that performs a structural role in genome organisation. Depending
on the context, CTCF can also recruit histone acetyltransferase-containing complexes or histone deacetylase-
containing complexes and function as a transcriptional activator or repressor, respectively.

ESR1 Oestrogen receptor 1: an oestrogen receptor and ligand-activated transcription factor. One of the transcription
factors that define the transcriptome in oestrogen-receptor-positive breast cancer cells.

FOXA1 Forkhead box A1: a pioneer factor that can directly bind condensed chromatin and recruit transcription factors
(including ESR1 and GATA3) and histone-modification enzymes. One of three transcription factors that define the
transcriptome in oestrogen-receptor-positive breast cancer cells.

GATA3 GATA binding protein 3: a transcription factor originally identified in the regulation of T-cell development. One of
three transcription factors that defines the transcriptome in oestrogen-receptor-positive breast cancer cells.

S. Romualdo Cardoso et al.

3

British Journal of Cancer

https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
https://www.encodeproject.org/),
https://epigenomegateway.wustl.edu/
https://genome.ucsc.edu/
https://www.ensembl.org/


risk (see the eQTL section below), but the range of data types is,
inevitably, more limited (Fig. 1b and Supplementary Table 1).
While ENCODE and Roadmap Epigenomics are arguably the most
comprehensive and widely used resources, other consortia-based
resources using standardised sample preparation and assay
protocols exist (summarised in ref. [37] and Table 2) and, now
that data deposition is often a condition for publication,
resources such as Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/; Table 2) provide access to many
additional (non-standardised) datasets.
These data are valuable resources that have already been

widely used to define CRS and prioritise CCVs for follow-up studies
(see locus-specific annotation studies below). Given that risk
reflects early events that precede the somatic genome, the
predominance of data generated in a breast cancer cell line (MCF-
7) is potentially limiting progress in this area; in this context,
Fachal et al. reported that 73% of active enhancer regions (as
defined by ENCODE ChromHMM) that overlapped ER+ CCVs in

MCF-7 cells were not active in normal human mammary epithelial
cells [5]. Two additional rich resources have recently been
reported; using genomic DNase-I footprinting integrated with
TF-recognition sequences, condensed onto a common sequence
axis for closely related TF family members, Vierstra et al. have
generated a high-resolution genome-wide consensus TF-footprint
index in 243 human cell and tissue types, including a breast
cancer cell line (T-47D), a normal mammary epithelial cell line
(MCF10a) and normal mammary fibroblasts [38]. Contempora-
neously, Domcke et al. developed single-cell ATAC-seq (sci-ATAC-
seq3), which they combined with single-cell gene expression data
across a broad range of human foetal tissues, to create an atlas of
linked cell-type-specific enhancers and genes that have the
potential to inform our understanding of cell-fate specification
and maintenance in normal tissue [39]. These data, which can be
accessed through the ENCODE portal and the Descartes website,
respectively (Table 2), have the potential to transform our ability to
define CRS and evaluate CCVs.

Table 2. Resources.

ENCODE The Encyclopedia of DNA Elements (ENCODE) Consortium maintains a portal of publicly available epigenetic datasets
from a wide range of assays for identification of functional and regulatory elements, including many variations of
RNA-seq, ChIP-seq, DNase-seq and DNA methylation arrays. https://www.encodeproject.org/

Roadmap Epigenomics The NIH Roadmap Epigenomics Mapping Consortium is a resource that comprises publicly available epigenomic data
from primary cells generated using a number of methods, such as histone modification ChIP-seq, RNA-seq and DNA
methylation assays. http://www.roadmapepigenomics.org/

Viestra.org Digital genomic footprinting providing a high-resolution genome-wide consensus transcription-factor footprint
index in 243 human cell and tissue types. Accessible through the ENCODE portal and UCSC browser. https://www.
vierstra.org/resources/dgf

Descartes Single-cell ATAC-seq and gene expression data generated in a broad range of human foetal tissues (53 samples
representing 15 organs), to create an atlas of linked cell-type-specific enhancers and genes. https://descartes.
brotmanbaty.org/bbi/human-chromatin-during-development/

IHEC The International Human Epigenome Consortium provides public access to high-resolution reference human
epigenome maps via a data portal bringing together ENCODE, Roadmap Epigenomics, CEEHRC (Canadian
Epigenetics, Environment and Health Research Consortium), and other data resources. It interfaces with UCSC,
Ensembl and WashU browsers as well as Galaxy for data processing. http://ihec-epigenomes.org/

UCSC genome browser This widely used browser has many tracks which are useful for annotation; multiple SNP and variant tracks as well as
tracks for resources such as ENCODE-integrated regulation and GTEx gene expression. https://genome.ucsc.edu/

Ensembl genome browser An extensive resource of publicly available downloadable data along with a genome browser containing regulatory
annotations, again including multiple ENCODE data tracks. https://www.ensembl.org/index.html

WashU Epigenome Browser A browser specifically designed for epigenetic data; the usual SNPs, variation and ENCODE data are available, as well
as additional epigenomic datasets from IHEC. http://epigenomegateway.wustl.edu/

GTEx The Genotype Tissue Expression project is a database of tissue-specific gene expression and regulation data with
downloadable and browsable QTLs, levels of expression, H3K27ac ChIP-seq and DNA methylation data. https://www.
gtexportal.org/home/

GEO Gene Expression Omnibus is a public functional genomics data repository supporting Minimum Information About a
Microarray Experiment (MIAME)-compliant data submissions. Array- and sequence-based data are accepted. Tools are
provided to help users query and download experiments and curated gene expression profiles. https://www.ncbi.
nlm.nih.gov/geo/

METABRIC The Molecular Taxonomy of Breast Cancer International Consortium is a large dataset of breast tumours and matched
normal tissue with clinical, gene expression, copy-number aberrations (CNA), and SNP data available via cBioPortal.
https://www.cbioportal.org/study/summary?id=brca_metabric

TCGA The Cancer Genome Atlas is a conglomeration of over 20,000 primary tumours and matched normal tissue across 33
cancer types with datasets encompassing clinical, whole exome, whole genome, DNA methylation, gene expression,
microRNA and proteomic profiles. https://www.cancer.gov/tcga

ICGC International Cancer Genome Consortium is a collection of 86 cancer genome profiling projects, including datasets
generated by the TCGA consortium. These datasets include clinical, whole exome, whole genome, DNA methylation,
gene expression, microRNA and proteomic profiles. https://dcc.icgc.org/

PCAWG The Pan-Cancer Analysis of Whole Genomes from ICGC and TCGA includes more than 2600 cancer whole genomes
across 38 cancer types explored for somatic and germline variation with particular emphasis on non-coding RNAs,
cis-regulatory sites and large structural alterations. The data portal contains somatic and germline mutations
(controlled access), DNA methylation, gene expression and clinical data. https://dcc.icgc.org/pcawg

CCLE The Cancer Cell Line Encyclopedia is a data portal including 1457 cancer cell lines encompassing gene and protein
expression, DNA methylation, miRNA, mutation and CNA data. https://portals.broadinstitute.org/ccle
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Table 3. Methods for identifying putative target genes and functional variants.

Method: summary Advantages Disadvantages

Defining candidate-regulatory sequences (CRS)

In silico alignment: Alignment of “local” genes
and credible variants with markers of open
chromatin, active histone marks and/or
transcription factors. Reviewed in Klein and
Hainer [103].

High-throughput in silico analysis
Multiple data sources, widely available through,
for example ENCODE and Roadmap
Epigenomics Project (box 2).
Primary cell data available through Roadmap
Epigenomics Project.
Can be combined into an algorithm.

The relevant tissue and/or cell type is not
necessarily known.
Biased towards cell lines (MCF-7, MCF 10A and
T-47D) and tissue (breast epithelium) rather
than primary cells (Fig. 1a)
Limited markers/TF in primary cells (Fig. 1b)
By combining data sources, algorithms lose
granularity; can use a weighting scheme for
different data types but these by definition
require a series of assumptions about the
hierarchy of data sources.

Functional outputs for CRS

MPRA: Massively Parallel Reporter Assay
[45, 46], plasmid-based high-throughput
approach to reporter gene assays.
CRS are placed upstream of a reporter gene
driven by a minimal promoter and barcodes
are inserted in the 3’UTR of the reporter gene.
The activity of the CRS is measured by pairing
its RNA expression to the transcribed barcodes.

High-throughput functional readout of CRS
and variants within those sequences across the
whole genome.

Limited to cells that can be easily transfected.
The length of the sequences tested is
restricted by the length of oligos that can be
synthesised (~200 bp).
Episomal assay.
May be confounded by possible effects from
promoter-binding proteins.

lenti-MPRA [50]: modification of MPRA that
uses lentiviral vectors as opposed to plasmids.

Broadens the range of cells and tissue types
that can be used, to include hard-to-transfect
cell types.
Barcodes cloned into the 5’ UTR to reduce the
distance between the CRS and barcode and
hence, the risk of CRS-barcode swapping.
Integration of viral vector provides “in-
genome” readout.
Using on average >50 barcodes per CRS
reduces the impact of binding of RNA-
associated factors and RNA stability on the
results.

The length of the sequences tested is
restricted by the length of oligos that can be
synthesised (~200 bp).
May be confounded by possible effects from
promoter-binding proteins.

STARR-seq [47]: Self-Transcribing Active
Regulatory Region sequencing, plasmid-based
high-throughput reporter gene assay in which
the CRS itself is used as the barcode.
CRS are cloned downstream of the reporter
gene in the 3’UTR. The activity of the CRS is
measured by comparing the amount of RNA
produced relative to the amount of genomic
DNA in the STARR-seq library.

The elimination of barcodes simplifies the
library and allows screening of complex
libraries.
CRS are cloned rather than synthesised; the
length of CRS are limited only by cloning
efficiency and a range of 150–1500 bp is
possible.

Enhancer activity may be confounded by
effects from the binding of RNA-associated
factors and the stability of the assayed RNA
sequence.
Episomal assay.
Limited applicability to mammalian genomes
due to their size and complexity; has been
applied to human cells using selected
bacterial artificial chromosomes.

CapStarr-seq [31]: modification of STARR-seq
which incorporates a sequence capture step.

Overcomes limited applicability to mammalian
genomes by incorporating a sequence capture
step to focus on regions of interest.

Enhancer activity may be confounded by
effects from the binding of RNA-associated
factors and the stability of the assayed RNA
sequence.
Episomal assay.

GRO-seq [48]: Global nuclear Run-On
sequencing, captures nascent and newly
synthesised RNA, by bromodeoxyuridine
(BrUTP) labelling of transcripts followed by
immunoprecipitation of labelled transcripts
with an antibody against BrUTP.

Assesses transcriptional regulation and activity
across the whole genome.
Sensitive, with a resolution of 10 bp.
Robust nascent transcriptome profiles,
including short-lived enhancer RNAs
Capable of assessing RNAPI, RNAPII, and
RNAPIII dynamics and processing properties.
Generates precise quantification of promoter-
proximal RNA polymerases.
Low contamination of processed RNA.

Laborious assay.
Requires a high input of cells (~1 × 107).
In vitro assay.
Regulatory factors bounded to the polymerase
might be eliminated by the use of sarkosyl to
prevent de novo initiation of transcription.

fastGRO-seq [56]: modification of GRO-seq
using 4-thio ribonucleotide (4-S-UTP) labelling
followed by biotin tagging of the 4-S-UTP
residues which are then captured using
streptavidin beads.

More efficient assay time wise and in terms of
cell input (0.5 × 106) cells required.
Can be used to analyse tissue and primary cells.
Highly reproducible.
Low contamination of processed RNA.

In vitro assay

PRO-seq [54]: Precision nuclear Run-On
sequencing, modified GRO-seq assay that
incorporates biotinylated nucleotides into the
3′ end of the nascent RNA and uses
biotin–streptavidin pulldown.

High resolution (single nucleotide)
Low contamination of processed RNA.

Laborious assay.
Requires a high input of cells (~1 × 107).
In vitro assay.
The RNA polymerase position at the beginning
of transcription is mostly lost and so, it may
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Table 3 continued

Method: summary Advantages Disadvantages
not generate a precise quantification of
promoter-proximal RNA polymerases.

TTchem-seq [57]: Transient Transcriptome
chemical sequencing. Captures nascent and
newly synthesised RNA using 4-thiouridine
(4SU) labelling, uses hydrolysis instead of
sonication to fragment RNA, biotin tagging of
the 4SU residues and biotin streptavidin
pulldown.

In vivo assay, based on metabolic labelling of
RNA which minimises any variability or cellular
stress.
4SU labelling is relatively easy to perform and
control which is important when handling
multiple samples.
Highly reproducible.

Identification of regions of active transcription
is limited to a resolution of 20–500 nucleotides
which is the RNA fragment size range
obtained after fragmentation.
High contamination of processed RNA

Identifying putative target genes

eQTL [59, 60]: Expression of Quantitative Trait
Locus analysis: Test of association between
gene expression (measured by RNA-seq now,
previously microarray) and genotype.

Direct test of genotype–phenotype association.
Can test local (generally defined as ≤1 to 2Mb)
and distant (>1 to 2Mb) genes.

The relevant tissue and/or cell type is not
necessarily known
Limited availability of appropriate tissue and/
or primary cell data, particularly large series of
“normal” tissue/cells
Steady state mRNA levels may not be relevant
phenotype.

Colocalization [66]: Extension to individual
SNP:eQTL approaches. Uses multiple variants
and compares the distribution of summary
statistics from eQTL and GWAS.

Reduces false positives by comparing
distributions of summary statistics (as opposed
to individual variants).
By using gene expression data from multiple
tissues, can be informative regarding “causal
tissues”.

Limited availability of appropriate tissue and/
or primary cell data, particularly large series of
“normal” tissue/cells
Steady state mRNA levels may not be relevant
phenotype.

LDSC-SEG [76], DESE [77], CoCoNet [78]:
Examples of statistical methods that use gene
expression and GWAS data to infer causal
tissues. These, and additional such methods,
are reviewed in (reference [79]).

Requires gene expression but not eQTL data
(i.e., does not require genotypes to be
associated with the gene expression).
Can help to inform relevant tissue or cell type
for in vitro experiments.

Assumes that driver genes will be relatively
highly expressed in the most disease-relevant
tissue types
LDSC-SEG additionally assumes that SNPs near
such driver genes will be enriched for
heritability
Limited by the availability of gene expression
data in relevant tissues or cell types
Steady-state mRNA levels may not be relevant
phenotype.

Transcriptome-wide association studies (TWAS
[68, 69]): eQTL cohorts are used to develop
models of expression variation on a per gene
basis; models are then used to predict gene
expression for individuals in GWAS and test for
association between gene expression and
outcome.

Informative both for discovery (new risk loci)
and for inferring target genes at “known”
GWAS loci.
Can help to inform relevant tissue or cell type
for in vitro experiments.

Limited availability of appropriate tissue and/
or primary cell data, particularly large series of
“normal” tissue/cells
Steady state mRNA levels may not be relevant
phenotype.

Comparison with somatically mutated cancer
genes (boxes 1 and 2): in silico analysis of
somatic variation in tumours using whole
genome or exome sequences.

Provides robust evidence for a functional role
in cancer either on an ad hoc basis or by
comprehensively comparing genes that are
local (generally within 1 Mb of a locus) with lists
of somatically mutated genes.

Undermines the “discovery” aspect of GWAS;
only provides confirmation that the concept of
an unbiased GWAS approach is sound.

Linking CRS with putative target genes

CHi-C [96, 97]: Capture Hi-C. Chromatin-
interaction method that exploits the 3D
proximity of long-range regulatory elements
and the genes that they regulate using
formaldehyde cross-linking of chromatin
followed by sequence capture to focus on
regions or features of interest.

High throughput
Potentially two-sided (i.e., either GWAS loci or
the promoters of putative target genes can be
used as “baits”).
Agnostic

CHi-C interaction peaks will include
interactions that are structural (e.g. driven by
CTCF and/or cohesion) rather than regulatory
in situ CHi-C requires large numbers of cells
(new Hi-C kits are reducing the numbers of
cells required).
Most data have been generated in cell lines,
not primary cells—in part due to the
requirement for large numbers of cells
Interaction peaks are defined by a viewpoint—
i.e., linkage-disequilibrium blocks or promoters.

ChIA-PET [98]: Chromatin Interaction Analysis
by Paired-End Tag sequencing, HiChIP [10]:
combination of 3C or Hi-C technology with
chromatin immunoprecipitation.

High-throughput
two-sided, but only when both ends of the
interaction are captured (i.e., they both involve
the TF or histone modification of choice).

ChIA-PET requires large numbers of cells;
HiChIP less so, particularly with new
HiChIP kits
Very little published data – ChIA-PET data
generated in MCF-7 for ESR1, MCF-7, and
POLR2A as part of ENCODE. Interaction peaks
are defined by a viewpoint—the TF or histone
modification used for the
immunoprecipitation.
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FUNCTIONAL OUTPUTS FOR VALIDATING CANDIDATE-
REGULATORY SEQUENCES
Markers of open chromatin, active histone modifications, TF
binding and/or chromatin-interaction peaks (Table 3) have been
used to map millions of sites with regulatory potential across the
genome [31, 40]. The proportion of these predicted elements that
truly function as, for example, enhancer elements, is not known,
but estimates range from 12% to up to 90% [41–44]; clearly,
functional validation is required. High-throughput methods for
functional validation can assay expression of experimental
constructs (massively parallel reporter gene assays (MPRA
[45, 46]), self-transcribing active regulatory region sequencing
(STARR-Seq [47])) or expression of nascent transcripts (eRNAs)
from the predicted enhancer element in a “normal” genomic
context (GRO-Seq [48], Table 3).
The classic method for assaying enhancer activity is the reporter

gene assay [45]. Briefly, a candidate- regulatory sequence (CRS) is
cloned into a reporter construct comprising a minimal promoter
and a reporter gene with a quantifiable output such as green
fluorescent protein (GFP), β-galactosidase (LacZ) or luciferase. In
the context of breast cancer GWAS annotation, the reporter
construct(s) are then transfected into a breast cancer cell line and
reporter activity is assayed to determine whether the CRS
enhances transcription and whether this activity is allele-specific.
MPRA (46) and STARR-seq [47] were both developed to “high-
throughput” reporter gene assays allowing several thousand
putative CRS to be tested for enhancer activity simultaneously
(Table 3). Both methods use RNA expression driven by the CRS
either by pairing it to a transcribed barcode in the 3’ or 5’ UTR
(Table 1) of the reporter gene (MPRA), or by using the CRS itself as
a barcode (STARR-seq, CapStarr-seq [49]). Lenti-MPRA [50]
(Table 3), a lentivirus-based version of MPRA, extends this
technology to cell types that are “hard-to-transfect” and as
lentiviruses integrate into the genome, produces “in-genome”
readouts as opposed to episomal readouts (Table 1). To our
knowledge, these high-throughput versions have not yet been
used in the context of breast cancer GWAS, but the potential of
lenti-MPRA to recapitulate an exquisitely regulated programme of
temporal and cell-type-specific gene expression was demon-
strated recently using neural induction from human pluripotent
stem cells (hPSCs, Table 1) as a paradigm [43].
Non-coding transcription (eRNA, Table 1) is a defining feature of

active enhancers [51]; these nascent RNAs can be assayed using
high-throughput adaptations of a technique (nuclear run-on

assays) that was originally developed to measure rates of
transcription [52, 53]. GRO-seq [48], one of these high- throughput
adaptations (Table 3), rather than incorporating radionucleotides
(as used in the nuclear run- on assays) uses bromodeoxyuridine
labelling of nascent RNA transcripts followed by immunoprecipi-
tation using an antibody against bromodeoxyuridine. Subsequent
methods (PRO-seq [54], mNET-seq [55], fastGRO-seq [56] and
TTchem-seq [57], Table 3) have introduced modifications to this
protocol that involve 4-thiouridine labelling, incorporating a biotin
tag and/or hydrolysis rather than sonication to fragment the
nascent RNAs (Table 3). In the context of breast cancer specifically,
Franco et al. generated GRO-seq data in a series of 13 breast cell
lines (11 cancer and two immortalised “normal” breast cell lines),
and combined these with RNA-seq and ChIP-seq data to
investigate whether subtype-specific gene expression pro-
grammes control breast cancer pathogenesis [58].
Reporter gene assays have been used to differentiate functional

variants from correlated variants in several locus-specific studies
(see locus-specific annotation studies below). Lenti-MPRA has
several advantages that are likely to render these individual assays
obsolete, specifically, by generating high- throughput data that
capture the “in genome” activity of several thousand CCVs
simultaneously in “hard-to-transfect” primary cells. Comparing
GRO-seq with other enhancer marks (open chromatin and active
histone modifications), Franco et al. demonstrated that GRO-seq
identifies smaller numbers of high- specificity enhancers [58] and
recent adaptations to the protocol reduce cell numbers, such that
it should be possible to generate these data too, in primary cells
[56]. However, without a formal comparison of these data types in
the same cell types, and an understanding of ground truth
(presumably in the form of extensive well-characterised positive
and negative controls), it is not possible to say which methodol-
ogy performs best in terms of providing a functional readout for
bona fide regulatory elements.

IDENTIFYING PUTATIVE TARGET GENES
The logical first step to identifying putative target genes is
expression of quantitative trait locus (eQTL) analysis (Table 1), i.e.,
to test for association between genotype of a GWAS-risk SNP (or a
correlated variant) and gene expression (generally steady-state
levels of mRNA). It has been shown previously that levels of gene
expression are genetically determined (reviewed in ref. [59]) and
therefore steady-state levels of mRNA can be considered as an

Table 3 continued

Method: summary Advantages Disadvantages

CRISPR-Cas9: Genome editing system in which
a guide RNA delivers a Cas9 nuclease to a
specific DNA locus where the nuclease makes a
double-stranded break. Genetic changes are
introduced during the DNA repair process.
These genetic changes could be a specific
nucleotide change (knock-in using
homologous directed repair (HDR)), a DNA
sequence or an entire gene could be removed
(knock out).

In genome (as opposed to episomal) assay
Genome can be precisely manipulated by the
CRISPR system’s ability to introduce specific
changes.
Relatively simple assay to design and perform.

Random modifications can occur in off-target
sequences.
It is not suitable for all cells; some do not use
homologous directed recombination as their
main repair pathway, some cells are non-
diploid due to genome instability.
HDR efficiency is relatively low; for GWAS CCVs
where a single base change is often required,
base editing approaches may provide an
alternative (reviewed in ref. [104]).

CRISPRi (CRISPR interference), CRISPRa (CRISPR
activation [105]) and other CRISPR
modifications: techniques use a deactivated
Cas9 (dCas9) fused to an effector domain eg
Kruppel associated box (KRAB) which spreads
repressive histone modifications (CRISPRi) or
an activator eg VP64-p65-Rta (VPR, CRISPRa).
Reviewed in ref. [104], with recent additions
including CRISPR knock-in [106] and repression
CRISPRoff [107].

Highly specific assays, multiple target genes
can be modulated simultaneously and the
introduced genomic changes are potentially
reversible.

Can be challenging to design sgRNA proximal
to the region of interest.
It is important to design multiple sgRNA for
each target as they have variable efficiency.
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intermediate phenotype (Table 1) that potentially mediates a
causal association between a regulatory variant and a complex
disease such as breast cancer. As such, a statistically significant
eQTL with a gene that maps locally to a GWAS signal (generally
defined as within 1Mb) in breast tissue provides strong evidence
of a causal association between this “target gene” and breast
cancer risk. In their integrative eQTL-based analysis of 15
published breast cancer risk loci, Li et al. identified three cis-
associations (2q35-IGFBP5, 5q11-SETD9 and 16q12-TOX3, Table 1)
and three trans-associations, which they defined as associations
with downstream genes for which there was evidence of
regulation by a TF mapping locally to the GWAS locus [60]
(6q25-ESR1, 9q31-KLF4 and 8q24-MYC).
Normal breast tissue and breast tumours have both been used

as sources of gene expression data for eQTL analyses [2, 5, 60–62];
while normal tissue is arguably more relevant for analyses of
breast cancer risk (reflecting early events that precede the somatic
genome), there is greater availability of expression data from
breast tumours. Publicly funded datasets that are available to
researchers include the Genotype-Tissue Expression project (GTEx
[63], https://www.gtexportal.org/home/), The Cancer Genome
Atlas (TCGA, https://www.cancer.gov/about-nci/organization/ccg/
research/structural-genomics/tcga) METABRIC [64] and the Pan-
Cancer Analysis of Whole Genomes (PCAWG [65], https://dcc.icgc.
org/pcawg; Table 2). In addition to the germline variation (Table 1)
that is being investigated by GWAS, gene expression in the
somatic genome (Table 1) can be influenced by copy number
(Table 1) and epigenetic changes such as promoter hypermethy-
lation (Table 1); however, methods that adjust for these somatic
events have been developed [59, 60], and breast tumours have

been widely used in eQTL analyses to identify “target genes” of
breast cancer GWAS-risk loci [2, 5, 60–62].
Colocalisation analysis provides an extension to individual SNP:

eQTL lookup approaches, by using multiple variants and compar-
ing the distribution of summary statistics from both eQTL and
GWAS- association signals, colocalisation reduces false-positive
associations and provides a greater degree of confidence that an
association between a locus, gene expression and disease
outcome is causal [66]. Using eQTL data generated in normal
breast tissue from 396 individuals (GTEx v.8) and GWAS summary
data, Beesley et al. [67] carried out a colocalisation analysis of the
BCAC fine-scale mapping breast cancer risk regions [5]. They
identified 17 genes at 14 loci at which the GTEx eQTL associations
were statistically significant (defined as P < 10−6). For 11 of these
genes, the eQTL SNPs colocalised with strong GWAS signals (P <
10−6, based on multinomial logistic-regression analysis) support-
ing a causal association. However, the extent to which these
associations were replicated in TCGA data was limited and levels
of orthogonal support varied [67].
Transcriptome-wide association studies (TWAS) further extend

the concept of gene expression levels as an intermediate
phenotype for both identifying target genes at known GWAS loci
and the discovery of novel risk loci [68, 69]. Briefly, eQTL cohorts
with gene expression and genotype data are used to develop
models of expression variation on a per-gene (as opposed to per-
SNP) basis. These models are subsequently used to predict levels
of gene expression for individuals in a GWAS cohort, and test for
the association between predicted levels of expression and, for
example, breast cancer risk. TWAS methodology and tools for
implementing this methodology have been published [68, 69] and
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were reviewed recently [70]. In the context of this current review
specifically, breast cancer TWAS using breast tissue, whole blood,
adipose tissue and immune cells as the gene expression cohorts
has been reported [71–75], all report genes for which genetically
regulated expression levels may be associated with breast cancer
risk at both novel loci and known GWAS loci. While these analyses
have exclusively used breast tissue and/or cell types that would be
present in breast stroma (i.e., immune cells and adipocytes),
Michaildou et al. [2] carried out a cell-type-specific enrichment
analysis of genome-wide SNP heritability and found significant
enrichment of active histone modifications in several non-breast-
tissue types, including stomach, rectal and colonic mucosa.
Statistical methods that use gene expression and GWAS data to

infer “causal tissues”, including colocalisation analysis [66], linkage-
disequilibrium score regression applied to specifically expressed
genes (LDSC-SEG [76]), driver-tissue estimation by selective
expression (DESE [77]) and Composite likelihood-based Covar-
iance regression Network model, (CoCoNet [78]) have been
developed. For a comprehensive comparison of statistical
approaches for integrating genome-wide datasets for the func-
tional annotation of GWAS loci, the reader is referred to a recent
review by Cano-Gamez and Trynka [79]. Briefly, these methods use
gene expression data in multiple tissue types to determine
whether disease heritability is directly associated with tissue-
specific gene expression patterns (DESE [77]), enriched in regions
surrounding genes that show high levels of tissue-specific
expression (LDSC-SEG [76]) or co-expression in specific tissue
types (CoCoNet [78]). Predicated on the assumption that driver
genes will be “relatively” highly expressed in the most disease or
trait-relevant tissue types, these methods integrate tissue-specific
gene expression data with disease or trait-specific GWAS data to
infer causal tissues and driver genes.
Breast tissue is heterogeneous; the parenchyma comprises a

branched structure of ducts and lobules composed of specialised
epithelial cells (an inner layer of luminal cells and an outer layer of
myoepithelial cells) surrounded by stroma, connective tissue
populated by fibroblasts, myofibroblasts, endothelial cells, adipo-
cytes and immune cells [80]. Given that gene expression is cell-
type-specific, not “tissue-specific”, several of the large data series
have used microdissection to select out regions of the tumour that
predominantly comprise cells of epithelial origin. This approach,
however, assumes that the target gene(s) act in a cell-autonomous
(Table 1) manner. Alternative in silico approaches to deconvolute
cell-type-specific expression profiles have also been developed
[81–83]. Whilst these have mainly been used to test for the
association between clinical covariates and breast cancer prog-
nosis [83, 84], Seo et al. used a deconvolution approach to
examine gene expression in normal breast tissue [61]. Specifically,
they modelled breast tissue as comprising four different cell types
(adipocytes, epithelial, inflammatory and stromal), and identified
eQTL associations at published breast cancer GWAS loci in two of
these cell types—epithelial and stromal cells [61]. Notably, in their
recent fine-mapping analysis of 150 breast cancer risk regions,
Fachal et al. reported eQTL associations in normal breast tissue
(NHS [85] or METABRIC [64]) at 72 of their fine-mapping regions,
several of these stand out as associations with genes that are
expressed in fibroblasts [86] or immune cells [87], including FBLN5
(fibroblasts), MEFV (monocytes and neutrophils) and APOC1
(macrophages) [5].
Exome (Table 1) and, more recently, whole-genome sequencing

of a large series of matched cancer genes (Table 1) has been
conducted for many different site-specific cancers, including
breast cancer [65, 88–90] (Table 2). Several such genes map to
published breast cancer risk loci, including 10q26-FGFR2, 6q25-
ESR1 and 5q11-MAP3K1 and are a priori strong candidates for
playing a functional role in the association between a GWAS locus
and breast cancer risk [65, 88–91]. Accordingly, several large-scale
annotation analyses have prioritised lists of putative target genes

by comparing them with lists of somatically mutated cancer
genes, both on an ad hoc basis [62] and more comprehensively
[2, 5, 92, 93]. While finding agreement between somatically
mutated cancer genes and putative target genes at GWAS-risk loci
provides reassuring evidence that GWAS “work”, the strength of
an unbiased GWAS approach is the potential for discovering novel
cancer genes, and as such, it is arguable that the more interesting
target genes are those that have not already been shown to be
somatically mutated cancer genes.

LINKING CANDIDATE-REGULATORY SEQUENCES WITH
PUTATIVE TARGET GENES
While the identification of a statistically significant eQTL between
a GWAS SNP (or correlated variant) and a gene that maps locally
to a GWAS signal provides strong evidence of a causal association,
the absence of an eQTL does not preclude a gene from a
functional association. Steady-state levels of mRNA will not
capture expression during a particular developmental window,
in response to an environmental stimulus or in a specific cell type
that occurs at a relatively low frequency within the breast [59]. In
addition, eQTL analyses alone cannot distinguish between
functional variants and correlated variants.
In the first generation of GWAS, a “nearest gene”, a “nearest

expressed gene” or even a “nearest plausible gene” approach was
often used to infer the target gene(s) and define the locus. For
example, the 10q26 breast cancer risk locus was referred to as the
FGFR2 locus before Meyer et al. carried out functional studies that
implicated regulation of FGFR2 expression through allele-specific
binding of E2F1 and FOXA1 as the likely mechanism by which this
locus influences risk [21, 94]. Linking potentially functional variants
and/or the CRS to which they map, with the genes they regulate,
requires consideration of the 3D genome [95]. Physical interac-
tions between cis-acting regulatory elements and transcriptional
start sites (TSS, Table 1) can occur over linear distances of ≥1
megabase (Mb), can skip over multiple intervening genes and are
not exclusive; on average, each promoter interacts with 3.9 distal
regulatory elements and each distal regulatory element interacts
with 2.5 promoters [31]. The chromosome-conformation capture
(3C, Table 1) family of methods is used to identify long-range
interactions based on (3D) chromatin conformation in the cell.
Briefly, spatially proximal segments of DNA are covalently linked
using formaldehyde cross-linking of chromatin in intact nuclei, this
is followed by restriction-enzyme fragmentation, ligation of linked
DNA fragments and finally detection and quantification of ligation
products. In the original 3C protocol, ligation products were
identified one at a time using polymerase chain reaction (PCR)
with locus-specific primers (a “one-by-one” approach); by contrast,
Hi-C (Table 1) is the “all-by-all” method used to identify chromatin
interactions genome-wide [95]. To generate the high-resolution
data required for cataloguing interaction peaks at kilobase (or less)
resolution, targeted chromatin-interaction methods focussed on
GWAS linkage-disequilibrium (Table 1) blocks [62, 96] or
annotated promoters [97] have been used (Table 3). We
developed region-capture Hi-C (rCHi-C) specifically to identify
target genes at three breast cancer-associated gene deserts [96];
we and others have expanded this approach to identify putative
target genes at up to 139 independent breast cancer signals
[62, 92]. Chromatin Interaction Analysis by Paired-End Tag
Sequencing (ChIA-PET [98]) and HiChIP [10] are chromatin-
interaction methods that combine 3C (ChIA-PET, Table 3) or Hi-C
(HiChIP, Table 3) with an immunoprecipitation step targeting, for
example, the histone modification H3K27ac. To our knowledge,
there have been no ChIA-PET or HiChIP studies carried out in
breast cancer or “normal” mammary epithelial cells. Chandra et al.,
however, demonstrated the potential of HiChIP to define
functional eQTL associations; combining HiChIP for the histone
modification H3K27ac in different types of primary immune cells

S. Romualdo Cardoso et al.

9

British Journal of Cancer



with eQTL datasets from matched cell types, they identified a
subset of “promoter interacting eQTLs” that were associated with
cell-type-specific expression of target genes [10].
However, it is arguable that, based on the assays described

above, the evidence that associations between CRS (harbouring
one or more CCVs) and target gene expression are causal is at best
circumstantial; direct evidence would require perturbation of the
CRS, resulting in an alteration to levels of expression of the target
gene. This type of direct evidence is achievable using CRISPR
genome editing (Table 1). In a follow-up analysis of the 11q13
breast cancer risk locus, Betts et al. used CRISPR interference
(CRISPRi) to introduce repressive histone modifications at an
enhancer element (annotated by the most significant GWAS SNP
at this locus) and demonstrated that this resulted in reduced levels
of expression of two long noncoding RNAs (CUPID1 and 2) and the
presumed target gene CCND1 [22]. We have recently shown that
targeting a catalytically inactive Cas9 fused to an activating VPR
domain (CRISPRa) to an enhancer element at the 2q35 breast
cancer risk locus increases expression of IGFBP5 (mapping ~400 kb
distal) but neither of the neighbouring genes IGFBP2 and RPL37A
(~460 kb and ~600 kb, respectively) [99]. A genome-wide frame-
work for mapping gene regulation using CRISPRi has been
developed; in this approach, using a high multiplicity of infection,
random combinations of CRS were perturbed in the erythroleu-
kaemia cell line K562 and expression of target genes (defined as
K562-expressed genes within 1Mb of the CRS) was assayed using
single-cell RNA-seq [100]. To our knowledge, this type of genome-
wide approach has not yet been used in the context of breast
cancer GWAS loci.
Demonstrating an association between genotype of a GWAS-

risk SNP (or correlated variant) and gene expression arguably still
provides the most direct evidence that a gene plays a causal role
in influencing disease risk. Statistical methods that consider
multiple variants and compare the distribution of summary
statistics (rather than individual eQTL:SNP lookups) provide more
robust evidence and may contribute to our ability to infer causal
tissues. However, these methods, which rely on steady-state levels
of mRNA, will not capture expression during a particular
developmental window, in response to an environmental stimulus
or in a specific cell type. As the costs of single-cell RNA-seq
continue to decrease, this may in part be addressed by increasing
availability of large single-cell RNA-seq and genotype datasets for
future eQTL-type analyses. In our view, chromatin-interaction
methods and CRISPR perturbation can still add to, or detract from,
the weight of evidence for a given variant influencing a particular
“target gene”. There are advantages to CHi-C as a chromatin-
interaction method; CHi-C makes no assumptions about the
nature of the regulatory interaction and new kit-based methods
(https://arimagenomics.com/, https://dovetailgenomics.com/)
have the potential to improve resolution and reduce input in
terms of numbers of cells. Ultimately identifying target genes and
causal variants, robustly, is likely to require multiple data types; the
most informative approaches will inevitably vary from locus to
locus and depend on the mechanism that links variant, gene and
disease risk.

LOCUS-SPECIFIC FUNCTIONAL ANNOTATION STUDIES
Locus-specific functional annotation studies for at least 17 loci
(defined for these purposes as chromosomal regions) have been
reported by BCAC investigators and collaborators at 1p11.2 [25],
2q33 [27], 2q35 [12, 13, 99], 4q24 [14], 5p15.33 [28], 5p12 [24],
5q11.2 [15], 6q25 [16], 8q24 [17], 9q31.2 [18], 10q21.1 [19], 10q26
[21], 11q13 [23], 12p11 [26], 12q24 [92], 17q22 [20] and 19p13 [29].
These analyses, published predominantly prior to the recent
global fine-mapping analysis, begin with locus-specific fine-scale
mapping to define independent signals and CCVs. At the vast
majority, this has resulted in too many signals and variants for

individual functional assays without first prioritising a subset of
CCVs by aligning them with regions of open chromatin, active
histone modifications and/or TF-binding sites. Similarly, potential
target genes (frequently defined as genes that map within 1 or
2Mb of the most significant SNP) tend to be selected on the basis
of eQTL analyses and genome-wide chromatin- interaction data
(ChIA-PET and/or Hi-C). On this basis alone, some studies have
proposed possible target gene(s) and provided lists of variants
that warrant further investigation [14, 17, 20, 25, 26]. Other studies
have followed up a subset of variants and genes using functional
assays and, in some instances, report more robust evidence for a
causal variant (or variants), a target gene (or genes) and a
mechanism by which the causal variant influences the expression
of the target gene to impact breast cancer risk. Target genes
include well-documented breast cancer genes (MAP3K1 at 5q11.2
[15], ESR1 at 6q25 [16], FGFR2 at 10q26 [21] and CCND1 at 11q13
[23]), TFs (KLF4 at 9q31.2 [18], NRBF2 at 10q21.2 [19] and TBX3 at
12q24 [92]), a putative tumour suppressor gene (IGFBP5 at 2q35
[12, 13, 99]), a methylcytosine dioxygenase (TET2 at 4q24 [14]) and
a ribonucleoprotein polymerase that maintains telomere ends
(TERT at 5p12 [24]). The majority of studies propose a mechanism
in which allele-specific binding of a TF (or TFs) influences the
expression of the target gene; most commonly, it is the allele-
specific binding of one of the three factors that define the ER+
transcriptome (ESR1, FOXA1 and GATA3) [33–35] that is impli-
cated. There is however an element of self-fulfilling prophecy to
this: ESR1, FOXA1 and GATA3 ChIP-seq data in breast-relevant cell
types are widely available and inevitably incorporated into the
process for prioritising variants for follow-up studies.
While some of these locus-specific studies have provided

insight into the mechanisms that influence risk at individual loci, it
is clear, given the size of the task, that high-throughput
approaches are required. In the global fine-scale mapping analysis
recently published by the BCAC, Fachal et al. used two approaches
to incorporate genome-wide functional data into their analyses
[5]; they used a Bayesian approach (PAINTOR [101]) that combines
genetic association, linkage disequilibrium and enriched genomic
features to determine variants with high posterior probabilities of
being causal (PPs) and then analysed both of these, and the CCVs
from their fine-scale mapping by multinomial logistic regression,
using their integrated-expression quantitative trait and in silico
prediction of GWAS targets (INQUISIT). Inevitably, the range of
assays and cell types used to generate the genomic features that
are incorporated into PAINTOR, and those upon which INQUISIT
predicts target genes, is limited by the available data: of the 811
genomic features incorporated into INQUISIT, 362 (44.6%) were
generated in the oestrogen-receptor-positive breast cancer cell
line MCF-7, and 191 (23.5%) were histone- modification ChIP-seq
data. Overall, they reported 34 signals at 25 regions where there
was either a single CCV or a variant for which the posterior
probability was >80% (i.e., individual variants with a high a priori
probability of being functional) and 191 high-confidence (level-1)
target genes mapping to 88 regions. However, there remain
multiple statistically indistinguishable CCVs at the majority of
signals, multiple regions without high-confidence target genes
and the high-confidence genes that have been predicted require
validation and further (mechanistic) investigation.

PERSPECTIVE
Over the last 15 years, GWAS has transformed our understanding
of the genetic architecture of common diseases such as breast
cancer. To date, however, the findings of breast cancer GWAS
have not led to transformative insights into disease mechanism or
new approaches to disease prevention and treatment. The
recently published fine-scale mapping and functional annotation
that was carried out by the BCAC constitutes a major step forward,
but also highlights the challenges [5]; with 152 regions, 352
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independent signals and 13,367 CCVs to characterise, there is a
clear need for broad-scope systematic approaches integrating
statistical and functional data. It is also clear, however, that based
on the functional data that are currently available, the results of
this type of systematic approach (exemplified by PAINTOR and
INQUISIT), still fall a long way short of deciphering the mechanism
by which each locus influences a woman’s risk of breast cancer.
There are clearly some critical gaps in the range of genome-wide
functional datasets that are available; there is an abundance of
markers that correlate with enhancer marks (histone modification
and TF ChiP-seq) but little or no data for the functional validation
of these candidate-regulatory sequences (MPRA, eRNAs or CRISPR
screens). In addition, the vast majority of data have been
generated in a single oestrogen-receptor-positive breast cancer
cell line—MCF-7. Regulation of gene expression can be highly
specific in terms of timing (both with respect to development and/
or a stimulus) and cell type; if it is arguable that normal tissue is
more relevant for eQTL analyses of breast cancer risk, it must also
be arguable that normal primary cells are more relevant for
functional assays. Future efforts to generate breast-relevant
functional data may be better focussed on normal primary cells
rather than breast cancer cell lines. In addition, as the range of
single-cell technologies increases, and the cost of these methods
decreases, the opportunities for generating more sophisticated
functional data that more accurately reflect the cellular hetero-
geneity within breast tissue are also opening up [102]. In
conclusion, while much work has been done, there is still much
to do. There are, however, grounds for optimism; combining
statistical data from fine-scale mapping with functional data that
are more representative of the normal “at risk” breast, generated
using new technologies, should lead to a greater understanding of
the mechanisms that influence an individual woman’s risk of
breast cancer.
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