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To obtain a comprehensive picture of composite genetic driver events and clonal dynamics in subtypes of paediatric acute
lymphoblastic leukaemia (ALL) we analysed tumour-normal whole genome sequencing and expression data from 361 newly
diagnosed patients. We report the identification of both structural drivers, as well as recurrent non-coding variation in promoters.
Additionally we found the transcriptional profile of histone gene cluster 1 and CTCF altered tumours shared hallmarks of
hyperdiploid ALL suggesting a ‘hyperdiploid like’ subtype. ALL subtypes are driven by distinct mutational processes with AID
mutagenesis being confined to ETV6-RUNX1 tumours. Subclonality is a ubiquitous feature of ALL, consistent with Darwinian
evolution driving selection and expansion of tumours. Driver mutations in B-cell developmental genes (IKZF1, PAX5, ZEB2) tend to
be clonal and RAS/RTK mutations subclonal. In addition to identifying new avenues for therapeutic exploitation, this analysis
highlights that targeted therapies should take into account composite mutational profile and clonality.
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INTRODUCTION
Acute lymphoblastic leukaemia (ALL) is the most common
childhood cancer, with around 80% of ALL cases derived from
B-cell precursors (BCP-ALL) [1]. The disease is characterised by
initiating genetic lesions resulting in characteristic patterns of
chromosomal gain (hyperdiploidy), loss (hypodiploidy) or the
formation of fusion genes. Recurrent fusions include t(12;21) ETV6-
RUNX1, t(1;19) TCF3-PBX1 and t(9;22) BCR-ABL1 [1]. Copy number
changes in RUNX1, caused by intra-chromosomal amplification
(iAMP21), and ERG deletion, have also more recently been
recognised as initiating events [2, 3]. The biological differences
between subtypes is reflected in their clinical behaviour [4–7]. For
example patients with hyperdiploid ALL have 5-year survival rate
(5YSR) of > 90% [7]. In comparison around 60% of iAMP21 positive
ALL will relapse resulting in 5YSR of only 29% [5].
Current first-line therapy for ALL is dominated by chemother-

apeutic and steroidal agents. While their use has driven 5YSR to
>90% [8], this is at the expense of significant morbidity, and
despite these improvements, survival for relapsed ALL is only
21–39% [9, 10]. Strategies for developing novel therapies for ALL
have largely focused on monoclonal antibodies or CAR-T cells.
Such therapies are expensive; when licensed, the anti-cd19
monoclonal blinatumomab, was the most expensive cancer
therapy ever [11]. It is therefore desirable to develop additional
targeted small molecule therapies to reduce treatment-associated
morbidity and relapse-associated cost. Such developments are
likely to require precise molecular characterisation and risk
stratification, informed by our understanding of ALL genomics.
Precancerous lesions harbouring initiating events can be

undetected for years usually requiring the acquisition of additional
genetic lesions for symptomatic disease. Common secondary

lesions impact genes regulating the cell cycle (CDKN2A, RB1), B-cell
development (PAX5, IKZF1, EBF1) and the RAS/RTK pathway (NRAS,
KRAS, FTL1) [1]. Deletions of both CDKN2A and PAX5 occur in
around 30% of tumours. Activation of RAS-RTK genes while most
common in hyperdiploid ALL, is observed in 35% of all tumours
[12]. While the landscape of coding mutations in BCP-ALL has
been well characterised [13–17], the full complement of molecular
lesions sufficient to cause ALL, and explain its biological diversity
are unknown.
To obtain a more comprehensive picture of the composite

genetic events acting in concert in each of the BCP-ALL subtypes,
we performed a genomic analysis of diagnostic samples from 361
ALL patients (Supplementary Fig. 1). We identify noncoding and
copy number drivers. Our analysis also reveals differences in the
mutational and biological pathways influencing the initiation and
progression of disease subtypes.

METHODS
Cases, data and sequencing
Matched tumour-normal whole genome sequencing (WGS) data from 361
treatment-naïve cases of paediatric (<18 years old) BCP-ALL were obtained
from St. Jude Research Hospital (https://www.stjude.cloud/). Data were
accessed and analysed through the DNAnexus cloud computing platform.
Ethical permission was not required as all data were in the public domain.
WGS data were generated using 100 bp paired-end libraries (average

read depth 45× and 62× for normal and tumour samples respectively),
using Illumina (San Diego, USA) HiSeq2000 technology. Raw sequencing
data were aligned with BWAmem v0.7.17 [18] to GRCh38, by Google
Genomics. Cross-contamination was assessed using GATK v4.0.0.1; no
sample having >2.6%. Tumour RNA sequencing (RNA-seq) on 222 (post
quality control [QC]) of the 361 cases was performed on 125 bp paired-end
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libraries using Illumina HiSeq technology to an average number of 55 × 106

reads. RNAseq fastqs were analysed using FastQC and aligned to GRCh38
using STAR v2.6.1 [19], discarding samples with <20% of reads aligning to
the genome. Transcript abundance calculated in transcripts per million
(TPM) using RSEM v1.3.0 [20] using GENCODEv30 annotation and was
adjusted for batch effects using ComBat-seq [21].
Fusion genes were identified from RNAseq data using STAR-Fusion

v1.5.018 and FusionInspector [22]. Candidate fusions were retained when
fusion genes were separated by > 1MB and absent from control samples.
For controls, we used unmatched lymphoblastoid cell line data (GTEx 1000
Genomes RNA sequencing project [23] [n= 465]) and unmatched mixed
tissue samples (Human Protein Atlas Project [24] [n= 200]), processed
using the same pipeline as tumour samples. Links provided in the web
resources section.
The transcriptional impact of histone gene cluster 1 (chr6:26122685-

26239852) deletion and CTCF alteration (deletion or mutation) were
assessed using DESeq2 v1.329 [25], with default settings. Tumours were
divided into three groups; two test groups possessing an alteration in CTCF
or the histone gene cluster 1, excluding those with alterations in both and
a control group. Test groups comprised those with gene(s) deletion
(<2 copies), of which 17 tumours had associated RNAseq data (CTCF
altered n= 9; histone 1 cluster altered n= 8).

Variant calling
Somatic single nucleotide variants (SNVs) and indels were called in the 361
matched tumour-normal pairs using Strelka v2.8.4 [26] in tumour mode,
adopting default parameters. QC filtering of somatic variants comprised:
(1) Retaining only variants marked as ‘PASS’; (2) Excluding variants seen in
the panel of 160 matched germline samples (generated by running
Strelka2 in germline mode); (3) Excluding variants in repetitive regions
(extracted from UCSC) or in homopolymer runs of >7 nucleotides; (4)
Excluding variants with a POPMAX allele frequency >0.001 in GnomAD v3,
(5) Excluding variants with a VAF < 5%. Driver mutation plot generated
using Maftools [27].

Mutational signatures
De novo extraction of signatures was performed using SigProfilerExtractor
v1.0.18 [28]. Extracted signatures were assigned to reference signatures
from Catalogue of Somatic Mutations in Cancer (COSMIC) v3.1 using a
minimum cosine similarity threshold of 0.9.

Identification of cancer drivers and pathways
Identification of SNV/indel drivers in coding regions was based on a
consensus-based approach. Per gene P values were calculated combining
the output of MutSigCV2 v3.11 [29], dndsCV v0.0.1 [30] and OncodriveFML
[31] using Harmonic means [32] and Benjamini–Hochberg correction.
Variants were classified as nonsilent using variant effect annotator (VEP)
[33] annotations (Supplementary Table 1). Candidate drivers were filtered
retaining genes: (1) significant (P < 0.05) in ≥2 methods, (2) corresponding
RNAseq expression (mean > 0.02 TPM) and (3) mutated in ≥5 tumours.
To identify driver mutations in enhancer regions we adopted the

strategy of Orlando et al. [34]. Cis-regulatory elements (CREs) were
identified from promoter capture chromatin confirmation (PHi-C) contacts
(CHiCAGO score > 5) from naïve B-cells [35]. CRE-specific mutation
probabilities, for each tumour, were generated using logistic regression
preformed with the R package glm, accounting for base composition,
mutation rate, replication timing, and coverage. Replication timing was
extracted for the lymphoblastoid cell lines (GM12878, GM12813, GM12812,
GM12801, GM06990), link provided in the web resources section. The
Poibin R package was used for approximation of Poisson binomials,
deriving empiric P values regions as per Melton et al. [36].
CREs harbouring >5 mutations were examined for mutational clustering

by permutation (n= 10,000) assuming uniform mutation distribution,
deriving empiric P values. Frequency and clustering P values were
combined using Fisher’s method and adjusted for multiple testing using
Benjamini–Hochberg correction. Genome regions with a Q value < 0.1
were examined for transcriptional effects. Expression of genes were
captured by an interaction were compared between mutated and non-
mutated samples using Benjamini–Hochberg corrected Wilcox rank-sum
test, excluding tumours with CNVs at either the target gene or CRE.
Mutation burden in promoters and UTR regions was assessed using

OncodriveFML [31]. Promoters (defined from the transcription start
site -2KB) were extracted from GENCODEv30 GRCh38.p12. Where genes

had multiple transcription start sites all promoter sequences were
evaluated jointly. Promoters were filtered for any overlapping coding or
UTR sequence.
For pathway analysis driver genes were manually assigned to biological

pathways. Gene—pathway assignments are described in Supplementary
Table 2. To calculate the overrepresentation of alterations in biological
pathways we compared the alteration frequency of each subtype to the
remaining subtypes.

Identification of copy number and structural variants
Somatic copy number variation (CNV) was called using CNVkit v0.9.5.3
[37]. Tumour WGS data were called against a pooled reference, generated
from 45 representative matched germline samples (23 male, 22 female).
CNVkit segment specific coverage log2 ratios were adjusted for tumour
cell purity, estimated by cpgBattenberg [38]. Copy number states were
assigned using default log2 thresholds (< −1.1= 0, > −1.1= 1, > 0.4= 2,
> 0.3= 3, > 0.7= 4). CNVs were considered ‘arm’ level when an alteration
occupied > 80% of mappable chromosome arm length. Other variants
were defined as ‘focal’. Additional copy number assessments were made
using HMMcopy v1.32 calculating GC and mappability normalised
tumour/normal log2 coverage ratios.
Driver CNVs were called using GISTIC2 v2.0.23 [39] run in focal mode

(excluding arm level events) with default parameters. Genome regions
were excluded if they: (1) overlapped a immunoglobulin locus, (2)
contained no protein coding genes, (3) contained no genes expressed in
corresponding RNAseq data (excluding deleted cases), (4) the region was
significantly amplified and deleted, (5) Q-value > 0.01.
Structural variants (SVs) were called using Manta v1.5 [40], Lumpy

v0.2.13 [41] and Delly2 v0.8.1 [42]. Manta and Delly2 were run using default
parameters. Lumpy was run using the wrapper Smoove v0.2.3. Variants
were excluded if they were located in centromeric, telomeric or
heterochromatic regions, had a variant allele frequency (VAF) < 0.1, or
occurred in a panel of matched normals, generated using the correspond-
ing method. The remaining variants were merged as per Li et al. [43],
retaining only those called by ≥2 methods.
SV cancer cell fractions (CCFs) were estimated using SVclone [44] and SV

clustering examined using ClusterSV [43]. Regions of chromothripsis were
identified using ShatterSeek v0.4 [45], based on thresholds of >3 adjacent
segments of oscillating copy number involving >5 interleaved SVs.
Candidate chromothripsis events were manually reviewed.
To jointly analyse CNVs and SVs, regions called by GISTIC were

additionally filtered, retaining those enriched in overlapping SVs. For
CNV regions, corresponding (deleted/amplified) simple SVs (not part of
complex rearrangements called by SVClust) were examined. Chromosome-
arm-specific background SV rates were estimated by permutation (n=
1000). P values were computed as the proportion of permutations where
the number of simulated SVs overlapping a locus was greater than or equal
to the number of observed SVs. Regions enriched (P < 0.01) in overlapping
SVs were retained.
SV breakpoint motif enrichment was performed using HOMER v4.10.4

[46], by extracting two 100 bp sequences (±50 bp) from each breakpoint,
excluding SVs where both breakpoints mapped to immunoglobulin
regions (Supplementary Table 3). HOMER annotates motifs with the most
similar sequence, based on Pearson r2, from the JASPAR [47] database.
Annotated HOMER motifs were further processed with reference to motifs
of candidate mutagenic drivers of ALL (Supplementary Table 4). Where the
Pearson correlation between a HOMER motif and a candidate mutagenic
motif exceeded the most similar JASPAR annotation they were substituted.
Motifs with a correlation of < 0.85 were excluded.

Tumour subtyping
Tumour chromosomal ploidy was based on copy number data from
CNVkit. Tumours with a chromosome number > 50 were classified as
hyperdiploid and those with < 45, hypodiploid. Near haploid tumours (n=
11) chromosome number 24–30 are included the hypodiploid subtype
unless otherwise stated. iAMP21 status was called as per Harrison et al. [48].
Chromosomal ploidy was also called using clonal copy number calls from
cpgBattenberg (n= 280). For samples with divergent chromosome
numbers a manual review was performed, resulting in 3 samples being
reclassified from hyperdiploid to near haploid.
Subtypes defined by fusion events (e.g., ETV6-RUNX1) were assigned

based on clonal SVs consistent with fusion gene expression and
corresponding fusion RNAseq expression. Cases without an established
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initiating driver event were designated as unclassified/other. The subtype
composition of the cohort is detailed in Supplementary Fig. 2.

Clonality and tumour evolution
Tumour ploidy and SNV cancer cell fractions (CCF) were estimated using
cpgBattenberg v3.5.0 [38], adopting default parameters except minimum
ploidy was thresholded at 1.1. Single nucleotide polymorphisms alleles
from the 1000 Genomes Project (v3, GRCh38) were counted in tumour and
normal samples, and genotypes phased using impute2 [49]. Purity-
corrected copy number segments were used to compute SNV/indel CCFs
and subclones identified by DPClust v2.28 [38], assigning somatic variants
to clusters. Clusters with the highest CCF > 0.9 and < 1.1 were considered
clonal. Samples were excluded based on the following criteria: (1) a variant
cluster with CCF > 1.1; (2) no clonal cluster (CCF 0.9-1.1); (3) copy number
state-specific SNVs which failed to cluster at predicted VAFs; (4) copy
number solutions with homozygous deletions > 3Mb. In the first instance,
samples were analysed using Battenberg derived purity estimates, when
resulting copy number solutions failed QC CCube v1.0 [50] estimates were
used. 280 samples satisfying QC criteria were retained. Tumour cell purity
estimates are detailed in Supplementary Fig. 3. To calculate driver gene
mutation burden in clonal and subclonal compartments we used cluster
assignments from DPClust. The frequency of clusters containing ≥1
damaging driver (Supplementary Table 5) mutations were calculated for
each subtype and compared to the remaining subtypes. Heterogeneity
was estimated using the Simpson Index (probability that two individuals/
cells, selected from a population/tumour, are from the same species/
clone), calculated using VEGAN [51]. Evidence to support neutral evolution
was sought using MOBSTER v0.1.1 [52], as per authors recommendations

(retaining only SNVs and indels in diploid regions). MOBSTER identifies
variants with a VAF distribution consistent with neutral evolutionary
processes, termed a “neutral tail”. Variants belonging to neutral, subclonal
or clonal clusters were analysed using dNdSCV. The mutation rate of ALL
drivers in neutral, subclonal or clonal clusters was calculated as the number
of nonsynonymous variants/all non-synonymous sites/total number of
mutations (Supplementary Table 5).

RESULTS
Mutation burden
As previously documented, the burden of SNVs and indels was
low (median 0.43 Mb-1, range 0.023-5.29) when compared to the
majority of solid cancers. Mutation burdens differed significantly
across subtypes (PKruskal-Wallis= 2.2 × 10−16), iAMP21 and KMT2A
(MLL1) positive tumours having the highest and lowest burdens
respectively (Fig. 1a). The most common chromosome-arm level
aberrations were loss of 9p (containing CDKN2A/CDKN2B) and gain
of 21q (containing RUNX1), both occurring in 8% of cases
(Supplementary Fig. 4). 21q gain occurred preferentially in
hypodiploid tumours (Q= 0.10), whereas 9p loss was most
frequent in TCF3-PBX1 translocated tumours (Q= 0.19), and
(Supplementary Fig. 5a and 5b).
The median number of SVs was eight per tumour (2 × 10−3 Mb−1),

iAMP21 tumours possessing the highest number (Fig. 1b). The
genome-wide distribution of SVs is shown in Supplementary Fig. 6.

Fig. 1 Mutation burden by subtype. Short somatic variants (SNVs and indels) were called in 361 matched normal/tumour whole genome
sequencing samples. a Burden of SNVs and indels. Box and whiskers plot of mutation count per tumour. b Burden of structural variants (SVs).
Box and whiskers plot of SV count, dots represent individual tumours. c Plot of the SV rate per chromosome retaining only intrachromsomal
variants outside immunoglobulin loci. Y-axis; mean SVs rate per Mb. X- axis; chromosome.
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Chromosome 21 SVs rates were 10-fold higher (0.027Mb−1) than
other chromosomes, largely accounted for by iAMP21 tumours
(Fig. 1c). Since iAMP21 tumours are defined by RUNX1 copy number,
we examined the distribution of SVs on chromosome 21, finding no
clustering evident (Supplementary Fig. 7). Chromothripsis did not
account for elevated SV rates in iAMP21 tumours as no events were
observed on chromosome 21.

Identification of driver genes
We searched for drivers of ALL by first considering the following
classes of somatic coding alterations; single nucleotide variants
(SNVs)/indels, copy number variants (CNVs), structural variants
(SVs) and loss of heterozygosity (LOH). In addition to established
drivers, we identified a number of candidate novel ALL drivers,
including HLA-DRB5, the histone gene cluster 1, USP8 and CHID1.
Consistent with previous reports [1, 53], the most frequently

altered genes included CDKN2A/B, PAX5, ETV6, ERG, RUNX1, NRAS,
KRAS and IKZF1 (Fig. 2). By jointly analysing CNV and SV data, we
identified two novel regions of recurrent alteration. Firstly, a 120 kb
region of HLA (6p21; 32,442,465-32,554,750 bps) was deleted in 17%
of tumours (Fig. 3a). Within this region only HLA−DRB5 was
expressed and deletion was associated with significantly reduced
gene expression (PMann-Whitney= 3.7 × 10−4). We further evaluated
read depth data in tumours with an HLA-DRB5 SVs but lacking a
CNV using an additional copy segmentation algorithm [54], finding
evidence of a corresponding change number change within
2,000 bp an SV breakpoints in every tumour (Supplementary Fig.
8). Secondly, 117 kb of 6p22.2 overlapping histone gene cluster 1
(26,122,685-26,239,852 bps) was deleted in 10% of tumours
(Fig. 3b), deletion was associated with reduced expression of
HIST1H4E (PMann–Whitney= 0.034) and HIST1H2AE (PMann–Whitney=
0.023). We estimated SV cancer cell fraction (CCF) using SVclone [44]
finding the majority of these variants in the region are clonal.
We observed nonsilent SNVs or indels in USP8, BSN and SLC35G5

in 1.9, 1.7 and 1.4% of tumours respectively (Supplementary
Tables 6,7 and Supplementary Fig. 9). USP8 missense mutations

were clustered at three base positions, consistent with oncogenic
activation (Supplementary Fig. 10). While the frequency of USP8
variants in the gNOMAD v3 database was < 0.001, further curation
revealed each variant occurred above frequency filter thresholds
in legacy releases of the ExAC database indicating they may be
technical artefacts. None of the variants in BSN were recurrent and
all predicted to be damaging by SIFT and PolyPhen (Supplemen-
tary Table 7). Variants in SLC35G5 were predicted to be benign and
occurred in ExAC inconsistent with driver function.
Next, we sought to identify non-coding driver mutations. We

observed a significant excess of promoter mutations for BTLA
(4.2%, Q= 0.002) and CHID1 (2.2%, Q= 0.049). BTLA promoter
mutations clustered within a 27 bp region, and were associated
with 5-fold reduced BTLA expression (PMann–Whitney= 0.056), the
small number of tumours with expression data presumably
preventing this relationship attaining significance (Fig. 4a). By
analysing transcription factors (TFs) with evidence of BTLA
promoter binding in ChIPseq, we found each variant tumour
possessed a mutation predicted to disrupt TF binding, most
frequently RUNX1/3, GATA3 and MYB (Supplementary Table 8). Of
14 CHID1 promoter mutations 12 clustered within a 12 bp region
1 kb upstream of the TSS and within an AGO1 binding site,
corresponding RNAseq was consistent with variants reducing
CHID1 expression (Fig. 4b).
To search for significantly mutated cis-regulatory elements (CREs)

we restricted our analysis to sequences interacting with promoters
through chromatin looping in naïve B-cells [35]. We observed no
CREs possessing an excess of mutations and associated with the
expression of interacting genes. Additionally we found no evidence
of recurrent mutations within UTRs or noncoding RNAs, imposing a
threshold of at least five affected tumours.

Mutated pathways
We next assessed the subtype specificity of driver variation.
Additional to documented enrichment of NRAS/KRAS mutations in
hyperdiploid ALL and TP53 mutations in hypodiploid/near haploid

Fig. 2 Driver gene analysis. Oncoplot of somatic alterations for selected ALL driver genes (Supplementary Table 10), genes altered in > 20
tumours, compiled from SNV, indel, CNV (only focal events), SV, RNAseq, and LOH. Vertical lines represent one tumour. Coloured sections in
grey grid denote alteration type, described in key - “Alteration type”. Short nucleotide variants span the entire row, other alterations span
half the row width. The right bar plot shows the frequency of driver gene alteration, colour denotes alteration type, as prior. Deletions and
amplifications derived from CNVs and SVs; disruption from RNAseq and SVs. Alterations are shown non-redundantly; tumours with multiple
alterations in the same gene only counted once. Plot generated using Maftools [6] after the exclusion of genes in the psuedoautosomal
regions.
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Fig. 3 Recurrent copy number and structural variants. Significantly amplified or deleted regions in CNV data, were filtered retaining only
those with an enrichment of structural variants, based on a permutation test. Regional genetic plots showing recurrent deletions mapping to
(a) HLA-DRB5 and (b) histone gene cluster 1. Upper panes shows gene position. Line plots show number of tumours with an overlapping
variant; blue—CNVs, red—SVs, black—total count (tumours with both SVs and CNVs counted once). Central pane shows the individual
variants. For convenience only variants starting or ending in the field of view are plotted. Vertical black lines denote region with the highest
deletion frequency. Lower left pane, box plots of gene expression split by mutational status. Lower right pane, density plots of structural
variant clonality; blue circles individual SVs. Genomic coordinates from GRCh38.

Fig. 4 Non-coding driver mutations. Mutation burden within promoters and their transcriptional impact. Promoter mutations of (a) BTLA and
(b) CHID1. Regional plot of mutations (coloured circles) relative to coding sequence (dark blue boxes) and promoter (yellow horizontal bar).
Transcription factor binding sites (light blue horizontal line) overlapping mutations were extracted from Encode and ChIP atlas. Grey boxes
correspond to transcriptional impact on respective gene. Box and whiskers plot, tumours are split by mutational status, dots represent
individual tumours.
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ALL, we identified a number of other associations (Supplementary
Table 9). Notably, TBL1XR1 and ZEB2 mutations were enriched in
ERG-deleted ALL (present in 21% and 14% of tumours, respec-
tively). iAMP21 tumours were characterised by excess RB1 deletion
(40%) and IL7R mutation (20%). NF1 mutations were largely
confined to near haploid tumours occurring in 45%. Finally, ETV6-
RUNX1 positive tumours were associated with enrichment for
TBLXR1 and RAG1/RAG2 deletions.
Given the identification of deletions within the histone gene

cluster 1 and the previous identification of CTCF as a potential ALL
driver we explored the transcriptional impact of these lesions,
analysing differential expression. We divided tumours according
to CTCF (mutated/deleted) and histone 1 cluster (deleted) status,
excluding tumours variant for both. We identified five differentially
expressed genes in both sets of mutated tumours (PBinomial= 1.5 ×
10−8), including CLIC5 and IGF2BP1 (Supplementary Table 10 and
Supplementary Fig. 11). CLIC5 and IGF2BP1 have been identified as
markers of hyperdiploid ALL [55], however, none of the test
tumours used in this analysis were hyperdiploid. In total 60
tumours (17%) harboured alterations (deletions or mutations) in
either CTCF or the histone gene cluster 1.
To produce a composite picture of somatic events we clustered

drivers by biological pathways (Fig. 5, Supplementary Tables 2 and
11). Alterations of B-cell development genes, were the most
frequent, found 70% of tumours. This analysis confirmed the
importance of RAS/RTK alterations in hyperdiploid biology and
highlighted a number of other key pathways. Secondary alterations
affecting cytokine signalling occurred in 37% iAMP21 of tumours
(QBinomial= 2.2 × 10−3) involving IL7R, JAK2 or CRLF2 (including 3/5
cases of P2RY8-CRLF2 translocation). Alteration of chromatin
regulating genes occurred in 56% of ETV6-RUNX1 positive tumours
(QBinomial= 1.9 × 10−4). Hypodiploid tumours were typified by
disruption of transcriptional regulators (Q Binomial= 0.012), while
TCF3-PBX1 tumours were overrepresented in disruption to genes
regulating signal transduction (QBinomial= 0.012).

We assessed driver gene mutation clonality, finding most occur
both the clonally and sub-clonally (Fig. 6a and Supplementary Fig.
12). An exception was ZEB2 where mutations were always clonal,
moreover, mutations of B-cell development and haematopoiesis
genes (IKZF1, PAX5 and ZEB2) tended to be clonal. Conversely
the majority of RAS/RTK gene mutations were subclonal (65%;
PFisher= 0.001). This was especially true of ERG-deleted tumours
where 44% possessed a subclonal RAS/RTK variant (accounting for
89% of RAS/RTK mutations in the subtype) compared to 8% with a
clonal variant. Conversely RAS/RTK mutations in hyperdiploid
tumours were usually clonal (60%), occurring in 44% of tumours
compared to 20% with only a subclonal variant.

Mutational signatures
To examine factors promoting tumorigenesis we extracted
COSMIC single base signatures (SBS) using SigProfilerExtractor
[28]. Ten signatures contributed >1% of mutations (Supplemen-
tary Fig. 13). SBS5 (aetiology unknown but clock-like) accounted
for the most mutations (40%) and was seen in all tumours
(Supplementary Figs. 14 and 15). SBS2 and SBS13 (AID/APOBEC)
were almost exclusively confined to ETV-RUNX1 tumours
(QMan–Whitney= 2.3 × 10−33 and QMan–Whitney= 1.1 × 10−36

respectively), whilst SBS7a (UV exposure) was highly enriched in
iAMP21 tumours (QMan–Whitney= 5.3 × 10−12) (Supplementary Figs.
16 and 17). SBS7a was associated with the highest mutation rate,
10-fold higher than SBS1 (Supplementary Fig. 18) and was largely
responsible for the increased mutation rate in iAMP21 tumours
(Supplementary Fig. 19).
SVs in ETV6-RUNX1 positive tumours bear the hallmarks for

RAG1 and RAG2 activity [56]. We searched for recurrent DNA
motifs at SV breakpoints, firstly agnostically by motif enrichment
using HOMER [46], and secondly by assessing the similarity of
discovered motifs to the binding sites of candidate mutagenic
drivers (Supplementary Table 4). Cohort wide, the most enriched
sequences were the RAG heptamer (P < 1 × 10−200), RAG nonamer

Fig. 5 Pathway analysis and signature analysis. Radar plots showing the most frequently altered pathways for each subtype. Driver genes
grouped according to the biological pathway. Somatic alterations for a selected ALL driver genes was compiled from SNV, indel, CNV, SV,
RNAseq, and LOH data (CNVs include only focal events). Subtype defining events are excluded (e.g, disruption of ETV6 or RUNX1 in ETV6-
RUNX1 positive tumours). The proportion of tumours with an alteration in any gene assigned to that pathway is plotted on the radial axis.
Each axis is scaled separately. Gene—pathway assignments: RAS/RTK; NRAS, KRAS, PTPN11, FLT3, NF1, ABL1. B-cell development; PAX5, IKZF1,
ETV6, ZEB2, RUNX1, TCF3, RAG1, RAG2, EBF1. Chromatin regulation; SETD2, HDAC7, NSD2, CTCF, KMT2A, STAG2, histone gene cluster 1. Cytokine
signalling; JAK2, IL7R, CRLF2. Gene regulation; CREBBP, MLLT1, MLLT3, AFF1, BTG1, ERG, TCF4, NCOA6. Signal transduction; TBL1XR1, TBL1X, PBX1,
PAG1. Cell cycle regulation; CDKN2A, CDKN2B, RB1. Immune regulation; BTLA, HLA-DRB5.
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(P < 1 × 10−200) and PRDM9 binding motif (P= 1 × 10−121), found
at 8.8, 7.2 and 1.5% of breakpoints respectively. With the
exception of ETV6-RUNX1 positive tumours the most frequent
enriched motifs were the RAG heptamer and RAG nonamer,
however in ETV6-RUNX1 the most common was the PRDM9
binding motif contained in 28% of breakpoints (P= 1 × 10−162)
(Fig. 6b). Overall RAG heptamers were observed in both break-
points of 3% of SVs.
We also sought evidence of activation-induced deaminase

(AID) activity at SV breakpoints. Due to the degenerate nature of
AID motifs we used the number of repeats of core AID
recognition sequences (Supplementary Table 4) as a proxy of
activity. After comparing SVs in immunoglobulin regions we
established a cut-off of > 10 repeats as indicative of AID activity
(Supplementary Fig. 20). AID signatures were detected in the
breakpoints of 2% of all SVs, but 17% of SVs in TCF3-PBX1 positive
tumours (PFisher= 8 × 10−9) (Supplementary Fig. 21).

Clonal architecture
The presence of subclonal populations in tumours was almost
universal (observed in 98% of tumours; Fig. 7a). Most commonly
tumours possessed two subclones, however, ERG-deleted tumours
tended to have a higher number (QMann–Whitney= 0.008) and
KMT2A translocated lower (QMann–Whitney= 0.038) (Supplementary
Fig. 22). The distribution of subclone CCF was similar across
subtypes, with the exception of hyperdiploid tumours whose
subclones had higher CCFs (QMann–Whitney= 0.004), 50% having a
subclone with a CCF between 0.7 and 0.8, compared to 9% of
other tumours (Supplementary Fig. 23).
The diversity of cell populations (i.e. heterogeneity) varied

across subtypes, hypodiploid and ERG-deleted tumours were the
most heterogeneous (median Simpson index = 0.61 and 0.62;
QMann-Whitney= 1.7 × 10−3, 1.13 × 10−3), while hyperdiploid
tumours exhibited lower heterogeneity (Simpson index = 0.45;
QMann–Whitney= 2.8 × 10−7) (Fig. 7b).
Accounting for mutational frequency, subclones were enriched in

driver mutations (PBinomal= 1.8 × 10−5) relative to clonal popula-
tions. To examine the processes influencing tumour evolution we
enumerated the number of subclones with (≥1) driver gene
mutations for each subtype, comparing this to the frequency
observed in remaining subtypes. ERG-deleted tumour subclones
were most likely to possess drivers mutations (35%; Qbinomal=
0.0016), whereas BCR-ABL1 positive tumour subclones contained
the lowest frequency (4%; QBinomal= 0.052) (Supplementary Fig. 24).
To explore the possible contribution of neutral evolution to

tumour heterogeneity we used MOBSTER [52], which models

variant distribution under neutral evolutionary processes. MOB-
STER called neutral ‘tails’ in the majority of tumours, fitting a
median of 12% (SNVs) and 16% (SNVs and indels) of variants
(Supplementary Fig. 25). Using dNdSCV we found evidence of
positive selection in neutral tail compartments which were
enriched in NRAS (Q= 3.4 × 10−8) and KRAS (Q= 1.9 × 10−3)
mutations. Additionally, rates of non-synonymous substitution in
NRAS, KRAS, FLT3, NSD2 were higher in tail compartments than
clonal compartments (Supplementary Fig. 26).

DISCUSSION
By analysing whole genome sequencing and transcriptome
data from a large series of ALL patients, we provide for an
enhanced understanding of ALL subtype genetics identifying
novel candidate coding, noncoding and copy number drivers.
Our analysis reveals differences in the mutational and
biological pathways processes influencing the initiation and
progression of the disease. We also provide evidence of the
ongoing selection of subclonal mutations as a ubiquitous
feature of ALL evolution.
Around half of ETV6-RUNX1 and iAMP21 tumours are

characterised both by an increased mutation rate and enrich-
ment for specific COSMIC single base signatures. AID/APOBEC
related signatures, SBS2 and SBS13, were confined to ETV6-
RUNX1 ALL, while UV-associated SBS7a was highly enriched in
iAMP21 positive tumours. SBS7a has previously been reported to
occur in ALL tumours at a similar rate [28]. Moreover, SBS7a
occurs at similar rates in a number of tumours types lacking UV
exposure [28]. These observations provide evidence for an
additional mechanistic basis for SBS7a thus implicating unknown
germline genetic or environmental factors promoting tumour-
igenesis of iAMP21 tumours.
We identified three genes enriched in short nucleotide

variants, USP8, BSN and SLC35G5. The presence of known
sequencing artefacts in USP8 and SLC35G5 necessitates further
validation to establish the candidacy of these genes as drivers.
BSN is predominantly expressed in neurons where it regulates
the release of neurotransmitters consistent with these findings
being coincidental.
Deletions of the gene encoding B and T-lymphocyte attenuator

(BTLA) have previously been reported in ALL [57], which typically
overlap CD200, however, the specific functional mediator has yet
to be elucidated. The existence of BTLA promoter SNVs are
consistent with this gene, as opposed to CD200, being the driver
gene at the 3q12.2 region.

Fig. 6 Driver clonality and SV breakpoint enrichment. a Driver gene mutation (SNV/indels) clonality. Box and whiskers plot showing the
proportion clonal mutations for ALL driver genes. Each circle represents a mutation, coloured according to disease subtype, for tumours with
multiple mutations in the same gene the variant with the highest clonal cell fraction is retained. b Structural variant motif enrichment. Bar
chart showing motif enrichment at SV breakpoints. Two 100 bp of sequences flaking each breakpoint of an SV were extracted and analysed
using HOMER. Y-axis; percent of extracted sequences containing motifs.
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We additionally report recurrent copy and structural variation
impacting HLA-DRB5. Although the selective basis of these lesions
remains unclear, genome-wide association studies in chronic
lymphocytic leukaemia [58] and lymphoma [59] have identified
germline variants in HLA-DRB5 influencing disease risk.
Around 10% of tumours possessed a deletion overlapping the

histone gene cluster 1, which contains 16 different histone
isoforms, including at least two of each core histone. Recurrent
histone H1 mutations have also been reported in around 30%-
50% of lymphomas altering chromatin architecture and indu-
cing stem cell-like transcriptional profiles [60]. The further
functional characterisation will be required in order to deter-
mine the functional gene(s) within these lesions. We show that
tumours harbouring histone gene cluster 1 deletions and CTCF
alterations share a common transcriptional profile, both down-
regulating IGF2BP1 and CLIC5. Interestingly, these genes were
recently identified alongside CTCF as markers hyperdiploid
tumours [55]. No hyperdiploid tumours were included in this
analysis, precluding a co-variant effect driving this relationship.
Mutations in these genes were however enriched in tumours
with no assigned subtype. Alteration of either CTCF or histone
gene cluster 1 was common, occurring in 17% of tumours.
Collectively these data raise the possibility of a ‘hyperdiploid-
like’ subtype of ALL.
While there is commonality in disruption of pathways between

ALL subtypes there are clear distinctions, not only in the
particular biological pathways harbouring mutations but also the
clonal distribution of these mutations. These differences have
implications for choice of potential targeted therapies and
determining which patients will benefit most from their use. As
targeting activated oncogenes is generally more tractable than
tumour suppressors the biological pathways of most relevance
for ALL are RAS/RTK and IL7 signalling. Importantly, RAS/RTK
mutations in hyperdiploid tumours were typically clonal,

whereas in ERG-deleted ALL mutations were almost exclusively
subclonal, suggesting the efficacy of RAS/RTK inhibitors will
differ between subtypes. Alteration of IL7 signalling was
common in iAMP21 tumours suggesting that JAK2 inhibitors
may have utility in this group.
Somatic variants identified as neutrally occurring by MOBSTER

were enriched in ALL drivers, indicating that neutral evolution is
not a major contributor to genetic heterogeneity in ALL, this may
be reflective of the low mutation rate of the disease comparative
to most solid cancers. We show that subclonality in ALL is
common suggesting Darwinian evolution drives the selection and
expansion of mutations and subclones. Consequently, the use of
novel targeted therapies should take account of the clonality and
heterogeneity of tumours.

Web resources
Repetitive genomic loci used for variant filtering were down-
loaded from hgdownload.cse.ucsc.edu/goldenpath/hg38/data-
base/simpleRepeat.txt.gz.
Replication timing was downloaded from 2.replicationdomain.

com/.
Smooth the wrapper for structural variant caller Lumpy is

available from github.com/brentp/smoove.
Structural variant positional filtering was based on https://github.

com/dellytools/delly/blob/master/excludeTemplates/human.hg38.
excl.tsv.
FusionInspector the RNAseq fusion gene detection software is

available from github.com/FusionInspector.
Control RNAseq data for GETex and HPA were downloaded

from ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/samples/ and
ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR315.
Promoters were defined using genode v30 downloaded from ftp://

ftp.ebi.ac.uk/pub/databases /gencode/Gencode_human/release_30/
gencode.v30.annotation.gtf.gz.

Fig. 7 Clonal architecture and evolution. Variant cancer cell fractions (CCF) were calculated and variants clustered into clonal and subclonal
populations. a Distribution of clones. Horizontal lines represent single tumours, circles represent clones; the size and colour of circles
corresponding the proportion and number of variants assigned to each clone. Y-axis; clonal frequency (proportion of cell cells with a variant
(s)). b Heterogeneity between subtypes. Box and whiskers plot of Simpson index (higher values indicative of increased heterogeneity). Each
dot corresponds to a tumour.
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VEGAN package for calculating population diversity is available
from github.com/vegandevs/vegan.
HMMcopy is available from http://www.bioconductor.org/

packages/release/bioc/manuals/HMMcopy/man/HMMcopy.pdf

DATA AVAILABILITY
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