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Abstract 35 

 36 

Background and Purpose: Real-time portal dosimetry compares measured images with 37 

predicted images to detect delivery errors as the radiotherapy treatment proceeds.  This work 38 

aimed to investigate the performance of a recurrent neural network for processing image 39 

metrics so as to detect delivery errors as early as possible in the treatment. 40 

 41 

Materials and Methods: Volumetric modulated arc therapy (VMAT) plans of six prostate 42 

patients were used to generate sequences of predicted portal images.  Errors were introduced 43 

into the treatment plans and the modified plans were delivered to a water-equivalent phantom.  44 

Four different metrics were used to detect errors.  These metrics were applied to a threshold-45 

based method to detect the errors as soon as possible during the delivery, and also to a 46 

recurrent neural network consisting of four layers.  A leave-two-out approach was used to set 47 

thresholds and train the neural network then test the resulting systems. 48 

 49 

Results: When using a combination of metrics in conjunction with optimal thresholds, the 50 

median segment index at which the errors were detected was 107 out of 180.  When using the 51 

neural network, the median segment index for error detection was 66 out of 180, with no false 52 

positives.  The neural network reduced the rate of false negative results from 0.36 to 0.24. 53 

 54 

Conclusions: The recurrent neural network allowed the detection of errors around 30% earlier 55 

than when using conventional threshold techniques.  By appropriate training of the network, 56 

false positive alerts could be prevented, thereby avoiding unnecessary disruption to the patient 57 

workflow. 58 

 59 

Keywords: in vivo dosimetry, electronic portal imaging device, artificial neural network, 60 

volumetric modulated arc therapy. 61 

 62 
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1.  Introduction 66 

Portal dosimetry is widely used to ensure the dosimetric accuracy of radiotherapy 67 

delivery [1-4].  In the case of forward-projection, portal images are predicted at the time of 68 

treatment planning, and then measured images are compared with these [5-7], and in the case 69 

of back-projection, measured images are projected onto the CT scan of the patient and 70 

converted into a dose distribution, which is then compared with the planned dose distribution 71 

[8-12].  Groups of images are selected to represent the segments of volumetric modulated arc 72 

therapy (VMAT) [13, 14]. 73 

Usually, images for completed fractions of treatment are analysed.  However, there is 74 

growing interest in analysing the measured images as the treatment fraction proceeds.  In this 75 

way, it is possible to identify errors before significant dosimetric impact occurs for the patient 76 

[15-19], particularly for hypofractionated treatments [20], which are becoming increasingly 77 

commonplace [21-23].  The real-time method is time-resolved, which also has its own 78 

advantages in giving a more thorough analysis than when using integrated images or dose [24, 79 

25].  Typically, errors are detected by setting a series of thresholds for a number of image 80 

features or measures, and then watching for the measures to exceed the thresholds [26], 81 

preferably avoiding false positives, which are disruptive in the real-time context [27]. 82 

Use of an accurate prediction model is an important means of providing sensitivity to 83 

errors while avoiding false positives.  However, another possible means of increasing 84 

reliability is to use an artificial neural network.  Simple neural networks have been used in the 85 

radiotherapy context before, such as for prediction of biological outcomes [28] and for pre-86 

treatment quality assurance [29], and more complex neural networks are increasingly used in 87 

radiotherapy for deep learning in structure delineation and treatment planning [30-33].  88 

However, they have so far not been used in the context of error detection in portal dosimetry. 89 

This study therefore investigated the training of a simple artificial neural network to 90 

detect errors based on the supplied image measures at each time point.  There were several 91 

types of neural network that could be used for this application, but the recurrent neural 92 

network (RNN) was used in this study because it could not only learn from training data, but 93 

also had the ability to learn from, and adapt to, a temporal series of inputs, such as the image 94 

measures at each segment of a VMAT arc.  The study was a proof of principle of this 95 

approach, using VMAT treatment of the prostate as an illustration.  It used the forward-96 

projection method of portal dosimetry and a variety of deliberate errors.  The differences 97 

between the measured and predicted images were investigated firstly using multiple separate 98 
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metrics (MSM) and related thresholds and then with the use of an RNN, so as to quantify the 99 

timeliness with which each method was able to detect the errors. 100 

 101 

2.  Materials and methods 102 

2.1.  Patients and treatment plans 103 

Treatment plans for radiotherapy of the prostate were created using AutoBeam v5.8 104 

[34] for 60 Gy in 20 fractions with the 6 MV beam of a VersaHD linear accelerator (Elekta 105 

AB, Stockholm, Sweden) [35, 36].  For six patients who gave their consent for their images to 106 

be used for research, predicted portal images were retrospectively produced for each segment 107 

of the VMAT arcs and input to AutoDose v1.1 software for comparison with real-time images 108 

[19] (figure 1).  AutoBeam was also used to recalculate the plans and predicted images on a 109 

water-equivalent phantom of dimensions 300 mm long (G-T direction) × 300 mm wide (A-B 110 

direction) × 200 mm high, with the isocentre located at the centre of the phantom. 111 

 112 

2.2.  Measured images 113 

Errors were deliberately introduced into all 180 segments of the treatment plans and 114 

both the normal and erroneous plans were then delivered to a Solid Water phantom (Radiation 115 

Measurements, Inc., Middleton, WI).  The errors consisted of a 2-10% increase in monitor 116 

units in 2% steps, a retraction of 2-10 mm in 2 mm steps of all multileaf collimator (MLC) 117 

leaves, a shift of 2-10 mm in 2 mm steps of all MLC leaves, and introduction of an air space 118 

of 10-50 mm width in 10 mm steps into the phantom to simulate rectal gas [37].  In three 119 

patients, all error cases were simulated, and in a further three patients, only the error-free case 120 

and 4% increase in monitor units, 4 mm MLC retraction, 4 mm MLC shift and 20 mm air 121 

space were simulated.  Portal images were recorded using an iViewGT imaging panel (Elekta) 122 

and analysed using AutoDose, which allocated the images to control points of the treatment 123 

plan [19]. 124 

 125 

2.3.  Image metrics and selection of thresholds 126 

At each segment of the VMAT plan, four measures of agreement between predicted 127 

and measured images were calculated: central axis signal, mean image value, root-mean-128 

square difference as a percentage of global maximum and root-mean-square difference as a 129 

percentage of local prediction.  These simple difference measures were used in favour of 130 

more complex difference measures as the intention was to identify differences, however small 131 

spatially or temporally, and then to use error detection to work with these.  The first 10% of 132 
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segments were neglected as the images were not stable in this period.  The startup of the 133 

linear accelerator, estimated to affect the first 1% of segments, may have been contributory to 134 

this instability.  After the first 10% of segments, a running sum of 10 segments was used.  For 135 

comparison purposes MSM was applied, in which the value of median + 2 × range of the 136 

maximum value of each statistic over the cases under consideration was taken as the 137 

threshold, and image metrics exceeding these thresholds signified errors. 138 

 139 

2.4.  Recurrent neural network 140 

The four measures were applied to an RNN [38] consisting of four layers of gated 141 

recurrent units (GRUs), with four nodes in the first layer, eight in the second layer, four in the 142 

third layer and one in the final layer.  The function of the GRU was exactly as defined by Cho 143 

et al. [39].  For training and testing, a leave-two-out cross-correlation strategy was used [40, 144 

41].  Four of the patients were used to train the network, and the remaining two patients were 145 

used to test the result.  Of the four patients used for training, two were from patients 1-3, for 146 

which a full set of error cases were available, and the other two were from patients 4-6, for 147 

which only representative errors were available (see section 2.2).  There were therefore nine 148 

ways of selecting unique combinations of patient for testing, so the RNN was trained and 149 

tested nine times.  For example, firstly patients 1 and 4 were retained for testing, so patients 2, 150 

3, 5, and 6 were used for training.  Then patients 1 and 5 were retained for testing, so patients 151 

2, 3, 4 and 6 were used for training, etc. 152 

Using p to index the P training patients, e to index the E+1 error types, (e=0 153 

representing no error), s to index segments after exclusion of the first 19 segments and the 154 

vector w to represent the W weights of the RNN, the objective function for training was 155 

defined as: 156 

 157 
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and ( )ef e  was an error-specific factor to ensure that the larger errors were detected: 164 

 165 
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 167 

where Me was the physical ranking of the error, i.e. 1 to 5 according to a monitor unit increase 168 

of 2% to 10% etc.  The factor ( )sf s  was a segment-specific factor: 169 

 170 
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 172 

thereby emphasising the importance of early segments in normal cases and late segments in 173 

error cases.  Finally, ( ), , ,yf p e s w  provided a quadratic penalty from the “off” state for 174 

normal cases and from the “on” state for error cases: 175 

 176 
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 178 

where ( ), , ,y p e s w  was the output of the network ( )1 1y−   , with y>0 signifying an error 179 

and y<0 signifying normal delivery. 180 

The final term in equation (1) was an L2 norm to prevent overfitting to the training 181 

data.  This was applied to the W primary weights of the network, excluding the hidden state, 182 

update and reset weights, using an empirically-determined value of 40 for the regularisation 183 

parameter, .  To further avoid false positives, indices of e for which Me=1, i.e. 2% increase 184 

in monitor units, 2 mm aperture opening etc, were also defined as normal (no-error) cases.  185 

Due to the non-convexity of the objective function, a random search algorithm was used for 186 

training.  The software was run on a SPARC T4-2 server with 128 hyper-threads (Oracle 187 

Corporation) using a separate execution thread for each of the nine combinations of training 188 

and testing. 189 

To visualise real-time performance, the network trained on patients 2, 3, 5, and 6 was 190 

applied to errors for patient 1.  The final validation was to apply the RNN to actual patient 191 
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images for four patients (A-D) different to those used for the phantom study.  All of these 192 

treatments were considered to be normal deliveries, but the images for patient D were re-193 

acquired on further occasions (in a non-real-time workflow) and were taken as an example of 194 

images that the medical physicist was not satisfied with. 195 

 196 

3.  Results 197 

3.1.  Training the recurrent neural network 198 

Training and testing of the network required around 50 hours.  Over this time, the 199 

training progressed steadily, with the objective function converging to a similar value for the 200 

nine data sets (figure 2).  Benefits were observed in timeliness of error detection with the 201 

RNN for monitor unit, aperture shift and air gap errors.  Importantly, there were no false 202 

positives in any of the error-free cases.  For the training cases as a whole, the median segment 203 

index at which errors were detected was 105 (range 97 – 120) for MSM and 68 (range 52 – 204 

75) for the RNN, with a median relative reduction of 0.57 (range 0.49 – 0.72).  The delivery 205 

time was approximately 180 s for the 180 segments of these treatment plans, so in terms of 206 

time, each segment equated to approximately 1 s of delivery time.  Thus, finding the error at 207 

segment 68 meant that approximately 68 s of delivery was completed when the error was 208 

detected.  There were 186 false negatives, in which the error was not detected at all during the 209 

180 segments, out of 432 errors for MSM, representing a ratio of 0.43.  There were 100 false 210 

negatives out of 432 errors for the RNN, a ratio of 0.23. 211 

 212 

3.2.  Testing the recurrent neural network 213 

Testing showed that the RNN was most beneficial for errors in monitor units, aperture 214 

position and path length (figure 3).  MSM were already effective in detecting errors in 215 

aperture opening, so in this case the RNN was less beneficial.  The thresholds for central 216 

image signal and mean image value were exceeded in several instances for an aperture shift of 217 

2 mm (figure 3c) but not for 4 mm, unrelated to the errors being introduced.  The slightly 218 

worse performance of the RNN for larger aperture opening and aperture shift errors (figures 219 

3b and 3c) was due to the L2 norm.  This prevented overfitting, but meant that some of the 220 

obvious errors were not found until several segments after the MSM method. 221 

Testing results for a specific level of error were found to be broadly similar between 222 

patients (figure 4), although overall, there was some variation in the nine test samples (Table 223 

1).  Again, there were no false positives in any of the test results for error-free cases.  There 224 
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were 77 false negatives out of 216 errors for MSM, representing a ratio of 0.36.  There were 225 

52 false negatives out of 216 errors for the RNN, a ratio of 0.24. 226 

In the real-time context, the RNN was found to be most active initially in the treatment 227 

delivery for the case of moderate errors (figure 5).  The network failed to detect a 4% increase 228 

in monitor units (figure 4a), but successfully detected the other errors rapidly (figures 4b-d).  229 

After error detection, the signal did not change appreciably. 230 

For the real patient images, deliveries for patients A-C were classified as normal, with 231 

a network output of close to -1.  Those for patient D were identified very rapidly as abnormal, 232 

with the network output quickly moving to approach +1. 233 

 234 

 235 

4.  Discussion 236 

The results show that in the context of forward-projection real-time portal dosimetry 237 

for prostate treatment delivery, the RNN is able to improve the timeliness of error detection 238 

by around 30%, compared to MSM.  There is some variability in effectiveness of the RNN 239 

between error types and between patients. 240 

Implicitly, the thresholds of MSM are built in to the RNN in the form of the biases, 241 

but the more complex connectivity of the RNN is shown to provide a more effective result, 242 

similar to dose-volume histogram prediction [42].  The RNN is trained to detect particular 243 

types of errors for a particular treatment site, and there is no guarantee that it operates 244 

correctly for other errors or treatment sites.  In other words, although the L2 norm prevents 245 

overfitting within the patients used, the model as a whole may be over-fitted to certain types 246 

of error and treatment site.  However, by using general image difference measures, the present 247 

study gives an indication of what is likely to be achieved in a larger study using treatment 248 

plans of similar complexity. 249 

There are relatively few studies focusing on real-time EPID dosimetry for VMAT, but 250 

it is possible to make some comparisons with other studies.  The method behaves similarly to 251 

that of Woodruff et al. [17], except for the use of section images rather than integrated 252 

images.  Compared to real-time MSM using site-specific control limits [15], which is able to 253 

detect monitor unit errors of 5% in static gantry intensity-modulated radiotherapy after about 254 

23% of the delivery, the detection speed in the present study is slower, but the thresholds must 255 

be higher with VMAT due to the gantry rotation, which explains this effect.  Monitor unit 256 

changes and aperture shifts of a similar magnitude to those in the present study can also be 257 

detected by back-projection in a non-real-time context [43, 44].  In the real-time situation, 258 
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Spreeuw et al. [18] show that a 20 cGy dosimetric difference in the patient can be detected 259 

after around 10% of the delivery time for deliberately introduced serious errors in prostate 260 

radiotherapy.  This is faster than either MSM or RNN in this study, but is expected to be so 261 

because of the magnitude of the errors.  The study presented here is in agreement with Schyns 262 

et al. [25] that the time-resolved element is valuable in the forward-projection approach but 263 

that interpretation of any errors detected in terms of dose to the patient is not straightforward.   264 

As with all studies using deliberate errors, the results must either be based on phantom 265 

studies or simulated measurements.  For the former, used in this study, the anatomy is 266 

somewhat simplified, but the measurements include real variations in quality of panel output 267 

and calibration.  Other uncertainties are the start-up of the accelerator, the initial instability of 268 

the images and the allocation of images to segments of the treatment plan.  The method of 269 

using a running sum of images for a limited number of treatment plan segments is able to 270 

detect errors for parts of the VMAT arc, but this has not been fully demonstrated in this study 271 

as the introduced errors are present for the whole arc.  However, the method of detecting 272 

errors in the whole plan does have the advantage that the timeliness of the detection can be 273 

quantified in an analogue manner, such as using segment number at which the error is 274 

detected, whereas the introduction of short errors means that the detection is binary, for 275 

example detected or not, which is then difficult to analyse in small data sets.  It is also more 276 

important to detect and act upon persistent errors. 277 

Simulated measurements are easier to obtain, by taking predictions and applying 278 

noise, e.g. [45], but it is very difficult to ensure that the noise accurately represents the 279 

random and systematic errors that typically occur during operation of a portal dosimetry 280 

service [46-48].  In addition, the effectiveness of the portal dosimetry method depends on how 281 

accurate the prediction method is [43, 44]. The study does not address patient positioning 282 

errors, for which a method such as conebeam CT is more suitable, either separately from the 283 

portal dosimetry, or included within it [7, 44, 49].  However, it is likely that anatomical 284 

changes can be detected with improved accuracy using the RNN, particularly as this type of 285 

change may only impact on the portal images at particular gantry angles [24, 25]. 286 

Avoidance of false positive results is an important part of this approach, as a false 287 

positive error in the real-time context means that the patient’s treatment is paused while the 288 

error is investigated.  False positives also add to the operator workload and encourage a lax 289 

attitude towards real errors when they occur.  There are some false negative results in the 290 

study, mostly for the small error cases where the clinical impact is relatively small, but these 291 

are reduced in number by appropriate training of the RNN [50]. 292 
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A logical progression of this work is use a deep learning approach [30, 31, 51, 52] to 293 

analyse the predicted and measured images as a whole.  Either the pixels of a difference map 294 

between the predicted and measured images, or the pixels of both of the images separately 295 

could be applied to the inputs.  A convolutional stage could detect specific image features 296 

which might be indicative of errors. 297 

The RNN presented in this study, taking as input several measures of difference 298 

between predicted and measured images, can be used to provide timely indication of errors 299 

during real-time portal dosimetry.  In this simulation study of forward-projection portal 300 

dosimetry for prostate VMAT, a variety of errors are detected around 30% earlier than when 301 

using the image difference measures alone in a threshold-based approach.  The leave-two-out 302 

strategy used in this feasibility study gives an indication of the benefit likely to be observed in 303 

a larger cohort of similarly complex VMAT treatments. 304 

305 
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Tables 490 

 491 

Table 1.  Mean segment index at which errors are detected for multiple separate metrics with 492 

threshold and for a recurrent neural network, during testing. 493 

 494 

PATIENT 

A 

PATIENT 

B 

ERROR 

SIZE* 

MSM RNN Relative 

benefit† 

1 4 Small 159 181 1.14 

  Medium 129 38 0.29 

  Large 78 23 0.29 

  Overall 117 57 0.49 

1 5 Small 159 105 0.66 

  Medium 120 51 0.43 

  Large 78 23 0.29 

  Overall 113 51 0.45 

1 6 Small 159 142 0.89 

  Medium 130 60 0.46 

  Large 78 23 0.29 

  Overall 117 62 0.53 

2 4 Small 114 181 1.59 

  Medium 84 84 1.00 

  Large 40 33 0.83 

  Overall 74 83 1.12 

2 5 Small 114 151 1.32 

  Medium 92 61 0.66 

  Large 38 32 0.84 

  Overall 78 66 0.85 

2 6 Small 115 103 0.90 

  Medium 78 77 0.99 

  Large 42 24 0.57 

  Overall 72 63 0.88 

3 4 Small 129 181 1.40 

  Medium 131 72 0.55 

  Large 59 74 1.25 

  Overall 107 74 0.69 

3 5 Small 129 181 1.40 

  Medium 122 66 0.54 

  Large 58 24 0.41 

  Overall 102 71 0.70 

3 6 Small 129 181 1.40 

  Medium 131 80 0.61 

  Large 59 24 0.41 

  Overall 107 78 0.73 

MEDIAN  Overall 107 66 0.70 

 495 

 496 
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MSM: multiple separate metrics; RNN: recurrent neural network. 497 

*Small: 2% monitor unit increase, 2 mm aperture opening, 2 mm aperture shift, 10 mm air 498 

gap; medium: 4-6% monitor unit increase, 4-6 mm aperture opening, 4-6 mm aperture shift, 499 

20-30 mm air gap; large: 8-10% monitor unit increase, 8-10 mm aperture opening, 8-10 mm 500 

aperture shift, 40-50 mm air gap. 501 

†Relative benefit defined as quotient of RNN and MSM. 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 
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 517 

 518 

 519 

Figure 1.  An analysis of a volumetric modulated arc therapy treatment plan for a patient 520 

delivery, seen in AutoDose v1.1.  The main panel shows the mean image difference as a 521 

percentage of local image intensity for sections of arc consisting of 10 segments.  The inset 522 

(lower right) shows the expected and actual images for a single section of arc, together with 523 

horizontal and vertical profiles through the central axis (Data 1 – expected image, Data 2 – 524 

actual image). 525 

 526 

 527 



Bedford and Hanson                Recurrent neural network for real-time portal dosimetry  21 

 528 

Figure 2.  Training the recurrent neural network.  (a) Network topology, (b) abstraction of 529 

one layer of the network, (c) training progress for the nine data sets, (d)-(g) Median index of 530 

the first segment at which each error is detected, as a function of error type and magnitude.  531 

White cross-hatching indicates that the error is not detected.  C: central image signal, M: 532 

mean image value, G: root-mean-square error as a percentage of global maximum, L: root-533 

mean-square error as a percentage of local signal, E: error, MSM: multiple separate metrics, 534 

RNN: recurrent neural network. 535 

 536 
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 537 

 538 

 539 

 540 

 541 

Figure 3.  Median index of the first segment at which each error is detected, as a function of 542 

error type and magnitude, during testing.  White cross-hatching indicates that the error is not 543 

detected.  MSM: multiple separate metrics; RNN: recurrent neural network. 544 

 545 
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 556 

 557 

 558 

 559 

 560 

Figure 4.  Index of the first segment at which each error is detected, in the six patients 561 

separately, for a fixed level of error, during testing.  White cross-hatching indicates that the 562 

error is not detected.  MSM: multiple separate metrics; RNN: recurrent neural network. 563 
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 573 

 574 

 575 

 576 

 577 

 578 

Figure 5.  Network output for patient 1 for several error cases.  Results less than or equal to 579 

zero indicate absence of an error and results greater than zero indicate an error.  The output in 580 

the grey region at the left is disregarded due to instability of the raw signals. 581 
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